
1

Autoconf, Automake, Libtool
Edition 1.4.1, 17 March 2004

$Id: autobook.m4,v 1.1.1.1 2002/05/15 18:26:17 joostvb Exp $

Gary V. Vaughan

Ben Elliston
bje@redhat.com

Tom Tromey
tromey@redhat.com

Ian Lance Taylor
ian@zembu.com

mailto:bje@redhat.com
mailto:tromey@redhat.com
mailto:ian@zembu.com

2 Autoconf, Automake, and Libtool

Copyright c© 1999, 2000 Gary V. Vaughan, Ben Elliston, Tom Tromey, Ian Lance Taylor
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Authors.

Foreword 1

Foreword

Magic Happens Here

Do you remember the 1980s? Veteran users of free software on Unix could testify that
though there were a lot of programs distributed as source code back then (over USENET),
there was not a lot of consistency in how to compile and install it. The more complicated
a package was, the more likely it was to have its own unique build procedure that had to
be learned first. And there were no widely used approaches to portability problems. Each
software author handled them in a different way, if they did at all.

Fast forward to the present. A de facto standard is in widespread use for solving those
problems, and it’s not just free software packages that are using it; some proprietary pro-
grams from the largest computer companies are built using this software. It even does
Windows.

As it evolved in the 1990s it demonstrated the power of some good ideas: sharing
expertise, automating repetitive work, and having consistency where it is helpful without
sacrificing flexibility where it is helpful.

What is "it"? The GNU Autotools, a group of utilities developed in the 1990s for the
GNU Project. The authors of this book and I were some of its principal developers, but
it turned out to help solve many other peoples’ problems as well, and many other people
contributed to it. It is one of the many projects that developed by cooperation while
making what is now often called GNU/Linux. The community made the GNU Autotools
widespread, as people adopted it for their own programs and extended it where they found
that was needed. The creation of Libtool is that type of contribution.

Autoconf, Automake, and Libtool were developed separately, to make tackling the prob-
lem of software configuration more manageable by partitioning it. But they were designed
to be used as a system, and they make more sense when you have documentation for the
whole system. This book stands a level above the software packages, giving the expertise
of its authors in using this whole system to its fullest. It was written by people who have
lived closest to the problems and their solutions in software.

Magic happens under the hood, where experts have tinkered until the GNU Autotools
engine can run on everything from jet fuel to whale oil. But there is a different kind of
magic, in the cooperation and sharing that built a widely used system over the Internet,
for anyone to use and improve. Now, as the authors share their knowledge and experience,
you are part of the community, too. Perhaps its spirit will inspire you to make your own
contributions.

David MacKenzie
Germantown, Maryland
June 2000

2 Autoconf, Automake, and Libtool

Part I 3

Part I

4 Autoconf, Automake, and Libtool

Chapter 1: Introduction 5

1 Introduction

Autoconf, Automake and Libtool are packages for making your software more portable
and to simplify building it—usually on someone else’s system. Software portability and
effective build systems are crucial aspects of modern software engineering practice. It is
unlikely that a software project would be started today with the expectation that the
software would run on only one platform. Hardware constraints may change the choice of
platform, new customers with different kinds of systems may emerge or your vendor might
introduce incompatible changes in newer versions of their operating system. In addition,
tools that make building software easier and less error prone are valuable.

Autoconf is a tool that makes your packages more portable by performing tests to dis-
cover system characteristics before the package is compiled. Your source code can then
adapt to these differences.

Automake is a tool for generating ‘Makefile’s—descriptions of what to build—that con-
form to a number of standards. Automake substantially simplifies the process of describing
the organization of a package and performs additional functions such as dependency tracking
between source files.

Libtool is a command line interface to the compiler and linker that makes it easy to
portably generate static and shared libraries, regardless of the platform it is running on.

1.1 What this book is

This book is a tutorial for Autoconf, Automake and Libtool, hereafter referred to as the
GNU Autotools. The gnu manuals that accompany each tools adequately document each
tool in isolation. Until now, there has not been a guide that has described how these tools
work together.

As these tools have evolved over the years, design decisions have been made by contrib-
utors who clearly understand the associated problems, but little documentation exists that
captures why things are the way the are. By way of example, one might wonder why some
Autoconf macros use shell constructs like:

if test "x$var" = xbar; then
echo yes 1>&5

fi

instead of the simpler:
if [$var = bar]; then

echo yes 1>&5
fi

Much of this reasoning is recorded in this book.

1.2 What the book is not

This book is not a definitive reference to Autoconf, Automake or Libtool. Attempting
to do so would fill this book with information that is doomed to obsolescence. For instance,
you will not find a description of every predefined macro provided by Autoconf. Instead, the
book will attempt to help you understand any macro you encounter and, instead, influence

6 Autoconf, Automake, and Libtool

how you approach software portability and package building. The gnu manual for each
tool should be consulted as a reference.

This book briefly introduces pertinent concepts, but does not attempt to teach them
comprehensively. You will find an introduction to writing ‘Makefile’s and Bourne shell
scripts, but you should consult other references to become familiar with these broader
topics.

1.3 Who should read this book

Revealing the mystery around the GNU Autotools is likely to raise the interest of a wide
audience of software developers, system administrators and technical managers.

Software developers, especially those involved with free software projects, will find it
valuable to understand how to use these tools. The GNU Autotools are enjoying growing
popularity in the free software community. Developers of in-house projects can reap the
same benefits by using these tools.

System administrators can benefit from a working knowledge of these tools – a common
task for system administrators is to compile and install packages which commonly use the
GNU Autotools framework. Occasionally, a feature test may produce a false result, leading
to a compilation error or a misbehaving program. Some hacking is usually sufficient to
get the package to compile, but knowing the correct way to fix the problem can assist the
package maintainer.

Finally, technical managers may find the discussion to be an insight into the complex
nature of software portability and the process of building a large project.

1.4 How this book is organized

Like any good tutorial, this book starts with an explanation of simple concepts and
builds on these fundamentals to progress to advanced topics.

Part I of the book provides a history of the development of these tools and why they
exist.

Part II contains most of the book’s content, starting with an introduction to concepts
such as ‘Makefile’s and configuration triplets. Later chapters introduce each tool and how
to manage projects of varying sizes using the tools in concert. Programs written in C and
C++ can be non-portable if written carelessly. Chapters 14 and 15 offer guidelines for writing
portable programs in C and C++, respectively.

Part III provides information that you are unlikely to find in any other documentation,
that is based on extensive experience with the tools. It embodies chapters that treat some
advanced, yet essential, concepts such as the m4 macro processor and how to write portable
Bourne shell scripts. Chapter 23 outlines how to migrate an existing package to the GNU
Autotools framework and will be of interest to many developers. One of the most mys-
tifying aspects of using the GNU Autotools for building packages in a cross-compilation
environment. This is de-mystified in Chapter 25.

Chapter 2: History 7

2 History

In this chapter we provide a brief history of the tools described in this book. You don’t
need to know this history in order to use the tools. However, the history of how the tools
developed over time helps explain why the tools act the way that they do today. Also, in a
book like this, it’s only fair for us to credit the original authors and sources of inspiration,
and to explain what they did.

2.1 The Diversity of Unix Systems

Of the programs discussed in this book, the first to be developed was Autoconf. Its
development was determined by the history of the Unix operating system.

The first version of Unix was written by Dennis Ritchie and Ken Thompson at Bell Labs
in 1969. During the 1970s, Bell Labs was not permitted to sell Unix commercially, but
did distribute Unix to universities at relatively low cost. The University of California at
Berkeley added their own improvements to the Unix sources; the result was known as the
bsd version of Unix.

In the early 1980s, at&t signed an agreement permitting them to sell Unix commercially.
The first at&t version of Unix was known as System III.

As the popularity of Unix increased during the 1980s, several other companies modified
the Unix sources to create their own variants. Examples include SunOS from Sun Microsys-
tems, Ultrix from Digital Equipment Corporation, and HP-UX from Hewlett Packard.

Although all of the Unix variants were fundamentally similar, there were various differ-
ences between them. They had slightly different sets of header files and slightly different
lists of functions in the system libraries, as well as more significant differences in areas such
as terminal handling and job control.

The emerging POSIX standards helped to eliminate some of these differences. However,
in some areas POSIX introduced new features, leading to more variants. Also, different
systems adopted the POSIX standard at different times, leading to further disparities.

All of these variations caused problems for programs distributed as source code. Even a
function as straightforward as memcpy was not available everywhere; the bsd system library
provided the similar function bcopy instead, but the order of arguments was reversed.

Program authors who wanted their programs to run on a wide variety of Unix variants
had to be familiar with the detailed differences between the variants. They also had to worry
about the ways in which the variants changed from one version to another, as variants on
the one hand converged on the POSIX standard and on the other continued to introduce
new and different features.

While it was generally possible to use #ifdef to identify particular systems and versions,
it became increasingly difficult to know which versions had which features. It became clear
that some more organized approach was needed to handle the differences between Unix
variants.

8 Autoconf, Automake, and Libtool

2.2 The First Configure Programs

By 1992, four different systems had been developed to help with source code portability:
• The Metaconfig program, by Larry Wall, Harlan Stenn, and Raphael Manfredi.
• The Cygnus ‘configure’ script, by K. Richard Pixley, and the original GCC

‘configure’ script, by Richard Stallman. These are quite similar, and the developers
communicated regularly. GCC is the gnu Compiler Collection, formerly the gnu C
compiler.

• The gnu Autoconf package, by David MacKenzie.
• Imake, part of the X Window system.

These systems all split building a program into two steps: a configuration step, and a
build step. For all the systems, the build step used the standard Unix make program. The
make program reads a set of rules in a ‘Makefile’, and uses them to build a program. The
configuration step would generate ‘Makefile’s, and perhaps other files, which would then
be used during the build step.

Metaconfig and Autoconf both use feature tests to determine the capabilities of the
system. They use Bourne shell scripts (all variants of Unix support the Bourne shell in one
form or another) to run various tests to see what the system can support.

The Cygnus ‘configure’ script and the original GCC ‘configure’ script are also Bourne
shell scripts. They rely on little configuration files for each system variant, both header files
and ‘Makefile’ fragments. In early versions, the user compiling the program had to tell
the script which type of system the program should be built for; they were later enhanced
with a shell script written by Per Bothner which determines the system type based on the
standard Unix uname program and other information.

Imake is a portable C program. Imake can be customized for a particular system, and
run as part of building a package. However, it is more normally distributed with a package,
including all the configuration information needed for supported systems.

Metaconfig and Autoconf are programs used by program authors. They produce a shell
script which is distributed with the program’s source code. A user who wants to build the
program runs the shell script in order to configure the source code for the particular system
on which it is to be built.

The Cygnus and GCC ‘configure’ scripts, and imake, do not have this clear distinction
between use by the developer and use by the user.

The Cygnus and GCC ‘configure’ scripts included features to support cross develop-
ment, both to support building a cross-compiler which compiles code to be run on another
system, and to support building a program using a cross-compiler.

Autoconf, Metaconfig and Imake did not have these features (they were later added to
Autoconf); they only worked for building a program on the system on which it was to run.

The scripts generated by Metaconfig are interactive by default: they ask questions of
the user as they go along. This permits them to determine certain characteristics of the
system which it is difficult or impossible to test, such as the behavior of setuid programs.

The Cygnus and GCC ‘configure’ scripts, and the scripts generated by autoconf, and
the imake program, are not interactive: they determine everything themselves. When using
Autoconf, the package developer normally writes the script to accept command line options

Chapter 2: History 9

for features which can not be tested for, or sometimes requires the user to edit a header file
after the ‘configure’ script has run.

2.3 Configure Development

The Cygnus ‘configure’ script and the original GCC ‘configure’ script both had to
be updated for each new Unix variant they supported. This meant that packages which
used them were continually out of date as new Unix variants appeared. It was not hard
for the developer to add support for a new system variant; however, it was not something
which package users could easily do themselves.

The same was true of Imake as it was commonly used. While it was possible for a user to
build and configure Imake for a particular system, it was not commonly done. In practice,
packages such as the X window system which use Imake are shipped with configuration
information detailed for specific Unix variants.

Because Metaconfig and Autoconf used feature tests, the scripts they generated were
often able to work correctly on new Unix variants without modification. This made them
more flexible and easier to work with over time, and led to the wide adoption of Autoconf.

In 1994, David MacKenzie extended Autoconf to incorporate the features of the Cygnus
‘configure’ script and the original GCC ‘configure’ script. This included support for
using system specified header file and makefile fragments, and support for cross-compilation.

GCC has since been converted to use Autoconf, eliminating the GCC ‘configure’
script. Most programs which use the Cygnus ‘configure’ script have also been converted,
and no new programs are being written to use the Cygnus ‘configure’ script.

The metaconfig program is still used today to configure Perl and a few other programs.
imake is still used to configure the X window system. However, these tools are not generally
used for new packages.

2.4 Automake Development

By 1994, Autoconf was a solid framework for handling the differences between Unix
variants. However, program developers still had to write large ‘Makefile.in’ files in order
to use it. The ‘configure’ script generated by autoconf would transform the ‘Makefile.in’
file into a ‘Makefile’ used by the make program.

A ‘Makefile.in’ file has to describe how to build the program. In the Imake equivalent
of a ‘Makefile.in’, known as an ‘Imakefile’, it is only necessary to describe which source
files are used to build the program. When Imake generates a ‘Makefile’, it adds the rules
for how to build the program itself. Later versions of the bsd make program also include
rules for building a program.

Since most programs are built in much the same way, there was a great deal of duplica-
tion in ‘Makefile.in’ files. Also, the gnu project developed a reasonably complex set of
standards for ‘Makefile’s, and it was easy to get some of the details wrong.

These factors led to the development of Automake. automake, like autoconf, is a
program run by a developer. The developer writes files named ‘Makefile.am’; these use
a simpler syntax than ordinary ‘Makefile’s. automake reads the ‘Makefile.am’ files and

10 Autoconf, Automake, and Libtool

produces ‘Makefile.in’ files. The idea is that a script generated by autoconf converts
these ‘Makefile.in’ files into ‘Makefile’s.

As with Imake and BSD make, the ‘Makefile.am’ file need only describe the files used
to build a program. automake automatically adds the necessary rules when it generates the
‘Makefile.in’ file. automake also adds any rules required by the gnu ‘Makefile’ standards.

The first version of Automake was written by David MacKenzie in 1994. It was com-
pletely rewritten in 1995 by Tom Tromey.

2.5 Libtool Development

Over time, Unix systems added support for shared libraries.
Conventional libraries, or static libraries, are linked into a program image. This means

that each program which uses a static library includes some or all of the library in the
program binary on disk.

Shared libraries, on the other hand, are a separate file. A program which uses a shared
library does not include a copy of the library; it only includes the name of the library. Many
programs can use a single shared library.

Using a shared library reduces disk space requirements. Since the system can generally
share a single executable instance of the shared library among many programs, it also
reduces swap space requirements at run time. Another advantage is that it is possible to fix
a bug by updating the single shared library file on disk, without requiring all the programs
which use the library to be rebuilt.

The first Unix shared library implementation was in System V release 3 from at&t.
The idea was rapidly adopted by other Unix vendors, appearing in SunOS, HP-UX, AIX,
and Digital Unix among others. Unfortunately, each implementation differed in the creation
and use of shared libraries and in the specific features which were supported.

Naturally, packages distributed as source code which included libraries wanted to be able
to build their own shared libraries. Several different implementations were written in the
Autoconf/Automake framework.

In 1996, Gordon Matzigkeit began work on a package known as Libtool. Libtool is a
collection of shell scripts which handle the differences between shared library generation
and use on different systems. It is closely tied to Automake, although it is possible to use
it independently.

Over time, Libtool has been enhanced to support more Unix variants and to provide an
interface for standardizing shared library features.

2.6 Microsoft Windows

In 1995, Microsoft released Windows 95, which soon became the most widely-used oper-
ating system in the world. Autoconf and Libtool were written to support portability across
Unix variants, but they provided a framework to support portability to Windows as well.
This made it possible for a program to support both Unix and Windows from a single source
code base.

The key requirement of both Autoconf and Libtool was the Unix shell. The gnu bash
shell was ported to Windows as part of the Cygwin project, which was originally written

Chapter 2: History 11

by Steve Chamberlain. The Cygwin project implements the basic Unix api in Windows,
making it possible to port Unix programs directly.

Once the shell and the Unix make program (also provided by Cygwin) were available,
it was possible to make Autoconf and Libtool support Windows directly, using either the
Cygwin interface or the Visual C++ tools from Microsoft. This involved handling details
like the different file extensions used by the different systems, as well as yet another set of
shared library features. This first version of this work was by Ian Lance Taylor in 1998.
Automake has also been ported to Windows. It requires Perl to be installed (see Section A.1
[Prerequisite tools], page 261).

12 Autoconf, Automake, and Libtool

Part II 13

Part II

14 Autoconf, Automake, and Libtool

Chapter 3: How to run configure and make 15

3 How to run configure and make

A package constructed using Autoconf will come with a ‘configure’ script. A user who
wants to build and install the package must run this script in order to prepare their source
tree in order to build it on their particular system. The actual build process is performed
using the make program.

The ‘configure’ script tests system features. For example, it might test whether the
C library defines the time_t data type for use by the time() C library function. The
‘configure’ script then makes the results of those tests available to the program while it
is being built.

This chapter explains how to invoke a ‘configure’ script from the perspective of a
user—someone who just wants to take your package and compile it on their system with a
minimum of fuss. It is because Autoconf works as well as it does that it is usually possible to
build a package on any kind of machine with a simple configure; make command line. The
topics covered in this chapter include how to invoke configure, the files that configure
generates and the most useful ‘Makefile’ targets–actions that you want make to perform–
that will be available when compiling the package (see Chapter 4 [Introducing Makefiles],
page 23).

3.1 Configuring

A ‘configure’ script takes a large number of command line options. The set of options
can vary from one package to the next, although a number of basic options are always
present. The available options can be discovered by running ‘configure’ with the ‘--help’
option. Although many of these options are esoteric, it’s worthwhile knowing of their
existence when configuring packages with special installation requirements. Each option
will be briefly described below:

‘--cache-file=file’
‘configure’ runs tests on your system to determine the availability of fea-
tures (or bugs!). The results of these tests can be stored in a cache file to
speed up subsequent invocations of configure. The presence of a well primed
cache file makes a big improvement when configuring a complex tree which has
‘configure’ scripts in each subtree.

‘--help’ Outputs a help message. Even experienced users of ‘configure’ need to use
‘--help’ occasionally, as complex projects will include additional options for
per-project configuration. For example, ‘configure’ in the gcc package allows
you to control whether the gnu assembler will be built and used by gcc in
preference to a vendor’s assembler.

‘--no-create’
One of the primary functions of ‘configure’ is to generate output files. This
option prevents ‘configure’ from generating such output files. You can think
of this as a kind of dry run, although the cache will still be modified.

16 Autoconf, Automake, and Libtool

‘--quiet’
‘--silent’

As ‘configure’ runs its tests, it outputs brief messages telling the user what
the script is doing. This was done because ‘configure’ can be slow. If there
was no such output, the user would be left wondering what is happening. By
using this option, you too can be left wondering!

‘--version’
Prints the version of Autoconf that was used to generate the ‘configure’ script.

‘--prefix=prefix’
The –prefix option is one of the most frequently used. If generated ‘Makefile’s
choose to observe the argument you pass with this option, it is possible to
entirely relocate the architecture-independent portion of a package when it is
installed. For example, when installing a package like Emacs, the following com-
mand line will cause the Emacs Lisp files to be installed in ‘/opt/gnu/share’:

$./configure --prefix=/opt/gnu

It is important to stress that this behavior is dependent on the generated files
making use of this information. For developers writing these files, Automake
simplifies this process a great deal. Automake is introduced in Chapter 7 [In-
troducing GNU Automake], page 39.

‘--exec-prefix=eprefix’
Similar to ‘--prefix’, except that it sets the location of installed files which
are architecture-dependent. The compiled ‘emacs’ binary is such a file. If this
option is not given, the default ‘exec-prefix’ value inserted into generated
files is set to the same values at the ‘prefix’.

‘--bindir=dir’
Specifies the location of installed binary files. While there may be other gener-
ated files which are binary in nature, binary files here are defined to be programs
that are run directly by users.

‘--sbindir=dir’
Specifies the location of installed superuser binary files. These are programs
which are usually only run by the superuser.

‘--libexecdir=dir’
Specifies the location of installed executable support files. Contrasted with
‘binary files’, these files are never run directly by users, but may be executed
by the binary files mentioned above.

‘--datadir=dir’
Specifies the location of generic data files.

‘--sysconfdir=dir’
Specifies the location of read-only data used on a single machine.

‘--sharedstatedir=dir’
Specifies the location of data which may be modified, and which may be shared
across several machines.

Chapter 3: How to run configure and make 17

‘--localstatedir=dir’
Specifies the location of data which may be modified, but which is specific to a
single machine.

‘--libdir=dir’
Specifies where object code library should be installed.

‘--includedir=dir’
Specifies where C header files should be installed. Header files for other lan-
guages such as C++ may be installed here also.

‘--oldincludedir=dir’
Specifies where C header files should be installed for compilers other than gcc.

‘--infodir=dir’
Specifies where Info format documentation files should be installed. Info is the
documentation format used by the gnu project.

‘--mandir=dir’
Specifies where manual pages should be installed.

‘--srcdir=dir’
This option does not affect installation. Instead, it tells ‘configure’ where the
source files may be found. It is normally not necessary to specify this, since the
configure script is normally in the same directory as the source files.

‘--program-prefix=prefix’
Specifies a prefix which should be added to the name of a program when in-
stalling it. For example, using ‘--program-prefix=g’ when configuring a pro-
gram normally named ‘tar’ will cause the installed program to be named ‘gtar’
instead. As with the other installation options, this ‘configure’ option only
works if it is utilized by the ‘Makefile.in’ file.

‘--program-suffix=suffix’
Specifies a suffix which should be appended to the name of a program when
installing it.

‘--program-transform-name=program’
Here, program is a sed script. When a program is installed, its name will be
run through ‘sed -e script’ to produce the installed name.

‘--build=build’
Specifies the type of system on which the package will be built. If not specified,
the default will be the same configuration name as the host.

‘--host=host’
Specifies the type of system on which the package will run—or be hosted. If not
specified, the host triplet is determined by executing ‘config.guess’.

‘--target=target’
Specifies the type of system which the package is to be targeted to. This makes
the most sense in the context of programming language tools like compilers and
assemblers. If not specified, the default will be the same configuration name as
the host.

18 Autoconf, Automake, and Libtool

‘--disable-feature’
Some packages may choose to provide compile-time configurability for large-
scale options such as using the Kerberos authentication system or an experi-
mental compiler optimization pass. If the default is to provide such features,
they may be disabled with ‘--disable-feature’, where feature is the feature’s
designated name. For example:

$./configure --disable-gui

‘--enable-feature[=arg]’
Conversely, some packages may provide features which are disabled by default.
To enable them, use ‘--enable-feature’, where feature is the feature’s desig-
nated name. A feature may accept an optional argument. For example:

$./configure --enable-buffers=128

Using ‘--enable-feature=no’ is synonymous with ‘--disable-feature’,
described above.

‘--with-package[=arg]’
In the free software community, there is a healthy tendency to reuse existing
packages and libraries where possible. At the time when a source tree is con-
figured by ‘configure’, it is possible to provide hints about other installed
packages. For example, the BLT widget toolkit relies on Tcl and Tk. To con-
figure BLT, it may be necessary to give ‘configure’ some hints about where
you have installed Tcl and Tk:

$./configure --with-tcl=/usr/local --with-tk=/usr/local

Using ‘--with-package=no’ is synonymous with ‘--without-package’ which is
described below.

‘--without-package’
Sometimes you may not want your package to inter-operate with some pre-
existing package installed on your system. For example, you might not want
your new compiler to use gnu ld. You can prevent this by using an option
such as:

$./configure --without-gnu-ld

‘--x-includes=dir’
This option is really a specific instance of a ‘--with-package’ option. At
the time when Autoconf was initially being developed, it was common to use
‘configure’ to build programs to run on the X Window System as an alternative
to Imake. The ‘--x-includes’ option provides a way to guide the configure
script to the directory containing the X11 header files.

‘--x-libraries=dir’
Similarly, the –x-libraries option provides a way to guide ‘configure’ to the
directory containing the X11 libraries.

It is unnecessary, and often undesirable, to run ‘configure’ from within the source tree.
Instead, a well-written ‘Makefile’ generated by ‘configure’ will be able to build packages
whose source files reside in another tree. The advantages of building derived files in a
separate tree to the source code are fairly obvious: the derived files, such as object files,

Chapter 3: How to run configure and make 19

would clutter the source tree. This would also make it impossible to build those same object
files on a different system or with a different configuration. Instead, it is recommended to
use three trees: a source tree, a build tree and an install tree. Here is a closing example of
how to build the gnu malloc package in this way:

$ gtar zxf mmalloc-1.0.tar.gz
$ mkdir build && cd build
$../mmalloc-1.0/configure
creating cache ./config.cache
checking for gcc... gcc
checking whether the C compiler (gcc) works... yes
checking whether the C compiler (gcc) is a cross-compiler... no
checking whether we are using GNU C... yes
checking whether gcc accepts -g... yes
checking for a BSD compatible install... /usr/bin/install -c
checking host system type... i586-pc-linux-gnu
checking build system type... i586-pc-linux-gnu
checking for ar... ar
checking for ranlib... ranlib
checking how to run the C preprocessor... gcc -E
checking for unistd.h... yes
checking for getpagesize... yes
checking for working mmap... yes
checking for limits.h... yes
checking for stddef.h... yes
updating cache ../config.cache
creating ./config.status

Now that this build tree is configured, it is possible to go on and build the package and
install it into the default location of ‘/usr/local’:

$ make all && make install

3.2 Files generated by configure

After you have invoked ‘configure’, you will discover a number of generated files in
your build tree. The build directory structure created by ‘configure’ and the number of
files will vary from package to package. Each of the generated files are described below and
their relationships are shown in Appendix C [Generated File Dependencies], page 271:

‘config.cache’
‘configure’ can cache the results of system tests that have been performed to
speed up subsequent tests. This file contains the cache data and is a plain text
file that can be hand-modified or removed if desired.

‘config.log’
As ‘configure’ runs, it outputs a message describing each test it performs and
the result of each test. There is substantially more output produced by the shell
and utilities that ‘configure’ invokes, but it is hidden from the user to keep the
output understandable. The output is instead redirected to ‘config.log’. This
file is the first place to look when ‘configure’ goes hay-wire or a test produces

20 Autoconf, Automake, and Libtool

a nonsense result. A common scenario is that ‘configure’, when run on a
Solaris system, will tell you that it was unable to find a working C compiler.
An examination of ‘config.log’ will show that Solaris’ default ‘/usr/ucb/cc’
is a program that informs the user that the optional C compiler is not installed.

‘config.status’
‘configure’ generates a shell script called ‘config.status’ that may be used
to recreate the current configuration. That is, all generated files will be regen-
erated. This script can also be used to re-run ‘configure’ if the ‘--recheck’
option is given.

‘config.h’
Many packages that use ‘configure’ are written in C or C++. Some of the tests
that ‘configure’ runs involve examining variability in the C and C++ program-
ming languages and implementations thereof. So that source code can program-
matically deal with these differences, #define preprocessor directives can be
optionally placed in a config header, usually called ‘config.h’, as ‘configure’
runs. Source files may then include the ‘config.h’ file and act accordingly:

#if HAVE_CONFIG_H
include <config.h>
#endif /* HAVE_CONFIG_H */

#if HAVE_UNISTD_H
include <unistd.h>
#endif /* HAVE_UNISTD_H */

We recommend always using a config header.

‘Makefile’
One of the common functions of ‘configure’ is to generate ‘Makefile’s and
other files. As it has been stressed, a ‘Makefile’ is just a file often generated
by ‘configure’ from a corresponding input file (usually called ‘Makefile.in’).
The following section will describe how you can use make to process this
‘Makefile’. There are other cases where generating files in this way can
be helpful. For instance, a Java developer might wish to make use of a
‘defs.java’ file generated from ‘defs.java.in’.

3.3 The most useful Makefile targets

By now ‘configure’ has generated the output files such as a ‘Makefile’. Most projects
include a ‘Makefile’ with a basic set of well-known targets (see Section 4.1 [Targets and
dependencies], page 23). A target is a name of a task that you want make to perform –
usually it is to build all of the programs belonging to your package (commonly known as
the all target). From your build directory, the following commands are likely to work for a
configured package:

make all Builds all derived files sufficient to declare the package built.

make check
Runs any self-tests that the package may have.

Chapter 3: How to run configure and make 21

make install
Installs the package in a predetermined location.

make clean
Removes all derived files.

There are other less commonly used targets which are likely to be recognized, particularly
if the package includes a ‘Makefile’ which conforms to the gnu ‘Makefile’ standard or is
generated by automake. You may wish to inspect the generated ‘Makefile’ to see what
other targets have been included.

3.4 Configuration Names

The GNU Autotools name all types of computer systems using a configuration name.
This is a name for the system in a standardized format.

Some example configuration names are ‘sparc-sun-solaris2.7’, ‘i586-pc-linux-gnu’,
or ‘i386-pc-cygwin’.

All configuration names used to have three parts, and in some documentation they are
still called configuration triplets. A three part configuration name is cpu-manufacturer-
operating system. Currently configuration names are permitted to have four parts on sys-
tems which distinguish the kernel and the operating system, such as gnu/Linux. In these
cases, the configuration name is cpu-manufacturer-kernel-operating system.

When using a configuration name in an option to a tool such as configure, it is normally
not necessary to specify an entire name. In particular, the middle field (manufacturer,
described below) is often omitted, leading to strings such as ‘i386-linux’ or ‘sparc-sunos’.
The shell script ‘config.sub’ is used to translate these shortened strings into the canonical
form.

On most Unix variants, the shell script ‘config.guess’ will print the correct configura-
tion name for the system it is run on. It does this by running the standard ‘uname’ program,
and by examining other characteristics of the system. On some systems, ‘config.guess’
requires a working C compiler or an assembler.

Because ‘config.guess’ can normally determine the configuration name for a machine,
it is only necessary for a user or developer to specify a configuration name in unusual cases,
such as when building a cross-compiler.

Here is a description of each field in a configuration name:

cpu The type of processor used on the system. This is typically something like
‘i386’ or ‘sparc’. More specific variants are used as well, such as ‘mipsel’ to
indicate a little endian MIPS processor.

manufacturer
A somewhat freeform field which indicates the manufacturer of the system.
This is often simply ‘unknown’. Other common strings are ‘pc’ for an IBM PC
compatible system, or the name of a workstation vendor, such as ‘sun’.

operating system
The name of the operating system which is run on the system. This will be
something like ‘solaris2.5’ or ‘winnt4.0’. There is no particular restriction
on the version number, and strings like ‘aix4.1.4.0’ are seen.

22 Autoconf, Automake, and Libtool

Configuration names may be used to describe all sorts of systems, including
embedded systems which do not run any operating system. In this case, the
field is normally used to indicate the object file format, such as ‘elf’ or ‘coff’.

kernel This is used mainly for gnu/Linux systems. A typical gnu/Linux configura-
tion name is ‘i586-pc-linux-gnulibc1’. In this case the kernel, ‘linux’, is
separated from the operating system, ‘gnulibc1’.

‘configure’ allows fine control over the format of binary files. It is not necessary to build
a package for a given kind of machine on that machine natively—instead, a cross-compiler
can be used. Moreover, if the package you are trying to build is itself capable of operating
in a cross configuration, then the build system need not be the same kind of machine used
to host the cross-configured package once the package is built! Consider some examples:

Compiling a simple package for a GNU/Linux system.
host = build = target = ‘i586-pc-linux-gnu’

Cross-compiling a package on a GNU/Linux system that is intended to
run on an IBM AIX machine: build = ‘i586-pc-linux-gnu’, host = target =
‘rs6000-ibm-aix3.2’

Building a Solaris-hosted MIPS-ECOFF cross-compiler on a GNU/Linux
system. build = ‘i586-pc-linux-gnu’, host = ‘sparc-sun-solaris2.4’, tar-
get = ‘mips-idt-ecoff’

Chapter 4: Introducing ‘Makefile’s 23

4 Introducing ‘Makefile’s

A ‘Makefile’ is a specification of dependencies between files and how to resolve those
dependencies such that an overall goal, known as a target, can be reached. ‘Makefile’s
are processed by the make utility. Other references describe the syntax of ‘Makefile’s and
the various implementations of make in detail. This chapter provides an overview into
‘Makefile’s and gives just enough information to write custom rules in a ‘Makefile.am’
(see Chapter 7 [Introducing GNU Automake], page 39) or ‘Makefile.in’.

4.1 Targets and dependencies

The make program attempts to bring a target up to date by bring all of the target’s
dependencies up to date. These dependencies may have further dependencies. Thus, a
potentially complex dependency graph forms when processing a typical ‘Makefile’. From
a simple ‘Makefile’ that looks like this:

all: foo

foo: foo.o bar.o baz.o

.c.o:
$(CC) $(CFLAGS) -c $< -o $@

.l.c:
$(LEX) $< && mv lex.yy.c $@

We can draw a dependency graph that looks like this:
all
|
foo
|

.-------+-------.
/ | \

foo.o bar.o baz.o
| | |

foo.c bar.c baz.c
|

baz.l

Unless the ‘Makefile’ contains a directive to make, all targets are assumed to be filename
and rules must be written to create these files or somehow bring them up to date.

When leaf nodes are found in the dependency graph, the ‘Makefile’ must include a set
of shell commands to bring the dependent up to date with the dependency. Much to the
chagrin of many make users, up to date means the dependent has a more recent timestamp
than the target. Moreover, each of these shell commands are run in their own sub-shell and,
unless the ‘Makefile’ instructs make otherwise, each command must exit with an exit code
of 0 to indicate success.

Target rules can be written which are executed unconditionally. This is achieved by
specifying that the target has no dependents. A simple rule which should be familiar to
most users is:

24 Autoconf, Automake, and Libtool

clean:
-rm *.o core

4.2 Makefile syntax

‘Makefile’s have a rather particular syntax that can trouble new users. There are many
implementations of make, some of which provide non-portable extensions. An abridged
description of the syntax follows which, for portability, may be stricter than you may be
used to.

Comments start with a ‘#’ and continue until the end of line. They may appear anywhere
except in command sequences—if they do, they will be interpreted by the shell running the
command. The following ‘Makefile’ shows three individual targets with dependencies on
each:

target1: dep1 dep2 ... depN
<tab> cmd1
<tab> cmd2
<tab> ...
<tab> cmdN

target2: dep4 dep5
<tab> cmd1
<tab> cmd2

dep4 dep5:
<tab> cmd1

Target rules start at the beginning of a line and are followed by a colon. Following the
colon is a whitespace separated list of dependencies. A series of lines follow which contain
shell commands to be run by a sub-shell (the default is the Bourne shell). Each of these
lines must be prefixed by a horizontal tab character. This is the most common mistake
made by new make users.

These commands may be prefixed by an ‘@’ character to prevent make from echoing the
command line prior to executing it. They may also optionally be prefixed by a ‘-’ character
to allow the rule to continue if the command returns a non-zero exit code. The combination
of both characters is permitted.

4.3 Macros

A number of useful macros exist which may be used anywhere throughout the ‘Makefile’.
Macros start with a dollar sign, like shell variables. Our first ‘Makefile’ used a few:

$(CC) $(CFLAGS) -c $< -o $@

Here, syntactic forms of ‘$(..)’ are make variable expansions. It is possible to define a
make variable using a ‘var=value’ syntax:

CC = ec++

In a ‘Makefile’, $(CC) will then be literally replaced by ‘ec++’. make has a number of
built-in variables and default values. The default value for ‘$(CC)’ is cc.

Chapter 4: Introducing ‘Makefile’s 25

Other built-in macros exist with fixed semantics. The two most common macros are $@
and $<. They represent the names of the target and the first dependency for the rule in
which they appear. $@ is available in any rule, but for some versions of make $< is only
available in suffix rules. Here is a simple ‘Makefile’:

all: dummy
@echo "$@ depends on dummy"

dummy:
touch $@

This is what make outputs when processing this ‘Makefile’:
$ make
touch dummy
all depends on dummy

The gnu Make manual documents these macros in more detail.

4.4 Suffix rules

To simplify a ‘Makefile’, there is a special kind of rule syntax known as a suffix rule.
This is a wildcard pattern that can match targets. Our first ‘Makefile’ used some. Here is
one:

.c.o:
$(CC) $(CFLAGS) -c $< -o $@

Unless a more specific rule matches the target being sought, this rule will match any
target that ends in ‘.o’. These files are said to always be dependent on ‘.c’. With some
background material now presented, let’s take a look at these tools in use.

26 Autoconf, Automake, and Libtool

Chapter 5: A Minimal GNU Autotools Project 27

5 A Minimal GNU Autotools Project

This chapter describes how to manage a minimal project using the GNU Autotools.
A minimal project is defined to be the smallest possible project that can still illustrate a
sufficient number of principles in using the tools. By studying a smaller project, it becomes
easier to understand the more complex interactions between these tools when larger projects
require advanced features.

The example project used throughout this chapter is a fictitious command interpreter
called foonly. foonly is written in C, but like many interpreters, uses a lexical analyzer
and a parser expressed using the lex and yacc tools. The package will be developed to
adhere to the gnu ‘Makefile’ standard, which is the default behavior for Automake.

There are many features of the GNU Autotools that this small project will not utilize.
The most noteworthy one is libraries; this package does not produce any libraries of its
own, so Libtool will not feature in this chapter. The more complex projects presented
in Chapter 9 [A Small GNU Autotools Project], page 49 and Chapter 12 [A Large GNU
Autotools Project], page 107 will illustrate how Libtool participates in the build system.
The purpose of this chapter will be to provide a high-level overview of the user-written files
and how they interact.

5.1 User-Provided Input Files

The smallest project requires the user to provide only two files. The remainder of the
files needed to build the package are generated by the GNU Autotools (see Section 5.2
[Generated Output Files], page 28).
• ‘Makefile.am’ is an input to automake.
• ‘configure.in’ is an input to autoconf.

I like to think of ‘Makefile.am’ as a high-level, bare-bones specification of a project’s
build requirements: what needs to be built, and where does it go when it is installed? This
is probably Automake’s greatest strength–the description is about as simple as it could
possibly be, yet the final product is a ‘Makefile’ with an array of convenient make targets.

The ‘configure.in’ is a template of macro invocations and shell code fragments that
are used by autoconf to produce a ‘configure’ script (see Appendix C [Generated File
Dependencies], page 271). autoconf copies the contents of ‘configure.in’ to ‘configure’,
expanding macros as they occur in the input. Other text is copied verbatim.

Let’s take a look at the contents of the user-provided input files that are relevant to this
minimal project. Here is the ‘Makefile.am’:

bin_PROGRAMS = foonly
foonly_SOURCES = main.c foo.c foo.h nly.c scanner.l parser.y
foonly_LDADD = @LEXLIB@

This ‘Makefile.am’ specifies that we want a program called ‘foonly’ to be built and
installed in the ‘bin’ directory when make install is run. The source files that are used
to build ‘foonly’ are the C source files ‘main.c’, ‘foo.c’, ‘nly.c’ and ‘foo.h’, the lex
program in ‘scanner.l’ and a yacc grammar in ‘parser.y’. This points out a particularly
nice aspect about Automake: because lex and yacc both generate intermediate C programs
from their input files, Automake knows how to build such intermediate files and link them

28 Autoconf, Automake, and Libtool

into the final executable. Finally, we must remember to link a suitable lex library, if
‘configure’ concludes that one is needed.

And here is the ‘configure.in’:
dnl Process this file with autoconf to produce a configure script.
AC_INIT(main.c)
AM_INIT_AUTOMAKE(foonly, 1.0)
AC_PROG_CC
AM_PROG_LEX
AC_PROG_YACC
AC_OUTPUT(Makefile)

This ‘configure.in’ invokes some mandatory Autoconf and Automake initialization
macros, and then calls on some Autoconf macros from the AC_PROG family to find suitable
C compiler, lex, and yacc programs. Finally, the AC_OUTPUT macro is used to cause the
generated ‘configure’ script to output a ‘Makefile’—but from what? It is processed
from ‘Makefile.in’, which Automake produces for you based on your ‘Makefile.am’ (see
Appendix C [Generated File Dependencies], page 271).

5.2 Generated Output Files

By studying the diagram in Appendix C [Generated File Dependencies], page 271, it
should be possible to see which commands must be run to generate the required output
files from the input files shown in the last section.

First, we generate ‘configure’:
$ aclocal
$ autoconf

Because ‘configure.in’ contains macro invocations which are not known to autoconf
itself–AM_INIT_AUTOMAKE being a case in point, it is necessary to collect all of the macro
definitions for autoconf to use when generating ‘configure’. This is done using the aclocal
program, so called because it generates ‘aclocal.m4’ (see Appendix C [Generated File
Dependencies], page 271). If you were to examine the contents of ‘aclocal.m4’, you would
find the definition of the AM_INIT_AUTOMAKE macro contained within.

After running autoconf, you will find a ‘configure’ script in the current directory. It is
important to run aclocal first because automake relies on the contents of ‘configure.in’
and ‘aclocal.m4’. On to automake:

$ automake --add-missing
automake: configure.in: installing ./install-sh
automake: configure.in: installing ./mkinstalldirs
automake: configure.in: installing ./missing
automake: Makefile.am: installing ./INSTALL
automake: Makefile.am: required file ./NEWS not found
automake: Makefile.am: required file ./README not found
automake: Makefile.am: installing ./COPYING
automake: Makefile.am: required file ./AUTHORS not found
automake: Makefile.am: required file ./ChangeLog not found

The ‘--add-missing’ option copies some boilerplate files from your Automake instal-
lation into the current directory. Files such as ‘COPYING’, which contain the gnu General

Chapter 5: A Minimal GNU Autotools Project 29

Public License change infrequently, and so can be generated without user intervention. A
number of utility scripts are also installed–these are used by the generated ‘Makefile’s,
particularly by the install target. Notice that some required files are still missing. These
are:

‘NEWS’ A record of user-visible changes to a package. The format is not strict, but the
changes to the most recent version should appear at the top of the file.

‘README’ The first place a user will look to get an overview for the purpose of a package,
and perhaps special installation instructions.

‘AUTHORS’ Lists the names, and usually mail addresses, of individuals who worked on the
package.

‘ChangeLog’
The ChangeLog is an important file–it records the changes that are made to a
package. The format of this file is quite strict (see Section 5.5 [Documentation
and ChangeLogs], page 31).

For now, we’ll do enough to placate Automake:

$ touch NEWS README AUTHORS ChangeLog
$ automake --add-missing

Automake has now produced a ‘Makefile.in’. At this point, you may wish to take a
snapshot of this directory before we really let loose with automatically generated files.

By now, the contents of the directory will be looking fairly complete and reminiscent of
the top-level directory of a gnu package you may have installed in the past:

AUTHORS INSTALL NEWS install-sh mkinstalldirs
COPYING Makefile.am README configure missing
ChangeLog Makefile.in aclocal.m4 configure.in

It should now be possible to package up your tree in a tar file and give it to other
users for them to install on their own systems. One of the make targets that Automake
generates in ‘Makefile.in’ makes it easy to generate distributions (see Chapter 13 [Rolling
Distribution Tarballs], page 117). A user would merely have to unpack the tar file, run
configure (see Chapter 3 [Invoking configure], page 15) and finally type make all:

30 Autoconf, Automake, and Libtool

$./configure
creating cache ./config.cache
checking for a BSD compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking whether make sets ${MAKE}... yes
checking for working aclocal... found
checking for working autoconf... found
checking for working automake... found
checking for working autoheader... found
checking for working makeinfo... found
checking for gcc... gcc
checking whether the C compiler (gcc) works... yes
checking whether the C compiler (gcc) is a cross-compiler... no
checking whether we are using GNU C... yes
checking whether gcc accepts -g... yes
checking how to run the C preprocessor... gcc -E
checking for flex... flex
checking for flex... (cached) flex
checking for yywrap in -lfl... yes
checking lex output file root... lex.yy
checking whether yytext is a pointer... yes
checking for bison... bison -y
updating cache ./config.cache
creating ./config.status
creating Makefile

$ make all
gcc -DPACKAGE=\"foonly\" -DVERSION=\"1.0\" -DYYTEXT_POINTER=1 -I. -I. \
-g -O2 -c main.c

gcc -DPACKAGE=\"foonly\" -DVERSION=\"1.0\" -DYYTEXT_POINTER=1 -I. -I. \
-g -O2 -c foo.c

flex scanner.l && mv lex.yy.c scanner.c
gcc -DPACKAGE=\"foonly\" -DVERSION=\"1.0\" -DYYTEXT_POINTER=1 -I. -I. \

-g -O2 -c scanner.c
bison -y parser.y && mv y.tab.c parser.c
if test -f y.tab.h; then \

if cmp -s y.tab.h parser.h; then rm -f y.tab.h; \
else mv y.tab.h parser.h; fi; \

else :; fi
gcc -DPACKAGE=\"foonly\" -DVERSION=\"1.0\" -DYYTEXT_POINTER=1 -I. -I. \

-g -O2 -c parser.c
gcc -g -O2 -o foonly main.o foo.o scanner.o parser.o -lfl

5.3 Maintaining Input Files

If you edit any of the GNU Autotools input files in your package, it is necessary to
regenerate the machine generated files for these changes to take effect. For instance, if you
add a new source file to the foonly_SOURCES variable in ‘Makefile.am’. It is necessary
to re-generate the derived file ‘Makefile.in’. If you are building your package, you need

Chapter 5: A Minimal GNU Autotools Project 31

to re-run configure to re-generate the site-specific ‘Makefile’, and then re-run make to
compile the new source file and link it into ‘foonly’.

It is possible to regenerate these files by running the required tools, one at a time.
However, as we can see above, it can be difficult to compute the dependencies—does a
particular change require aclocal to be run? Does a particular change require autoconf
to be run? There are two solutions to this problem.

The first solution is to use the autoreconf command. This tool regenerates all derived
files by re-running all of the necessary tools in the correct order. It is somewhat of a brute
force solution, but it works very well, particularly if you are not trying to accommodate
other maintainers, or regular maintenance that would render this command bothersome.

The alternative is Automake’s ‘maintainer mode’. By invoking the AM_MAINTAINER_
MODE macro from ‘configure.in’, automake will activate an ‘--enable-maintainer-mode’
option in ‘configure’. This is explained at length in Chapter 8 [Bootstrapping], page 47.

5.4 Packaging Generated Files

The debate about what to do with generated files is one which is keenly contested on
the relevant Internet mailing lists. There are two points of view and I will present both of
them to you so that you can try to decide what the best policy is for your project.

One argument is that generated files should not be included with a package, but
rather only the ‘preferred form’ of the source code should be included. By this definition,
‘configure’ is a derived file, just like an object file, and it should not be included in
the package. Thus, the user should use the GNU Autotools to bootstrap themselves
prior to building the package. I believe there is some merit to this purist approach, as it
discourages the practice of packaging derived files.

The other argument is that the advantages of providing these files can far outweigh
the violation of good software engineering practice mentioned above. By including the
generated files, users have the convenience of not needing to be concerned with keeping up
to date with all of the different versions of the tools in active use. This is especially true for
Autoconf, as ‘configure’ scripts are often generated by maintainers using locally modified
versions of autoconf and locally installed macros. If ‘configure’ were regenerated by the
user, the result could be different to that intended. Of course, this is poor practice, but it
happens to reflect reality.

I believe the answer is to include generated files in the package when the package is going
to be distributed to a wide user community (ie. the general public). For in-house packages,
the former argument might make more sense, since the tools may also be held under version
control.

5.5 Documentation and ChangeLogs

As with any software project, it is important to maintain documentation as the project
evolves–the documentation must reflect the current state of the software, but it must also
accurately record the changes that have been made in the past. The gnu coding standard
rigorously enforces the maintenance of documentation. Automake, in fact, implements some
of the standard by checking for the presence of a ‘ChangeLog’ file when automake is run!

32 Autoconf, Automake, and Libtool

A number of files exist, with standardized filenames, for storing documentation in gnu
packages. The complete gnu coding standard, which offers some useful insights, can be
found at http://www.gnu.org/prep/standards.html.

Other projects, including in-house projects, can use these same tried-and-true techniques.
The purpose of most of the standard documentation files was outlined earlier See Section 5.2
[Generated Output Files], page 28, but the ‘ChangeLog’ deserves additional treatment.

When recording changes in a ‘ChangeLog’, one entry is made per person. Logical changes
are grouped together, while logically distinct changes (ie. ‘change sets’) are separated by a
single blank line. Here is an example from Automake’s own ‘ChangeLog’:

1999-11-21 Tom Tromey <tromey@cygnus.com>

* automake.in (finish_languages): Only generate suffix rule
when not doing dependency tracking.

* m4/init.m4 (AM_INIT_AUTOMAKE): Use AM_MISSING_INSTALL_SH.
* m4/missing.m4 (AM_MISSING_INSTALL_SH): New macro.

* depend2.am: Use @SOURCE@, @OBJ@, @LTOBJ@, @OBJOBJ@,
and @BASE@. Always use -o.

Another important point to make about ‘ChangeLog’ entries is that they should be brief.
It is not necessary for an entry to explain in details why a change was made, but rather what
the change was. If a change is not straightforward then the explanation of why belongs in
the source code itself. The gnu coding standard offers the complete set of guidelines for
keeping ‘ChangeLog’s. Although any text editor can be used to create ChangeLog entries,
Emacs provides a major mode to help you write them.

http://www.gnu.org/prep/standards.html

Chapter 6: Writing ‘configure.in’ 33

6 Writing ‘configure.in’

Writing a portable ‘configure.in’ is a tricky business. Since you can put arbitrary shell
code into ‘configure.in’, your options seem overwhelming. There are many questions the
first-time Autoconf user asks: What constructs are portable and what constructs aren’t
portable? How do I decide what to check for? What shouldn’t I check for? How do I best
use Autoconf’s features? What shouldn’t I put in ‘configure.in’? In what order should
I run my checks? When should I look at the name of the system instead of checking for
specific features?

6.1 What is Portability?

Before we talk about the mechanics of deciding what to check for and how to check for
it, let’s ask ourselves a simple question: what is portability? Portability is a quality of the
code that enables it to be built and run on a variety of platforms. In the Autoconf context,
portability usually refers to the ability to run on Unix-like systems—sometimes including
Windows.

When I first started using Autoconf, I had a hard time deciding what to check for in my
‘configure.in’. At the time, I was maintaining a proprietary program that ran only on
SunOS 4. However, I was interested in porting it to Solaris, OSF/1, and possibly Irix.

The approach I took, while workable, was relatively time-consuming and painful: I wrote
a minimal ‘configure.in’ and then proceeded to simply try to build my program on Solaris.
Each time I encountered a build problem, I updated ‘configure.in’ and my source and
started again. Once it built correctly, I started testing to see if there were runtime problems
related to portability.

Since I didn’t start with a relatively portable base, and since I was unaware of the tools
available to help with adding Autoconf support to a package (see Chapter 24 [Migrating
Existing Packages], page 225), it was much more difficult than it had to be. If at all possible,
it is better to write portable code to begin with.

There are a large number of Unix-like systems in the world, including many systems
which, while still running, can only be considered obsolete. While it is probably possible
to port some programs to all such systems, typically it isn’t useful to even try. Porting
to everything is a difficult process, especially given that it usually isn’t possible to test on
all platforms, and that new operating systems, with their own bugs and idiosyncracies are
released every year.

We advocate a pragmatic approach to portability: we write our programs to target a
fairly large, but also fairly modern, cross-section of Unix-like systems. As deficiencies are
discovered in our portability framework, we update ‘configure.in’ and our sources, and
move on. In practice, this is an effective approach.

6.2 Brief introduction to portable sh

If you read a number of ‘configure.in’s, you’ll quickly notice that they tend to be
written in an unusual style. For instance, you’ll notice you hardly ever see the ‘[’ program
used; instead you’ll see ‘test’ invoked. We won’t go into all the details of writing a portable

34 Autoconf, Automake, and Libtool

shell script here; instead we leave that for Chapter 22 [Writing Portable Bourne Shell],
page 205.

Like other aspects of portability, the approach you take to writing shell scripts in
‘configure.in’ and ‘Makefile.am’ should depend on your goals. Some platforms have
notoriously broken sh implementations. For instance, Ultrix sh doesn’t implement unset.
Of course, the GNU Autotools are written in the most portable style possible, so as not to
limit your possibilities.

Also, it doesn’t really make sense to talk about portable sh programming in the abstract.
sh by itself does very little; most actual work is done by separate programs, each with its
own potential portability problems. For instance, some options are not portable between
systems, and some seemingly common programs don’t exist on every system – so not only
do you have to know which sh constructs are not portable, but you also must know which
programs you can (and cannot) use, and which options to those programs are portable.

This seems daunting, but in practice it doesn’t seem to be too hard to write portable
shell scripts – once you’ve internalized the rules. Unfortunately, this process can take a
long time. Meanwhile, a pragmatic ‘try and see’ approach, while noting other portable
code you’ve seen elsewhere, works fairly well. Once again, it pays to be aware of which
architectures you’ll probably care about – you will make different choices if you are writing
an extremely portable program like emacs or gcc than if you are writing something that
will only run on various flavors of Linux. Also, the cost of having unportable code in
‘configure.in’ is relatively low – in general it is fairly easy to rewrite pieces on demand
as unportable constructs are found.

6.3 Ordering Tests

In addition to the problem of writing portable sh code, another problem which confronts
first-time ‘configure.in’ writers is determining the order in which to run the various tests.
Autoconf indirectly (via the autoscan program, which we cover in Chapter 24 [Migrating
Existing Packages], page 225) suggests a standard ordering, which is what we describe here.

The standard ordering is:
1. Boilerplate. This section should include standard boilerplate code, such as the call to

AC_INIT (which must be first), AM_INIT_AUTOMAKE, AC_CONFIG_HEADER, and perhaps
AC_REVISION.

2. Options. The next section should include macros which add command-line options to
configure, such as AC_ARG_ENABLE. It is typical to put support code for the option in
this section as well, if it is short enough, like this example from libgcj:

AC_ARG_ENABLE(getenv-properties,
[--disable-getenv-properties

don’t set system properties from GCJ_PROPERTIES])

dnl Whether GCJ_PROPERTIES is used depends on the target.
if test -n "$enable_getenv_properties"; then

enable_getenv_properties=${enable_getenv_properties_default-yes}
fi
if test "$enable_getenv_properties" = no; then

AC_DEFINE(DISABLE_GETENV_PROPERTIES)

Chapter 6: Writing ‘configure.in’ 35

fi

3. Programs. Next it is traditional to check for programs that are either needed by the
configure process, the build process, or by one of the programs being built. This usually
involves calls to macros like AC_CHECK_PROG and AC_PATH_TOOL.

4. Libraries. Checks for libraries come before checks for other objects visible to C (or
C++, or anything else). This is necessary because some other checks work by trying
to link or run a program; by checking for libraries first you ensure that the resulting
programs can be linked.

5. Headers. Next come checks for existence of headers.
6. Typedefs and structures. We do checks for typedefs after checking for headers for the

simple reason that typedefs appear in headers, and we need to know which headers we
can use before we look inside them.

7. Functions. Finally we check for functions. These come last because functions have de-
pendencies on the preceding items: when searching for functions, libraries are needed
in order to correctly link, headers are needed in order to find prototypes (this is espe-
cially important for C++, which has stricter prototyping rules than C), and typedefs
are needed for those functions which use or return types which are not built in.

8. Output. This is done by invoking AC_OUTPUT.

This ordering should be considered a rough guideline, and not a list of hard-and-fast
rules. Sometimes it is necessary to interleave tests, either to make ‘configure.in’ easier to
maintain, or because the tests themselves do need to be in a different order. For instance,
if your project uses both C and C++ you might choose to do all the C++ checks after all the
C checks are done, in order to make ‘configure.in’ a bit easier to read.

6.4 What to check for

Deciding what to check for is really the central part of writing ‘configure.in’. Once
you’ve read the Autoconf reference manual, the "how"s of writing a particular test should
be fairly clear. The "when"s might remain a mystery – and it’s just as easy to check for
too many things as it is to check for too few.

One notable area of divergence between various Unix-like systems is that the same pro-
grams don’t exist on all systems, and, even when they do, they don’t always work in the
same way. For these problems we recommend, when possible, following the advice of the
gnu Coding Standards: use the most common options from a relatively limited set of
programs. Failing that, try to stick to programs and options specified by POSIX, perhaps
augmenting this approach by doing checks for known problems on platforms you care about.

Checking for tools and their differences is usually a fairly small part of a ‘configure’
script; more common are checks for functions, libraries, and the like.

Except for a few core libraries like ‘libc’ and, usually, ‘libm’ and libraries like ‘libX11’
which typically aren’t considered system libraries, there isn’t much agreement about li-
brary names or contents between Unix systems. Still, libraries are easy to handle, because
decisions about libraries almost always only affect the various ‘Makefile’s. That means
that checking for another library typically doesn’t require major (or even, sometimes, any)
changes to the source code. Also, because adding a new library test has a small impact

36 Autoconf, Automake, and Libtool

on the development cycle – effectively just re-running ‘configure’ and then a relink – you
can effectively adopt a lax approach to libraries. For instance, you can just make things
work on the few systems you immediately care about and then handle library changes on
an as-needed basis.

Suppose you do end up with a link problem. How do you handle it? The first thing to
do is use nm to look through the system libraries to see if the missing function exists. If
it does, and it is in a library you can use then the solution is easy – just add another AC_
CHECK_LIB. Note that just finding the function in a library is not enough, because on some
systems, some "standard" libraries are undesirable; ‘libucb’ is the most common example
of a library which you should avoid.

If you can’t find the function in a system library then you have a somewhat more
difficult problem: a non-portable function. There are basically three approaches to a missing
function. Below we talk about functions, but really these same approaches apply, more or
less, to typedefs, structures, and global variables.

The first approach is to write a replacement function and either conditionally compile
it, or put it into an appropriately-named file and use AC_REPLACE_FUNCS. For instance, Tcl
uses AC_REPLACE_FUNCS(strstr) to handle systems that have no strstr function.

The second approach is used when there is a similar function with a different name. The
idea here is to check for all the alternatives and then modify your source to use whichever
one might exist. The idiom here is to use break in the second argument to AC_CHECK_FUNCS;
this is used both to skip unnecessary tests and to indicate to the reader that these checks
are related. For instance, here is how libgcj checks for inet_aton or inet_addr; it only
uses the first one found:

AC_CHECK_FUNCS(inet_aton inet_addr, break)

Code to use the results of these checks looks something like:
#if HAVE_INET_ATON
... use inet_aton here

#else
#if HAVE_INET_ADDR

... use inet_addr here
#else
#error Function missing!
#endif
#endif

Note how we’ve made it a compile-time error if the function does not exist. In general
it is best to make errors occur as early as possible in the build process.

The third approach to non-portable functions is to write code such that these functions
are only optionally used. For instance, if you are writing an editor you might decide to
use mmap to map a file into the editor’s memory. However, since mmap is not portable, you
would also write a function to use the more portable read.

Handling known non-portable functions is only part of the problem, however. The
pragmatic approach works fairly well, but it is somewhat inefficient if you are primarily
developing on a more modern system, like gnu/Linux, which has few functions missing. In
this case the problem is that you might not notice non-portable constructs in your code
until it has largely been finished.

Chapter 6: Writing ‘configure.in’ 37

Unfortunately, there’s no high road to solving this problem. In the end, you need to
have a working knowledge of the range of existing Unix systems. Knowledge of standards
such as POSIX and XPG can be useful here, as a first cut – if it isn’t in POSIX, you should
at least consider checking for it. However, standards are not a panacea – not all systems
are POSIX compliant, and sometimes there are bugs in systems functions which you must
work around.

One final class of problems you might encounter is that it is also easy to check for
too much. This is bad because it adds unnecessary maintenance burden to your program.
For instance, sometimes you’ll see code that checks for <sys/types.h>. However, there’s
no point in doing that – using this header is mostly portable. Again, this can only be
addressed by having a practical knowledge, which is only really possible by examining your
target systems.

6.5 Using Configuration Names

While feature tests are definitely the best approach, a ‘configure’ script may occa-
sionally have to make a decision based on a configuration name. This may be necessary
if certain code must be compiled differently based on something which can not be tested
using a standard Autoconf feature test. For instance, the expect package needs to find in-
formation about the system’s ‘tty’ implementation; this can’t reliably be done when cross
compiling without examining the particular configuration name.

It is normally better to test for particular features, rather than to test for a particular
system type. This is because as Unix and other operating systems evolve, different systems
copy features from one another.

When there is no alternative to testing the configuration name in a ‘configure’ script,
it is best to define a macro which describes the feature, rather than defining a macro
which describes the particular system. This permits the same macro to be used on other
systems which adopt the same feature (see Chapter 23 [Writing New Macros for Autoconf],
page 217).

Testing for a particular system is normally done using a case statement in the autoconf
‘configure.in’ file. The case statement might look something like the following, assuming
that ‘host’ is a shell variable holding a canonical configuration system—which will be the
case if ‘configure.in’ uses the ‘AC_CANONICAL_HOST’ or ‘AC_CANONICAL_SYSTEM’ macros.

case "${host}" in
i[[3456]]86-*-linux-gnu*) do something ;;
sparc*-sun-solaris2.[[56789]]*) do something ;;
sparc*-sun-solaris*) do something ;;
mips*-*-elf*) do something ;;
esac

Note the doubled square brackets in this piece of code. These are used to work around
an ugly implementation detail of autoconf—it uses M4 under the hood. Without these
extra brackets, the square brackets in the case statement would be swallowed by M4, and
would not appear in the resulting ‘configure’. This nasty detail is discussed at more length
in Chapter 21 [M4], page 193.

It is particularly important to use ‘*’ after the operating system field, in order to match
the version number which will be generated by ‘config.guess’. In most cases you must

38 Autoconf, Automake, and Libtool

be careful to match a range of processor types. For most processor families, a trailing ‘*’
suffices, as in ‘mips*’ above. For the i386 family, something along the lines of ‘i[34567]86’
suffices at present. For the m68k family, you will need something like ‘m68*’. Of course, if
you do not need to match on the processor, it is simpler to just replace the entire field by
a ‘*’, as in ‘*-*-irix*’.

Chapter 7: Introducing GNU Automake 39

7 Introducing GNU Automake

The primary goal of Automake is to generate ‘Makefile.in’s compliant with the gnu
Makefile Standards. Along the way, it tries to remove boilerplate and drudgery. It also helps
the ‘Makefile’ writer by implementing features (for instance automatic dependency tracking
and parallel make support) that most maintainers don’t have the patience to implement by
hand. It also implements some best practices as well as workarounds for vendor make bugs
– both of which require arcane knowledge not generally available.

A secondary goal for Automake is that it works well with other free software, and,
specifically, gnu tools. For example, Automake has support for Dejagnu-based test suites.

Chances are that you don’t care about the gnu Coding Standards. That’s okay. You’ll
still appreciate the convenience that Automake provides, and you’ll find that the gnu
standards compliance feature, for the most part, assists rather than impedes.

Automake helps the maintainer with five large tasks, and countless minor ones. The
basic functional areas are:

1. Build

2. Check

3. Clean

4. Install and uninstall

5. Distribution

We cover the first three items in this chapter, and the others in later chapters. Before
we get into the details, let’s talk a bit about some general principles of Automake.

7.1 General Automake principles

Automake at its simplest turns a file called ‘Makefile.am’ into a gnu-compliant
‘Makefile.in’ for use with ‘configure’. Each ‘Makefile.am’ is written according to make
syntax; Automake recognizes special macro and target names and generates code based on
these.

There are a few Automake rules which differ slightly from make rules:

• Ordinary make comments are passed through to the output, but comments beginning
with ‘##’ are Automake comments and are not passed through.

• Automake supports include directives. These directives are not passed through to the
‘Makefile.in’, but instead are processed by automake – files included this way are
treated as if they were textually included in ‘Makefile.am’ at that point. This can be
used to add boilerplate to each ‘Makefile.am’ in a project via a centrally-maintained
file. The filename to include can start with ‘$(top_srcdir)’ to indicate that it should
be found relative to the top-most directory of the project; if it is a relative path or if it
starts with ‘$(srcdir)’ then it is relative to the current directory. For example, here
is how you would reference boilerplate code from the file ‘config/Make-rules’ (where
‘config’ is a top-level dirctory in the project):

include $(top_srcdir)/config/Make-rules

40 Autoconf, Automake, and Libtool

• Automake supports conditionals which are not passed directly through to
‘Makefile.in’. This feature is discussed in Chapter 19 [Advanced GNU Automake
Usage], page 179.

• Automake supports macro assignment using ‘+=’; these assignments are translated by
Automake into ordinary ‘=’ assignments in ‘Makefile.in’.

All macros and targets, including those which Automake does not recognize, are passed
through to the generated ‘Makefile.in’ – this is a powerful extension mechanism. Some-
times Automake will define macros or targets internally. If these are also defined in
‘Makefile.am’ then the definition in ‘Makefile.am’ takes precedence. This feature pro-
vides an easy way to tailor specific parts of the output in small ways.

Note, however, that it is a mistake to override parts of the generated code that aren’t
documented (and thus ‘exported’ by Automake). Overrides like this stand a good chance
of not working with future Automake releases.

Automake also scans ‘configure.in’. Sometimes it uses the information it discovers
to generate extra code, and sometimes to provide extra error checking. Automake also
turns every AC_SUBST into a ‘Makefile’ variable. This is convenient in more ways than
one: not only does it mean that you can refer to these macros in ‘Makefile.am’ without
extra work, but, since Automake scans ‘configure.in’ before it reads any ‘Makefile.am’,
it also means that special variables and overrides Automake recognizes can be defined once
in ‘configure.in’.

7.2 Introduction to Primaries

Each type of object that Automake understands has a special root variable name as-
sociated with it. This root is called a primary. Many actual variable names put into
‘Makefile.am’ are constructed by adding various prefixes to a primary.

For instance, scripts—interpreted executable programs—are associated with the SCRIPTS
primary. Here is how you would list scripts to be installed in the user’s ‘bindir’:

bin_SCRIPTS = magic-script

(Note that the mysterious ‘bin_’ prefix will be discussed later.)

The contents of a primary-derived variable are treated as targets in the resulting
‘Makefile’. For instance, in our example above, we could generate ‘magic-script’ using
sed by simply introducing it as a target:

bin_SCRIPTS = magic-script

magic-script: magic-script.in
sed -e ’s/whatever//’ < $(srcdir)/magic-script.in > magic-script
chmod +x magic-script

7.3 The easy primaries

This section describes the common primaries that are relatively easy to understand; the
more complicated ones are discussed in the next section.

Chapter 7: Introducing GNU Automake 41

DATA This is the easiest primary to understand. A macro of this type lists a number
of files which are installed verbatim. These files can appear either in the source
directory or the build directory.

HEADERS Macros of this type list header files. These are separate from DATA macros
because this allows for extra error checking in some cases.

SCRIPTS This is used for executable scripts (interpreted programs). These are dif-
ferent from DATA because they are installed with different permissions and
because they have the program name transform applied to them (e.g., the
‘--program-transform-name’ argument to configure). Scripts are also dif-
ferent from compiled programs because the latter can be stripped while scripts
cannot.

MANS This lists man pages. Installing man pages is more complicated than you might
think due to the lack of a single common practice. One developer might name
a man page in the source tree ‘foo.man’ and then rename to the real name
(‘foo.1’) at install time. Another developer might instead use numeric suffixes
in the source tree and install using the same name. Sometimes an alphabetic
code follows the numeric suffix (e.g., ‘quux.3n’); this code must be stripped
before determining the correct install directory (this file must still be installed
in ‘$(man3dir)’). Automake supports all of these modes of operation:

man_MANS can be used when numeric suffixes are already in place:
man_MANS = foo.1 bar.2 quux.3n

man1_MANS, man2_MANS, etc., can be used to force renaming at install time.
This renaming is skipped if the suffix already begins with the correct num-
ber. For instance:

man1_MANS = foo.man
man3_MANS = quux.3n

Here ‘foo.man’ will be installed as ‘foo.1’ but ‘quux.3n’ will keep its name
at install time.

TEXINFOS gnu programs traditionally use the Texinfo documentation format, not man
pages. Automake has full support for Texinfo, including some additional fea-
tures such as versioning and install-info support. We won’t go into that
here except to mention that it exists. See the Automake reference manual for
more information.

Automake supports a variety of lesser-used primaries such as JAVA and LISP (and, in
the next major release, PYTHON). See the reference manual for more information on these.

7.4 Programs and libraries

The preceding primaries have all been relatively easy to use. Now we’ll discuss a more
complicated set, namely those used to build programs and libraries. These primaries are
more complex because building a program is more complex than building a script (which
often doesn’t even need building at all).

42 Autoconf, Automake, and Libtool

Use the PROGRAMS primary for programs, LIBRARIES for libraries, and LTLIBRARIES for
Libtool libraries (see Chapter 10 [Introducing GNU Libtool], page 69). Here is a minimal
example:

bin_PROGRAMS = doit

This creates the program doit and arranges to install it in bindir. First make will
compile ‘doit.c’ to produce ‘doit.o’. Then it will link ‘doit.o’ to create ‘doit’.

Of course, if you have more than one source file, and most programs do, then you will
want to be able to list them somehow. You will do this via the program’s SOURCES variable.
Each program or library has a set of associated variables whose names are constructed by
appending suffixes to the ‘normalized’ name of the program. The normalized name is the
name of the object with non-alphanumeric characters changed to underscores. For instance,
the normalized name of ‘quux’ is ‘quux’, but the normalized name of ‘install-info’ is
‘install_info’. Normalized names are used because they correspond to make syntax, and,
like all macros, Automake propagates these definitions into the resulting ‘Makefile.in’.

So if ‘doit’ is to be built from files ‘main.c’ and ‘doit.c’, we would write:
bin_PROGRAMS = doit
doit_SOURCES = doit.c main.c

The same holds for libraries. In the zlib package we might make a library called
‘libzlib.a’. Then we would write:

lib_LIBRARIES = libzlib.a
libzlib_a_SOURCES = adler32.c compress.c crc32.c deflate.c deflate.h \
gzio.c infblock.c infblock.h infcodes.c infcodes.h inffast.c inffast.h \
inffixed.h inflate.c inftrees.c inftrees.h infutil.c infutil.h trees.c \
trees.h uncompr.c zconf.h zlib.h zutil.c zutil.h

We can also do this with libtool libraries. For instance, suppose we want to build
‘libzlib.la’ instead:

lib_LTLIBRARIES = libzlib.la
libzlib_la_SOURCES = adler32.c compress.c crc32.c deflate.c deflate.h \
gzio.c infblock.c infblock.h infcodes.c infcodes.h inffast.c inffast.h \
inffixed.h inflate.c inftrees.c inftrees.h infutil.c infutil.h trees.c \
trees.h uncompr.c zconf.h zlib.h zutil.c zutil.h

As you can see, making shared libraries with Automake and Libtool is just as easy as
making static libraries.

In the above example, we listed header files in the SOURCES variable. These are ig-
nored (except by make dist1) but can serve to make your ‘Makefile.am’ a bit clearer (and
sometimes shorter, if you aren’t installing headers).

Note that you can’t use ‘configure’ substitutions in a SOURCES variable. Automake
needs to know the static list of files which can be compiled into your program. There are
still various ways to conditionally compile files, for instance Automake conditionals or the
use of the LDADD variable.

The static list of files is also used in some versions of Automake’s automatic dependency
tracking. The general rule is that each source file which might be compiled should be listed
in some SOURCES variable. If the source is conditionally compiled, it can be listed in an

1 See Chapter 13 [Rolling Distribution Tarballs], page 117

Chapter 7: Introducing GNU Automake 43

EXTRA variable. For instance, suppose in this example ‘@FOO_OBJ@’ is conditionally set by
‘configure’ to ‘foo.o’ when ‘foo.c’ should be compiled:

bin_PROGRAMS = foo
foo_SOURCES = main.c
foo_LDADD = @FOO_OBJ@
foo_DEPENDENCIES = @FOO_OBJ@
EXTRA_foo_SOURCES = foo.c

In this case, ‘EXTRA_foo_SOURCES’ is used to list sources which are conditionally com-
piled; this tells Automake that they exist even though it can’t deduce their existence auto-
matically.

In the above example, note the use of the ‘foo_LDADD’ macro. This macro is used to list
other object files and libraries which should be linked into the foo program. Each program
or library has several such associated macros which can be used to customize the link step;
here we list the most common ones:

‘_DEPENDENCIES’
Extra dependencies which are added to the program’s dependency list. If not
specified, this is automatically computed based on the value of the program’s
‘_LDADD’ macro.

‘_LDADD’ Extra objects which are passed to the linker. This is only used by programs
and shared libraries.

‘_LDFLAGS’
Flags which are passed to the linker. This is separate from ‘_LDADD’ to allow
‘_DEPENDENCIES’ to be auto-computed.

‘_LIBADD’ Like ‘_LDADD’, but used for static libraries and not programs.

You aren’t required to define any of these macros.

7.5 Frequently Asked Questions

Experience has shown that there are several common questions that arise as people begin
to use automake for their own projects. It seemed prudent to mention these issues here.

Users often want to make a library (or program, but for some reason it comes up more
frequently with libraries) whose sources live in subdirectories:

lib_LIBRARIES = libsub.a
libsub_a_SOURCES = subdir1/something.c ...

If you try this with Automake 1.4, you’ll get an error:
$ automake
automake: Makefile.am: not supported: source file subdir1/something.c is in subdirectory

For libraries, this problem is mostly simply solve by using libtool convenience libraries.
For programs, there is no simple solution. Many people elect to restructure their package
in this case.

The next major release of Automake addresses this problem.
Another general problem that comes up is that of setting compilation flags. Most rules

have flags—for instance, compilation of C code automatically uses ‘CFLAGS’. However, these

44 Autoconf, Automake, and Libtool

variables are considered user variables. Setting them in ‘Makefile.am’ is unsafe, because
the user will expect to be able to override them at will.

To handle this, for each flag variable, Automake introduce an ‘AM_’ version which can
be set in ‘Makefile.am’. For instance, we could set some flags for C and C++ compilation
like so:

AM_CFLAGS = -DFOR_C
AM_CXXFLAGS = -DFOR_CXX

Finally, people often ask how to compile a single source file in two different ways. For
instance, the ‘etags.c’ file which comes with Emacs can be compiled with different ‘-D’
options to produce the etags and ctags programs.

With Automake 1.4 this can only be done by writing your own compilation rules, like
this:

bin_PROGRAMS = etags ctags
etags_SOURCES = etags.c
ctags_SOURCES =
ctags_LDADD = ctags.o

etags.o: etags.c
$(CC) $(CFLAGS) -DETAGS ...

ctags.o: etags.c
$(CC) $(CFLAGS) -DCTAGS ...

This is tedious and hard to maintain for larger programs. Automake 1.5 will support a
much more natural approach:

bin_PROGRAMS = etags ctags
etags_SOURCES = etags.c
etags_CFLAGS = -DETAGS
ctags_SOURCES = etags.c
ctags_CFLAGS = -DCTAGS

7.6 Multiple directories

So far, we’ve only dealt with single-directory projects. Automake can also handle projects
with many directories. The variable ‘SUBDIRS’ is used to list the subdirectories which should
be built. Here is an example from Automake itself:

SUBDIRS = . m4 tests

Automake does not need to know the list of subdirectories statically, so there is no
‘EXTRA_SUBDIRS’ variable. You might think that Automake would use ‘SUBDIRS’ to see
which ‘Makefile.am’s to scan, but it actually gets this information from ‘configure.in’.
This means that, if you have a subdirectory which is optionally built, you should still list
it unconditionally in your call to AC_OUTPUT and then arrange for it to be substituted (or
not, as appropriate) at configure time.

Subdirectories are always built in the order they appear, but cleaning rules (e.g.,
maintainer-clean) are always run in the reverse order. The reason for this odd reversal
is that it is wrong to remove a file before removing all the files which depend on it.

Chapter 7: Introducing GNU Automake 45

You can put ‘.’ into ‘SUBDIRS’ to control when the objects in the current directory are
built, relative to the objects in the subdirectories. In the example above, targets in ‘.’
will be built before subdirectories are built. If ‘.’ does not appear in ‘SUBDIRS’, it is built
following all the subdirectories.

7.7 Testing

Automake also includes simple support for testing your program.
The most simple form of this is the ‘TESTS’ variable. This variable holds a list of tests

which are run when the user runs make check. Each test is built (if necessary) and then
executed. For each test, make prints a single line indicating whether the test has passed or
failed. Failure means exiting with a non-zero status, with the special exception that an exit
status of ‘77’2 means that the test should be ignored. make check also prints a summary
showing the number of passes and fails.

Automake also supports the notion of an xfail, which is a test which is expected to fail.
Sometimes this is useful when you want to track a known failure, but you aren’t prepared
to fix it right away. Tests which are expected to fail should be listed in both ‘TESTS’ and
‘XFAIL_TESTS’.

The special prefix ‘check’ can be used with primaries to indicate that the objects should
only be built at make check time. For example, here is how you can build a program that
will only be used during the testing process:

check_PROGRAMS = test-program
test_program_SOURCES = ...

Automake also supports the use of DejaGNU, the gnu test framework. DejaGNU sup-
port can be enabled using the ‘dejagnu’ option:

AUTOMAKE_OPTIONS = dejagnu

The resulting ‘Makefile.in’ will include code to invoke the runtest program appropri-
ately.

2 A number chosen arbitrarily by the Automake developers.

46 Autoconf, Automake, and Libtool

Chapter 8: Bootstrapping 47

8 Bootstrapping

There are many programs in the GNU Autotools, each of which has a complex set of
inputs. When one of these inputs changes, it is important to run the proper programs in
the proper order. Unfortunately, it is hard to remember both the dependencies and the
ordering.

For instance, whenever you edit ‘configure.in’, you must remember to re-run aclocal
in case you added a reference to a new macro. You must also rebuild ‘configure’ by running
autoconf; ‘config.h’ by running autoheader, in case you added a new AC_DEFINE; and
automake to propagate any new AC_SUBSTs to the various ‘Makefile.in’s. If you edit a
‘Makefile.am’, you must re-run automake. In both these cases, you must then remember
to re-run config.status --recheck if ‘configure’ changed, followed by config.status
to rebuild the ‘Makefile’s.

When doing active development on the build system for your project, these dependencies
quickly become painful. Of course, Automake knows how to handle this automatically. By
default, automake generates a ‘Makefile.in’ which knows all these dependencies and which
automatically re-runs the appropriate tools in the appropriate order. These rules assume
that the correct versions of the tools are all in your PATH.

It helps to have a script ready to do all of this for you once, before you have generated a
‘Makefile’ that will automatically run the tools in the correct order, or when you make a
fresh checkout of the code from a cvs repository where the developers don’t keep generated
files under source control. There are at least two opposing schools of thought regarding how
to go about this – the autogen.sh school and the bootstrap school:

autogen.sh
From the outset, this is a poor name for a bootstrap script, since there is
already a gnu automatic text generation tool called AutoGen. Often packages
that follow this convention have the script automatically run the generated
configure script after the boostrap process, passing autogen.sh arguments
through to configure. Except you don’t know what options you want yet,
since you can’t run ‘configure --help’ until configure has been generated.
I suggest that if you find yourself compiling a project set up in this way that
you type:

$ /bin/sh ./autogen.sh --help

and ignore the spurious warning that tells you configure will be executed.

bootstrap
Increasingly, projects are starting to call their bootstrap scripts ‘bootstrap’.
Such scripts simply run the various commands required to bring the source tree
into a state where the end user can simply:

$ configure
$ make
$ make install

Unfortunately, proponents of this school of thought don’t put the bootstrap
script in their distributed tarballs, since the script is unnecessary except when
the build environment of a developer’s machine has changed. This means the

48 Autoconf, Automake, and Libtool

proponents of the autogen.sh school may never see the advantages of the other
method.

Autoconf comes with a program called autoreconf which essentially does the work of
the bootstrap script. autoreconf is rarely used because, historically, has not been very
well known, and only in Autoconf 2.13 did it acquire the ability to work with Automake.
Unfortunately, even the Autoconf 2.13 autoreconf does not handle libtoolize and some
automake-related options that are frequently nice to use.

We recommend the bootstrap method, until autoreconf is fixed. At this point
bootstrap has not been standardized, so here is a version of the script we used while
writing this book1:

#! /bin/sh

aclocal \
&& automake --gnu --add-missing \
&& autoconf

We don’t use autoreconf here because that script (as of Autoconf 2.13) also does not
handle the ‘--add-missing’ option, which we want. A typical bootstrap might also run
libtoolize or autoheader.

It is also important for all developers on a project to have the same versions of the tools
installed so that these rules don’t inadvertantly cause problems due to differences between
tool versions. This version skew problem turns out to be fairly significant in the field. So,
automake provides a way to disable these rules by default, while still allowing users to
enable them when they know their environment is set up correctly.

In order to enable this mode, you must first add AM_MAINTAINER_MODE to
‘configure.in’. This will add the ‘--enable-maintainer-mode’ option to ‘configure’;
when specified this flag will cause these so-called ‘maintainer rules’ to be enabled.

Note that maintainer mode is a controversial feature. Some people like to use it because
it causes fewer bug reports in some situations. For instance, cvs does not preserve relative
timestamps on files. If your project has both ‘configure.in’ and ‘configure’ checked in,
and maintainer mode is not in use, then sometimes make will decide to rebuild ‘configure’
even though it is not really required. This in turn means more headaches for your developers
– on a large project most developers won’t touch ‘configure.in’ and many may not even
want to install the GNU Autotools2.

The other camp claims that end users should use the same build system that developers
use, that maintainer mode is simply unaesthetic, and furthermore that the modality of
maintainer mode is dangerous—you can easily forget what mode you are in and thus forget
to rebuild, and thus correctly test, a change to the configure or build system. When
maintainer mode is not in use, the Automake-supplied missing script will be used to warn
users when it appears that they need a maintainer tool that they do not have.

The approach you take depends strongly on the social structures surrounding your
project.

1 This book is built using automake and autoconf. We couldn’t find a use for libtool.
2 Shock, horror

Chapter 9: A Small GNU Autotools Project 49

9 A Small GNU Autotools Project

This chapter introduces a small—but real—worked example, to illustrate some of the
features, and highlight some of the pitfalls, of the GNU Autotools discussed so far. All of
the source can be downloaded from the book’s web page1. The text is peppered with my
own pet ideas, accumulated over a several years of working with the GNU Autotools and
you should be able to easily apply these to your own projects. I will begin by describing
some of the choices and problems I encountered during the early stages of the development
of this project. Then by way of illustration of the issues covered, move on to showing you
a general infrastructure that I use as the basis for all of my own projects, followed by the
specifics of the implementation of a portable command line shell library. This chapter then
finishes with a sample shell application that uses that library.

Later, in Chapter 12 [A Large GNU Autotools Project], page 107 and Chapter 20 [A
Complex GNU Autotools Project], page 183, the example introduced here will be gradually
expanded as new features of GNU Autotools are revealed.

9.1 GNU Autotools in Practice

This section details some of the specific problems I encountered when starting this
project, and is representative of the sorts of things you are likely to want to do in projects
of your own, but for which the correct solution may not be immediately evident. You can
always refer back to this section for some inspiration if you come across similar situations.
I will talk about some of the decisions I made about the structure of the project, and also
the trade-offs for the other side of the argument – you might find the opposite choice to the
one I make here is more relevant a particular project of yours.

9.1.1 Project Directory Structure

Before starting to write code for any project, you need to decide on the directory struc-
ture you will use to organise the code. I like to build each component of a project in its
own subdirectory, and to keep the configuration sources separate from the source code. The
great majority of gnu projects I have seen use a similar method, so adopting it yourself
will likely make your project more familiar to your developers by association.

The top level directory is used for configuration files, such as ‘configure’ and
‘aclocal.m4’, and for a few other sundry files, ‘README’ and a copy of the project license
for example.

Any significant libraries will have a subdirectory of their own, containing all of the
sources and headers for that library along with a ‘Makefile.am’ and anything else that is
specific to just that library. Libraries that are part of a small like group, a set of pluggable
application modules for example, are kept together in a single directory.

The sources and headers for the project’s main application will be stored in yet another
subdirectory, traditionally named ‘src’. There are other conventional directories your devel-
opers might expect too: A ‘doc’ directory for project documentation; and a ‘test’ directory
for the project self test suite.

1 http://sources.redhat.com/autobook/

http://sources.redhat.com/autobook/

50 Autoconf, Automake, and Libtool

To keep the project top-level directory as uncluttered as possible, as I like to do, you
can take advantage of Autoconf’s ‘AC_CONFIG_AUX_DIR’ by creating another durectory, say
‘config’, which will be used to store many of the GNU Autotools intermediate files, such
as install-sh. I always store all project specific Autoconf M4 macros to this same subdi-
rectory.

So, this is what you should start with:
$ pwd
~/mypackage
$ ls -F
Makefile.am config/ configure.in lib/ test/
README configure* doc/ src/

9.1.2 C Header Files

There is a small amount of boiler-plate that should be added to all header files, not
least of which is a small amount of code to prevent the contents of the header from be-
ing scanned multiple times. This is achieved by enclosing the entire file in a prepro-
cessor conditional which evaluates to false after the first time it has been seen by the
preprocessor. Traditionally, the macro used is in all upper case, and named after the in-
stallation path without the installation prefix. Imagine a header that will be intalled to
‘/usr/local/include/sys/foo.h’, for example. The preprocessor code would be as fol-
lows:

#ifndef SYS_FOO_H
#define SYS_FOO_H 1
...
#endif /* !SYS_FOO_H */

Apart from comments, the entire content of the rest of this header file must be between
these few lines. It is worth mentioning that inside the enclosing ifndef, the macro SYS_
FOO_H must be defined before any other files are #included. It is a common mistake to not
define that macro until the end of the file, but mutual dependency cycles are only stalled if
the guard macro is defined before the #include which starts that cycle2.

If a header is designed to be installed, it must #include other installed project headers
from the local tree using angle-brackets. There are some implications to working like this:

• You must be careful that the names of header file directories in the source tree match
the names of the directories in the install tree. For example, when I plan to install the
aforementioned ‘foo.h’ to ‘/usr/local/include/project/foo.h’, from which it will
be included using ‘#include <project/foo.h>’, then in order for the same include
line to work in the source tree, I must name the source directory it is installed from
‘project’ too, or other headers which use it will not be able to find it until after it has
been installed.

• When you come to developing the next version of a project laid out in this way, you
must be careful about finding the correct header. Automake takes care of that for
you by using ‘-I’ options that force the compiler to look for uninstalled headers in the

2 An #include cycle is the situation where file ‘a.h’ #includes file ‘b.h’, and ‘b.h’ #includes file ‘a.h’ –
either directly or through some longer chain of #includes.

Chapter 9: A Small GNU Autotools Project 51

current source directory before searching the system directories for installed headers of
the same name.

• You don’t have to install all of your headers to ‘/usr/include’ – you can use subdi-
rectories. And all without having to rewrite the headers at install time.

9.1.3 C++ Compilers

In order for a C++ program to use a library compiled with a C compiler, it is neccessary
for any symbols exported from the C library to be declared between ‘extern "C" {’ and ‘}’.
This code is important, because a C++ compiler mangles3 all variable and function names,
where as a C compiler does not. On the other hand, a C compiler will not understand these
lines, so you must be careful to make them invisible to the C compiler.

Sometimes you will see this method used, written out in long hand in every installed
header file, like this:

#ifdef __cplusplus
extern "C" {
#endif

...

#ifdef __cplusplus
}
#endif

But that is a lot of unnecessary typing if you have a few dozen headers in your project.
Also the additional braces tend to confuse text editors, such as emacs, which do automatic
source indentation based on brace characters.

Far better, then, to declare them as macros in a common header file, and use the macros
in your headers:

#ifdef __cplusplus
define BEGIN_C_DECLS extern "C" {
define END_C_DECLS }
#else /* !__cplusplus */
define BEGIN_C_DECLS
define END_C_DECLS
#endif /* __cplusplus */

I have seen several projects that name such macros with a leading underscore –
‘_BEGIN_C_DECLS’. Any symbol with a leading underscore is reserved for use by the
compiler implementation, so you shouldn’t name any symbols of your own in this way. By
way of example, I recently ported the Small4 language compiler to Unix, and almost all of
the work was writing a Perl script to rename huge numbers of symbols in the compiler’s
reserved namespace to something more sensible so that GCC could even parse the sources.
Small was originally developed on Windows, and the author had used a lot of symbols
with a leading underscore. Although his symbol names didn’t clash with his own compiler,
in some cases they were the same as symbols used by GCC.

3 For an explanation of name mangling See Chapter 16 [Writing Portable C++], page 139.
4 http://www.compuphase.com/small.htm

http://www.compuphase.com/small.htm

52 Autoconf, Automake, and Libtool

9.1.4 Function Definitions

As a stylistic convention, the return types for all function definitions should be on a
separate line. The main reason for this is that it makes it very easy to find the functions
in source file, by looking for a single identifier at the start of a line followed by an open
parenthesis:

$ egrep ’^[_a-zA-Z][_a-zA-Z0-9]*[\t]*\(’ error.c
set_program_name (const char *path)
error (int exit_status, const char *mode, const char *message)
sic_warning (const char *message)
sic_error (const char *message)
sic_fatal (const char *message)

There are emacs lisp functions and various code analysis tools, such as ansi2knr (see
Section 9.1.6 [K&R Compilers], page 53), which rely on this formatting convention, too.
Even if you don’t use those tools yourself, your fellow developers might like to, so it is a
good convention to adopt.

9.1.5 Fallback Function Implementations

Due to the huge number of Unix varieties in common use today, many of the C library
functions that you take for granted on your prefered development platform are very likely
missing from some of the architectures you would like your code to compile on. Fundamen-
tally there are two ways to cope with this:
• Use only the few library calls that are available everywhere. In reality this is not

actually possible because there are two lowest common denominators with mutually
exclusive apis, one rooted in bsd Unix (‘bcopy’, ‘rindex’) and the other in SYSV Unix
(‘memcpy’, ‘strrchr’). The only way to deal with this is to define one api in terms
of the other using the preprocessor. The newer posix standard deprecates many of
the bsd originated calls (with exceptions such as the bsd socket api). Even on non-
posix platforms, there has been so much cross pollination that often both varieties of a
given call may be provided, however you would be wise to write your code using posix
endorsed calls, and where they are missing, define them in terms of whatever the host
platform provides.
This approach requires a lot of knowledge about various system libraries and standards
documents, and can leave you with reams of preprocessor code to handle the differences
between apis. You will also need to perform a lot of checking in ‘configure.in’ to
figure out which calls are available. For example, to allow the rest of your code to use
the ‘strcpy’ call with impunity, you would need the following code in ‘configure.in’:

AC_CHECK_FUNCS(strcpy bcopy)

And the following preprocessor code in a header file that is seen by every source file:
#if !HAVE_STRCPY
if HAVE_BCOPY
define strcpy(dest, src) bcopy (src, dest, 1 + strlen (src))
else /* !HAVE_BCOPY */

error no strcpy or bcopy
endif /* HAVE_BCOPY */
#endif /* HAVE_STRCPY */

Chapter 9: A Small GNU Autotools Project 53

• Alternatively you could provide your own fallback implementations of function calls you
know are missing on some platforms. In practice you don’t need to be as knowledgable
about problematic functions when using this approach. You can look in GNU libiberty5

or François Pinard’s libit project6 to see for which functions other GNU developers have
needed to implement fallback code. The libit project is especially useful in this respect
as it comprises canonical versions of fallback functions, and suitable Autoconf macros
assembled from across the entire gnu project. I won’t give an example of setting up
your package to use this approach, since that is how I have chosen to structure the
project described in this chapter.

Rather than writing code to the lowest common denominator of system libraries, I am a
strong advocate of the latter school of thought in the majority of cases. As with all things
it pays to take a pragmatic approach; don’t be afraid of the middle ground – weigh the
options on a case by case basis.

9.1.6 K&R Compilers

K&R C is the name now used to describe the original C language specified by Brian
Kernighan and Dennis Ritchie (hence, ‘K&R’). I have yet to see a C compiler that doesn’t
support code written in the K&R style, yet it has fallen very much into disuse in favor of
the newer ansi C standard. Although it is increasingly common for vendors to unbundle
their ansi C compiler, the gcc project7 is available for all of the architectures I have ever
used.

There are four differences between the two C standards:

1. ansi C expects full type specification in function prototypes, such as you might supply
in a library header file:

extern int functionname (const char *parameter1, size_t parameter 2);

The nearest equivalent in K&R style C is a forward declaration, which allows you to
use a function before its corresponding definition:

extern int functionname ();

As you can imagine, K&R has very bad type safety, and does not perform any checks
that only function arguments of the correct type are used.

2. The function headers of each function definition are written differently. Where you
might see the following written in ansi C:

int
functionname (const char *parameter1, size_t parameter2)
{
...

}

K&R expects the parameter type declarations separately, like this:
int

5 Available at ftp://sourceware.cygnus.com/pub/binutils/.
6 Distributed from http://www.iro.umontreal.ca/~pinard/libit.
7 gcc must be compilable by K&R compilers so that it can be built and installed in an ansi compiler free

environment.

ftp://sourceware.cygnus.com/pub/binutils/
http://www.iro.umontreal.ca/~pinard/libit

54 Autoconf, Automake, and Libtool

functionname (parameter1, parameter2)
const char *parameter1;
size_t parameter2;

{
...

}

3. There is no concept of an untyped pointer in K&R C. Where you might be used to
seeing ‘void *’ pointers in ansi code, you are forced to overload the meaning of ‘char
*’ for K&R compilers.

4. Variadic functions are handled with a different api in K&R C, imported with ‘#include
<varargs.h>’. A K&R variadic function definition looks like this:

int
functionname (va_alist)

va_dcl
{
va_list ap;
char *arg;

va_start (ap);
...
arg = va_arg (ap, char *);
...
va_end (ap);

return arg ? strlen (arg) : 0;
}

ansi C provides a similar api, imported with ‘#include <stdarg.h>’, though it cannot
express a variadic function with no named arguments such as the one above. In practice,
this isn’t a problem since you always need at least one parameter, either to specify the
total number of arguments somehow, or else to mark the end of the argument list. An
ansi variadic function definition looks like this:

int
functionname (char *format, ...)
{
va_list ap;
char *arg;

va_start (ap, format);
...
arg = va_arg (ap, char *);
...
va_end (ap);

return format ? strlen (format) : 0;
}

Except in very rare cases where you are writing a low level project (gcc for example),
you probably don’t need to worry about K&R compilers too much. However, supporting

Chapter 9: A Small GNU Autotools Project 55

them can be very easy, and if you are so inclined, can be handled either by employing the
ansi2knr program supplied with Automake, or by careful use of the preprocessor.

Using ansi2knr in your project is described in some detail in section “Automatic de-
ANSI-fication” in The Automake Manual, but boils down to the following:
− Add this macro to your ‘configure.in’ file:

AM_C_PROTOTYPES

− Rewrite the contents of ‘LIBOBJS’ and/or ‘LTLIBOBJS’ in the following fashion:
This is necessary so that .o files in LIBOBJS are also built via
the ANSI2KNR-filtering rules.
Xsed=’sed -e "s/^X//"’
LIBOBJS=‘echo X"$LIBOBJS"|\
[$Xsed -e ’s/\.[^.]* /.\$U& /g;s/\.[^.]*$/.\$U&/’]‘

Personally, I dislike this method, since every source file is filtered and rewritten with
ansi function prototypes and declarations converted to K&R style adding a fair overhead
in additional files in your build tree, and in compilation time. This would be reasonable
were the abstraction sufficient to allow you to forget about K&R entirely, but ansi2knr is
a simple program, and does not address any of the other differences between compilers that
I raised above, and it cannot handle macros in your function prototypes of definitions. If
you decide to use ansi2knr in your project, you must make the decision before you write
any code, and be aware of its limitations as you develop.

For my own projects, I prefer to use a set of preprocessor macros along with a few
stylistic conventions so that all of the differences between K&R and ansi compilers are
actually addressed, and so that the unfortunate few who have no access to an ansi compiler
(and who cannot use gcc for some reason) needn’t suffer the overheads of ansi2knr.

The four differences in style listed at the beginning of this subsection are addressed as
follows:
1. The function protoype argument lists are declared inside a PARAMS macro invocation

so that K&R compilers will still be able to compile the source tree. PARAMS removes
ansi argument lists from function prototypes for k&r compilers. Some developers
continue to use __P for this purpose, but strictly speaking, macros starting with ‘_’
(and especially ‘__’) are reserved for the compiler and the system headers, so using
‘PARAMS’, as follows, is safer:

#if __STDC__
ifndef NOPROTOS
define PARAMS(args) args
endif
#endif
#ifndef PARAMS
define PARAMS(args) ()
#endif

This macro is then used for all function declarations like this:
extern int functionname PARAMS((const char *parameter));

2. With the PARAMS macro is used for all function declarations, ansi compilers are given all
the type information they require to do full compile time type checking. The function
definitions proper must then be declared in K&R style so that K&R compilers don’t

56 Autoconf, Automake, and Libtool

choke on ansi syntax. There is a small amount of overhead in writing code this way,
however: The ansi compile time type checking can only work in conjunction with
K&R function definitions if it first sees an ansi function prototype. This forces you to
develop the good habit of prototyping every single function in your project. Even the
static ones.

3. The easiest way to work around the lack of void * pointers, is to define a new type
that is conditionally set to void * for ansi compilers, or char * for k&r compilers.
You should add the following to a common header file:

#if __STDC__
typedef void *void_ptr;
#else /* !__STDC__ */
typedef char *void_ptr;
#endif /* __STDC__ */

4. The difference between the two variadic function apis pose a stickier problem, and
the solution is ugly. But it does work. FIrst you must check for the headers in
‘configure.in’:

AC_CHECK_HEADERS(stdarg.h varargs.h, break)

Having done this, add the following code to a common header file:
#if HAVE_STDARG_H
include <stdarg.h>
define VA_START(a, f) va_start(a, f)
#else
if HAVE_VARARGS_H
include <varargs.h>
define VA_START(a, f) va_start(a)
endif
#endif
#ifndef VA_START
error no variadic api

#endif

You must now supply each variadic function with both a K&R and an ansi definition,
like this:

int
#if HAVE_STDARG_H
functionname (const char *format, ...)
#else
functionname (format, va_alist)

const char *format;
va_dcl

#endif
{
va_alist ap;
char *arg;

VA_START (ap, format);
...
arg = va_arg (ap, char *);

Chapter 9: A Small GNU Autotools Project 57

...
va_end (ap);

return arg : strlen (arg) ? 0;
}

9.2 A Simple Shell Builders Library

An application which most developers try their hand at sooner or later is a Unix shell.
There is a lot of functionality common to all traditional command line shells, which I
thought I would push into a portable library to get you over the first hurdle when that
moment is upon you. Before elabourating on any of this I need to name the project. I’ve
called it sic, from the Latin so it is, because like all good project names it is somewhat
pretentious and it lends itself to the recursive acronym sic is cumulative.

The gory detail of the minutae of the source is beyond the scope of this book, but to
convey a feel for the need for Sic, some of the goals which influenced the design follow:

• Sic must be very small so that, in addition to being used as the basis for a full blown
shell, it can be linked (unadorned) into an application and used for trivial tasks, such
as reading startup configuration.

• It must not be tied to a particular syntax or set of reserved words. If you use it to read
your startup configuration, I don’t want to force you to use my syntax and commands.

• The boundary between the library (‘libsic’) and the application must be well de-
fined. Sic will take strings of characters as input, and internally parse and evaluate
them according to registered commands and syntax, returning results or diagnostics as
appropriate.

• It must be extremely portable – that is what I am trying to illustrate here, after all.

9.2.1 Portability Infrastructure

As I explained in Section 9.1.1 [Project Directory Structure], page 49, I’ll first create
the project directories, a toplevel dirctory and a subdirectory to put the library sources
into. I want to install the library header files to ‘/usr/local/include/sic’, so the library
subdirectory must be named appropriately. See Section 9.1.2 [C Header Files], page 50.

$ mkdir sic
$ mkdir sic/sic
$ cd sic/sic

I will describe the files I add in this section in more detail than the project specific
sources, because they comprise an infrastructure that I use relatively unchanged for all of
my GNU Autotools projects. You could keep an archive of these files, and use them as a
starting point each time you begin a new project of your own.

9.2.1.1 Error Management

A good place to start with any project design is the error management facility. In Sic I
will use a simple group of functions to display simple error messages. Here is ‘sic/error.h’:

58 Autoconf, Automake, and Libtool

This header file follows the principles set out in Section 9.1.2 [C Header Files], page 50.

I am storing the program_name variable in the library that uses it, so that I can be sure
that the library will build on architectures that don’t allow undefined symbols in libraries8.

Keeping those preprocessor macro definitions designed to aid code portability together
(in a single file), is a good way to maintain the readability of the rest of the code. For this
project I will put that code in ‘common.h’:

You may recognise some snippets of code from the Autoconf manual here— in particular
the inclusion of the project ‘config.h’, which will be generated shortly. Notice that I have
been careful to conditionally include any headers which are not guaranteed to exist on every
architecture. The rule of thumb here is that only ‘stdio.h’ is ubiquitous (though I have
never heard of a machine that has no ‘sys/types.h’). You can find more details of some
of these in section “Existing Tests” in The GNU Autoconf Manual.

Here is a little more code from ‘common.h’:

The implementation of the error handling functions goes in ‘error.c’ and is very
straightforward:

I also need a definition of program_name; set_program_name copies the filename com-
ponent of path into the exported data, program_name. The xstrdup function just calls
strdup, but aborts if there is not enough memory to make the copy:

9.2.1.2 Memory Management

A useful idiom common to many gnu projects is to wrap the memory management
functions to localise out of memory handling, naming them with an ‘x’ prefix. By doing
this, the rest of the project is relieved of having to remember to check for ‘NULL’ returns
from the various memory functions. These wrappers use the error api to report memory
exhaustion and abort the program. I have placed the implementation code in ‘xmalloc.c’:

Notice in the code above, that xcalloc is implemented in terms of xmalloc, since calloc
itself is not available in some older C libraries. Also, the bzero function is actually depre-
cated in favour of memset in modern C libraries – I’ll explain how to take this into account
later in Section 9.2.3 [Beginnings of a configure.in for Small Project], page 60.

Rather than create a separate ‘xmalloc.h’ file, which would need to be #included from
almost everywhere else, the logical place to declare these functions is in ‘common.h’, since
the wrappers will be called from most everywhere else in the code:

By using the macros defined here, allocating and freeing heap memory is reduced from:

8 aix and Windows being the main culprits.

Chapter 9: A Small GNU Autotools Project 59

char **argv = (char **) xmalloc (sizeof (char *) * 3);
do_stuff (argv);
if (argv)
free (argv);

to the simpler and more readable:
char **argv = XMALLOC (char *, 3);
do_stuff (argv);
XFREE (argv);

In the same spirit, I have borrowed ‘xstrdup.c’ and ‘xstrerror.c’ from project gnu’s
libiberty. See Section 9.1.5 [Fallback Function Implementations], page 52.

9.2.1.3 Generalised List Data Type

In many C programs you will see various implementations and re-implementations of
lists and stacks, each tied to its own particular project. It is surprisingly simple to write
a catch-all implementation, as I have done here with a generalised list operation api in
‘list.h’:

The trick is to ensure that any structures you want to chain together have their forward
pointer in the first field. Having done that, the generic functions declared above can be
used to manipulate any such chain by casting it to List * and back again as necessary.

For example:
struct foo {
struct foo *next;

char *bar;
struct baz *qux;
...

};

...
struct foo *foo_list = NULL;

foo_list = (struct foo *) list_cons ((List *) new_foo (),
(List *) foo_list);

...

The implementation of the list manipulation functions is in ‘list.c’:

9.2.2 Library Implementation

In order to set the stage for later chapter which expand upon this example, in this
subsection I will describe the purpose of the sources that combine to implement the shell
library. I will not dissect the code introduced here—you can download the sources from the
book’s webpages at http://sources.redhat.com/autobook/.

The remaining sources for the library, beyond the support files described in the previous
subsection, are divided into four pairs of files:

http://sources.redhat.com/autobook/

60 Autoconf, Automake, and Libtool

9.2.2.1 ‘sic.c’ & ‘sic.h’

Here are the functions for creating and managing sic parsers.

This structure has fields to store registered command (builtins) and syntax (syntax)
handlers, along with other state information (state) that can be used to share information
between various handlers, and some room to build a result or error string (result).

9.2.2.2 ‘builtin.c’ & ‘builtin.h’

Here are the functions for managing tables of builtin commands in each Sic structure:

9.2.2.3 ‘eval.c’ & ‘eval.h’

Having created a Sic parser, and populated it with some Builtin handlers, a user of
this library must tokenize and evaluate its input stream. These files define a structure for
storing tokenized strings (Tokens), and functions for converting char * strings both to and
from this structure type:

These files also define the eval function, which examines a Tokens structure in the context
of the given Sic parser, dispatching the argv array to a relevant Builtin handler, also
written by the library user.

9.2.2.4 ‘syntax.c’ & ‘syntax.h’

When tokenize splits a char * string into parts, by default it breaks the string into
words delimited by whitespace. These files define the interface for changing this default
behaviour, by registering callback functions which the parser will run when it meets an
‘interesting’ symbol in the input stream. Here are the declarations from ‘syntax.h’:

A SyntaxHandler is a function called by tokenize as it consumes its input to create
a Tokens structure; the two functions associate a table of such handlers with a given Sic
parser, and find the particular handler for a given character in that Sic parser, respectively.

9.2.3 Beginnings of a ‘configure.in’

Now that I have some code, I can run autoscan to generate a preliminary
‘configure.in’. autoscan will examine all of the sources in the current directory tree
looking for common points of non-portability, adding macros suitable for detecting the
discovered problems. autoscan generates the following in ‘configure.scan’:

Process this file with autoconf to produce a configure script.
AC_INIT(sic/eval.h)

Checks for programs.

Checks for libraries.

Chapter 9: A Small GNU Autotools Project 61

Checks for header files.
AC_HEADER_STDC
AC_CHECK_HEADERS(strings.h unistd.h)

Checks for typedefs, structures, and compiler characteristics.
AC_C_CONST
AC_TYPE_SIZE_T

Checks for library functions.
AC_FUNC_VPRINTF
AC_CHECK_FUNCS(strerror)

AC_OUTPUT()

Since the generated ‘configure.scan’ does not overwrite your project’s
‘configure.in’, it is a good idea to run autoscan periodically even in
established project source trees, and compare the two files. Sometimes
autoscan will find some portability issue you have overlooked, or weren’t
aware of.

Looking through the documentation for the macros in this ‘configure.scan’,
AC_C_CONST and AC_TYPE_SIZE_T will take care of themselves (provided I ensure
that ‘config.h’ is included into every source file), and AC_HEADER_STDC and
AC_CHECK_HEADERS(unistd.h) are already taken care of in ‘common.h’.

autoscan is no silver bullet! Even here in this simple example, I need to manually add
macros to check for the presence of ‘errno.h’:

AC_CHECK_HEADERS(errno.h strings.h unistd.h)

I also need to manually add the Autoconf macro for generating ‘config.h’; a macro to
initialise automake support; and a macro to check for the presence of ranlib. These should
go close to the start of ‘configure.in’:

...
AC_CONFIG_HEADER(config.h)
AM_INIT_AUTOMAKE(sic, 0.5)

AC_PROG_CC
AC_PROG_RANLIB
...

Recall that the use of bzero in Section 9.2.1.2 [Memory Management], page 58 is not
entirely portable. The trick is to provide a bzero work-alike, depending on which functions
Autoconf detects, by adding the following towards the end of ‘configure.in’:

...
AC_CHECK_FUNCS(bzero memset, break)
...

With the addition of this small snippet of code to ‘common.h’, I can now make use of
bzero even when linking with a C library that has no implementation of its own:

62 Autoconf, Automake, and Libtool

An interesting macro suggested by autoscan is AC_CHECK_FUNCS(strerror). This tells
me that I need to provide a replacement implementation of strerror for the benefit of
architectures which don’t have it in their system libraries. This is resolved by providing
a file with a fallback implementation for the named function, and creating a library from
it and any others that ‘configure’ discovers to be lacking from the system library on the
target host.

You will recall that ‘configure’ is the shell script the end user of this package will
run on their machine to test that it has all the features the package wants to use. The
library that is created will allow the rest of the project to be written in the knowledge that
any functions required by the project but missing from the installers system libraries will
be available nonetheless. gnu ‘libiberty’ comes to the rescue again – it already has an
implementation of ‘strerror.c’ that I was able to use with a little modification.

Being able to supply a simple implementation of strerror, as the ‘strerror.c’ file
from ‘libiberty’ does, relies on there being a well defined sys_errlist variable. It is a
fair bet that if the target host has no strerror implementation, however, that the system
sys_errlist will be broken or missing. I need to write a configure macro to check whether
the system defines sys_errlist, and tailor the code in ‘strerror.c’ to use this knowledge.

To avoid clutter in the top-level directory, I am a great believer in keeping as many of
the configuration files as possible in their own sub-directory. First of all, I will create a new
directory called ‘config’ inside the top-level directory, and put ‘sys_errlist.m4’ inside it:

I must then add a call to this new macro in the ‘configure.in’ file being careful to
put it in the right place – somwhere between typedefs and structures and library functions
according to the comments in ‘configure.scan’:

SIC_VAR_SYS_ERRLIST

GNU Autotools can also be set to store most of their files in a subdirectory, by calling the
AC_CONFIG_AUX_DIR macro near the top of ‘configure.in’, preferably right after AC_INIT:

AC_INIT(sic/eval.c)
AC_CONFIG_AUX_DIR(config)
AM_CONFIG_HEADER(config.h)
...

Having made this change, many of the files added by running autoconf and automake
--add-missing will be put in the aux dir.

The source tree now looks like this:

sic/
+-- configure.scan
+-- config/
| +-- sys_errlist.m4
+-- replace/
| +-- strerror.c

Chapter 9: A Small GNU Autotools Project 63

+-- sic/
+-- builtin.c
+-- builtin.h
+-- common.h
+-- error.c
+-- error.h
+-- eval.c
+-- eval.h
+-- list.c
+-- list.h
+-- sic.c
+-- sic.h
+-- syntax.c
+-- syntax.h
+-- xmalloc.c
+-- xstrdup.c
+-- xstrerror.c

In order to correctly utilise the fallback implementation, AC_CHECK_FUNCS(strerror)
needs to be removed and strerror added to AC_REPLACE_FUNCS:

Checks for library functions.
AC_REPLACE_FUNCS(strerror)

This will be clearer if you look at the ‘Makefile.am’ for the ‘replace’ subdirectory:

The code tells automake that I want to build a library for use within the build tree
(i.e. not installed – ‘noinst’), and that has no source files by default. The clever part
here is that when someone comes to install Sic, they will run configure which will test for
strerror, and add ‘strerror.o’ to LIBOBJS if the target host environment is missing its
own implementation. Now, when ‘configure’ creates ‘replace/Makefile’ (as I asked it to
with AC_OUTPUT), ‘@LIBOBJS@’ is replaced by the list of objects required on the installer’s
machine.

Having done all this at configure time, when my user runs make, the files required to
replace functions missing from their target machine will be added to ‘libreplace.a’.

Unfortunately this is not quite enough to start building the project. First I need to add
a top-level ‘Makefile.am’ from which to ultimately create a top-level ‘Makefile’ that will
descend into the various subdirectories of the project:

Makefile.am -- Process this file with automake to produce Makefile.in

SUBDIRS = replace sic

And ‘configure.in’ must be told where it can find instances of Makefile.in:
AC_OUTPUT(Makefile replace/Makefile sic/Makefile)

I have written a bootstrap script for Sic, for details see Chapter 8 [Bootstrapping],
page 47:

The ‘--foreign’ option to automake tells it to relax the gnu standards for various files
that should be present in a gnu distribution. Using this option saves me from havng to
create empty files as we did in Chapter 5 [A Minimal GNU Autotools Project], page 27.

64 Autoconf, Automake, and Libtool

Right. Let’s build the library! First, I’ll run bootstrap:

$./bootstrap
+ aclocal -I config
+ autoheader
+ automake --foreign --add-missing --copy
automake: configure.in: installing config/install-sh
automake: configure.in: installing config/mkinstalldirs
automake: configure.in: installing config/missing
+ autoconf

The project is now in the same state that an end-user would see, having unpacked a
distribution tarball. What follows is what an end user might expect to see when building
from that tarball:

$./configure
creating cache ./config.cache
checking for a BSD compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking whether make sets ${MAKE}... yes
checking for working aclocal... found
checking for working autoconf... found
checking for working automake... found
checking for working autoheader... found
checking for working makeinfo... found
checking for gcc... gcc
checking whether the C compiler (gcc) works... yes
checking whether the C compiler (gcc) is a cross-compiler... no
checking whether we are using GNU C... yes
checking whether gcc accepts -g... yes
checking for ranlib... ranlib
checking how to run the C preprocessor... gcc -E
checking for ANSI C header files... yes
checking for unistd.h... yes
checking for errno.h... yes
checking for string.h... yes
checking for working const... yes
checking for size_t... yes
checking for strerror... yes
updating cache ./config.cache
creating ./config.status
creating Makefile
creating replace/Makefile
creating sic/Makefile
creating config.h

Compare this output with the contents of ‘configure.in’, and notice how each macro is
ultimately responsible for one or more consecutive tests (via the Bourne shell code generated
in ‘configure’). Now that the ‘Makefile’s have been successfully created, it is safe to call
make to perform the actual compilation:

Chapter 9: A Small GNU Autotools Project 65

$ make
make all-recursive
make[1]: Entering directory ‘/tmp/sic’
Making all in replace
make[2]: Entering directory ‘/tmp/sic/replace’
rm -f libreplace.a
ar cru libreplace.a
ranlib libreplace.a
make[2]: Leaving directory ‘/tmp/sic/replace’
Making all in sic
make[2]: Entering directory ‘/tmp/sic/sic’
gcc -DHAVE_CONFIG_H -I. -I. -I.. -I.. -g -O2 -c builtin.c
gcc -DHAVE_CONFIG_H -I. -I. -I.. -I.. -g -O2 -c error.c
gcc -DHAVE_CONFIG_H -I. -I. -I.. -I.. -g -O2 -c eval.c
gcc -DHAVE_CONFIG_H -I. -I. -I.. -I.. -g -O2 -c list.c
gcc -DHAVE_CONFIG_H -I. -I. -I.. -I.. -g -O2 -c sic.c
gcc -DHAVE_CONFIG_H -I. -I. -I.. -I.. -g -O2 -c syntax.c
gcc -DHAVE_CONFIG_H -I. -I. -I.. -I.. -g -O2 -c xmalloc.c
gcc -DHAVE_CONFIG_H -I. -I. -I.. -I.. -g -O2 -c xstrdup.c
gcc -DHAVE_CONFIG_H -I. -I. -I.. -I.. -g -O2 -c xstrerror.c
rm -f libsic.a
ar cru libsic.a builtin.o error.o eval.o list.o sic.o syntax.o xmalloc.o
xstrdup.o xstrerror.o
ranlib libsic.a
make[2]: Leaving directory ‘/tmp/sic/sic’
make[1]: Leaving directory ‘/tmp/sic’

On this machine, as you can see from the output of configure above, I have no need of
the fallback implementation of strerror, so ‘libreplace.a’ is empty. On another machine
this might not be the case. In any event, I now have a compiled ‘libsic.a’ – so far, so
good.

9.3 A Sample Shell Application

What I need now, is a program that uses ‘libsic.a’, if only to give me confidence that
it is working. In this section, I will write a simple shell which uses the library. But first,
I’ll create a directory to put it in:

$ mkdir src
$ ls -F
COPYING Makefile.am aclocal.m4 configure* config/ sic/
INSTALL Makefile.in bootstrap* configure.in replace/ src/
$ cd src

In order to put this shell together, we need to provide just a few things for integration
with ‘libsic.a’...

66 Autoconf, Automake, and Libtool

9.3.1 ‘sic_repl.c’

In ‘sic_repl.c’9 there is a loop for reading strings typed by the user, evaluating them
and printing the results. gnu readline is ideally suited to this, but it is not always available
– or sometimes people simply may not wish to use it.

With the help of GNU Autotools, it is very easy to cater for building with and without
gnu readline. ‘sic_repl.c’ uses this function to read lines of input from the user:

To make this work, I must write an Autoconf macro which adds an option to ‘configure’,
so that when the package is installed, it will use the readline library if ‘--with-readline’
is used:

Having put this macro in the file ‘config/readline.m4’, I must also call the new macro
(SIC_WITH_READLINE) from ‘configure.in’.

9.3.2 ‘sic_syntax.c’

The syntax of the commands in the shell I am writing is defined by a set of syntax
handlers which are loaded into ‘libsic’ at startup. I can get the C preprocessor to do most
of the repetitive code for me, and just fill in the function bodies:

This code writes the prototypes for the syntax handler functions, and creates a table
which associates each with one or more characters that might occur in the input stream.
The advantage of writing the code this way is that when I want to add a new syntax
handler later, it is a simple matter of adding a new row to the syntax_functions macro,
and writing the function itself.

9.3.3 ‘sic_builtin.c’

In addition to the syntax handlers I have just added to the Sic shell, the language of
this shell is also defined by the builtin commands it provides. The infrastructure for this
file is built from a table of functions which is fed into various C preprocessor macros, just
as I did for the syntax handlers.

One builtin handler function has special status, builtin_unknown. This is the builtin
that is called, if the Sic library cannot find a suitable builtin function to handle the current
input command. At first this doesn’t sound especially important – but it is the key to any
shell implementation. When there is no builtin handler for the command, the shell will
search the users command path, ‘$PATH’, to find a suitable executable. And this is the job
of builtin_unknown:

Running ‘autoscan’ again at this point adds AC_CHECK_FUNCS(strcspn strspn) to
‘configure.scan’. This tells me that these functions are not truly portable. As before
I provide fallback implementations for these functions incase they are missing from the
target host – and as it turns out, they are easy to write:

9 Read Eval Print Loop.

Chapter 9: A Small GNU Autotools Project 67

There is no need to add any code to ‘Makefile.am’, because the configure script will
automatically add the names of the missing function sources to ‘@LIBOBJS@’.

This implementation uses the autoconf generated ‘config.h’ to get information about
the availability of headers and type definitions. It is interesting that autoscan reports
that strchr and strrchr, which are used in the fallback implementations of strcspn and
strspn respectively, are themselves not portable! Luckily, the Autoconf manual tells me
exactly how to deal with this: by adding some code to my ‘common.h’ (paraphrased from
the literal code in the manual):

#if !STDC_HEADERS
if !HAVE_STRCHR
define strchr index
define strrchr rindex
endif
#endif

And another macro in ‘configure.in’:
AC_CHECK_FUNCS(strchr strrchr)

9.3.4 ‘sic.c’ & ‘sic.h’

Since the application binary has no installed header files, there is little point in main-
taining a corresponding header file for every source, all of the structures shared by these
files, and non-static functions in these files are declared in ‘sic.h’:

To hold together everything you have seen so far, the main function creates a Sic parser
and initialises it by adding syntax handler functions and builtin functions from the two
tables defined earlier, before handing control to evalstream which will eventually exit
when the input stream is exhausted.

Now, the shell can be built and used:
$ bootstrap
...
$./configure --with-readline
...
$ make
...
make[2]: Entering directory ‘/tmp/sic/src’
gcc -DHAVE_CONFIG_H -I. -I.. -I../sic -I.. -I../sic -g -c sic.c
gcc -DHAVE_CONFIG_H -I. -I.. -I../sic -I.. -I../sic -g -c sic_builtin.c
gcc -DHAVE_CONFIG_H -I. -I.. -I../sic -I.. -I../sic -g -c sic_repl.c
gcc -DHAVE_CONFIG_H -I. -I.. -I../sic -I.. -I../sic -g -c sic_syntax.c
gcc -g -O2 -o sic sic.o sic_builtin.o sic_repl.o sic_syntax.o \
../sic/libsic.a ../replace/libreplace.a -lreadline
make[2]: Leaving directory ‘/tmp/sic/src’
...

68 Autoconf, Automake, and Libtool

$./src/sic
] pwd
/tmp/sic
] ls -F
Makefile aclocal.m4 config.cache configure* sic/
Makefile.am bootstrap* config.log configure.in src/
Makefile.in config/ config.status* replace/
] exit
$

This chapter has developed a solid foundation of code, which I will return to in Chap-
ter 12 [A Large GNU Autotools Project], page 107, when Libtool will join the fray. The
chapters leading up to that explain what Libtool is for, how to use it and integrate it into
your own projects, and the advantages it offers over building shared libraries with Automake
(or even just Make) alone.

Chapter 10: Introducing GNU Libtool 69

10 Introducing GNU Libtool

Libtool takes care of all the peculiarities of creating, linking and loading shared and static
libraries across a great number of platforms, providing a uniform command line interface to
the developer. By using Libtool to manage your project libraries, you only need to concern
yourself with Libtool’s interface: when someone else builds your project on a platform with
a different library architecture, Libtool invokes that platform’s compiler and linker with the
correct environment and command line switches. It will install libraries and library using
binaries according to the conventions of the host platform, and follows that platform’s rules
for library versioning and library interdependencies.

Libtool empowers you to treat a library as an implementation of a well defined interface
of your choosing. This Libtool library may be manifest as a collection of compiler objects,
a static ar archive, or a position independent runtime loadable object. By definition, native
libraries are fully supported by Libtool since they are an implementation detail of the
Libtool library abstraction. It’s just that until Libtool achieves complete world domination,
you might need to bear in mind what is going on behind the command line interface when
you first add Libtool support to your project.

The sheer number of uses of the word ‘library’ in this book could be easily very
confusing. In this chapter and throughout the rest of the book, I will refer to
various kinds of libraries as follows:

‘native’ Low level libraries, that is, libraries provided by the host architec-
ture.

‘Libtool library’
The kind of library built by Libtool. This encompasses both the
shared and static native components of the implementation of the
named library.

‘pseudo-library’
The high level ‘.la’ file produced by Libtool. The ‘pseudo-library’
is not a library in its own right, but is treated as if it were from
outside the Libtool interface.

Furthermore, in the context of Libtool, there is another subtle (but important)
distinction to be drawn:

‘static library ’
A Libtool library which has no shared archive component.

‘static archive’
The static component of a Libtool library.

Many developers use Libtool as a black box which requires adding a few macros to
‘configure.in’ and tweaking a project’s ‘Makefile.am’. The next chapter addresses that
school of thought in more detail. In this chapter I will talk a little about the inner workings
of Libtool, and show you how it can be used directly from your shell prompt – how to build
various kinds of library, and how those libraries can be used by an application. Before you
can do any of this, you need to create a libtool script that is tailored to the platform you
are using it from.

70 Autoconf, Automake, and Libtool

10.1 Creating libtool

When you install a distribution of Libtool on your development machine, a host specific
libtool program is installed. The examples in the rest of this chapter use this installed
instance of libtool.

When you start to use Libtool in the build process of your own projects, you shouldn’t
require that libtool be installed on the user’s machine, particularly since they may have a
different libtool version to the one used to develop your project. Instead, distribute some
of the files installed by the Libtool distribution along with your project, and custom build a
libtool script on the user’s machine before invoking ./libtool to build any objects. If you
use Autoconf and Automake, these details are taken care of automatically (see Chapter 11
[Using GNU Libtool with configure.in and Makefile.am], page 89). Otherwise you should
copy the following files from your own Libtool installation into the source tree of your own
project:

$ ls /usr/local/share/libtool
config.guess config.sub libltdl ltconfig ltmain.in
$ cp /usr/local/share/libtool/config.* /usr/local/share/libtool/lt* .
$ ls
config.guess config.sub ltconfig ltmain.in

You must then arrange for your project build process to create an instance of libtool on
the user’s machine, so that it is dependent on their target system and not your development
machine. The creation process requires the four files you just added to your project. Let’s
create a libtool instance by hand, so that you can see what is involved:

$./config.guess
hppa1.1-hp-hpux10.20

Chapter 10: Introducing GNU Libtool 71

$./ltconfig --disable-static --with-gcc ./ltmain.sh hppa1.1-hp-hpux10.20
checking host system type... hppa1.1-hp-hpux10.20
checking build system type... hppa1.1-hp-hpux10.20
checking whether ln -s works... yes
checking for ranlib... ranlib
checking for BSD-compatible nm... /usr/bin/nm -p
checking for strip... strip
checking for gcc... gcc
checking whether we are using GNU C... yes
checking for objdir... .libs
checking for object suffix... o
checking for executable suffix... no
checking for gcc option to produce PIC... -fPIC
checking if gcc PIC flag -fPIC works... yes
checking if gcc static flag -static works... yes
checking if gcc supports -c -o file.o... yes
checking if gcc supports -c -o file.lo... yes
checking if gcc supports -fno-rtti -fno-exceptions ... no
checking for ld used by GCC... /opt/gcc-lib/hp821/2.7.0/ld
checking if the linker (/opt/gcc-lib/hp821/2.7.0/ld) is GNU ld... no
checking whether the linker (/opt/gcc-lib/hp821/2.7.0/ld) supports \
shared libraries... yes
checking how to hardcode library paths into programs... relink
checking whether stripping libraries is possible... yes
checking for /opt/gcc-lib/hp821/2.7.0/ld option to reload object \
files... -r
checking dynamic linker characteristics... hpux10.20 dld.sl
checking command to parse /usr/bin/nm -p output... ok
checking if libtool supports shared libraries... yes
checking whether to build shared libraries... yes
checking whether to build static libraries... yes
creating libtool
$ ls
config.guess config.sub ltconfig
config.log libtool ltmain.sh
$./libtool --version
ltmain.sh (GNU libtool) 1.3c (1.629 1999/11/02 12:33:04)

The examples in this chapter are all performed on a hp-ux system, but the principles
depicted are representative of any of the platforms to which Libtool has been ported (see
Appendix B [PLATFORMS], page 265).

Often you don’t need to specify any options, and if you omit the configuration triplet
(see Section 3.4 [Configuration Names], page 21), ltconfig will run config.guess itself.
There are several options you can specify which affect the generated libtool, See section
“Invoking ltconfig” in The Libtool Manual. Unless your project has special requirements,
you can usually use the simplified:

$./ltconfig ./ltmain.sh

With the current release of Libtool, you must be careful that ‘$CC’ is set to the same
value when you call ltconfig as when you invoke the libtool it generates, otherwise

72 Autoconf, Automake, and Libtool

libtool will use the compiler specified in ‘$CC’ currently, but with the semantics probed
by ltconfig for the compiler specified in ‘$CC’ at the time it was executed.

10.2 The Libtool Library

A Libtool library is built from Libtool objects in the same way that a native (non-
Libtool) library is built from native objects. Building a Libtool library with libtool is as
easy as building an old style static archive. Generally, each of the sources is compiled to a
Libtool object, and then these objects are combined to create the library.

If you want to try this to see what libtool does on your machine, put the
following code in a file ‘hello.c’, in a directory of its own, and run the example
shell commands from there:

The traditional way to make a (native) static library is as follows:
$ gcc -c hello.c
$ ls
hello.c hello.o
$ ar cru libhello.a hello.o
$ ranlib libhello.a
$ ls
hello.c hello.o libhello.a

Notice that even when I just want to build an old static archive, I need to know that,
in common with most Unices, I have to bless1 my library with ranlib to make it work
optimally on hp-ux.

Essentially, Libtool supports the building of three types of library: shared libraries; static
libraries; and convenience libraries. In the following sections I will talk about each in turn,
but first you will need to understand how to create and use position independent code, as
explained in the next section.

10.2.1 Position Independent Code

On most architectures, when you compile source code to object code, you need to specify
whether the object code should be position independent or not. There are occasional
architectures which don’t make the distinction, usually because all object code is position
independent by virtue of the abi2, or less often because the load address of the object
is fixed at compile time (which implies that shared libraries are not supported by such a
platform). If an object is compiled as position independent code (pic), then the operating
system can load the object at any address in preparation for execution. This involves
a time overhead, in replacing direct address references with relative addresses at compile
time, and a space overhead, in maintaining information to help the runtime loader fill in
the unresolved addresses at runtime. Consequently, pic objects are usually slightly larger

1 Generally this involves indexing the symbols exported from the archive for faster linking, and to allow
the archived objects to reference symbols from other objects earlier in the same archive.

2 Application Binary Interface: the layout of the bytes that comprise binary objects and executables: 32
or 64 bit words; procedure calling conventions; memory alignment rules; system call interface; order and
type of the binary sections (data, code etc) and so on.

Chapter 10: Introducing GNU Libtool 73

and slower at runtime than the equivalent non-pic object. The advantage of sharing library
code on disk and in memory outweigh these problems as soon as the pic object code in
shared libraries is reused.

pic compilation is exactly what is required for objects which will become part of a shared
library. Consequently, libtool builds pic objects for use in shared libraries and non-pic
objects for use in static libraries. Whenever libtool instructs the compiler to generate
a pic object, it also defines the preprocessor symbol, ‘PIC’, so that assembly code can be
aware of whether it will reside in a pic object or not.

Typically, as libtool is compiling sources, it will generate a ‘.lo’ object, as pic, and
a ‘.o’ object, as non-pic, and then it will use the appropriate one of the pair when linking
executables and libraries of various sorts. On architectures where there is no distinction,
the ‘.lo’ file is just a soft link to the ‘.o’ file.

In practice, you can link pic objects into a static archive for a small overhead in execution
and load speed, and often you can similarly link non-pic objects into shared archives. If
you find that you need to do this, libtool provides several ways to override the default
behavior (see Section 10.1 [Creating libtool], page 70).

10.2.2 Creating Shared Libraries

From Libtool’s point of view, the term ‘shared library’ is somewhat of a misnomer.
Since Libtool is intended to abstract away the details of library building, it doesn’t matter
whether Libtool is building a shared library or a static archive. Of course, Libtool will
always try to build a shared library by default on the platforms to which it has been ported
(see Appendix B [PLATFORMS], page 265), but will equally fall back to building a static
archive if the host architecture does not support shared libraries, or if the project developer
deliberately configures Libtool to always build static archives only. These libraries are more
properly called ‘Libtool libraries’; the underlying native library will usually be a shared
library, except as described above.

To create a Libtool library on my hp-ux host, or indeed anywhere else that libtool
works, run the following commands:

$ rm hello.o libhello.a
$ libtool gcc -c hello.c
mkdir .libs
gcc -c -fPIC -DPIC hello.c -o .libs/hello.lo
gcc -c hello.c -o hello.o >/dev/null 2>&1
mv -f .libs/hello.lo hello.lo
$ ls
hello.c hello.lo hello.o

74 Autoconf, Automake, and Libtool

$ libtool gcc -rpath /usr/local/lib -o libhello.la hello.lo
rm -fr .libs/libhello.la .libs/libhello.* .libs/libhello.*
/opt/gcc-lib/hp821/2.7.0/ld -b +h libhello.sl.0 +b /usr/local/lib \
-o .libs/libhello.sl.0.0 hello.lo
(cd .libs && rm -f libhello.sl.0 && ln -s libhello.sl.0.0 libhello.sl.0)
(cd .libs && rm -f libhello.sl && ln -s libhello.sl.0.0 libhello.sl)
ar cru .libs/libhello.a hello.o
ranlib .libs/libhello.a
creating libhello.la
(cd .libs && rm -f libhello.la && ln -s ../libhello.la libhello.la)
$ ls
hello.c hello.lo hello.o libhello.la

This example illustrates several features of libtool. Compare the command line syntax
with the previous example (see Section 10.2 [The Libtool Library], page 72). They are
both very similar. Notice, however, that when compiling the ‘hello.c’ source file, libtool
creates two objects. The first, ‘hello.lo’, is the Libtool object which we use for Libtool
libraries, and the second, ‘hello.o’ is a standard object. On hp-ux, libtool knows that
Libtool objects should be compiled with position independent code, hence the extra switches
when creating the first object.

When you run libtool from the command line, you must also specify a compiler
for it to call. Similarly when you create a libtool script with ltconfig, a
compiler is chosen and interrogated to discover what characteristics it has. See
Section 10.1 [Creating libtool], page 70.
Prior to release 1.4 of Libtool, ltconfig probed the build machine for a suitable
compiler, by searching first for gcc and then cc. The functionality of ltconfig
is being migrated into the ‘AC_PROG_LIBTOOL’ macro, such that there will be no
ltconfig script in Libtool release 1.5. The current release is part way between
the two. In all cases, you can specify a particular compiler by setting the ‘CC’
environment variable.
It is important to continue to use the same compiler when you run libtool as
the compiler that was used when you created the libtool script. If you create
the script with ‘CC’ set to gcc, and subsequently try to compile using, say:

$ libtool c89 -rpath /usr/local/lib -c hello.c

libtool will try to call c89 using the options it discovered for gcc. Needless
to say, that doesn’t work!

The link command specifies a Libtool library target, ‘libhello.la’, compiled from a sin-
gle Libtool object, ‘hello.lo’. Even so, libtool knows how to build both static and shared
archives on hp-ux – underneath the libtool abstraction both are created. libtool also
understands the particulars of library linking on hp-ux: the static archive, ‘libhello.a’, is
blessed ; the system (and compiler) dependent compiler and linker flags, versioning scheme
and .sl extension are utilised for the shared archive, ‘libhello.sl’. On another host, all
of these details may be completely different, yet with exactly the same invocation, libtool
will call the native tools with the appropriate options to achieve the same result. Try it on
your own machines to see any differences.

It is the ‘-rpath’ switch that tells libtool that you want to build a Libtool library (with
both the shared and static components where possible). If you omit the ‘-rpath’ switch,

Chapter 10: Introducing GNU Libtool 75

libtool will build a convenience library instead, see Section 10.2.4 [Creating convenience
Libraries], page 75. The ‘-rpath’ switch is doubly important, because it tells libtool that
you intend to install ‘libhello.la’ in ‘/usr/local/lib’. This allows libtool to finalize
the library correctly after installation on the architectures that need it, see Section 10.6
[Installing a Library], page 83.

Finally, notice that only the Libtool library, ‘libhello.la’, is visible after a successful
link. The various files which form the local implementation details of the Libtool library
are in a hidden subdirectory, but in order for the abstraction to work cleanly you shouldn’t
need to worry about these too much.

10.2.3 Creating Static Libraries

In contrast, libtool will create a static library if either the ‘-static’ or ‘-all-static’
switches are specified on the link line for a Libtool library:

$ libtool gcc -static -o libhello.la hello.lo
rm -fr .libs/libhello.la .libs/libhello.* .libs/libhello.*
ar cru .libs/libhello.a hello.o
ranlib .libs/libhello.a
creating libhello.la
(cd .libs && rm -f libhello.la && ln -s ../libhello.la libhello.la)

Note that since libtool will only create a static archive, the ‘-rpath’ switch is not
required: once a static library has been installed, there is no need to perform additional
finalization for the library to be used from the installed location3, or to track runtime search
paths when installing a static archive.

When you link an executable against this ‘libhello.la’, the objects from the static
archive will be statically linked into the executable. The advantage of such a library over
the traditional native static archive is that all of the dependency information from the
Libtool library is used. For an example, See Section 10.2.4 [Creating Convenience Libraries],
page 75.

libtool is useful as a general library building toolkit, yet people still seem to
regress to the old way of building libraries whenever they want to use static
archives. You should exploit the consistent interface of libtool even for static
archives. If you don’t want to use shared archives, use the ‘-static’ switch to
build a static Libtool library.

10.2.4 Creating Convenience Libraries

The third type of library which can be built with libtool is the convenience library.
Modern compilers are able to create partially linked objects: intermediate compilation units
which comprise several compiled objects, but are neither an executable or a library. Such
partially linked objects must be subsequently linked into a library or executable to be useful.
Libtool convenience libraries are partially linked objects, but are emulated by libtool on
platforms with no native implementation.

3 As is often the case, aix is peculiar in this respect – ranlib adds path information to a static archive,
and must be run again after the archive is installed. libtool knows about this, and will automatically
bless the installed library again on aix.

76 Autoconf, Automake, and Libtool

If you want to try this to see what libtool does on your machine, put the
following code in a file ‘trim.c’, in the same directory as ‘hello.c’ and
‘libhello.la’, and run the example shell commands from there:

To compile the convenience library with libtool, you would do this:
$ libtool gcc -c trim.c
rm -f .libs/trim.lo
gcc -c -fPIC -DPIC trim.c -o .libs/trim.lo
gcc -c trim.c -o trim.o >/dev/null 2>&1
mv -f .libs/trim.lo trim.lo
$ libtool gcc -o libtrim.la trim.lo
rm -fr .libs/libtrim.la .libs/libtrim.* .libs/libtrim.*
ar cru .libs/libtrim.al trim.lo
ranlib .libs/libtrim.al
creating libtrim.la
(cd .libs && rm -f libtrim.la && ln -s ../libtrim.la libtrim.la)

Additionally, you can use a convenience library as an alias for a set of zero or more
object files and some dependent libraries. If you need to link several objects against a long
list of libraries, it is much more convenient to create an alias:

$ libtool gcc -o libgraphics.la -lpng -ltiff -ljpeg -lz
rm -fr .libs/libgraphics.la .libs/libgraphics.* .libs/libgraphics.*
ar cru .libs/libgraphics.al
ranlib .libs/libgraphics.al
creating libgraphics.la
(cd .libs && rm -f libgraphics.la && \
ln -s ../libgraphics.la libgraphics.la)

Having done this, whenever you link against ‘libgraphics.la’ with libtool, all of the
dependent libraries will be linked too. In this case, there are no actual objects compiled
into the convenience library, but you can do that too, if need be.

10.3 Linking an Executable

Continuing the parallel between the syntax used to compile with libtool and the syntax
used when building old static libraries, linking an executable is a matter of combining
compilation units into a binary in both cases. We tell the compiler which objects and
libraries are required, and it creates an executable for us.

If you want to try this to see what libtool does on your machine, put the
following code in a file ‘main.c’, in the same directory as ‘hello.c’ and
‘libhello.la’, and run the example shell commands from there:

To compile an executable which uses the non-Libtool ‘libhello.a’ library built previ-
ously (see Section 10.2 [The Libtool Library], page 72), I would use the following commands:

$ gcc -o hello main.c libhello.a
$./hello
Hello, World!

To create a similar executable on the hp-ux host, using libtool this time:

Chapter 10: Introducing GNU Libtool 77

$ libtool gcc -o hello main.c libhello.la
libtool: link: warning: this platform does not like uninstalled
libtool: link: warning: shared libraries.
libtool: link: hello will be relinked during installation
gcc -o .libs/hello main.c /tmp/hello/.libs/libhello.sl \
-Wl,+b -Wl,/tmp/hello/.libs:/usr/local/lib
creating hello
$ ls
hello hello.lo libhello.la
hello.c hello.o main.c
$./hello
Hello, World!

Notice that you linked against the Libtool library, ‘libhello.la’, but otherwise the
link command you used was not really very different from non-Libtool static library link
command used earlier. Still, libtool does several things for you: it links with the shared
archive rather than the static archive; and it sets the compiler options so that the program
can be run in place, even though it is linked against the uninstalled Libtool library. Using
a make rule without the benefit of libtool, it would be almost impossible to reliably link
a program against an uninstalled shared library in this way, since the particular switches
needed would be different between the various platforms you want the project to work with.
Also without the extra compiler options libtool adds for you, the program will search only
the standard library direcotories for a shared ‘libhello’.

The link warning tells you that libtool knows that on hp-ux the program will stop
working if it is copied directly to the installation directory; To prevent it breaking, libtool
will relink the program when it is installed, see Section 10.6 [Installing a Library], page 83.

I discussed the creation of static Libtool libraries in Section 10.2.3 [Creating Static
Libraries], page 75. If you link an executable against such a library, the library objects, by
definition, can only be statically linked into your executable. Often this is what you want if
the library is not intended for installation, or if you have temporarily disabled building of
shared libraries in your development tree to speed up compilation while you are debugging.

Sometimes, this isn’t what you want. You might need to install a complete Libtool
library with shared and static components, but need to generate a static executable linked
against the same library, like this:

$ libtool gcc -static -o hello main.c libhello.la
gcc -o hello main.c ./.libs/libhello.a

In this case, the ‘-static’ switch instructs libtool to choose the static component of
any uninstalled Libtool library.

You could have specified ‘-all-static’ instead, which instructs libtool to link the
executable with only static libraries (wherever possible), for any Libtool or native libraries
used.

Finally, you can also link executables against convenience libraries. This makes sense
when the convenience library is being used as an alias (see Section 10.2.4 [Creating Conve-
nience Libraries], page 75). Notice how ‘libgraphics.la’ expands to its own dependencies
in the link command:

78 Autoconf, Automake, and Libtool

$ libtool gcc -o image loader.o libgraphics.la
libtool: link: warning: this platform does not like uninstalled
libtool: link: warning: shared libraries
libtool: link: image will be relinked during installation
gcc -o .libs/image loader.o -lpng -ltiff -ljpeg -lz \
-Wl,+b -Wl,/tmp/image/.libs:/usr/local/lib
creating image

You can also link against convenience libraries being used as partially linked objects,
so long as you are careful that each is linked only once. Remember that a partially linked
object is just the same as any other object, and that if you load it twice (even from different
libraries), you will get multiple definition errors when you try to link your executable. This is
almost the same as using the ‘-static’ switch on the libtool link line to link an executable
with the static component of a normal Libtool library, except that the convenience library
comprises pic objects. When statically linking an executable, pic objects are best avoided
however, see Section 10.2.1 [Position Independent Code], page 72.

10.4 Linking a Library

Libraries often rely on code in other libraries. Traditionally the way to deal with this is
to know what the dependencies are and, when linking an executable, be careful to list all of
the dependencies on the link line in the correct order. If you have ever built an X Window
application using a widget library, you will already be familiar with this notion.

Even though you only use the functions in the widget library directly, a typical link
command would need to be:

$ gcc -o Xtest -I/usr/X11R6/include Xtest.c -L/usr/X11R6/lib \
-lXm -lXp -lXaw -lXmu -lX11 -lnsl -lsocket

With modern architectures, this problem has been solved by allowing libraries to be
linked into other libraries, but this feature is not yet particularly portable. If you are trying
to write a portable project, it is not safe to rely on native support for inter-library depen-
dencies, especially if you want to have dependencies between static and shared archives.
Some of the features discussed in this section were not fully implemented before Libtool
1.4, so you should make sure that you are using this version or newer if you need these
features.

If you want to try the examples in this section to see what libtool does on
your machine, you will first need to modify the source of ‘hello.c’ to introduce
a dependency on ‘trim.c’:

You might also want to modify the ‘main.c’ file to exercise the new ‘trim’
functionality to prove that the newly linked executable is working:

Suppose I want to make two libraries, ‘libtrim’ and ‘libhello’. ‘libhello’ uses
the ‘trim’ function in ‘libtrim’ but the code in ‘main’ uses only the ‘hello’ function
in ‘libhello’. Traditionally, the two libraries are built like this:

$ rm hello *.a *.la *.o *.lo
$ gcc -c trim.c

Chapter 10: Introducing GNU Libtool 79

$ ls
hello.c main.c trim.c trim.o
$ ar cru libtrim.a trim.o
$ ranlib libtrim.a
$ gcc -c hello.c
$ ls
hello.c hello.o libtrim.a main.c trim.c trim.o
$ ar cru libhello.a hello.o
$ ranlib libhello.a
$ ls
hello.c libhello.a main.c trim.o
hello.o libtrim.a trim.c

Notice that there is no way to specify that ‘libhello.a’ won’t work unless it is also linked
with ‘libtrim.a’. Because of this I need to list both libraries when I link the application.
What’s more, I need to list them in the correct order:

$ gcc -o hello main.c libtrim.a libhello.a
/usr/bin/ld: Unsatisfied symbols:

trim (code)
collect2: ld returned 1 exit status
$ gcc -o hello main.c libhello.a libtrim.a
$ ls
hello hello.o libtrim.a trim.c
hello.c libhello.a main.c trim.o
$./hello
Hello, World!

10.4.1 Inter-library Dependencies

libtool’s inter-library dependency support will use the native implementation if there
is one available. If there is no native implementation, or if the native implementation is
broken or incomplete, libtool will use an implementation of its own.

To build ‘libtrim’ as a standard Libtool library (see Section 10.2 [The Libtool Library],
page 72), as follows:

$ rm hello *.a *.o
$ ls
hello.c main.c trim.c
$ libtool gcc -c trim.c
rm -f .libs/trim.lo
gcc -c -fPIC -DPIC trim.c -o .libs/trim.lo
gcc -c trim.c -o trim.o >/dev/null 2>&1
mv -f .libs/trim.lo trim.lo

80 Autoconf, Automake, and Libtool

$ libtool gcc -rpath /usr/local/lib -o libtrim.la trim.lo
rm -fr .libs/libtrim.la .libs/libtrim.* .libs/libtrim.*
/opt/gcc-lib/hp821/2.7.0/ld -b +h libtrim.sl.0 +b /usr/local/lib \
-o .libs/libtrim.sl.0.0 trim.lo
(cd .libs && rm -f libtrim.sl.0 && ln -s libtrim.sl.0.0 libtrim.sl.0)
(cd .libs && rm -f libtrim.sl && ln -s libtrim.sl.0.0 libtrim.sl)
ar cru .libs/libtrim.a trim.o
ranlib .libs/libtrim.a
creating libtrim.la
(cd .libs && rm -f libtrim.la && ln -s ../libtrim.la libtrim.la)

When you build ‘libhello’, you can specify the libraries it depends on at the command
line, like so:

$ libtool gcc -c hello.c
rm -f .libs/hello.lo
gcc -c -fPIC -DPIC hello.c -o .libs/hello.lo
gcc -c hello.c -o hello.o >/dev/null 2>&1
mv -f .libs/hello.lo hello.lo
$ libtool gcc -rpath /usr/local/lib -o libhello.la hello.lo libtrim.la
rm -fr .libs/libhello.la .libs/libhello.* .libs/libhello.*

*** Warning: inter-library dependencies are not known to be supported.
*** All declared inter-library dependencies are being dropped.
*** The inter-library dependencies that have been dropped here will be
*** automatically added whenever a program is linked with this library
*** or is declared to -dlopen it.
/opt/gcc-lib/hp821/2.7.0/ld -b +h libhello.sl.0 +b /usr/local/lib \
-o .libs/libhello.sl.0.0 hello.lo
(cd .libs && rm -f libhello.sl.0 && ln -s libhello.sl.0.0 libhello.sl.0)
(cd .libs && rm -f libhello.sl && ln -s libhello.sl.0.0 libhello.sl)
ar cru .libs/libhello.a hello.o
ranlib .libs/libhello.a
creating libhello.la
(cd .libs && rm -f libhello.la && ln -s ../libhello.la libhello.la)
$ ls
hello.c hello.o libtrim.la trim.c trim.o
hello.lo libhello.la main.c trim.lo

Although, on hp-ux, libtool warns that it doesn’t know how to use the native inter-
library dependency implementation, it will track the dependencies and make sure they are
added to the final link line, so that you only need to specify the libraries that you use
directly.

Now, you can rebuild ‘hello’ exactly as in the earlier example (see Section 10.3 [Linking
an Executable], page 76), as in:

Chapter 10: Introducing GNU Libtool 81

$ libtool gcc -o hello main.c libhello.la
libtool: link: warning: this platform does not like uninstalled
libtool: link: warning: shared libraries
libtool: link: hello will be relinked during installation
gcc -o .libs/hello main.c /tmp/intro-hello/.libs/libhello.sl \
/tmp/intro-hello/.libs/libtrim.sl \
-Wl,+b -Wl,/tmp/intro-hello/.libs:/usr/local/lib
creating hello
$./hello
Hello, World!

Notice that even though you only specified the ‘libhello.la’ library at the command
line, libtool remembers that ‘libhello.sl’ depends on ‘libtrim.sl’ and links that li-
brary too.

You can also link a static executable, and the dependencies are handled similarly:

$ libtool gcc -o hello-again -static main.c libhello.la
gcc -o hello main.c ./.libs/libhello.a /tmp/intro-hello/.libs/libtrim.a
$./hello-again
Hello, World!

For your own projects, provided that you use libtool, and that you specify the libraries
you wish to link using the ‘.la’ pseudo-libraries, these dependencies can be nested as deeply
as you like. You can also register dependencies on native libraries, though you will of course
need to specify any dependencies that the native library itself has at the same time.

10.4.2 Using Convenience Libraries

To rebuild ‘libtrim’ as a convenience library (see Section 10.2.4 [Creating Convenience
Libraries], page 75), use the following commands:

$ rm hello *.la
$ ls
hello.c hello.lo hello.o main.c trim.c trim.lo trim.o
$ libtool gcc -o libtrim.la trim.lo
rm -fr .libs/libtrim.la .libs/libtrim.* .libs/libtrim.*
ar cru .libs/libtrim.al trim.lo
ranlib .libs/libtrim.al
creating libtrim.la
(cd .libs && rm -f libtrim.la && ln -s ../libtrim.la libtrim.la)

Then, rebuild ‘libhello’, with an inter-library dependency on ‘libtrim’ (see Sec-
tion 10.4.1 [Inter-library Dependencies], page 79), like this:

82 Autoconf, Automake, and Libtool

$ libtool gcc -rpath ‘pwd‘/_inst -o libhello.la hello.lo libtrim.la
rm -fr .libs/libhello.la .libs/libhello.* .libs/libhello.*

*** Warning: inter-library dependencies are not known to be supported.
*** All declared inter-library dependencies are being dropped.
*** The inter-library dependencies that have been dropped here will be
*** automatically added whenever a program is linked with this library
*** or is declared to -dlopen it.
rm -fr .libs/libhello.lax
mkdir .libs/libhello.lax
rm -fr .libs/libhello.lax/libtrim.al
mkdir .libs/libhello.lax/libtrim.al
(cd .libs/libhello.lax/libtrim.al && ar x /tmp/./.libs/libtrim.al)
/opt/gcc-lib/hp821/2.7.0/ld -b +h libhello.sl.0 +b /tmp/hello/_inst \
-o .libs/libhello.sl.0.0 hello.lo .libs/libhello.lax/libtrim.al/trim.lo
(cd .libs && rm -f libhello.sl.0 && ln -s libhello.sl.0.0 libhello.sl.0)
(cd .libs && rm -f libhello.sl && ln -s libhello.sl.0.0 libhello.sl)
rm -fr .libs/libhello.lax
mkdir .libs/libhello.lax
rm -fr .libs/libhello.lax/libtrim.al
mkdir .libs/libhello.lax/libtrim.al
(cd .libs/libhello.lax/libtrim.al && ar x /tmp/hello/./.libs/libtrim.al)
ar cru .libs/libhello.a hello.o .libs/libhello.lax/libtrim.al/trim.lo
ranlib .libs/libhello.a
rm -fr .libs/libhello.lax .libs/libhello.lax
creating libhello.la
(cd .libs && rm -f libhello.la && ln -s ../libhello.la libhello.la)
$ ls
hello.c hello.o libtrim.la trim.c trim.o
hello.lo libhello.la main.c trim.lo

Compare this to the previous example of building ‘libhello’ and you can see that things
are rather different. On hp-ux, partial linking is not known to work, so libtool extracts
the objects from the convenience library, and links them directly into ‘libhello’. That
is, ‘libhello’ is comprised of its own objects and the objects in ‘libtrim’. If ‘libtrim’
had had any dependencies, ‘libhello’ would have inherited them too. This technique is
especially useful for grouping source files into subdirectories, even though all of the objects
compiled in the subdirectories must eventually reside in a big library: compile the sources
in each into a convenience library, and in turn link all of these into a single library which
will then contain all of the constituent objects and dependencies of the various convenience
libraries.

When you relink the hello executable, notice that ‘libtrim’ is not linked, because the
‘libtrim’ objects are already present in ‘libhello’:

Chapter 10: Introducing GNU Libtool 83

$ libtool gcc -o hello main.c libhello.la
libtool: link: warning: this platform does not like uninstalled
libtool: link: warning: shared libraries
libtool: link: hello will be relinked during installation
gcc -o .libs/hello main.c /tmp/intro-hello/.libs/libhello.sl \
-Wl,+b -Wl,/tmp/intro-hello/.libs:/usr/local/lib
creating hello
$./hello
Hello, World!

10.5 Executing Uninstalled Binaries

If you look at the contents of the hello program you built in the last section, you will
see that it is not actually a binary at all, but a shell script which sets up the environment so
that when the real binary is called it finds its the shared libraries in the correct locations.
Without this script, the runtime loader might not be able to find the uninstalled libraries.
Or worse, it might find an old version and load that by mistake!

In practice, this is all part of the unified interface libtool presents so you needn’t
worry about it most of the time. The exception is when you need to look at the binary with
another program, to debug it for example:

$ ls
hello hello.lo libhello.la main.c trim.lo
hello.c hello.o libtrim.la trim.c trim.o
$ libtool gdb hello
GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for
details.
GDB 4.18 (hppa1.0-hp-hpux10.20),
Copyright 1999 Free Software Foundation, Inc...
(gdb) bre main
Breakpoint 1 at 0x5178: file main.c, line 6.
(gdb) run
Starting program: /tmp/intro-hello/.libs/hello
Breakpoint 1, main (argc=1, argv=0x7b03aa70) at main.c:6
6 return hello("World");
...

10.6 Installing a Library

Now that the library and an executable which links with it have been successfully built,
they can be installed. For the sake of this example I will cp the objects to their destination,
though libtool would be just as happy if I were to use install with the long, requisite
list of parameters.

It is important to install the library to the ‘-rpath’ destination which was specified when
it was linked earlier, or at least that it be visible from that location when the runtime loader
searches for it. This rule is not enforced by libtool, since it is often desirable to install

84 Autoconf, Automake, and Libtool

libraries to a staging4 area. Of course, the package must ultimately install the library to
the specified ‘-rpath’ destination for it to work correctly, like this:

$ libtool cp libtrim.la /usr/local/lib
cp .libs/libtrim.sl.0.0 /usr/local/lib/libtrim.sl.0.0
(cd /usr/local/lib && rm -f libtrim.sl.0 && \
ln -s libtrim.sl.0.0 libtrim.sl.0)
(cd /usr/local/lib && rm -f libtrim.sl && \
ln -s libtrim.sl.0.0 libtrim.sl)
chmod 555 /usr/local/lib/libtrim.sl.0.0
cp .libs/libtrim.lai /usr/local/lib/libtrim.la
cp .libs/libtrim.a /usr/local/lib/libtrim.a
ranlib /usr/local/lib/libtrim.a
chmod 644 /usr/local/lib/libtrim.a
--
Libraries have been installed in:

/usr/local/lib

If you ever happen to want to link against installed libraries
in a given directory, LIBDIR, you must either use libtool, and
specify the full pathname of the library, or use -LLIBDIR
flag during linking and do at least one of the following:

- add LIBDIR to the SHLIB_PATH environment variable
during execution

- use the -Wl,+b -Wl,LIBDIR linker flag

See any operating system documentation about shared libraries for
more information, such as the ld(1) and ld.so(8) manual pages.
--

Again, libtool takes care of the details for you. Both the static and shared archives are
copied into the installation directory and their access modes are set appropriately. libtool
blesses the static archive again with ranlib, which would be easy to forget without the
benefit of libtool, especially if I develop on a host where the library will continue to
work without this step. Also, libtool creates the necessary links for the shared archive
to conform with hp-uxs library versioning rules. Compare this to what you see with the
equivalent commands running on gnu/Linux to see how libtool applies these rules ac-
cording to the requirements of its host. The block of text libtool shows at the end of the
installation serves to explain how to link executables against the newly installed library on
hp-ux and how to make sure that the executables linked against it will work. Of course,
the best way to ensure this is to use libtool to perform the linking. I’ll leave the details
of linking against an installed Libtool library as an exercise - everything you need to know
can be extrapolated from the example of linking against an uninstalled Libtool library, See
Section 10.3 [Linking an Executable], page 76.

On some architectures, even shared archives need to be blessed on installation. For ex-
ample, gnu/Linux requires that ldconfig be run when a new library is installed. Typically,
a library will be installed to its target destination after being built, in which case libtool
will perform any necessary blessing during installation. Sometimes, when building a binary

4 When making a binary package from a virtual root directory for example.

Chapter 10: Introducing GNU Libtool 85

package for installation on another machine, for example, it is not desirable to perform the
blessing on the build machine. No problem, libtool takes care of this too! libtool will
detect if you install the library to a destination other than the one specified in the ‘-rpath’
argument passed during the archive link, and will simply remind you what needs to be done
before the library can be used:

$ mkdir -p /usr/local/stow/hello-1.0/lib
$ libtool cp libtrim.la /usr/local/stow/hello-1.0/lib
cp .libs/libtrim.sl.0.0 /usr/local/stow/hello-1.0/lib/libtrim.sl.0.0
(cd /usr/local/stow/hello-1.0/lib && rm -f libtrim.sl.0 && \
ln -s libtrim.sl.0.0 libtrim.sl.0)
(cd /usr/local/stow/hello-1.0/lib && rm -f libtrim.sl && \
ln -s libtrim.sl.0.0 libtrim.sl)
chmod 555 /usr/local/stow/hello-1.0/lib/libtrim.sl.0.0
cp .libs/libtrim.lai /usr/local/stow/hello-1.0/lib/libtrim.la
cp .libs/libtrim.a /usr/local/stow/hello-1.0/lib/libtrim.a
ranlib /usr/local/stow/hello-1.0/lib/libtrim.a
chmod 644 /usr/local/stow/hello-1.0/lib/libtrim.a
libtool: install: warning: remember to run
libtool: install: warning: libtool --finish /usr/local/lib

If you will make the installed libraries visible in the destination directory with symbolic
links, you need to do whatever it is you do to make the library visible, and then bless the
library in that location with the libtool --finish /usr/local/lib command:

$ cd /usr/local/stow
$ stow hello-1.0
$ libtool --finish /usr/local/lib

If you are following the examples so far, you will also need to install the Libtool library,
‘libhello.la’, before you move on to the next section:

$ libtool cp libhello.la /usr/local/lib
cp .libs/libhello.sl.0.0 /usr/local/lib/libhello.sl.0.0
(cd /usr/local/lib && rm -f libhello.sl.0 && \
ln -s libhello.sl.0.0 libhello.sl.0)
(cd /usr/local/lib && rm -f libhello.sl && \
ln -s libhello.sl.0.0 libhello.sl)
chmod 555 /usr/local/lib/libhello.sl.0.0
cp .libs/libhello.lai /usr/local/lib/libhello.la
cp .libs/libhello.a /usr/local/lib/libhello.a
ranlib /usr/local/lib/libhello.a
chmod 644 /usr/local/lib/libhello.a

86 Autoconf, Automake, and Libtool

--
Libraries have been installed in:

/usr/local/lib

If you ever happen to want to link against installed libraries
in a given directory, LIBDIR, you must either use libtool, and
specify the full pathname of the library, or use -LLIBDIR
flag during linking and do at least one of the following:

- add LIBDIR to the SHLIB_PATH environment variable
during execution

- use the -Wl,+b -Wl,LIBDIR linker flag

See any operating system documentation about shared libraries for
more information, such as the ld(1) and ld.so(8) manual pages.
--

Once a Libtool library is installed, binaries which link against it will hardcode the
path to the Libtool library, as specified with the ‘-rpath’ switch when the library was
built. libtool always encodes the installation directory into a Libtool library for just this
purpose. Hardcoding directories in this way is a good thing, because binaries linked against
such libraries will continue to work if there are several incompatible versions of the library
visible to the runtime loader (say a Trojan ‘libhello’ in a user’s LD_LIBRARY_PATH, or a
test build of the next release). The disadvantage to this system is that if you move libraries
to new directories, executables linked in this way will be unable to find the libraries they
need. Moving any library is a bad idea however, doubly so for a Libtool library which has
its installation directory encoded internally, so the way to avoid problems of this nature is
to not move libraries around after installation!

10.7 Installing an Executable

Installing an executable uses exactly the same command line that I used to install the
library earlier:

$ libtool cp hello /usr/local/bin
gcc -o /tmp/libtool-28585/hello main.c /usr/local/lib/libhello.sl \
/usr/local/lib/libtrim.sl -Wl,+b -Wl,/usr/local/lib
cp /tmp/libtool-28585/hello /usr/local/bin/hello
$ /usr/local/bin/hello
Hello, World!

As libtool said earlier, during the initial linking of the hello program in the build
directory, hello must be rebuilt before installation. This is a peculiarity of hp-ux (and
a few other architectures) which you won’t see if you are following the examples on a
gnu/Linux system. In the shell trace above, libtool has built an installable version of
the hello program, saving me the trouble of remembering (or worse – coding for) the
particulars of hp-ux, which runs correctly from the installed location.

As a matter of interest, if you look at the attributes of the installed program using
hp-ux’s chatr command:

Chapter 10: Introducing GNU Libtool 87

$ chatr /usr/local/bin/hello
/usr/local/bin/hello:

shared executable
shared library dynamic path search:

SHLIB_PATH disabled second
embedded path enabled first /usr/local/lib

internal name:
/tmp/libtool-28585/hello

shared library list:
static /usr/local/lib/libhello.sl.0
static /usr/local/lib/libtrim.sl.0
dynamic /lib/libc.1

shared library binding:
deferred

...

You can see that the runtime library search path for the installed hello program has been
set to find the installed ‘libhello.sl.0’ shared archive, preventing it from accidentally
loading a different library (with the same name) from the default load path. This is a
feature of libtool, and a very important one at that, and although it may not seem like
the right way to do things initially, it saves a lot of trouble when you end up with several
versions of a library installed in several locations, since each program will continue to use
the version that it was linked with, subject to library versioning rules, see Section 11.4
[Library Versioning], page 98.

Without the help of libtool, it is very difficult to prevent programs and li-
braries in the build tree from loading earlier (compatible) versions of a shared
archive that were previously installed without an intimate knowledge of the
build hosts architecture. Making it work portably would be nigh impossible!
You should experiment with changes to the uninstalled library and satisfy your-
self that the previously installed program continues to load the installed library
at runtime, whereas the uninstalled program picks up the modifications in the
uninstalled version of the library.

This example introduces the concept of Libtool modes. Most of the time libtool can
infer a mode of operation from the contents of the command line, but sometimes (as in
this example) it needs to be told. In Section 10.5 [Executing Uninstalled Binaries], page 83
we already used libtool in execute mode to run gdb against an uninstalled binary. In
this example I am telling libtool that I want to pass the hello binary to the chatr
command, particularly since I know that the ‘hello’ file is a script to set the local execution
environment before running the real binary.

The various modes that libtool has are described in the Libtool reference documenta-
tion, and are listed in the Libtool help text:

88 Autoconf, Automake, and Libtool

$ libtool --help
...
MODE must be one of the following:

clean remove files from the build directory
compile compile a source file into a libtool object
execute automatically set library path, then run a program
finish complete the installation of libtool libraries
install install libraries or executables
link create a library or an executable
uninstall remove libraries from an installed directory

MODE-ARGS vary depending on the MODE. Try ‘libtool --help --mode=MODE’
for a more detailed description of MODE.

10.8 Uninstalling

Having installed all of these files to ‘/usr/local’, it might be difficult to remember which
particular files belong to each installation. In the case of an executable, the uninstallation
requires no magic, but when uninstalling a Libtool library all of the files which comprise
the implementation of the Libtool library in question must be uninstalled:

$ libtool rm -f /usr/local/bin/hello
rm -f /usr/local/bin/hello
$ libtool rm -f /usr/local/lib/libhello.la
rm -f /usr/local/lib/libhello.la /usr/local/lib/libhello.sl.0.0 \
/usr/local/lib/libhello.sl.0 /usr/local/lib/libhello.sl \
/usr/local/lib/libhello.a
$ libtool rm -f /usr/local/lib/libtrim.la
rm -f /usr/local/lib/libtrim.la /usr/local/lib/libtrim.sl.0.0 \
/usr/local/lib/libtrim.sl.0 /usr/local/lib/libtrim.sl \
/usr/local/lib/libtrim.a

Using libtool to perform the uninstallation in this way ensures that all of the files
that it installed, including any additional soft links required by the architecture versioning
scheme for shared archives, are removed with a single command.

Having explored the use of libtool from the command line, the next chapter will discuss
how to integrate libtool into the configury of your GNU Autotools based projects.

Chapter 11: Using GNU Libtool with ‘configure.in’ and ‘Makefile.am’ 89

11 Using GNU Libtool with ‘configure.in’ and
‘Makefile.am’

Although Libtool is usable by itself, either from the command line or from a non-make
driven build system, it is also tightly integrated into Autoconf and Automake. This chapter
discusses how to use Libtool with Autoconf and Automake and explains how to set up the
files you write (‘Makefile.am’ and ‘configure.in’) to take advantage of libtool. For a
more in depth discussion of the workings of Libtool, particularly its command line interface,
See Chapter 10 [Introducing GNU Libtool], page 69. Using libtool for dynamic runtime
loading is described in See Chapter 18 [Using GNU libltdl], page 161.

Using libtool to build the libraries in a project, requires declaring your use of libtool
inside the project’s ‘configure.in’ and adding the Libtool support scripts to the distribu-
tion. You will also need to amend the build rules in either ‘Makefile.am’ or ‘Makefile.in’,
depending on whether you are using Automake.

11.1 Integration with ‘configure.in’

Declaring your use of libtool in the project’s ‘configure.in’ is a simple matter of
adding the ‘AC_PROG_LIBTOOL’1 somewhere near the top of the file. I always put it imme-
diately after the other ‘AC_PROG_...’ macros. If you are converting an old project to use
libtool, then you will also need to remove any calls to ‘AC_PROG_RANLIB’. Since Libtool
will be handling all of the libraries, it will decide whether or not to call ranlib as appro-
priate for the build environment.

The code generated by ‘AC_PROG_LIBTOOL’ relies on the shell variable
$top_builddir to hold the relative path to the directory which contains
the configure script. If you are using Automake, $top_builddir is set in
the environment by the generated ‘Makefile’. If you use Autoconf without
Automake then you must ensure that $top_builddir is set before the call to
‘AC_PROG_LIBTOOL’ in ‘configure.in’.

Adding the following code to ‘configure.in’ is often sufficient:

for top_builddir in/.. $ac_auxdir $ac_auxdir/..; do
test -f $top_builddir/configure && break

done

Having made these changes to add libtool support to your project, you will
need to regenerate the ‘aclocal.m4’ file to pick up the macro definitions required for
‘AC_PROG_LIBTOOL’, and then rebuild your configure script with these new definitions in
place. After you have done that, there will be some new options available from configure:

$ aclocal
$ autoconf

1 ‘AM_PROG_LIBTOOL’ if you have an older automake or libtool installation.

90 Autoconf, Automake, and Libtool

$./configure --help
...
--enable and --with options recognized:
--enable-shared[=PKGS] build shared libraries [yes]
--enable-static[=PKGS] build static libraries [yes]
--enable-fast-install[=PKGS] optimize for fast installation [yes]
--with-gnu-ld assume the C compiler uses GNU ld [no]
--disable-libtool-lock avoid locking (might break parallel builds)
--with-pic try to use only PIC/non-PIC objects [both]

These new options allow the end user of your project some control over how they
want to build the project’s libraries. The opposites of each of these switches are also
accepted, even though they are not listed by configure --help. You can equally pass,
‘--disable-fast-install’ or ‘--without-gnu-ld’ for example.

11.1.1 Extra Configure Options

What follows is a list that describes the more commonly used options that are automat-
ically added to configure, by virtue of using ‘AC_PROG_LIBTOOL’ in your ‘configure.in’.
The Libtool Manual distributed with Libtool releases always contains the most up to date
information about libtool options:

‘--enable-shared’
‘--enable-static’

More often invoked as ‘--disable-shared’ or equivalently
‘--enable-shared=no’ these switches determine whether libtool
should build shared and/or static libraries in this package. If the installer is
short of disk space, they might like to build entirely without static archives.
To do this they would use:

$./configure --disable-static

Sometimes it is desirable to configure several related packages with the same
command line. From a scheduled build script or where subpackages with their
own configure scripts are present, for example. The ‘--enable-shared’ and
‘--enable-static’ switches also accept a list of package names, causing the
option to be applied to packages whose name is listed, and the opposite to be
applied to those not listed.

By specifying:

$./configure --enable-static=libsnprintfv,autoopts

libtool would pass ‘--enable-static’ to only the packages named
libsnprintfv and autoopts in the current tree. Any other packages configured
would effectively be passed ‘--disable-static’. Note that this doesn’t
necessarily mean that the packages must honour these options. Enabling
static libraries for a package which consists of only dynamic modules makes
no sense, and the package author would probably have decided to ignore such
requests, See Section 11.1.2 [Extra Macros for Libtool], page 92.

Chapter 11: Using GNU Libtool with ‘configure.in’ and ‘Makefile.am’ 91

‘--enable-fast-install’
On some machines, libtool has to relink executables when they are installed,
See Section 10.7 [Installing an Executable], page 86. Normally, when an end
user builds your package, they will probably type:

$./configure
$ make
$ make install

libtool will build executables suitable for copying into their respective instal-
lation destinations, obviating the need for relinking them on those hosts which
would have required it. Whenever libtool links an executable which uses
shared libraries, it also creates a wrapper script which ensures that the envi-
ronment is correct for loading the correct libraries, See Section 10.5 [Executing
Uninstalled Binaries], page 83. On those hosts which require it, the wrapper
script will also relink the executable in the build tree if you attempt to run it
from there before installation.

Sometimes this behaviour is not what you want, particularly if you are devel-
oping the package and not installing between test compilations. By passing
‘--disable-fast-install’, the default behaviour is reversed; executables will
be built so that they can be run from the build tree without relinking, but
during installation they may be relinked.

You can pass a list of executables as the argument to ‘--enable-fast-install’
to determine which set of executables will not be relinked at installation time
(on the hosts that require it). By specifying:

$./configure --enable-fast-install=autogen

The autogen executable will be linked for fast installation (without being re-
linked), and any other executables in the build tree will be linked for fast
execution from their build location. This is useful if the remaining executables
are for testing only, and will never be installed.

Most machines do not require that executables be relinked in this way, and
in these cases libtool will link each executable once only, no matter whether
‘--disable-fast-install’ is used.

‘--with-gnu-ld’
This option is used to inform libtool that the C compiler is using gnu ld
as its linker. It is more often used in the opposite sense when both gcc and
gnu ld are installed, but gcc was built to use the native linker. libtool will
probe the system for gnu ld, and assume that it is used by gcc if found, unless
‘--without-gnu-ld’ is passed to configure.

‘--disable-libtool-lock’
In normal operation, libtool will build two objects for every source file in
a package, one pic2 and one non-pic. With gcc and some other compilers,
libtool can specify a different output location for the pic object:

2 Position Independent Code – suitable for shared libraries which might be loaded to different addresses
when linked by the runtime loader.

92 Autoconf, Automake, and Libtool

$ libtool gcc -c shell.c
gcc -c -pic -DPIC shell.c -o .libs/shell.lo
gcc -c foo.c -o shell.o >/dev/null 2>&1

When using a compiler that doesn’t accept both ‘-o’ and ‘-c’ in the same
command, libtool must compile first the pic and then the non-pic object
to the same destination file and then move the pic object before compiling the
non-pic object. This would be a problem for parallel builds, since one file might
overwrite the other. libtool uses a simple shell locking mechanism to avoid
this eventuality.
If you find yourself building in an environment that has such a compiler, and
not using parallel make, then the locking mechanism can be safely turned off
by using ‘--disable-libtool-lock’ to gain a little extra speed in the overall
compilation.

‘--with-pic’
In normal operation, Libtool will build shared libraries from pic objects
and static archives from non-pic objects, except where one or the other is
not provided by the target host. By specifying ‘--with-pic’ you are asking
libtool to build static archives from pic objects, and similarly by specifying
‘--without-pic’ you are asking libtool to build shared libraries from
non-pic objects.
libtool will only honour this flag where it will produce a working library,
otherwise it reverts to the default.

11.1.2 Extra Macros for Libtool

There are several macros which can be added to ‘configure.in’ which will change the
default behaviour of libtool. If they are used they must appear before the call to the
‘AC_PROG_LIBTOOL’ macro. Note that these macros only change the default behaviour, and
options passed in to configure on the command line will always override the defaults. The
most up to date information about these macros is available from the Libtool Manual.

‘AC_DISABLE_FAST_INSTALL’
This macro tells libtool that on platforms which require relinking at install
time, it should build executables so that they can be run from the build tree at
the expense of relinking during installation, as if ‘--disable-fast-install’
had been passed on the command line.

‘AC_DISABLE_SHARED’
‘AC_DISABLE_STATIC’

These macros tell libtool to not try and build either shared or static libraries
respectively. libtool will always try to build something however, so even if
you turn off static library building in ‘configure.in’, building your package
for a target host without shared library support will fallback to building static
archives.

The time spent waiting for builds during development can be reduced a little by including
these macros temporarily. Don’t forget to remove them before you release the project
though!

Chapter 11: Using GNU Libtool with ‘configure.in’ and ‘Makefile.am’ 93

In addition to the macros provided with ‘AC_PROG_LIBTOOL’, there are a few shell vari-
ables that you may need to set yourself, depending on the structure of your project:

‘LTLIBOBJS’
If your project uses the ‘AC_REPLACE_FUNCS’ macro, or any of the other macros
which add object names to the ‘LIBOBJS’ variable, you will also need to provide
an equivalent ‘LTLIBOBJS’ definition. At the moment, you must do it manually,
but needing to do that is considered to be a bug and will fixed in a future
release of Autoconf. The manual generation of ‘LTLIBOBJS’ is a simple matter
of replacing the names of the objects mentioned in ‘LIBOBJS’ with equivalent
.lo suffixed Libtool object names. The easiest way to do this is to add the
following snippet to your ‘configure.in’ near the end, just before the call to
‘AC_OUTPUT’.

Xsed="sed -e s/^X//"
LTLIBOBJS=‘echo X"$LIBOBJS"|\

[$Xsed -e "s,\.[^.]* ,.lo ,g;s,\.[^.]*$,.lo,"]‘
AC_SUBST(LTLIBOBJS)

The Xsed is not usually necessary, though it can prevent problems with the
echo command in the event that one of the ‘LIBOBJS’ files begins with a ‘-’
character. It is also a good habit to write shell code like this, as it will avoid
problems in your programs.

‘LTALLOCA’
If your project uses the ‘AC_FUNC_ALLOCA’ macro, you will need to provide a
definition of ‘LTALLOCA’ equivalent to the ‘ALLOCA’ value provided by the macro.

Xsed="sed -e s/^X//"
LTALLOCA=‘echo X"$ALLOCA"|[$Xsed -e "s,\.$[^.]*,.lo,g"]‘
AC_SUBST(LTALLOCA)

Obviously you don’t need to redefine Xsed if you already use it for ‘LTLIBOBJS’
above.

‘LIBTOOL_DEPS’
To help you write make rules for automatic updating of the Libtool
configuration files, you can use the value of ‘LIBTOOL_DEPS’ after the call to
‘AC_PROG_LIBTOOL’:

AC_PROG_LIBTOOL
AC_SUBST(LIBTOOL_DEPS)

Then add the following to the top level ‘Makefile.in’:

libtool: @LIBTOOL_DEPS@
cd $(srcdir) && \

$(SHELL) ./config.status --recheck

If you are using automake in your project, it will generate equivalent rules
automatically. You don’t need to use this except in circumstances where you
want to use libtool and autoconf, but not automake.

94 Autoconf, Automake, and Libtool

11.2 Integration with ‘Makefile.am’

Automake supports Libtool libraries in two ways. It can help you to build the Libtool
libraries themselves, and also to build executables which link against Libtool libraries.

11.2.1 Creating Libtool Libraries with Automake

Continuing in the spirit of making Libtool library management look like native static
archive management, converting a ‘Makefile.am’ from static archive use to Libtool library
use is a matter of changing the name of the library, and adding a Libtool prefix somewhere.
For example, a ‘Makefile.am’ for building a static archive might be:

lib_LIBRARIES = libshell.a
libshell_a_SOURCES = object.c subr.c symbol.c

This would build a static archive called ‘libshell.a’ consisting of the objects
‘object.o’, ‘subr.o’ and ‘bar.o’. To build an equivalent Libtool library from the same
objects, you change this to:

lib_LTLIBRARIES = libshell.la
libshell_la_SOURCES = object.c subr.c symbol.c

The only changes are that the library is now named with a .la suffix, and the Automake
primary is now ‘LTLIBRARIES’. Note that since the name of the library has changed, you
also need to use ‘libshell_la_SOURCES’, and similarly for any other Automake macros
which used to refer to the old archive. As for native libraries, Libtool library names should
begin with the letters ‘lib’, so that the linker will be able to find them when passed ‘-l’
options.

Often you will need to add extra objects to the library as determined by configure, but
this is also a mechanical process. When building native libraries, the ‘Makefile.am’ would
have contained:

libshell_a_LDADD = xmalloc.o @LIBOBJS@

To add the same objects to an equivalent Libtool library would require:
libshell_la_LDADD = xmalloc.lo @LTLIBOBJS@

That is, objects added to a Libtool library must be Libtool objects (with a .lo) suffix.
You should add code to ‘configure.in’ to ensure that ‘LTALLOCA’ and ‘LTLIBOBJS’ are
set appropriately, See Section 11.1.2 [Extra Macros for Libtool], page 92. Automake will
take care of generating appropriate rules for building the Libtool objects mentioned in an
‘LDADD’ macro.

If you want to pass any additional flags to libtool when it is building, you use the
‘LDFLAGS’ macro for that library, like this:

libshell_la_LDFLAGS = -version-info 1:0:1

For a detailed list of all the available options, see section “Link mode” in The Libtool
Manual.

Libtool’s use of ‘-rpath’ has been a point of contention for some users, since
it prevents you from moving shared libraries to another location in the library
search path. Or, at least, if you do, all of the executables that were linked with
‘-rpath’ set to the old location will need to be relinked.

Chapter 11: Using GNU Libtool with ‘configure.in’ and ‘Makefile.am’ 95

We (the Libtool maintainers) assert that always using ‘-rpath’ is a good thing:
Mainly because you can guarantee that any executable linked with ‘-rpath’ will
find the correct version of the library, in the rpath directory, that was intended
when the executable was linked. Library versions can still be managed correctly,
and will be found by the run time loader, by installing newer versions to the
same directory. Additionally, it is much harder for a malicious user to leave a
modified copy of system library in a directory that someone might wish to list
in their ‘LD_LIBRARY_PATH’ in the hope that some code they have written will
be executed unexpectedly.
The argument against ‘-rpath’ was instigated when one of the GNU/Linux
distributions moved some important system libraries to another directory to
make room for a different version, and discovered that all of the executables
that relied on these libraries and were linked with Libtool no longer worked.
Doing this was, arguably, bad system management – the new libraries should
have been placed in a new directory, and the old libraries left alone. Refusing
to use ‘-rpath’ incase you want to restructure the system library directories is
a very weak argument.

The ‘-rpath’ option (which is required for Libtool libraries) is automatically supplied
by automake based on the installation directory specified with the library primary.

lib_LTLIBRARIES = libshell.la

The example would use the value of the make macro $(libdir) as the argument to
‘-rpath’, since that is where the library will be installed.

A few of the other options you can use in the library ‘LDFLAGS’ are:

‘-no-undefined’
Modern architectures allow us to create shared libraries with undefined symbols,
provided those symbols are resolved (usually by the executable which loads the
library) at runtime. Unfortunately, there are some architectures (notably aix
and Windows) which require that all symbols are resolved when the library is
linked. If you know that your library has no unresolved symbols at link time,
then adding this option tells libtool that it will be able to build a shared
library, even on architectures which have this requirement.

‘-static’ Using this option will force libtool to build only a static archive for this library.

‘-release’
On occasion, it is desirable to encode the release number of a library into its
name. By specifying the release number with this option, libtool will build
a library that does this, but will break binary compatibility for each change of
the release number. By breaking binary compatibility this way, you negate the
possibility of fixing bugs in installed programs by installing an updated shared
library. You should probably be using ‘-version-info’ instead.

libshell_la_LDFLAGS = -release 27

The above fragment might create a library called ‘libshell-27.so.0.0.0’ for
example.

‘-version-info’
Set the version number of the library according to the native versioning rules
based on the numbers supplied, See Section 11.4 [Library Versioning], page 98.

96 Autoconf, Automake, and Libtool

You need to be aware that the library version number is for the use of the run-
time loader, and is completely unrelated to the release number of your project.
If you really want to encode the project release into the library, you can use
‘-release’ to do it.
If this option is not supplied explicitly, it defaults to ‘-version-info 0:0:0’.

Historically, the default behaviour of Libtool was as if ‘-no-undefined’ was
always passed on the command line, but it proved to be annoying to developers
who had to constantly turn it off so that their elf libraries could be featureful.
Now it has to be defined explicitly if you need it.
There are is a tradeoff:
• If you don’t specify ‘-no-undefined’, then Libtool will not build shared

libraries on platforms which don’t allow undefined symbols at link time for
such a library.

• It is only safe to specify this flag when you know for certain that all of the
libraries symbols are defined at link time, otherwise the ‘-no-undefined’
link will appear to work until it is tried on a platform which requires all
symbols to be defined. Libtool will try to link the shared library in this
case (because you told it that you have not left any undefined symbols),
but the link will fail, because there are undefined symbols in spite of what
you told Libtool.

For more information about this topic, see Section 18.3 [Portable Library De-
sign], page 169.

11.2.2 Linking against Libtool Libraries with Automake

Once you have set up your ‘Makefile.am’ to create some Libtool libraries. you will
want to link an executable against them. You can do this easily with automake by using
the program’s qualified ‘LDADD’ macro:

bin_PROGRAMS = shell
shell_SOURCES = shell.c token.l
shell_LDADD = libshell.la

This will choose either the static or shared archive from the ‘libshell.la’ Libtool library
depending on the target host and any Libtool mode switches metioned in the ‘Makefile.am’,
or passed to configure. The chosen archive will be linked with any objects generated from
the listed sources to make an executable. Note that the executable itself is a hidden file, and
that in its place libtool creates a wrapper script, See Section 10.5 [Executing Uninstalled
Binaries], page 83.

As with the Libtool libraries, you can pass additional switches for the libtool invocation
in the qualified ‘LDFLAGS’ macros to control how the shell executable is linked:

‘-all-static’
Always choose static libraries where possible, and try to create a completely
statically linked executable.

‘-no-fast-install’
If you really want to use this flag on some targets, you can pass it in an ‘LDFLAGS’
macro. This is not overridden by the configure ‘--enable-fast-install’

Chapter 11: Using GNU Libtool with ‘configure.in’ and ‘Makefile.am’ 97

switch. Executables built with this flag will not need relinking to be executed
from the build tree on platforms which might have otherwise required it.

‘-no-install’
You should use this option for any executables which are used only for testing,
or for generating other files and are consequently never installed. By specifying
this option, you are telling Libtool that the executable it links will only ever
be executed from where it is built in the build tree. Libtool is usually able to
considerably speed up the link process for such executables.

‘-static’ This switch is similar to ‘-all-static’, except that it applies to only the
uninstalled Libtool libraries in the build tree. Where possible the static archive
from these libraries is used, but the default linking mode is used for libraries
which are already installed.

When debugging an executable, for example, it can be useful to temporarily use:

shell_LDFLAGS = -all-static

You can pass Libtool link options to all of the targets in a given directory by
using the unadorned ‘LDFLAGS’ macro:

LDFLAGS = -static

This is best reserved for directories which have targets of the same type, all
Libtool libraries or all executables for instance. The technique still works in
a mixed target type directory, and libtool will ignore switches which don’t
make sense for particular targets. It is less maintainable, and makes it harder
to understand what is going on if you do that though.

11.3 Using libtoolize

Having made the necessary editions in ‘configure.in’ and ‘Makefile.am’, all that re-
mains is to add the Libtool infrastructure to your project.

First of all you must ensure that the correct definitions for the new macros you use in
‘configure.in’ are added to ‘aclocal.m4’, See Appendix C [Generated File Dependencies],
page 271. At the moment, the safest way to do this is to copy ‘libtool.m4’ from the
installed libtool to ‘acinclude.m4’ in the toplevel source directory of your package. This
is to ensure that when your package ships, there will be no mismatch errors between the M4
macros you provided in the version of libtool you built the distribution with, versus the
version of the Libtool installation in another developer’s environment. In a future release,
libtool will check that the macros in aclocal.m4 are from the same Libtool distribution as
the generated libtool script.

$ cp /usr/share/libtool/libtool.m4 ./acinclude.m4
$ aclocal

By naming the file ‘acinclude.m4’ you ensure that aclocal can see it and will use
macros from it, and that automake will add it to the distribution when you create the
tarball.

98 Autoconf, Automake, and Libtool

Next, you should run libtoolize, which adds some files to your distribution that are
required by the macros from ‘libtool.m4’. In particular, you will get ‘ltconfig’3 and
‘ltmain.sh’ which are used to create a custom libtool script on the installer’s machine.

If you do not yet have them, libtoolize will also add ‘config.guess’ and
‘config.sub’ to your distribution. Sometimes you don’t need to run libtoolize
manually, since automake will run it for you when it sees the changes you have made to
‘configure.in’, as follows:

$ automake --add-missing
automake: configure.in: installing ./install-sh
automake: configure.in: installing ./mkinstalldirs
automake: configure.in: installing ./missing
configure.in: 8: required file ./ltconfig not found

The error message in the last line is an abberation. If it was consistant with the other
lines, it would say:

automake: configure.in: installing ./ltconfig
automake: configure.in: installing ./ltmain.sh
automake: configure.in: installing ./config.guess
automake: configure.in: installing ./config.sub

But the effect is the same, and the files are correctly added to the distribution despite
the misleading message.

Before you release a distribution of your project, it is wise to get the latest ver-
sions of ‘config.guess’ and ‘config.sub’ from the GNU site4, since they may
be newer than the versions automatically added by libtoolize and automake.
Note that automake --add-missing will give you its own version of these two
files if ‘AC_PROG_LIBTOOL’ is not used in the project ‘configure.in’, but will
give you the versions shipped with libtool if that macro is present!

11.4 Library Versioning

It is important to note from the outset that the version number of your project is a
very different thing to the version number of any libraries shipped with your project. It is a
common error for maintainers to try to force their libraries to have the same version number
as the current release version of the package as a whole. At best, they will break binary
compatibility unnecessarily, so that their users won’t gain the benefits of the changes in
their latest revision without relinking all applications that use it. At worst, they will allow
the runtime linker to load binary incompatible libraries, causing applications to crash.

Far better, the Libtool versioning system will build native shared libraries with the cor-
rect native library version numbers. Although different architectures use various numbering
schemes, Libtool abstracts these away behind the system described here. The various native
library version numbering schemes are designed so that when an executable is started, the
runtime loader can, where appropriate, choose a more recent installed library version than
the one with which the executable was actually built. This allows you to fix bugs in your

3 The functionality of ‘ltconfig’ is slated for migration into ‘libtool.m4’ for a future release of libtool,
whereupon this file will no longer be necessary.

4 ftp://ftp.gnu.org/gnu/config/

ftp://ftp.gnu.org/gnu/config/

Chapter 11: Using GNU Libtool with ‘configure.in’ and ‘Makefile.am’ 99

library, and having built it with the correct Libtool version number, have those fixes pro-
pogate into any executables that were built with the old buggy version. This can only work
if the runtime loader can tell whether it can load the new library into the old executable
and expect them to work together. The library version numbers give this information to
the runtime loader, so it is very important to set them correctly.

The version scheme used by Libtool tracks interfaces, where an interface is the set of
exported entry points into the library. All Libtool libraries start with ‘-version-info’ set
to ‘0:0:0’ – this will be the default version number if you don’t explicitly set it on the
Libtool link command line. The meaning of these numbers (from left to right) is as follows:

current The number of the current interface exported by the library. A current value of
‘0’, means that you are calling the interface exported by this library interface
0.

revision The implementation number of the most recent interface exported by this li-
brary. In this case, a revision value of ‘0’ means that this is the first implemen-
tation of the interface.
If the next release of this library exports the same interface, but has a different
implementation (perhaps some bugs have been fixed), the revision number will
be higher, but current number will be the same. In that case, when given a
choice, the library with the highest revision will always be used by the runtime
loader.

age The number of previous additional interfaces supported by this library. If age
were ‘2’, then this library can be linked into executables which were built with
a release of this library that exported the current interface number, current, or
any of the previous two interfaces.
By definition age must be less than or equal to current. At the outset, only the
first ever interface is implemented, so age can only be ‘0’.

For later releases of a library, the ‘-version-info’ argument needs to be set correctly
depending on any interface changes you have made. This is quite straightforward when you
understand what the three numbers mean:
1. If you have changed any of the sources for this library, the revision number must be

incremented. This is a new revision of the current interface.
2. If the interface has changed, then current must be incremented, and revision reset to

‘0’. This is the first revision of a new interface.
3. If the new interface is a superset of the previous interface (that is, if the previous

interface has not been broken by the changes in this new release), then age must be
incremented. This release is backwards compatible with the previous release.

4. If the new interface has removed elements with respect to the previous interface, then
you have broken backward compatibility and age must be reset to ‘0’. This release has
a new, but backwards incompatible interface.

For example, if the next release of the library included some new commands for
an existing socket protocol, you would use -version-info 1:0:1. This is the
first revision of a new interface. This release is backwards compatible with the
previous release.

100 Autoconf, Automake, and Libtool

Later, you implement a faster way of handling part of the algorithm at the core
of the library, and release it with -version-info 1:1:1. This is a new revision
of the current interface.
Unfortunately the speed of your new implementation can only be fully exploited
by changing the api to access the structures at a lower level, which breaks
compatibility with the previous interface, so you release it as -version-info
2:0:0. This release has a new, but backwards incompatible interface.

When deciding which numbers to change in the -version-info argument for a new
release, you must remember that an interface change is not limited to the api of the library.
The notion of an interface must include any method by which a user (code or human) can
interact with the library: adding new builtin commands to a shell library; the format used
in an output file; the handshake protocol required for a client connecting over a socket, and
so on.

Additionally, If you use a development model which has both a stable and an unstable
tree being developed in parallel, for example, and you don’t mind forcing your users to
relink all of the applications which use one of your Libtool libraries every time you make
a release, then libtool provides the ‘-release’ flag to encode the project version number
in the name of the library, See Section 11.2.1 [Creating Libtool Libraries with Automake],
page 94. This can save you library compatibility problems later if you need to, say, make a
patch release of an older revision of your library, but the library version number that you
should use has already been taken by another earlier release. In this case, you could be
fairly certain that library releases from the unstable branch will not be binary compatible
with the stable releases, so you could make all the stable releases with ‘-release 1.0’ and
begin the first unstable release with ‘-release 1.1’.

11.5 Convenience Libraries

Sometimes it is useful to group objects together in an intermediate stage of a project’s
compilation to provide a useful handle for that group without having to specify all of the
individual objects every time. Convenience libraries are a portable way of creating such a
partially linked object: Libtool will handle all of the low level details in a way appropriate to
the target host. This section describes the use of convenience libraries in conjunction with
Automake. The principles of convenience libraries are discussed in Section 10.2.4 [Creating
Convenience Libraries], page 75.

The key to creating Libtool convenience libraries with Automake is to use the
‘noinst_LTLIBRARIES’ macro. For the Libtool libraries named in this macro, Automake
will create Libtool convenience libraries which can subsequently be linked into other Libtool
libraries.

In this section I will create two convenience libraries, each in their own subdirectory,
and link them into a third Libtool library, which is ultimately linked into an application.

If you want to follow this example, you should create a directory structure to hold the
sources by running the following shell commands:

$ mkdir convenience
$ cd convenience
$ mkdir lib
$ mkdir replace

Chapter 11: Using GNU Libtool with ‘configure.in’ and ‘Makefile.am’ 101

The first convenience library is built from two source files in the ‘lib’ subdirectory.
1. ‘source.c’:

This file defines a single function to display the cosine of its argument on standard
output, and consequently relies on an implementation of the cos function from the
system libraries. Note the conditional inclusion of ‘config.h’, which will contain a
definition of ‘HAVE_MATH_H’ if ‘configure’ discovers a ‘math.h’ system header (the
usual location for the declaration of cos). The ‘HAVE_CONFIG_H’ guard is by convention,
so that the source can be linked by passing the preprocessor macro definitions to the
compiler on the command line – if ‘configure.in’ does not use ‘AM_CONFIG_HEADER’
for instance.

2. ‘source.h’:

For brevity, there is no #ifndef SOURCE_H guard. The header is not installed, so you
have full control over where it is #includeed, and in any case, function declarations
can be safely repeated if the header is accidentally processed more than once. In a real
program, it would be better to list the function parameters in the declaration so that
the compiler can do type checking. This would limit the code to working only with
ansi compilers, unless you also use a PARAMS macro to conditionally preprocess away
the parameters when a K&R compiler is used. These details are beyond the scope
of this convenience library example, but are described in full in Section 9.1.6 [K&R
Compilers], page 53.

You also need a ‘Makefile.am’ to hold the details of how this convenience library is
linked:

The ‘noinst_LTLIBRARIES’ macro names the Libtool convenience libraries to be built
in this directory, ‘library.la’. Although not required for compilation, ‘source.h’ is listed
in the ‘SOURCES’ macro of ‘library.la’ so that correct source dependencies are generated,
and so that it is added to the distribution tarball by automake’s ‘dist’ rule.

Finally, since the foo function relies on the cos function from the system math library,
‘-lm’ is named as a required library in the ‘LIBADD’ macro. As with all Libtool libraries,
interlibrary dependencies are maintained for convenience libraries so that you need only list
the libraries you are using directly when you link your application later. The libraries used
by those libraries are added by Libtool.

The parent directory holds the sources for the main executable, ‘main.c’, and for a
(non-convenience) Libtool library, ‘error.c’ & ‘error.h’.

Like ‘source.h’, the functions exported from the Libtool library ‘liberror.la’ are listed
in ‘error.h’:

The corresponding functon definitions are in ‘error.c’:

The gratuitous() function calls the foo() function defined in the ‘library.la’ con-
venience library in the ‘lib’ directory, hence ‘source.h’ is included.

102 Autoconf, Automake, and Libtool

The definition of error() displays an error message to standard error, along with the
name of the program, program_name, which is set by calling set_program_name(). This
function, in turn, extracts the basename of the program from the full path using the system
function, basename(), and stores it in the library private variable, program_name.

Usually, basename() is part of the system C library, though older systems did not include
it. Because of this, there is no portable header file that can be included to get a declaration,
and you might see a harmless compiler warning due to the use of the function without a
declaration. The alternative would be to add your own declaration in ‘error.c’. The prob-
lem with this approach is that different vendors will provide slightly different declarations
(with or without const for instance), so compilation will fail on those architectures which
do provide a declaration in the system headers that is different from the declaration you
have guessed.

For the benefit of architectures which do not have an implementation of the basename()
function, a fallback implementation is provided in the ‘replace’ subdirectory. The file
‘basename.c’ follows:

For brevity, the implementation does not use any const declarations which would be
good style for a real project, but would need to be checked at configure time in case the
end user needs to compile the package with a K&R compiler.

The use of strrchr() is noteworthy. Sometimes it is declared in ‘string.h’, otherwise
it might be declared in ‘strings.h’. bsd based Unices, on the other hand, do not have
this function at all, but provide an equivalent function, rindex(). The preprocessor code
at the start of the file is designed to cope with all of these eventualities. The last block of
preprocessor code assumes that if strrchr is already defined that it holds a working macro,
and does not redefine it.

‘Makefile.am’ contains:

Once again, the ‘noinst_LTLIBRARIES’ macro names the convenience library,
‘libreplace.la’. By default there are no sources, since we expect to have a system defini-
tion of basename(). Additional Libtool objects which should be added to the library based
on tests at configure time are handled by the ‘LIBADD’ macro. ‘LTLIBOBJS’ will contain
‘basename.lo’ if the system does not provide basename, and will be empty otherwise. Il-
lustrating another feature of convenience libraries: on many architectures, ‘libreplace.la’
will contain no objects.

Back in the toplevel project directory, all of the preceding objects are combined by
another ‘Makefile.am’:

The initial ‘SUBDIRS’ macro is necessary to ensure that the libraries in the subdirectories
are built before the final library and executable in this directory.

Notice that I have not listed ‘error.h’ in ‘liberror_la_SOURCES’ this time, since
‘liberror.la’ is an installed library, and ‘error.h’ defines the public interface to that li-
brary. Since the ‘liberror.la’ Libtool library is installed, I have used the ‘-version-info’
option, and I have also used ‘-no-undefined’ so that the project will compile on architec-
tures which require all library symbols to be defined at link time – the reason program_name

Chapter 11: Using GNU Libtool with ‘configure.in’ and ‘Makefile.am’ 103

is maintained in ‘liberror’ rather than ‘main.c’ is so that the library does not have a run-
time dependency on the executable which links it.

The key to this example is that by linking the ‘libreplace.la’ and ‘library.la’ con-
venience libraries into ‘liberror.la’, all of the objects in both convenience libraries are
compiled into the single installed library, ‘liberror.la’. Additionally, all of the inter-
library dependencies of the convenience libraries (‘-lm’, from ‘library.la’) are propogated
to ‘liberror.la’.

A common difficulty people experience with Automake is knowing when to use
a ‘LIBADD’ primary versus a ‘LDADD’ primary. A useful mnemonic is: ‘LIBADD’ is
for ADDitional LIBrary objects. ‘LDADD’ is for ADDitional linker (LD) objects.

The executable, ‘convenience’, is built from ‘main.c’, and requires only ‘liberror.la’.
All of the other implicit dependencies are encoded within ‘liberror.la’. Here is ‘main.c’:

The only file that remains before you can compile the example is ‘configure.in’:

There are checks for all of the features used by the sources in the project: ‘math.h’
and either ‘string.h’ or ‘strings.h’; the existence of strrchr (after the tests for string
headers); adding ‘basename.o’ to ‘LIBOBJS’ if there is no system implementation; and the
shell code to set ‘LTLIBOBJS’.

With all the files in place, you can now bootstrap the project:
$ ls -R
.:
Makefile.am configure.in error.c error.h lib main.c replace

lib:
Makefile.am source.c source.h

replace:
Makefile.am basename.c
$ aclocal
$ autoheader
$ automake --add-missing --copy
automake: configure.in: installing ./install-sh
automake: configure.in: installing ./mkinstalldirs
automake: configure.in: installing ./missing
configure.in: 7: required file ./ltconfig not found
$ autoconf
$ ls -R
.:
Makefile.am config.h.in error.c ltconfig mkinstalldirs
Makefile.in config.sub error.h ltmain.sh replace
aclocal.m4 configure install-sh main.c
config.guess configure.in lib missing

lib:
Makefile.am Makefile.in source.c source.h

replace:
Makefile.am Makefile.in basename.c

104 Autoconf, Automake, and Libtool

With these files in place, the package can now be configured:

$./configure
...
checking how to run the C preprocessor... gcc -E
checking for math.h... yes
checking for string.h... yes
checking for strrchr... yes
checking for basename... yes
updating cache ./config.cache
creating ./config.status
creating replace/Makefile
creating lib/Makefile
creating Makefile
creating config.h

Notice that my host has an implementation of basename().

Here are the highlights of the compilation itself:

$ make
Making all in replace
make[1]: Entering directory /tmp/replace
/bin/sh ../libtool --mode=link gcc -g -O2 -o libreplace.la
rm -fr .libs/libreplace.la .libs/libreplace.* .libs/libreplace.*
ar cru .libs/libreplace.al
ranlib .libs/libreplace.al
creating libreplace.la
(cd .libs && rm -f libreplace.la && ln -s ../libreplace.la \
libreplace.la)
make[1]: Leaving directory /tmp/replace

Here the build descends into the ‘replace’ subdirectory and creates ‘libreplace.la’,
which is empty on my host since I don’t need an implementation of basename():

Making all in lib
make[1]: Entering directory /tmp/lib
/bin/sh ../libtool --mode=compile gcc -DHAVE_CONFIG_H -I. -I. \
-g -O2 -c source.c
rm -f .libs/source.lo
gcc -DHAVE_CONFIG_H -I. -I. -g -O2 -c -fPIC -DPIC source.c \
-o .libs/source.lo
gcc -DHAVE_CONFIG_H -I. -I. -g -O2 -c source.c \
-o source.o >/dev/null 2>&1
mv -f .libs/source.lo source.lo
/bin/sh ../libtool --mode=link gcc -g -O2 -o library.la source.lo -lm
rm -fr .libs/library.la .libs/library.* .libs/library.*
ar cru .libs/library.al source.lo
ranlib .libs/library.al
creating library.la
(cd .libs && rm -f library.la && ln -s ../library.la library.la)
make[1]: Leaving directory /tmp/lib

Chapter 11: Using GNU Libtool with ‘configure.in’ and ‘Makefile.am’ 105

Next, the build enters the ‘lib’ subdirectory to build ‘library.la’. The ‘configure’
preprocessor macros are passed on the command line, since no ‘config.h’ was created by
AC_CONFIG_HEADER:

Here, ‘main.c’ is compiled (not to a Libtool object, since it is not compiled using
libtool), and linked with the ‘liberror.la’ Libtool library:

gcc -DHAVE_CONFIG_H -I. -I. -I./lib -g -O2 -c main.c
/bin/sh ./libtool --mode=link gcc -g -O2 -o convenience main.o \
liberror.la
gcc -g -O2 -o .libs/convenience main.o ./.libs/liberror.so -lm \
-Wl,--rpath -Wl,/usr/local/lib
creating convenience
make[1]: Leaving directory /tmp/convenience

libtool calls gcc to link the convenience executable from ‘main.o’ and the shared
library component of ‘liberror.la’. libtool also links with ‘-lm’, the propogated inter-
library dependency of the ‘library.la’ convenience library. Since ‘libreplace.la’ and
‘library.la’ were convenience libraries, their objects are already present in ‘liberror.la’,
so they are not listed again in the final link line – the whole point of convenience archives.

This just shows that it all works:
$ ls
Makefile config.h configure.in install-sh main.c
Makefile.am config.h.in convenience lib main.o
Makefile.in config.log error.c liberror.la missing
aclocal.m4 config.status error.h libtool mkinstalldirs
config.cache config.sub error.lo ltconfig replace
config.guess configure error.o ltmain.sh
$ libtool --mode=execute ldd convenience

liberror.so.0 => /tmp/.libs/liberror.so.0 (0x40014000)
libm.so.6 => /lib/libm.so.6 (0x4001c000)
libc.so.6 => /lib/libc.so.6 (0x40039000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

$./convenience
cos (0) => 1
lt-convenience: ERROR: This program does nothing!

Notice that you are running the uninstalled executable, which is in actual fact a wrapper
script, See Section 10.5 [Executing Uninstalled Binaries], page 83. That is why you need
to use libtool to run ldd on the real executable. The uninstalled executable called by the
wrapper script is called lt-convenience, hence the output from basename().

Finally, you can see from the output of ldd, that convenience really isn’t linked against
either ‘library.la’ and ‘libreplace.la’.

106 Autoconf, Automake, and Libtool

Chapter 12: A Large GNU Autotools Project 107

12 A Large GNU Autotools Project

This chapter develops the worked example described in Chapter 9 [A Small GNU Auto-
tools Project], page 49. Again, the example is heavily colored by my own views, and there
certainly are other, very different, but equally valid ways of achieving the same objectives.

I will explain how I incorporated libtool into the Sic project, and how to put the
project documentation and test suite under the control of GNU Autotools. I pointed out
some problems with the project when I first introduced it – this chapter will address those
issues, and present my favored solution to each.

12.1 Using Libtool Libraries

As you have seen, It is very easy to convert automake built static libraries to automake
built Libtool libraries. In order to build ‘libsic’ as a Libtool library, I have changed
the name of the library from ‘libsic.a’ (the old archive name in Libtool terminology) to
‘libsic.la’ (the pseudo-library), and must use the LTLIBRARIES Automake primary:

Notice the ‘la’ in libsic_la_SOURCES is new too.
It is similarly easy to take advantage of Libtool convenience libraries. For the purposes

of Sic, ‘libreplace’ is an ideal candidate for this treatment – I can create the library as
a separate entity from selected sources in their own directory, and add those objects to
‘libsic’. This technique ensures that the installed library has all of the support functions
it needs without having to link ‘libreplace’ as a separate object.

In ‘replace/Makefile.am’, I have again changed the name of the library from
‘libreplace.a’ to ‘libreplace.la’, and changed the automake primary from ‘LIBRARIES’
to ‘LTLIBRARIES’. Unfortunately, those changes alone are insufficient. Libtool libraries are
compiled from Libtool objects (which have the ‘.lo’ suffix), so I cannot use ‘LIBOBJS’ which
is a list of ‘.o’ suffixed objects1. See Section 11.1.2 [Extra Macros for Libtool], page 92, for
more details. Here is ‘replace/Makefile.am’:

And not forgetting to set and use the ‘LTLIBOBJS’ configure substitution (see Sec-
tion 11.1.2 [Extra Macros for Libtool], page 92):

As a consequence of using libtool to build the project libraries, the increasing number
of configuration files being added to the ‘config’ directory will grow to include ‘ltconfig’
and ‘ltmain.sh’. These files will be used on the installer’s machine when Sic is configured,
so it is important to distribute them. The naive way to do it is to give the ‘config’ directory
a ‘Makefile.am’ of its own; however, it is not too difficult to distribute these files from the
top ‘Makefile.am’, and it saves clutter, as you can see here:

The ‘dist-hook’ rule is used to make sure the ‘config’ directory and the files it contains are
correctly added to the distribution by the ‘make dist’ rules, see Section 13.1 [Introduction
to Distributions], page 117.

1 Actually the suffix will be whatever is appropriate for the target host: such as ‘.obj’ on Windows for
example.

108 Autoconf, Automake, and Libtool

I have been careful to use the configure script’s location for ac_aux_dir, so that it is
defined (and can be changed) in only one place. This is achieved by adding the following
macro to ‘configure.in’:

AC_SUBST(ac_aux_dir)

There is no need to explicity set a macro in the ‘Makefile.am’, because Automake auto-
matically creates macros for every value that you ‘AC_SUBST’ from ‘configure.in’.

I have also added the AC_PROG_LIBTOOL macro to ‘configure.in’ in place of AC_PROG_
RANLIB as described in Chapter 11 [Using GNU Libtool], page 89.

Now I can upgrade the configury to use libtool – the greater part of this is running the
libtoolize script that comes with the Libtool distribution. The bootstrap script then
needs to be updated to run libtoolize at the correct juncture:

Now I can re-bootstrap the entire project so that it can make use of libtool:

$./bootstrap
+ aclocal -I config
+ libtoolize --force --copy
Putting files in AC_CONFIG_AUX_DIR, config.
+ autoheader
+ automake --add-missing --copy
automake: configure.in: installing config/install-sh
automake: configure.in: installing config/mkinstalldirs
automake: configure.in: installing config/missing
+ autoconf

The new macros are evident by the new output seen when the newly regenerated
configure script is executed:

$./configure --with-readline
...
checking host system type... i586-pc-linux-gnu
checking build system type... i586-pc-linux-gnu
checking for ld used by GCC... /usr/bin/ld
checking if the linker (/usr/bin/ld) is GNU ld... yes
checking for /usr/bin/ld option to reload object files... -r
checking for BSD-compatible nm... /usr/bin/nm -B
checking whether ln -s works... yes
checking how to recognise dependent libraries... pass_all
checking for object suffix... o
checking for executable suffix... no
checking for ranlib... ranlib
checking for strip... strip
...
checking if libtool supports shared libraries... yes
checking whether to build shared libraries... yes
checking whether to build static libraries... yes
creating libtool
...

Chapter 12: A Large GNU Autotools Project 109

$ make
...
gcc -g -O2 -o .libs/sic sic.o sic_builtin.o sic_repl.o sic_syntax.o \
../sic/.libs/libsic.so -lreadline -Wl,--rpath -Wl,/usr/local/lib
creating sic
...
$ src/sic
] libtool --mode=execute ldd src/sic

libsic.so.0 => /tmp/sic/sic/.libs/libsic.so.0 (0x40014000)
libreadline.so.4 => /lib/libreadline.so.4 (0x4001e000)
libc.so.6 => /lib/libc.so.6 (0x40043000)
libncurses.so.5 => /lib/libncurses.so.5 (0x40121000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

] exit
$

As you can see, sic is now linked against a shared library build of ‘libsic’, but not
directly against the convenience library, ‘libreplace’.

12.2 Removing ‘--foreign’

Now that I have the bulk of the project in place, I want it to adhere to the gnu standard
layout. By removing the ‘--foreign’ option from the call to automake in the bootstrap
file, automake is able to warn me about missing, or in some cases2, malformed files, as
follows:

$./bootstrap
+ aclocal -I config
+ libtoolize --force --copy
Putting files in AC_CONFIG_AUX_DIR, config.
+ autoheader
+ automake --add-missing --copy
automake: Makefile.am: required file ./NEWS not found
automake: Makefile.am: required file ./README not found
automake: Makefile.am: required file ./AUTHORS not found
automake: Makefile.am: required file ./THANKS not found
+ autoconf

The gnu standards book3 describes the contents of these files in more detail. Alterna-
tively, take a look at a few other gnu packages from ftp://ftp.gnu.org/gnu.

12.3 Installing Header Files

One of the more difficult problems with GNU Autotools driven projects is that
each of them depends on ‘config.h’ (or its equivalent) and the project specific
symbols that it defines. The purpose of this file is to be #included from all of
the project source files. The preprocessor can tailor then the code in these files
to the target environment.

2 For example, when I come to using the ‘make dist’ rule.
3 The gnu standard is distributed from http://www.gnu.org/prep/standards.html.

ftp://ftp.gnu.org/gnu
http://www.gnu.org/prep/standards.html

110 Autoconf, Automake, and Libtool

It is often difficult and sometimes impossible to not introduce a dependency on
‘config.h’ from one of the project’s installable header files. It would be nice
if you could simply install the generated ‘config.h’, but even if you name it
carefully or install it to a subdirectory to avoid filename problems, the macros
it defines will clash with those from any other GNU Autotools based project
which also installs its ‘config.h’.
For example, if Sic installed its ‘config.h’ as ‘/usr/include/sic/config.h’,
and had ‘#include <sic/config.h>’ in the installed ‘common.h’, when another
GNU Autotools based project came to use the Sic library it might begin like
this:

#if HAVE_CONFIG_H
include <config.h>
#endif

#if HAVE_SIC_H
include <sic.h>
#endif

static const char version_number[] = VERSION;

But, ‘sic.h’ says ‘#include <sic/common.h>’, which in turn says ‘#include
<sic/config.h>’. Even though the other project has the correct value
for ‘VERSION’ in its own ‘config.h’, by the time the preprocessor reaches
the ‘version_number’ definition, it has been redefined to the value in
‘sic/config.h’. Imagine the mess you could get into if you were using several
libraries which each installed their own ‘config.h’ definitions. gcc issues a
warning when a macro is redefined to a different value which would help you
to catch this error. Some compilers do not issue a warning, and perhaps worse,
other compilers will warn even if the repeated definitions have the same value,
flooding you with hundreds of warnings for each source file that reads multiple
‘config.h’ headers.
The Autoconf macro AC_OUTPUT_COMMANDS4 provides a way to solve this prob-
lem. The idea is to generate a system specific but installable header from the
results of the various tests performed by configure. There is a 1-to-1 mapping
between the preprocessor code that relied on the configure results written to
‘config.h’, and the new shell code that relies on the configure results saved in
‘config.cache’.

The following code is a snippet from ‘configure.in’, in the body of the AC_OUTPUT_
COMMANDS macro:

Compare this with the equivalent C pre-processor code from ‘sic/common.h’, which it
replaces:

#if STDC_HEADERS || HAVE_STDLIB_H
include <stdlib.h>
#endif

4 This is for Autoconf version 2.13. Autoconf version 2.50 recommends AC_CONFIG_COMMANDS.

Chapter 12: A Large GNU Autotools Project 111

#if HAVE_UNISTD_H
include <unistd.h>
#endif

#if HAVE_SYS_WAIT_H
include <sys/wait.h>
#endif

#if HAVE_ERRNO_H
include <errno.h>
#endif
#ifndef errno
/* Some systems #define this! */
extern int errno;
#endif

#if HAVE_STRING_H
include <string.h>
#else
if HAVE_STRING_H
include <strings.h>
endif
#endif

#if HAVE_ASSERT_H
include <assert.h>
define SIC_ASSERT assert
#else
define SIC_ASSERT(expr) ((void) 0)
#endif

Apart from the mechanical process of translating the preprocessor code, there is
some plumbing needed to ensure that the ‘common.h’ file generated by the new code in
‘configure.in’ is functionally equivalent to the old code, and is generated in a correct
and timely fashion.

Taking my lead from some of the Automake generated make rules to regenerate
‘Makefile’ from ‘Makefile.in’ by calling ‘config.status’, I have added some similar
rules to ‘sic/Makefile.am’ to regenerate ‘common.h’ from ‘common-h.in’.

The way that AC_OUTPUT_COMMANDS works, is to copy the contained code into
config.status (see Appendix C [Generated File Dependencies], page 271). It is actually
config.status that creates the generated files – for example, automake generated
‘Makefile’s are able to regenerate themselves from corresponding ‘Makefile.in’s by
calling config.status if they become out of date. Unfortunately, this means that
config.status doesn’t have direct access to the cache values generated while configure
was running (because it has finished its work by the time config.status is called). It is
tempting to read in the cache file at the top of the code inside AC_OUTPUT_COMMANDS, but
that only works if you know where the cache file is saved. Also the package installer can

112 Autoconf, Automake, and Libtool

use the ‘--cache-file’ option of configure to change the location of the file, or turn off
caching entirely with ‘--cache-file=/dev/null’.

AC_OUTPUT_COMMANDS accepts a second argument which can be used to pass the variable
settings discovered by configure into config.status. It’s not pretty, and is a little error
prone. In the first argument to AC_OUTPUT_COMMANDS, you must be careful to check that
every single configure variable referenced is correctly set somewhere in the second argument.

A slightly stripped down example from the sic project ‘configure.in’ looks like this:

You will notice that the contents of ‘common-h.in’ are copied into ‘common.h’ verbatim as it
is generated. It’s just an easy way of collecting together the code that belongs in ‘common.h’,
but which doesn’t rely on configuration tests, without cluttering ‘configure.in’ any more
than necessary.

I should point out that, although this method has served me well for a number of years
now, it is inherently fragile because it relies on undocumented internals of both Autoconf
and Automake. There is a very real possibility that if you also track the latest releases of
GNU Autotools, it may stop working. Future releases of GNU Autotools will address the
interface problems that force us to use code like this, for the lack of a better way to do
things.

12.4 Including Texinfo Documentation

Automake provides a few facilities to make the maintenance of Texinfo documentation
within projects much simpler than it used to be. Writing a ‘Makefile.am’ for Texinfo
documentation is extremely straightforward:

The ‘TEXINFOS’ primary will not only create rules for generating ‘.info’ files suitable for
browsing with the gnu info reader, but also for generating ‘.dvi’ and ‘.ps’ documentation
for printing.

You can also create other formats of documentation by adding the appropriate make rules
to ‘Makefile.am’. For example, because the more recent Texinfo distributions have begun
to support generation of HTML documentation from the ‘.texi’ format master document,
I have added the appropriate rules to the ‘Makefile.am’:

For ease of maintenance, these make rules employ a suffix rule which describes how to
generate HTML from equivalent ‘.texi’ source – this involves telling make about the ‘.html’
suffix using the automake SUFFIXES macro. I haven’t defined ‘MAKEINFO’ explicitly (though
I could have done) because I know that Automake has already defined it for use in the
‘.info’ generation rules.

The ‘html’ target is for convenience; typing ‘make html’ is a little easier than typng
‘make sic.html’. I have also added a .PHONY target so that featureful make programs will
know that the ‘html’ target doesn’t actually generate a file called literally, ‘html’. As it
stands, this code is not quite complete, since the toplevel ‘Makefile.am’ doesn’t know how
to call the ‘html’ rule in the ‘doc’ subdirectory.

There is no need to provide a general solution here in the way Automake does for its
‘dvi’ target, for example. A simple recursive call to ‘doc/Makefile’ is much simpler:

Chapter 12: A Large GNU Autotools Project 113

Another useful management function that Automake can perform for you with respect
to Texinfo documentation is to automatically generate the version numbers for your Tex-
info documents. It will add make rules to generate a suitable ‘version.texi’, so long as
automake sees ‘@include version.texi’ in the body of the Texinfo source:

‘version.texi’ sets Texinfo variables, ‘VERSION’, ‘EDITION’ and ‘UPDATE’, which can
be expanded elsewhere in the main Texinfo documentation by using @value{EDITION} for
example. This makes use of another auxiliary file, mdate-sh which will be added to the
scripts in the $ac_aux_dir subdirectory by Automake after adding the ‘version.texi’
reference to ‘sic.texi’:

$./bootstrap
+ aclocal -I config
+ libtoolize --force --copy
Putting files in AC_CONFIG_AUX_DIR, config.
+ autoheader
+ automake --add-missing --copy
doc/Makefile.am:22: installing config/mdate-sh
+ autoconf
$ make html
/bin/sh ./config.status --recheck
...
Making html in ./doc
make[1]: Entering directory /tmp/sic/doc
Updating version.texi
makeinfo --html sic.texi
make[1]: Leaving directory /tmp/sic/doc

Hopefully, it now goes without saying that I also need to add the ‘doc’ subdirectory to
‘AC_OUTPUT’ in ‘configure.in’ and to ‘SUBDIRS’ in the top-level ‘Makefile.am’.

12.5 Adding a Test Suite

Automake has very flexible support for automated test-suites within a project distri-
bution, which are discussed more fully in the Automake manual. I have added a simple
shell script based testing facility to Sic using this support – this kind of testing mechanism
is perfectly adequate for command line projects. The tests themselves simply feed pre-
scribed input to the uninstalled sic interpreter and compare the actual output with what
is expected.

Here is one of the test scripts:

The tricky part of this script is the first part which discovers the location of (and loads)
‘$srcdir/defs’. It is a little convoluted because it needs to work if the user has compiled
the project in a separate build tree – in which case the ‘defs’ file is in a separate source
tree and not in the actual directory in which the test is executed.

The ‘defs’ file allows me to factor out the common definitions from each of the test files
so that it can be maintained once in a single file that is read by all of the tests:

114 Autoconf, Automake, and Libtool

Having written a few more test scripts, and made sure that they are working by running
them from the command line, all that remains is to write a suitable ‘Makefile.am’ so that
automake can run the test suite automatically.

I have used the ‘testsubdir’ macro to run the tests in their own subdirectory so that
the directory containing the actual test scripts is not polluted with lots of fallout files
generated by running the tests. For completeness I have used a hook target5 to remove this
subdirectory when the user types:

$ make distclean
...
rm -rf testSubDir
...

Adding more tests is accomplished by creating a new test script and adding it to the list
in noinst_SCRIPTS. Remembering to add the new ‘tests’ subdirectory to ‘configure.in’
and the top-level ‘Makefile.am’, and reconfiguring the project to propogate the changes
into the various generated files, I can run the whole test suite from the top directory with:

$ make check

It is often useful run tests in isolation, either when developing new tests, or to examine
more closely why a test has failed unexpectedly. Having set this test suite up as I did,
individual tests can be executed with:

$ VERBOSE=1 make check TESTS=incomplete.test
make check-TESTS
make[1]: Entering directory
/tmp/sic/tests
=== Running test incomplete.test
1
2
3
PASS: incomplete.test
==================
All 1 tests passed
==================
make[1]: Leaving directory /tmp/sic/tests
$ ls testSubDir/
err errok in.sic ok out

The ‘testSubDir’ subdirectory now contains the expected and actual output from that
particular test for both ‘stdout’ and ‘stderr’, and the input file which generated the
actual output. Had the test failed, I would be able to look at these files to decide whether
there is a bug in the program or simply a bug in the test script. Being able to examine
individual tests like this is invaluable, especially when the test suite becomes very large –
because you will, naturally, add tests every time you add features to a project or find and
fix a bug.

5 This is a sort of callback function which will be called by the make rules generated by Automake.

Chapter 12: A Large GNU Autotools Project 115

Another alternative to the pure shell based test mechanism I have presented here is the
Autotest facility by François Pinard, as used in Autoconf after release 2.13.

Later in Chapter 20 [A Complex GNU Autotools Project], page 183, the Sic project will
be revisited to take advantage of some of the more advanced features of GNU Autotools.
But first these advanced features will be discussed in the next several chapters – starting,
in the next chapter, with a discussion of how GNU Autotools can help you to make a tarred
distribution of your own projects.

116 Autoconf, Automake, and Libtool

Chapter 13: Rolling Distribution Tarballs 117

13 Rolling Distribution Tarballs

There’s something about the word ‘tarballs’ that make you want to avoid them alto-
gether, let alone get involved in the disgusting process of rolling one. And, in the past, that
was apparently the attitude of most developers, as witnessed by the strange ways distri-
bution tar archives were created and unpacked. Automake largely automates this tedious
process, in a sense providing you with the obliviousness you crave.

13.1 Introduction to Distributions

The basic approach to creating a tar distribution is to run
make
make dist

The generated tar file is named package-version.tar.gz, and will unpack into a directory
named package-version. These two rules are mandated by the gnu Coding Standards, and
are just good ideas in any case, because it is convenient for the end user to have the version
information easily accessible while building a package. It removes any doubt when she
goes back to an old tree after some time away from it. Unpacking into a fresh directory is
always a good idea – in the old days some packages would unpack into the current directory,
requiring an annoying clean-up job for the unwary system administrator.

The unpacked archive is completely portable, to the extent of Automake’s ability to
enforce this. That is, all the generated files (e.g., ‘configure’) are newer than their inputs
(e.g., ‘configure.in’), and the distributed ‘Makefile.in’ files should work with any version
of make. Of course, some of the responsibility for portability lies with you: you are free to
introduce non-portable code into your ‘Makefile.am’, and Automake can’t diagnose this.
No special tools beyond the minimal tool list (see section “Utilities in Makefiles” in The
GNU Coding Standards) plus whatever your own ‘Makefile’ and ‘configure’ additions
use, will be required for the end user to build the package.

By default Automake creates a ‘.tar.gz’ file. It notices if you are using gnu tar and
arranges to create portable archives in this case.1

People do sometimes want to make other sorts of distributions. Automake allows this
through the use of options.

dist-bzip2
Add a dist-bzip2 target, which creates a ‘.tar.bz2’ file. These files are
frequently smaller than the corresponding ‘.tar.gz’ file.

dist-shar
Add a dist-shar target, which creates a shar archive.

dist-zip Add a dist-zip target, which creates a zip file. These files are popular for
Windows distributions.

dist-tarZ
Add a dist-tarZ target, which creates a ‘.tar.Z’ file. This exists mostly for
die-hard old-time Unix hackers; the rest of the world has moved on to gzip or
bzip2.

1 By default, gnu tar can create non-portable archives in certain (rare) situations. To be safe, Automake
arranges to use the ‘-o’ compatibility flag when gnu tar is used.

118 Autoconf, Automake, and Libtool

13.2 What goes in

Automake tries to make creating a distribution as easy as possible. The rules are set up
by default to distribute those things which Automake knows belong in a distribution. For
instance, Automake always distributes your ‘configure’ script and your ‘NEWS’ file. All the
files Automake automatically distributes are shown by automake --help:

$ automake --help
...
Files which are automatically distributed, if found:
ABOUT-GNU README config.guess ltconfig
ABOUT-NLS THANKS config.h.bot ltmain.sh
AUTHORS TODO config.h.top mdate-sh
BACKLOG acconfig.h config.sub missing
COPYING acinclude.m4 configure mkinstalldirs
COPYING.LIB aclocal.m4 configure.in stamp-h.in
ChangeLog ansi2knr.1 elisp-comp stamp-vti
INSTALL ansi2knr.c install-sh texinfo.tex
NEWS compile libversion.in ylwrap

...

Automake also distributes some files about which it has no built-in knowledge, but about
which it learns from your ‘Makefile.am’. For instance, the source files listed in a ‘_SOURCES’
variable go into the distribution. This is why you ought to list uninstalled header files in the
‘_SOURCES’ variable: otherwise you’ll just have to introduce another variable to distribute
them – Automake will only know about them if you tell it.

Not all primaries are distributed by default. The rule is arbitrary, but pretty simple: of
all the primaries, only ‘_TEXINFOS’ and ‘_HEADERS’ are distributed by default. (Sources that
make up programs and libraries are also distributed by default, but, perhaps confusingly,
‘_SOURCES’ is not considered a primary.)

While there is no rhyme, there is a reason: defaults were chosen based on feedback from
users. Typically, ‘enough’ reports of the form ‘I auto-generate my ‘_SCRIPTS’. How do I
prevent them from ending up in the distribution?’ would cause a change in the default.

Although the defaults are adequate in many situations, sometimes you have to distribute
files which aren’t covered automatically. It is easy to add additional files to a distribution;
simply list them in the macro ‘EXTRA_DIST’. You can list files in subdirectories here. You can
also list a directory’s name here and the entire contents will be copied into the distribution by
make dist. Use this last feature with care. A typical failure is that you’ll put a ‘temporary’
file in the directory and then it will end up in the distribution when you forget to remove
it. Similarly, version control files, such as a ‘CVS’ subdirectory, can easily end up in a
distribution this way.

If a primary is not distributed by default, but in your case it ought to be, you can easily
correct it with ‘EXTRA_DIST’:

EXTRA_DIST = $(bin_SCRIPTS)

The next major Automake release2 will have a better method for controlling whether
primaries do or do not go into the distribution. In 1.5 you will be able to use the ‘dist’

2 Probably numbered 1.5.

Chapter 13: Rolling Distribution Tarballs 119

and ‘nodist’ prefixes to control distribution on a per-variable basis. You will even be able
to simultaneously use both prefixes with a given primary to include some files and omit
others:

dist_bin_SCRIPTS = distribute-this
nodist_bin_SCRIPTS = but-not-this

13.3 The distcheck rule

The make dist documentation sounds nice, and make dist did do something, but how
do you know it really works? It is a terrible feeling when you realize your carefully crafted
distribution is missing a file and won’t compile on a user’s machine.

I wouldn’t write such an introduction unless Automake provided a solution. The solution
is a smoke test known as make distcheck. This rule performs a make dist as usual, but it
doesn’t stop there. Instead, it then proceeds to untar the new archive into a fresh directory,
build it in a fresh build directory separate from the source directory, install it into a third
fresh directory, and finally run make check in the build tree. If any step fails, distcheck
aborts, leaving you to fix the problem before it will create a distribution.

While not a complete test – it only tries one architecture, after all – distcheck never-
theless catches most packaging errors (as opposed to portability bugs), and its use is highly
recommended.

13.4 Some caveats

Earlier, if you were awake, you noticed that I recommended the use of make before make
dist or make distcheck. This practice ensures that all the generated files are newer than
their inputs. It also solves some problems related to dependency tracking (see Chapter 19
[Advanced GNU Automake Usage], page 179).

Note that currently Automake will allow you to make a distribution when maintainer
mode is off, or when you do not have all the required maintainer tools. That is, you can
make a subtly broken distribution if you are motivated or unlucky. This will be addressed
in a future version of Automake.

13.5 Implementation

In order to understand how to use the more advanced dist-related features, you must
first understand how make dist is implemented. For most packages, what we’ve already
covered will suffice. Few packages will need the more advanced features, though I note that
many use them anyway.

The dist rules work by building a copy of the source tree and then archiving that
copy. This copy is made in stages: a ‘Makefile’ in a particular directory updates the
corresponding directory in the shadow tree. In some cases, automake is run to create a new
‘Makefile.in’ in the new distribution tree.

After each directory’s ‘Makefile’ has had a chance to update the distribution directory,
the appropriate command is run to create the archive. Finally, the temporary directory is
removed.

120 Autoconf, Automake, and Libtool

If your ‘Makefile.am’ defines a dist-hook rule, then Automake will arrange to run this
rule when the copying work for this directory is finished. This rule can do literally anything
to the distribution directory, so some care is required – careless use will result in an unusable
distribution. For instance, Automake will create the shadow tree using links, if possible.
This means that it is inadvisable to modify the files in the ‘dist’ tree in a dist hook. One
common use for this rule is to remove files that erroneously end up in the distribution (in
rare situations this can happen). The variable ‘distdir’ is defined during the dist process
and refers to the corresponding directory in the distribution tree; ‘top_distdir’ refers to
the root of the distribution tree.

Here is an example of removing a file from a distribution:
dist-hook:

-rm $(distdir)/remove-this-file

Chapter 14: Installing and Uninstalling Configured Packages 121

14 Installing and Uninstalling Configured
Packages

Have you ever seen a package where, once built, you were expected to keep the build
tree around forever, and always cd there before running the tool? You might have to cast
your mind way, way back to the bad old days of 1988 to remember such a horrible thing.

The GNU Autotools provides a canned solution to this problem. While not without
flaws, it does provide a reasonable and easy-to-use framework. In this chapter we discuss
how the GNU Autotools installation model, how to convince automake to install files where
you want them, and finally we conclude with some information about uninstalling, including
a brief discussion of its flaws.

14.1 Where files are installed

If you’ve ever run configure --help, you’ve probably been frightened by the huge
number of options offered. Although nobody ever uses more than two or three of these,
they are still important to understand when writing your package; their proper use will
help you figure out where each file should be installed. For a background on these standard
directories and their uses, refer to Chapter 3 [Invoking configure], page 15.

We do recommend using the standard directories as described. While most package
builders only use ‘--prefix’ or perhaps ‘--exec-prefix’, some packages (eg. gnu/Linux
distributions) require more control. For instance, if your package ‘quux’ puts a file into
sysconfigdir, then in the default configuration it will end up in ‘/usr/local/var’.
However, for a gnu/Linux distribution it would make more sense to configure with
‘--sysconfigdir=/var/quux’.

Automake makes it very easy to use the standard directories. Each directory, such as
‘bindir’, is mapped onto a ‘Makefile’ variable of the same name. Automake adds three
useful variables to the standard list:

pkgincludedir
This is a convenience variable whose value is ‘$(includedir)/$(PACKAGE)’.

pkgdatadir
A convenience variable whose value is ‘$(datadir)/$(PACKAGE)’.

pkglibdir
A variable whose value is ‘$(libdir)/$(PACKAGE)’.

These cannot be set on the configure command line but are always defined as above.1

In Automake, a directory variable’s name, without the ‘dir’ suffix, can be used as a
prefix to a primary to indicate install location. Confused yet? And example will help:
items listed in ‘bin_PROGRAMS’ are installed in ‘bindir’.

Automake’s rules are actually a bit more precise than this: the directory and the primary
must agree. It doesn’t make sense to install a library in ‘datadir’, so Automake won’t let
you. Here is a complete list showing primaries and the directories which can be used with
them:

1 There has been some debate in the Autoconf community about extending Autoconf to allow new direc-
tories to be set on the configure command line. Currently the consensus seems to be that there are too
many arguments to configure already.

122 Autoconf, Automake, and Libtool

‘PROGRAMS’
‘bindir’, ‘sbindir’, ‘libexecdir’, ‘pkglibdir’.

‘LIBRARIES’
‘libdir’, ‘pkglibdir’.

‘LTLIBRARIES’
‘libdir’, ‘pkglibdir’.

‘SCRIPTS’ ‘bindir’, ‘sbindir’, ‘libexecdir’, ‘pkgdatadir’.

‘DATA’ ‘datadir’, ‘sysconfdir’, ‘sharedstatedir’, ‘localstatedir’, ‘pkgdatadir’.

‘HEADERS’ ‘includedir’, ‘oldincludedir’, ‘pkgincludedir’.

‘TEXINFOS’
‘infodir’.

‘MANS’ ‘man’, ‘man0’, ‘man1’, ‘man2’, ‘man3’, ‘man4’, ‘man5’, ‘man6’, ‘man7’, ‘man8’, ‘man9’,
‘mann’, ‘manl’.

There are two other useful prefixes which, while not directory names, can be used in
their place. These prefixes are valid with any primary. The first of these is ‘noinst’. This
prefix tells Automake that the listed objects should not be installed, but should be built
anyway. For instance, you can use ‘noinst_PROGRAMS’ to list programs which will not be
installed.

The second such non-directory prefix is ‘check’. This prefix tells Automake that this
object should not be installed, and furthermore that it should only be built when the user
runs make check.

Early in Automake history we discovered that even Automake’s extended built-in list of
directories was not enough – basically anyone who had written a ‘Makefile.am’ sent in a
bug report about this. Now Automake lets you extend the list of directories.

First you must define your own directory variable. This is a macro whose name ends in
‘dir’. Define this variable however you like. We suggest that you define it relative to an
autoconf directory variable; this gives the user some control over the value. Don’t hardcode
it to something like ‘/etc’; absolute hardcoded paths are rarely portable.

Now you can attach the base part of the new variable to a primary just as you can with
the built-in directories:

foodir = $(datadir)/foo
foo_DATA = foo.txt

Automake lets you attach such a variable to any primary, so you can do things you
ordinarily wouldn’t want to do or be allowed to do. For instance, Automake won’t diagnose
this piece of code that tries to install a program in an architecture-independent location:

foodir = $(datadir)/foo
foo_PROGRAMS = foo

Chapter 14: Installing and Uninstalling Configured Packages 123

14.2 Fine-grained control of install

The second most common way2 to configure a package is to set prefix and exec-prefix
to different values. This way, a system administrator on a heterogenous network can arrange
to have the architecture-independent files shared by all platforms. Typically this doesn’t
save very much space, but it does make in-place bug fixing or platform-independent runtime
configuration a lot easier.

To this end, Automake provides finer control to the user than a simple make install.
For instance, the user can strip all the package executables at install time by running make
install-strip (though we recommend setting the various ‘INSTALL’ environment variables
instead; this is discussed later). More importantly, Automake provides a way to install the
architecture-dependent and architecture-independent parts of a package independently.

In the above scenario, installing the architecture-independent files more than once is just
a waste of time. Our hypothetical administrator can install those pieces exactly once, with
make install-data, and then on each type of build machine install only the architecture-
dependent files with make install-exec.

Nonstandard directories specified in ‘Makefile.am’ are also separated along ‘data’ and
‘exec’ lines, giving the user complete control over installation. If, and only if, the directory
variable name contains the string ‘exec’, then items ending up in that directory will be
installed by install-exec and not install-data.

At some sites, the paths referred to by software at runtime differ from those used to
actually install the software. For instance, suppose ‘/usr/local’ is mounted read-only
throughout the network. On the server, where new packages are built, the file system is
available read-write as ‘/w/usr/local’ – a directory which is not mounted anywhere else.
In this situation the sysadmin can configure and build using the runtime values, but use
the ‘DESTDIR’ trick to temporarily change the paths at install time:

./configure --prefix=/usr/local
make
make DESTDIR=/w install

Note that ‘DESTDIR’ operates as a prefix only. Sometimes this isn’t enough. In this
situation you can explicitly override each directory variable:

./configure --prefix=/usr/local
make
make prefix=/w/usr/local datadir=/w/usr/share install

Here is a full example3 showing how you can unpack, configure, and build a typical gnu
program on multiple machines at the same time:

sunos$ tar zxf foo-0.1.tar.gz
sunos$ mkdir sunos linux

In one window:
sunos$ cd sunos
sunos$../foo-0.1/configure --prefix=/usr/local \
> --exec-prefix=/usr/local/sunos

2 The most common way being to simply set prefix.
3 This example assumes the use of GNU tar when extracting; this is standard on Linux but does not come

with Solaris.

124 Autoconf, Automake, and Libtool

sunos$ make
sunos$ make install

And in another window:

sunos$ rsh linux
linux$ cd ~/linux
linux$../foo-0.1/configure --prefix=/usr/local \
> --exec-prefix=/usr/local/linux
linux$ make
linux$ make install-exec

In this example we install everything on the ‘sunos’ machine, but we only install the
platform-dependent files on the ‘linux’ machine. We use a different exec-prefix, so for
example gnu/Linux executables will end up in ‘/usr/local/linux/bin/’.

14.3 Install hooks

As with dist, the install process allows for generic targets which can be used when the
existing install functionality is not enough. There are two types of targets which can be
used: local rules and hooks.

A local rule is named either install-exec-local or install-data-local, and is run
during the course of the normal install procedure. This rule can be used to install things
in ways that Automake usually does not support.

For instance, in libgcj we generate a number of header files, one per Java class.
We want to install them in ‘pkgincludedir’, but we want to preserve the hierarchical
structure of the headers (e.g., we want ‘java/lang/String.h’ to be installed as
‘$(pkgincludedir)/java/lang/String.h’, not ‘$(pkgincludedir)/String.h’), and
Automake does not currently support this. So we resort to a local rule, which is a bit more
complicated than you might expect:

install-data-local:
@for f in $(nat_headers) $(extra_headers); do \

Compute the install directory at runtime.
d="echo $$f | sed -e s,/[^/]*$$,,’"; \

Make the install directory.
$(mkinstalldirs) $(DESTDIR)$(includedir)/$$d; \

Find the header file -- in our case it might be in srcdir or
it might be in the build directory. "p" is the variable that
names the actual file we will install.

if test -f $(srcdir)/$$f; then p=$(srcdir)/$$f; else p=$$f; fi; \
Actually install the file.

$(INSTALL_DATA) $$p $(DESTDIR)$(includedir)/$$f; \
done

A hook is guaranteed to run after the install of objects in this directory has completed.
This can be used to modify files after they have been installed. There are two install hooks,
named install-data-hook and install-exec-hook.

For instance, suppose you have written a program which must be setuid root. You can
accomplish this by changing the permissions after the program has been installed:

Chapter 14: Installing and Uninstalling Configured Packages 125

bin_PROGRAMS = su
su_SOURCES = su.c

install-exec-hook:
chown root $(bindir)/su
chmod u+s $(bindir)/su

Unlike an install hook, and install rule is not guaranteed to be after all other install rules
are run. This lets it be run in parallel with other install rules when a parallel make is used.
Ordinarily this is not very important, and in practice you almost always see local hooks
and not local rules.

The biggest caveat to using a local rule or an install hook is to make sure that it will
work when the source and build directories are not the same—many people forget to do
this. This means being sure to look in ‘$(srcdir)’ when the file is a source file.

It is also very important to make sure that you do not use a local rule when install
order is important – in this case, your ‘Makefile’ will succeed on some machines and fail
on others.

14.4 Uninstall

As if things arent confusing enough, there is still one more major installation-related
feature which we haven’t mentioned: uninstall. Automake adds an uninstall target to
your ‘Makefile’ which does the reverse of install: it deletes the newly installed package.

Unlike install, there is no uninstall-data or uninstall-exec; while possible in
theory we don’t think this would be useful enough to actually use. Like install, you can
write uninstall-local or uninstall-hook rules.

In our experience, uninstall is not a very useful feature. Automake implements it
because it is mandated by the gnu Standards, but it doesn’t work reliably across packages.
Maintainers who write install hooks typically neglect to write uninstall hooks. Also, since
it can’t reliably uninstall a previously installed version of a package, it isn’t useful for
what most people would want to use it for anyway. We recommend using a real packaging
system, several of which are freely available. In particular, GNU Stow, RPM, and the
Debian packaging system seem like good choices.

126 Autoconf, Automake, and Libtool

Chapter 15: Writing Portable C with GNU Autotools 127

15 Writing Portable C with GNU Autotools

GNU Autotools permits you to write highly portable programs. However, using GNU
Autotools is not by itself enough to make your programs portable. You must also write
them portably.

In this chapter we will give an introduction to writing portable programs in C. We
will start with some notes on portable use of the C language itself. We will then discuss
cross-Unix portability. We will finish with some notes on portability between Unix and
Windows.

Portability is a big topic, and we can not cover everything in this chapter. The basic
rule of portable code is to remember that every system is in some ways unique. Do not
assume that every other system is like yours. It is very helpful to be familiar with relevant
standards, such as the iso C standard and the POSIX.1 standard. Finally, there is no
substitute for experience; if you have the opportunity to build and test your program on
different systems, do so.

15.1 C Language Portability

The C language makes it easy to write non-portable code. In this section we discuss
these portability issues, and how to avoid them.

We concentrate on differences that can arise on systems in common use today. For
example, all common systems today define char to be 8 bits, and define a pointer to hold the
address of an 8-bit byte. We do not discuss the more exotic possibilities found on historical
machines or on certain supercomputers. If your program needs to run in unusual settings,
make sure you understand the characteristics of those systems; the system documentation
should include a C portability guide describing the problems you are likely to encounter.

15.1.1 ISO C

The iso C standard first appeared in 1989 (the standard is often called ansi C). It added
several new features to the C language, most notably function prototypes. This led to many
years of portability issues when deciding whether to use iso C features.

We think that programs written today can assume the presence of an iso C compiler.
Therefore, we will not discuss issues related to the differences between iso C compilers and
older compilers—often called K&R compilers, from the first book on C by Kernighan and
Ritchie. You may see these differences handled in older programs.

There is a newer C standard called ‘C9X’. Because compilers that support it are not
widely available as of this writing, this discussion does not cover it.

15.1.2 C Data Type Sizes

The C language defines data types in terms of a minimum size, rather than an exact
size. As of this writing, this mainly matters for the types int and long. A variable of type
int must be at least 16 bits, and is often 32 bits. A variable of type long must be at least
32 bits, and is sometimes 64 bits.

128 Autoconf, Automake, and Libtool

The range of a 16 bit number is -32768 to 32767 for a signed number, or 0 to 65535 for
an unsigned number. If a variable may hold numbers larger than 16 bits, use long rather
than int. Never assume that int or long have a specific size, or that they will overflow
at a particular point. When appropriate, use variables of system defined types rather than
int or long:

size_t Use this to hold the size of an object, as returned by sizeof.

ptrdiff_t
Use this to hold the difference between two pointers into the same array.

time_t Use this to hold a time value as returned by the time function.

off_t On a Unix system, use this to hold a file position as returned by lseek.

ssize_t Use this to hold the result of the Unix read or write functions.

Some books on C recommend using typedefs to specify types of particular sizes, and
then adjusting those typedefs on specific systems. GNU Autotools supports this using the
‘AC_CHECK_SIZEOF’ macro. However, while we agree with using typedefs for clarity, we do
not recommend using them purely for portability. It is safest to rely only on the minimum
size assumptions made by the C language, rather than to assume that a type of a specific
size will always be available. Also, most C compilers will define int to be the most efficient
type for the system, so it is normally best to simply use int when possible.

15.1.3 C Endianness

When a number longer than a single byte is stored in memory, it must be stored in
some particular format. Modern systems do this by storing the number byte by byte such
that the bytes can simply be concatenated into the final number. However, the order of
storage varies: some systems store the least significant byte at the lowest address in memory,
while some store the most significant byte there. These are referred to as little-endian and
big-endian systems, respectively.1

This difference means that portable code may not make any assumptions about the order
of storage of a number. For example, code like this will act differently on different systems:

/* Example of non-portable code; don’t do this */
int i = 4;
char c = *(char *) i;

Although that was a contrived example, real problems arise when writing numeric data
in a file or across a network connection. If the file or network connection may be read
on a different type of system, numeric data must be written in a format which can be
uambiguously recovered. It is not portable to simply do something like

/* Example of non-portable code; don’t do this */
write (fd, &i, sizeof i);

This example is non-portable both because of endianness and because it assumes that
the size of the type of i are the same on both systems.

Instead, do something like this:

1 These names come from Gulliver’s Travels.

Chapter 15: Writing Portable C with GNU Autotools 129

int j;
char buf[4];
for (j = 0; j < 4; ++j)
buf[j] = (i >> (j * 8)) & 0xff;

write (fd, buf, 4); /* In real code, check the return value */

This unambiguously writes out a little endian 4 byte value. The code will work on any
system, and the result can be read unambiguously on any system.

Another approach to handling endianness is to use the htons and ntohs functions avail-
able on most systems. These functions convert between network endianness and host endi-
anness. Network endianness is big-endian; it has that name because the standard TCP/IP
network protocols use big-endian ordering.

These functions come in two sizes: htonl and ntohl operate on 4-byte quantities, and
htons and ntohs operate on 2-byte quantities. The hton functions convert host endianness
to network endianness. The ntoh functions convert network endianness to host endianness.
On big-endian systems, these functions simply return their arguments; on little-endian
systems, they return their arguments after swapping the bytes.

Although these functions are used in a lot of existing code, they can be difficult to use
in highly portable code, because they require knowing the exact size of your data types. If
you know that the type int is exactly 4 bytes long, then it is possible to write code like the
following:

int j;
j = htonl (i);
write (fd, &j, 4);

However, if int is not exactly 4 bytes long, this example will not work correctly on all
systems.

15.1.4 C Structure Layout

C compilers on different systems lay out structures differently. In some cases there can
even be layout differences between different C compilers on the same system. Compilers
add gaps between fields, and these gaps have different sizes and are at different locations.
You can normally assume that there are no gaps between fields of type char or array of
char. However, you can not make any assumptions about gaps between fields of any larger
type. You also can not make any assumptions about the layout of bitfield types.

These structure layout issues mean that it is difficult to portably use a C struct to define
the format of data which may be read on another type of system, such as data in a file or
sent over a network connection. Portable code must read and write such data field by field,
rather than trying to read an entire struct at once.

Here is an example of non-portable code when reading data which may have been written
to a file or a network connection on another type of system. Don’t do this.

/* Example of non-portable code; don’t do this */
struct {
short i;
int j;

} s;
read (fd, &s, sizeof s);

130 Autoconf, Automake, and Libtool

Instead, do something like this (the struct s is assumed to be the same as above):

unsigned char buf[6];
read (fd, buf, sizeof buf); /* Should check return value */
s.i = buf[0] | (buf[1] << 8);
s.j = buf[2] | (buf[3] << 8) | (buf[4] << 16) | (buf[5] << 24);

Naturally the code to write out the structure should be similar.

15.1.5 C Floating Point

Most modern systems handle floating point following the IEEE-695 standard. However,
there are still portability issues.

Most processors use 64 bits of precision when computing floating point values. However,
the widely used Intel x86 series of processors compute temporary values using 80 bits of
precision, as do most instances of the Motorola 68k series. Some other processors, such
as the PowerPC, provide fused multiply-add instructions which perform a multiplication
and an addition using high precision for the intermediate value. Optimizing compilers will
generate such instructions based on sequences of C operations.

For almost all programs, these differences do not matter. However, for programs which
do intensive floating point operations, the differences can be significant. It is possible to
write floating point loops which terminate on one sort of processor but not on another.

Unfortunately, there is no rule of thumb that can be used to avoid these problems.
Most compilers provide an option to disable the use of extended precision (for gnu cc, the
option is ‘-ffloat-store’). However, on the one hand, this merely shifts the portability
problem elsewhere, and, on the other, the extended precision is often good rather than bad.
Although these portability problems can not be easily avoided, you should at least be aware
of them if you write programs which require very precise floating point operations.

The IEEE-695 standard specifies certain flags which the floating point processor should
make available (e.g., overflow, underflow, inexact), and specifies that there should be some
control over the floating point rounding mode. Most processors make these flags and controls
available; however, there is no portable way to access them. A portable program should
not assume that it will have this degree of control over floating point operations.

15.1.6 gnu cc Extensions

The gnu cc compiler has several useful extensions, which are documented in the gnu
cc manual. A program which must be portable to other C compilers must naturally avoid
these extensions; the ‘-pedantic’ option may be used to warn about any accidental use of
an extension.

However, the gnu cc compiler is itself highly portable, and it runs on all modern Unix
platforms as well as on Windows. Depending upon your portability requirements, you may
be able to simply assume that gnu cc is available, in which case your program may use
extensions when they are useful. Note that some extensions are inherently non-portable,
such as inline assembler code, or using attributes to specify a particular section for a function
or a global variable.

Chapter 15: Writing Portable C with GNU Autotools 131

15.2 Cross-Unix Portability

In the previous section, we discussed issues related to the C language. Here we will
discuss the portability of C programs across different Unix implementations. All modern
Unix systems conform to the POSIX.1 (1990 edition) and POSIX.2 (1992 edition) standards.
They also all support the sockets interface for networking code. However, there are still
significant differences between systems which can affect portability.

We will not discuss portability to older Unix systems which do not conform to the POSIX
standards. If you need this sort of portability, you can often find some valuable hints in
the set of macros defined by autoconf, and in the ‘configure.in’ files of older programs
which use autoconf.

15.2.1 Cross-Unix Function Calls

Functions not mentioned in POSIX.1 may not be available on all systems. If you
want to use one of these functions, you should normally check for its presence by using
‘AC_CHECK_FUNCS’ in your ‘configure.in’ script, and adapt to its absence if possible. Here
is a list of some popular functions which are available on many, but not all, modern Unix
systems:

alloca There are several portability issues with alloca. See the description of AC_
FUNC_ALLOCA in the autoconf manual. Although this function can be very
convenient, it is normally best to avoid it in highly portable code.

dlopen gnu libtool provides a portable alternate interface to dlopen. See Chapter 17
[Dynamic Loading], page 155.

getline In some cases fgets may be used as a fallback. In others, you will need to
provide your own version of this function.

getpagesize
On some systems, the page size is available as the macro PAGE_SIZE in the
header file ‘sys/param.h’. On others, the page size is available via the sysconf
function. If none of those work, you must generally simply guess a value such
as 4096.

gettimeofday
When this is not available, fall back to a less precise function such as time or
ftime (which itself is not available on all systems).

mmap In some cases you can use either mmap or ordinary file I/O. In others, a program
which uses mmap will simply not be portable to all Unix systems. Note that mmap
is an optional part of the 1996 version of POSIX.1, so it is likely to be added
to all Unix systems over time.

ptrace Unix systems without ptrace generally provide some other mechanism for de-
bugging subprocesses, such as ‘/proc’. However, there is no widely portable
method for controlling subprocesses, as evidenced by the source code to the
gnu debugger, gdb.

setuid Different Unix systems handle this differently. On some systems, any program
can switch between the effective user ID of the executable and the real user ID.

132 Autoconf, Automake, and Libtool

On others, switching to the real user ID is final; some of those systems provide
the setreuid function instead to switch the effective and real user ID. The
effect when a program run by the superuser calls setuid varies among systems.

snprintf If this is not available, then in some cases it will be reasonable to simply use
sprintf, and in others you will need to write a little routine to estimate the
required length and allocate an appropriate buffer before calling sprintf.

strcasecmp
strdup
strncasecmp

You can normally provide your own version of these simple functions.

valloc When this is not available, just use malloc instead.

vfork When this is not available, just use fork instead.

15.2.2 Cross-Unix System Interfaces

There are several Unix system interfaces which have associated portability issues. We
do not have the space here to discuss all of these in detail across all Unix systems. However,
we mention them here to indicate issues where you may need to consider portability.

‘curses’
‘termcap’
‘terminfo’

Many Unix systems provide the ‘curses’ interface for simple graphical terminal
access, but the name of the library varies. Typical names are ‘-lcurses’ or
‘-lncurses’. Some Unix systems do not provide ‘curses’, but do provide
the ‘-ltermcap’ or ‘-lterminfo’ library. The latter libraries only provide an
interface to the ‘termcap’ file or ‘terminfo’ files. These files contain information
about specific terminals, the difference being mainly the manner in which they
are stored.

‘proc file system’
The ‘/proc’ file system is not available on all Unix systems, and when it is
available the actual set of files and their format varies.

‘pseudo terminals’
All Unix systems provide pseudo terminals, but the interface to obtain them
varies widely. We recommend examining the configuration of an existing pro-
gram which uses them, such as gnu emacs or Expect.

‘shared libraries’
Shared libraries differ across Unix systems. The gnu libtool program was writ-
ten to provide an interface to hide the differences. See Chapter 10 [Introducing
GNU Libtool], page 69.

‘termios’
‘termio’
‘tty’ The ‘termios’ interface to terminals is standard on modern Unix systems.

Avoid the older, non-portable, ‘termio’ and ‘tty’ interfaces (these interfaces
are defined in ‘termio.h’ and ‘sgtty.h’, respectively).

Chapter 15: Writing Portable C with GNU Autotools 133

‘threads’ Many, but not all, Unix systems support multiple threads in a single process,
but the interfaces differ. One thread interface, pthreads, was standardized in
the 1996 edition of POSIX.1, so Unix systems are likely to converge on that
interface over time.

‘utmp’
‘wtmp’ Most Unix systems maintain the ‘utmp’ and ‘wtmp’ files to record information

about which users are logged onto the system. However, the format of the
information in the files varies across Unix systems, as does the exact location of
the files and the functions which some systems provide to access the information.
Programs which merely need to obtain login information will be more portable
if they invoke a program such as w. Programs which need to update the login
information must be prepared to handle a range of portability issues.

‘X Window System’
Version 11 of the X Window System is widely available across Unix systems.
The actual release number varies somewhat, as does the set of available pro-
grams and window managers. Extensions such as OpenGL are not available on
all systems.

15.3 Unix/Windows Portability

Unix and Windows are very different operating systems, with very different APIs and
functionality. However, it is possible to write programs which run on both Unix and Win-
dows, with significant extra work and some sacrifice in functionality. For more information
on how GNU Autotools can help you write programs which run on both Unix and Windows,
see Chapter 25 [Integration with Cygnus Cygwin], page 231.

15.3.1 Unix/Windows Emulation

The simplest way to write a program which runs on both Unix and Windows is to use
an emulation layer. This generally results in a program which runs, but does not really feel
like other programs for the operating system in question.

For example, the Cygwin package, which is freely available from Cygnus Solutions2,
provides a Unix API which works on Windows. This permits Unix programs to be compiled
to run on Windows. It is even possible to run an X server in the Cygwin environment, so
graphical programs will work as well, although they will not have the Windows look and
feel. The Cygwin package is discussed in more detail in see Chapter 25 [Integration with
Cygnus Cygwin], page 231.

There are also commercial packages available to compile Unix programs for Windows
(e.g., Interix) and to compile Windows programs on Unix (e.g., Bristol Technology).

The main disadvantage with using an emulation layer is that the resulting programs
have the wrong look and feel. They do not behave as users expect, so they are awkward to
use. This is generally not acceptable for high quality programs.

2 http://sourceware.cygnus.com/cygwin/

http://sourceware.cygnus.com/cygwin/

134 Autoconf, Automake, and Libtool

15.3.2 Unix/Windows Portable Scripting Language

Another approach to Unix/Windows portability is to develop the program using a
portable scripting language. An example of such a scripting language is Tcl/Tk3. Programs
written in Tcl/Tk will work on both Unix and Windows (and on the Apple Macintosh op-
erating system as well, for that matter). Graphical programs will more or less follow the
look and feel for the platform upon which they are run. Since Tcl/Tk was originally devel-
oped on Unix, graphical Tcl/Tk programs will typically not look quite right to experienced
Windows users, but they will be usable and of reasonable quality. Other portable scripting
languages are Perl, Python, and Guile.

One disadvantage of this approach is that scripting languages tend to be less efficient
than straight C code, but it is often possible to recode important routines in C. Another
disadvantage is the need to learn a new language, one which furthermore may not be well
designed for large programming projects.

15.3.3 Unix/Windows User Interface Library

Some programs’ main interaction with the operating system is drawing on the screen.
It is often possible to write such programs using a cross platform user interface library.

A cross-platform user interface library is a library providing basic windowing functions
which has been implemented separately for Unix and Windows. The program calls generic
routines which are translated into the appropriate calls on each platform. These libraries
generally provide a good look and feel on each platform, so this can be a reasonable approach
for programs which do not require additional services from the system.

The main disadvantage is the least common denominator effect: the libraries often only
provide functionality which is available on both Unix and Windows. Features specific to
either Unix or Windows may be very useful for the program, but they may not be available
via the library.

15.3.4 Unix/Windows Specific Code

When writing a program which should run on both Unix and Windows, it is possible
to simply write different code for the two platforms. This requires a careful separation of
the operating system interface, including the graphical user interface, from the rest of the
program. An API must be designed to provide the system needs, and that API must be
implemented separately on Unix and Windows. The API should be set at an appropriate
level to avoid the least common denominator effect.

This approach can be useful for a program which has significant platform independent
computation as well as significant user interface or other system needs. It generally produces
better results than the other approaches discussed above. The disadvantage is that this
approach requires much more work that the others discussed above.

3 http://www.scriptics.com/

http://www.scriptics.com/

Chapter 15: Writing Portable C with GNU Autotools 135

15.3.5 Unix/Windows Issues

Whatever approach is used to support the program on both Unix and Windows, there
are certain issues which may affect the design of the program, or many specific areas of the
program.

15.3.5.1 Text and Binary Files

Windows supports two different types of files: text files and binary files. On Unix, there
is no such distinction. On Windows, any program which uses files must know whether each
file is text or binary, and open and use them accordingly.

In a text file on Windows, each line is terminated with a carriage return character
followed by a line feed character. When the file is read by a C program in text mode, the C
library converts each carriage return/line feed pair into a single line feed character. If the
file is read in binary mode, the program will see both the carriage return and the line feed.

You may have seen this distinction when transferring files between Unix and Window
systems via ftp. You need to set the ftp program into binary or text mode as appropriate
for the file you want to transfer.

When transferring a binary file, the ftp program simply transfers the data unchanged.
When transferring a text file, the ftp program must convert each carriage return/line feed
pair into a single line feed.

When using the C standard library, a binary file is indicated by adding b after the r,
w, or a in the call to fopen. When reading a text file, the program can not simply count
characters and use that when computing arguments to fseek.

15.3.5.2 File system Issues

There are several differences between the file systems used on Unix and Windows, mainly
in the areas of what names can be used for files. The program doschk, which can be found
in the gcc distribution, may be used on Unix to check for filenames which are not permitted
on DOS or Windows.

15.3.5.3 DOS Filename Restrictions

The older dos fat file systems have severe limitations on file names. These limitations
no longer apply to Windows, but they do apply to DOS based systems such as djgpp.

A file name may consist of no more than 8 characters, followed by an optional extension
of no more than 3 characters. This is commonly referred to as an 8.3 file name. Filenames
are case insensitive.

There are a couple of filenames which are treated specially. You can not name a file
‘aux’ or ‘prn’. In some cases, you can not even use an extension, such as ‘aux.c’. These
restrictions apply to DOS and also to at least some versions of Windows.

15.3.5.4 Windows File Name Case

Windows normally folds case when referring to files, unlike Unix. That is, on Windows,
the file names ‘file’, ‘File’, and ‘FiLe’ all refer to the same file. You must be aware of

136 Autoconf, Automake, and Libtool

this when porting Unix programs to Windows, as the Unix programs may expect that using
different case is reflected in the file system.

For example, the procedure used to build the program perl from source relies on dis-
tinguishing between the files PERL and perl. This fails on Windows.

As a matter of interest, the Windows file system stores files under the name with which
they were created. The dos shell displays the names in all upper case. The Explorer shell
displays them with each word in the file name capitalized.

15.3.5.5 Whitespace in File Names

Both Unix and Windows file systems permit whitespace in file names. However, Unix
users rarely take advantage of this, while Windows users often do. For example, many
Windows systems use a directory named ‘Program Files’, whose name has an embedded
space. This is a clash of conventions.

Many programs developed on Unix unintentionally assume that there will be no spaces
in file and directory names, and behave mysteriously if any are encountered. On Unix these
bugs will almost never be seen. On Windows, they will pop up immediately.

When writing a program which must run on Windows, consider these issues. Don’t
forget to test it on directories and files with embedded spaces.

15.3.5.6 Windows Separators and Drive Letters

On Unix, directories in a file name are seperated by a forward slash (‘/’). On Windows,
directories are separated by a backward slash (‘\’). For example, the Unix file ‘dir/file’
on Windows would be ‘dir\file’.4

On Unix, a list of directories is normally separated by a colon (‘:’). On Windows, a
list of directories is normally separated by a semicolon (‘;’). For example, a simple Unix
search path might look like this: ‘/bin:/usr/bin’. The same search path on Windows
would probably look like this: ‘c:\bin;c:\usr\bin’.

On Unix, the file system is a single tree rooted at the directory simply named ‘/’. On
Windows, there are multiple file system trees. Absolute file names often start with a drive
letter followed by a colon. Windows maintains a default drive, and a default directory on
each drive, which can make it difficult for a program to convert a relative file name into
the absolute file name intended by the user. Windows permits referring to files on other
systems by using a file name which starts with two slashes followed by a system name.

15.3.5.7 Miscellaneous Issues

Windows shared libraries (dlls) are different from typical Unix shared libraries. They
require special declarations for global variables declared in a shared library. Programs which
use shared libraries must generally use special macros in their header files to define these
appropriately. gnu libtool can help with some shared library issues, but not all.

4 Windows does permit a program to use a forward slash to separate directories when calling routines such
as ‘fopen’. However, Windows users do not expect to type forward slashes when they enter file names,
and they do not expect to see forward slashes when a file name is printed.

Chapter 15: Writing Portable C with GNU Autotools 137

There are some Unix system features which are not supported under Windows: pseudo
terminals, effective user ID, file modes with user/group/other permission, named FIFOs, an
executable overriding functions called by shared libraries, select on anything other than
sockets.

There are some Windows system features which are not supported under Unix: the
Windows event loop, many graphical capabilities, some aspects of the rich set of interthread
communication mechanisms, the WSAAsyncSelect function. You should keep these issues in
mind when designing and writing a program which should run on both Unix and Windows.

138 Autoconf, Automake, and Libtool

Chapter 16: Writing Portable C++ with GNU Autotools 139

16 Writing Portable C++ with GNU Autotools

My first task in industry was to port a large C++ application from one Unix platform
to another. My colleagues immediately offered their sympathies and I remember my initial
reaction–‘what’s the big deal?’. After all, this application used the C++ standard library,
a modest subset of common Unix system calls and C++ was approaching iso standardiza-
tion. Little did I know what lay ahead—endless hurdles imposed by differences to C++
implementations in use on those platforms.

Being essentially a superset of the C programming language, C++ suffers from all of the
machine-level portability issues described in Chapter 15 [Writing Portable C], page 127. In
addition to this, variability in the language and standard libraries present additional trouble
when writing portable C++ programs.

There have been comprehensive guides written on C++ portability (see Section 16.5 [Fur-
ther Reading], page 152). This chapter will attempt to draw attention to the less portable
areas of the C++ language and describe how the GNU Autotools can help you overcome
these (see Section 16.4 [How GNU Autotools Can Help], page 151). In many instances,
the best approach to multi-platform C++ portability is to simply re-express your programs
using more widely supported language constructs. Fortunately, this book has been written
at a time when the C++ language standard has been ratified and C++ implementations are
rapidly conforming. Gladly, as time goes on the necessity for this chapter will diminish.

16.1 Brief History of C++

C++ was developed in 1983 by Bjarne Stroustrup at at&t. Stroustrup was seeking
a new object-oriented language with which to write simulations. C++ has now become a
mainstream systems programming language and is increasingly being used to implement
free software packages. C++ underwent a lengthy standardization process and was ratified
as an iso standard in 1998.

The first specification of C++ was available in a book titled ‘The Annotated C++ Refer-
ence Manual’ by Stroustrup and Ellis, also known as the ‘ARM’. Since this initial specifica-
tion, C++ has developed in some areas. These developments will be discussed in Section 16.2
[Changeable C++], page 140.

The first C++ compiler, known as cfront, was produced by Stroustrup at AT&T. Because
of its strong ties to C and because C is such a general purpose systems language, cfront
consisted of a translator from C++ to C. After translation, an existing C compiler was
used to compile the intermediate C code down to machine code for almost any machine
you care to mention. C++ permits overloaded functions—that is, functions with the same
name but different argument lists, so cfront implemented a name mangling algorithm (see
Section 16.3.2 [Name Mangling], page 149) to give each function a unique name in the
linker’s symbol table.

In 1989, the first true C++ compiler, G++, was written by Michael Tiemann of Cygnus
Support. G++ mostly consisted of a new front-end to the gcc portable compiler, so G++
was able to produce code for most of the targets that gcc already supported.

In the years following, a number of new C++ compilers were produced. Unfortunately
many were unable to keep pace with the development of the language being undertaken by

140 Autoconf, Automake, and Libtool

the standards committee. This divergence of implementations is the fundamental cause of
non-portable C++ programs.

16.2 Changeable C++

The C++ standard encompasses the language and the interface to the standard library,
including the Standard Template Library (see Section 16.2.13 [Standard Template Library],
page 148). The language has evolved somewhat since the ARM was published; mostly driven
by the experience of early C++ users.

In this section, the newer features of C++ will be briefly explained. Alternatives to
these features, where available, will be presented when compiler support is lacking. The
alternatives may be used if you need to make your code work with older C++ compilers
or to avoid these features until the compilers you are concerned with are mature. If you
are releasing a free software package to the wider community, you may need to specify
a minimum level of standards conformance for the end-user’s C++ compiler, or use the
unappealing alternative of using lowest-common denominator C++ features.

In covering these, we’ll address the following language features:
• Built-in bool type
• Exceptions
• Casts
• Variable scoping in for loops
• Namespaces
• The explicit keyword
• The mutable keyword
• The typename keyword
• Runtime Type Identification (rtti)
• Templates
• Default template arguments
• Standard library headers
• Standard Template Library (stl)

16.2.1 Built-in bool type

C++ introduced a built-in boolean data type called bool. The presence of this new type
makes it unnecessary to use an int with the values 0 and 1 and improves type safety. The
two possible values of a bool are true and false–these are reserved words. The compiler
knows how to coerce a bool into an int and vice-versa.

If your compiler does not have the bool type and false and true keywords, an alter-
native is to produce such a type using a typedef of an enumeration representing the two
possible values:

enum boolvals { false, true };
typedef enum boolvals bool;

What makes this simple alternative attractive is that it prevents having to adjust the
prolific amount of code that might use bool objects once your compiler supports the built-in
type.

Chapter 16: Writing Portable C++ with GNU Autotools 141

16.2.2 Exceptions

Exception handling is a language feature present in other modern programming lan-
guages. Ada and Java both have exception handling mechanisms. In essence, exception
handling is a means of propogating a classified error by unwinding the procedure call stack
until the error is caught by a higher procedure in the procedure call chain. A procedure
indicates its willingness to handle a kind of error by catching it:

void foo ();

void
func ()
{
try {
foo ();

}
catch (...) {
cerr << "foo failed!" << endl;

}
}

Conversely, a procedure can throw an exception when something goes wrong:
typedef int io_error;

void
init ()
{

int fd;
fd = open ("/etc/passwd", O_RDONLY);
if (fd < 0) {
throw io_error(errno);

}
}

C++ compilers tend to implement exception handling in full, or not at all. If any C++
compiler you may be concerned with does not implement exception handling, you may
wish to take the lowest common denominator approach and eliminate such code from your
project.

16.2.3 Casts

C++ introduced a collection of named casting operators to replace the conventional
C-style cast of the form (type) expr. The new casting operators are static_cast,
reinterpret_cast, dynamic_cast and const_cast. They are reserved words.

These refined casting operators are vastly preferred over conventional C casts for C++
programming. In fact, even Stroustrup recommends that the older style of C casts be
banished from programming projects where at all possible The C++ Programming Language,
3rd edition. Reasons for preferring the new named casting operators include:

− They provide the programmer with a mechanism for more explicitly specifying the kind
of type conversion. This assists the compiler in identifying incorrect conversions.

142 Autoconf, Automake, and Libtool

− They are easier to locate in source code, due to their unique syntax:
X_cast<type>(expr).

If your compiler does not support the new casting operators, you may have to continue
to use C-style casts—and carefully! I have seen one project agree to use macros such as the
one shown below to encourage those involved in the project to adopt the new operators.
While the syntax does not match that of the genuine operators, these macros make it easy
to later locate and alter the casts where they appear in source code.

#define static_cast(T,e) (T) e

16.2.4 Variable Scoping in For Loops

C++ has always permitted the declaration of a control variable in the initializer section
of for loops:

for (int i = 0; i < 100; i++)
{

...
}

The original language specification allowed the control variable to remain live until the
end of the scope of the loop itself:

for (int i = 0; i < j; i++)
{
if (some condition)
break;

}

if (i < j)
// loop terminated early

In a later specification of the language, the control variable’s scope only exists within
the body of the for loop. The simple resolution to this incompatible change is to not use
the older style. If a control variable needs to be used outside of the loop body, then the
variable should be defined before the loop:

int i;

for (i = 0; i < j; i++)
{
if (some condition)
break;

}

if (i < j)
// loop terminated early

16.2.5 Namespaces

C++ namespaces are a facility for expressing a relationship between a set of related
declarations such as a set of constants. Namespaces also assist in constraining names so that
they will not collide with other idential names in a program. Namespaces were introduced to

Chapter 16: Writing Portable C++ with GNU Autotools 143

the language in 1993 and some early compilers were known to have incorrectly implemented
namespaces. Here’s a small example of namespace usage:

namespace Animals {
class Bird {
public:
fly (); {} // fly, my fine feathered friend!

};
};

// Instantiate a bird.
Animals::Bird b;

For compilers which do not correctly support namespaces it is possible to achieve a
similar effect by placing related declarations into an enveloping structure. Note that this
utilises the fact that C++ structure members have public protection by default:

struct Animals {
class Bird {
public:
fly (); {} // fly, my find feathered friend!

};
protected

// Prohibit construction.
Animals ();

};

// Instantiate a bird.
Animals::Bird b;

16.2.6 The explicit Keyword

C++ adopted a new explicit keyword to the language. This keyword is a qualifier used
when declaring constructors. When a constructor is declared as explicit, the compiler
will never call that constructor implicitly as part of a type conversion. This allows the
compiler to perform stricter type checking and to prevent simple programming errors. If
your compiler does not support the explicit keyword, you should avoid it and do without
the benefits that it provides.

16.2.7 The mutable Keyword

C++ classes can be designed so that they behave correctly when const objects of those
types are declared. Methods which do not alter internal object state can be qualified as
const:

class String
{
public:
String (const char* s);
~String ();

size_t Length () const { return strlen (buffer); }

144 Autoconf, Automake, and Libtool

private:
char* buffer;

};

This simple, though incomplete, class provides a Length method which guarantees, by
virtue of its const qualifier, to never modify the object state. Thus, const objects of this
class can be instantiated and the compiler will permit callers to use such objects’ Length
method.

The mutable keyword enables classes to be implemented where the concept of constant
objects is sensible, but details of the implementation make it difficult to declare essential
methods as const. A common application of the mutable keyword is to implement classes
that perform caching of internal object data. A method may not modify the logical state
of the object, but it may need to update a cache–an implementation detail. The data
members used to implement the cache storage need to be declared as mutable in order for
const methods to alter them.

Let’s alter our rather farfetched String class so that it implements a primitive cache
that avoids needing to call the strlen library function on each invocation of Length ():

class String
{
public:
String (const char* s) :length(-1) { /* copy string, etc. */ }
~String ();

size_t Length () const
{
if (length < 0)

length = strlen(buffer);
return length;

}

private:
char* buffer;
mutable size_t length;

}

When the mutable keyword is not available, your alternatives are to avoid implementing
classes that need to alter internal data, like our caching string class, or to use the const_
cast casting operator (see Section 16.2.3 [Casts], page 141) to cast away the ‘constness’ of
the object.

16.2.8 The typename Keyword

The typename keyword was added to C++ after the initial specification and is not rec-
ognized by all compilers. It is a hint to the compiler that a name following the keyword is
the name of a type. In the usual case, the compiler has sufficient context to know that a
symbol is a defined type, as it must have been encountered earlier in the compilation:

Chapter 16: Writing Portable C++ with GNU Autotools 145

class Foo
{
public:
typedef int map_t;

};

void
func ()
{

Foo::map_t m;
}

Here, map_t is a type defined in class Foo. However, if func happened to be a function
template, the class which contains the map_t type may be a template parameter. In this
case, the compiler simply needs to be guided by qualifying T::map_t as a type name:

class Foo
{
public:
typedef int map_t;

};

template <typename T>
void func ()
{

typename T::map_t t;
}

16.2.9 Runtime Type Identification (rtti)

Run-time Type Identification, or rtti, is a mechanism for interrogating the type of an
object at runtime. Such a mechanism is useful for avoiding the dreaded switch-on-type
technique used before rtti was incorporated into the language. Until recently, some C++
compilers did not support rtti, so it is necessary to assume that it may not be widely
available.

Switch-on-type involves giving all classes a method that returns a special type token
that an object can use to discover its own type. For example:

class Shape
{
public:

enum types { TYPE_CIRCLE, TYPE_SQUARE };
virtual enum types type () = 0;

};

class Circle: public Shape
{
public:
enum types type () { return TYPE_CIRCLE; }
};

146 Autoconf, Automake, and Libtool

class Square: public Shape
{
public:

enum types type () { return TYPE_SQUARE; }
};

Although switch-on-type is not elegant, rtti isn’t particularly object-oriented either.
Given the limited number of times you ought to be using rtti, the switch-on-type technique
may be reasonable.

16.2.10 Templates

Templates—known in other languages as generic types—permit you to write C++ classes
which represent parameterized data types. A common application for class templates is
container classes. That is, classes which implement data structures that can contain data of
any type. For instance, a well-implemented binary tree is not interested in the type of data
in its nodes. Templates have undergone a number of changes since their initial inclusion in
the ARM. They are a particularly troublesome C++ language element in that it is difficult
to implement templates well in a C++ compiler.

Here is a fictitious and overly simplistic C++ class template that implements a fixed-sized
stack. It provides a pair of methods for setting (and getting) the element at the bottom of
the stack. It uses the modern C++ template syntax, including the new typename keyword
(see Section 16.2.8 [The typename Keyword], page 144).

template <typename T> class Stack
{
public:
T first () { return stack[9]; }
void set_first (T t) { stack[9] = t; }

private:
T stack[10];

};

C++ permits this class to be instantiated for any type you like, using calling code that
looks something like this:

int
main ()
{
Stack<int> s;
s.set_first (7);
cout << s.first () << endl;
return 0;

}

An old trick for fashioning class templates is to use the C preprocessor. Here is our
limited Stack class, rewritten to avoid C++ templates:

Chapter 16: Writing Portable C++ with GNU Autotools 147

#define Stack(T) \
class Stack__##T##__LINE__ \
{ \
public: \
T first () { return stack[0]; } \
void set_first (T t) { stack[0] = t; } \

\
private: \
T stack[10]; \

}

There is a couple of subtleties being used here that should be highlighted. This generic
class declaration uses the C preprocessor operator ‘##’ to generate a type name which is
unique amongst stacks of any type. The __LINE__ macro is defined by the preprocessor and
is used here to maintain unique names when the template is instantiated multiple times.
The trailing semicolon that must follow a class declaration has been omitted from the macro.

int
main ()
{
Stack (int) s;
s.set_first (7);
cout << s.first () << endl;
return 0;

}

The syntax for instantiating a Stack is slightly different to modern C++, but it does work
relatively well, since the C++ compiler still applies type checking after the preprocessor has
expanded the macro. The main problem is that unless you go to great lengths, the generated
type name (such as Stack__int) could collide with other instances of the same type in the
program.

16.2.11 Default template arguments

A later refinement to C++ templates was the concept of default template arguments.
Templates allow C++ types to be parameterized and as such, the parameter is in essence a
variable that the programmer must specify when instantiating the template. This refinement
allows defaults to be specified for the template parameters.

This feature is used extensively throughout the Standard Template Library (see Sec-
tion 16.2.13 [Standard Template Library], page 148) to relieve the programmer from having
to specify a comparision function for sorted container classes. In most circumstances, the
default less-than operator for the type in question is sufficient.

If your compiler does not support default template arguments, you may have to suffer
without them and require that users of your class and function templates provide the default
parameters themselves. Depending on how inconvenient this is, you might begrudingly seek
some assistance from the C preprocessor and define some preprocessor macros.

16.2.12 Standard library headers

Newer C++ implementations provide a new set of standard library header files. These
are distinguished from older incompatible header files by their filenames—the new headers

148 Autoconf, Automake, and Libtool

omit the conventional ‘.h’ extension. Classes and other declarations in the new headers
are placed in the std namespace. Detecting the kind of header files present on any given
system is an ideal application of Autoconf. For instance, the header ‘<vector>’ declares
the class std::vector<T>. However, if it is not available, ‘<vector.h>’ declares the class
vector<T> in the global namespace.

16.2.13 Standard Template Library

The Standard Template Library (stl) is a library of containers, iterators and algorithms.
I tend to think of the stl in terms of the container classes it provides, with algorithms and
iterators necessary to make these containers useful. By segregating these roles, the STL
becomes a powerful library—containers can store any kind of data and algorithms can use
iterators to traverse the containers.

There are about half a dozen stl implementations. Since the stl relies so heavily on
templates, these implementations tend to inline all of their method definitions. Thus, there
are no precompiled stl libraries, and as an added bonus, you’re guaranteed to get the source
code to your stl implementation. Hewlett-Packard and SGI produce freely redistributable
stl implementations.

It is widely known that the stl can be implemented with complex C++ constructs and
is a certain workout for any C++ compiler. The best policy for choosing an stl is to use a
modern compiler such as gcc 2.95 or to use the stl that your vendor may have provided
as part of their compiler.

Unfortunately, using the stl is pretty much an ‘all or nothing’ proposition. If it is not
available on a particular system, there are no viable alternatives. There is a macro in the
Autoconf macro archive (see Section 23.5.1 [Autoconf macro archive], page 222) that can
test for a working stl.

16.3 Compiler Quirks

C++ compilers are complex pieces of software. Sadly, sometimes the details of a com-
piler’s implementations leak out and bother the application programmer. The two aspects
of C++ compiler implementation that have caused grief in the past are efficient template
instantiation and name mangling. Both of these aspects will be explained.

16.3.1 Template Instantiation

The problem with template instantiation exists because of a number of complex con-
straints:

− The compiler should only generate an instance of a template once, to speed the com-
pilation process.

− The linker needs to be smart about where to locate the object code for instantiations
produced by the compiler.

This problem is exacerbated by separate compilation—that is, the method bodies for
List<T> may be located in a header file or in a seperate compilation unit. These files may
even be in a different directory than the current directory!

Chapter 16: Writing Portable C++ with GNU Autotools 149

Life is easy for the compiler when the template definition appears in the same compilation
unit as the site of the instantiation—everything that is needed is known:

template <class T> class List
{
private:
T* head;
T* current;

};

List<int> li;

This becomes significantly more difficult when the site of a template instantiation and
the template definition is split between two different compilation units. In Linkers and
Loaders, Levine describes in detail how the compiler driver deals with this by iteratively
attempting to link a final executable and noting, from ‘undefined symbol’ errors produced
by the linker, which template instantiations must be performed to successfully link the
program.

In large projects where templates may be instantiated in multiple locations, the compiler
may generate instantiations multiple times for the same type. Not only does this slow down
compilation, but it can result in some difficult problems for linkers which refuse to link
object files containing duplicate symbols. Suppose there is the following directory layout:

src
|
‘--- core
| ‘--- core.cxx
‘--- modules
| ‘--- http.cxx
‘--- lib

‘--- stack.h

If the compiler generates ‘core.o’ in the ‘core’ directory and ‘libhttp.a’ in the ‘http’
directory, the final link may fail because ‘libhttp.a’ and the final executable may contain
duplicate symbols—those symbols generated as a result of both ‘http.cxx’ and ‘core.cxx’
instantiating, say, a Stack<int>. Linkers, such as that provided with AIX will allow
duplicate symbols during a link, but many will not.

Some compilers have solved this problem by maintaining a template repository of tem-
plate instantiations. Usually, the entire template definition is expanded with the specified
type parameters and compiled into the repository, leaving the linker to collect the required
object files at link time.

The main concerns about non-portability with repositories center around getting your
compiler to do the right thing about maintaining a single repository across your entire
project. This often requires a vendor-specific command line option to the compiler, which
can detract from portability. It is conceivable that Libtool could come to the rescue here
in the future.

16.3.2 Name Mangling

Early C++ compilers mangled the names of C++ symbols so that existing linkers could
be used without modification. The cfront C++ translator also mangled names so that

150 Autoconf, Automake, and Libtool

information from the original C++ program would not be lost in the translation to C.
Today, name mangling remains important for enabling overloaded function names and link-
time type checking. Here is an example C++ source file which illustrates name mangling in
action:

class Foo
{
public:
Foo ();

void go ();
void go (int where);

private:
int pos;

};

Foo::Foo ()
{

pos = 0;
}

void
Foo::go ()
{

go (0);
}

void
Foo::go (int where)
{

pos = where;
}

int
main ()
{

Foo f;
f.go (10);

}

$ g++ -Wall example.cxx -o example.o

$ nm --defined-only example.o
00000000 T __3Foo
00000000 ? __FRAME_BEGIN__
00000000 t gcc2_compiled.
0000000c T go__3Foo
0000002c T go__3Fooi
00000038 T main

Even though Foo contains two methods with the same name, their argument lists (one
taking an int, one taking no arguments) help to differentiate them once their names are
mangled. The ‘go__3Fooi’ is the version which takes an int argument. The ‘__3Foo’

Chapter 16: Writing Portable C++ with GNU Autotools 151

symbol is the constructor for Foo. The gnu binutils package includes a utility called c++filt
that can demangle names. Other proprietary tools sometimes include a similar utility,
although with a bit of imagination, you can often demangle names in your head.

$ nm --defined-only example.o | c++filt
00000000 T Foo::Foo(void)
00000000 ? __FRAME_BEGIN__
00000000 t gcc2_compiled.
0000000c T Foo::go(void)
0000002c T Foo::go(int)
00000038 T main

Name mangling algorithms differ between C++ implementations so that object files as-
sembled by one tool chain may not be linked by another if there are legitimate reasons to
prohibit linking. This is a deliberate move, as other aspects of the object file may make
them incompatible—such as the calling convention used for making function calls.

This implies that C++ libraries and packages cannot be practically distributed in binary
form. Of course, you were intending to distribute the source code to your package anyway,
weren’t you?

16.4 How GNU Autotools Can Help

Each of the GNU Autotools contribute to C++ portability. Now that you are familiar
with the issues, the following subsections will outline precisely how each tool contributes to
achieving C++ portability.

16.4.1 Testing C++ Implementations with Autoconf

Of the GNU Autotools, perhaps the most valuable contribution to the portability of your
C++ programs will come from Autoconf. All of the portability issues raised in Section 16.2
[Changeable C++], page 140 can be detected using Autoconf macros.

Luc Maisonobe has written a large suite of macros for this purpose and they can be found
in the Autoconf macro archive (see Section 23.5.1 [Autoconf macro archive], page 222). If
any of these macros become important enough, they may become incorporated into the core
Autoconf release. These macros perform their tests by compiling small fragments of C++
code to ensure that the compiler accepts them. As a side effect, these macros typically use
AC_DEFINE to define preprocessor macros of the form HAVE_feature, which may then be
exploited through conditional compilation.

16.4.2 Automake C++ support

Automake provides support for compiling C++ programs. In fact, it makes it practically
trivial: files listed in a SOURCES primary may include ‘.c++’, ‘.cc’, ‘.cpp’, ‘.cxx’ or ‘.C’
extensions and Automake will know to use the C++ compiler to build them.

For a project containing C++ source code, it is necessary to invoke the AC_PROG_CXX
macro in ‘configure.in’ so that Automake knows how to run the most suitable compiler.
Fortunately, when little details like this happen to escape you, automake will produce a
warning:

152 Autoconf, Automake, and Libtool

$ automake
automake: Makefile.am: C++ source seen but CXX not defined in
automake: Makefile.am: ‘configure.in’

16.4.3 Libtool C++ support

At the moment, Libtool is the weak link in the chain when it comes to working with
C++. It is very easy to naively build a shared library from C++ source using libtool:

$ libtool -mode=link g++ -o libfoo.la -rpath /usr/local/lib foo.c++

This works admirably for trivial examples, but with real code, there are several things that
can go wrong:

− On many architectures, for a variety of reasons, libtool needs to perform object
linking using ld. Unfortunately, the C++ compiler often links in standard libraries at
this stage, and using ld causes them to be dropped.
This can be worked around (at the expense of portability) by explicity adding these
missing libraries to the link line in your ‘Makefile’. You could even write an Autoconf
macro to probe the host machine to discover likely candidates.

− The C++ compiler likes to instantiate static constructors in the library objects, which
C++ programmers often rely on. Linking with ld will cause this to fail.
The only reliable way to work around this currently is to not write C++ that relies
on static constructors in libraries. You might be lucky enough to be able to link with
LD=$CXX in your environment with some projects, but it would be prone to stop working
as your project develops.

− Libtool’s inter-library dependency analysis can fail when it can’t find the special run-
time library dependencies added to a shared library by the C++ compiler at link time.
The best way around this problem is to explicity add these dependencies to libtool’s
link line:

$ libtool -mode=link g++ -o libfoo.la -rpath /usr/local/lib foo.cxx \
-lstdc++ -lg++

Now that C++ compilers on Unix are beginning to see widespread acceptance and are
converging on the iso standard, it is becoming unacceptable for Libtool to impose such lim-
its. There is work afoot to provide generalized multi-language and multi-compiler support
into Libtool—-currently slated to arrive in Libtool 1.5. Much of the work for supporting
C++ is already finished at the time of writing, pending beta testing and packaging1.

16.5 Further Reading

A number of books have been published which are devoted to the topic of C++ portability.
Unfortunately, the problem with printed publications that discuss the state of C++ is that
they date quickly. These publications may also fail to cover inadequacies of your particular
compiler, since portability know-how is something that can only be acquired by collective
experience.

1 Visit the Libtool home page at http://www.gnu.org/software/libtool for breaking news.

http://www.gnu.org/software/libtool

Chapter 16: Writing Portable C++ with GNU Autotools 153

Instead, online guides such as the Mozilla C++ Portability Guide2 tend to be a more
useful resource. An online guide such as this can accumulate the knowledge of a wider
developer community and can be readily updated as new facts are discovered. Interestingly,
the Mozilla guide is aggresive in its recommendations for achieving true C++ portability:
item 3, for instance, states ‘Don’t use exceptions’. While you may not choose to follow each
recommendation, there is certainly a lot of useful experience captured in this document.

2 http://www.mozilla.org/hacking/portable-cpp.html

http://www.mozilla.org/hacking/portable-cpp.html

154 Autoconf, Automake, and Libtool

Chapter 17: Dynamic Loading 155

17 Dynamic Loading

An increasingly popular way of adding functionality to a project is to give a program
the ability to dynamically load plugins, or modules. By doing this your users can extend
your project in new ways, which even you perhaps hadn’t envisioned. Dynamic Loading,
then, is the process of loading compiled objects into a running program and executing some
or all of the code from the loaded objects in the same context as the main executable.

This chapter begins with a discussion of the mechanics of dynamic modules and how
they are used, and ends with example code for very simple module loading on gnu/Linux,
along with the example code for a complementary dynamically loadable module. Once you
have read this chapter and understand the principles of dynamic loading, the next chapter
will explain how to use GNU Autotools to write portable dynamic module loading code and
address some of the shortcomings of native dynamic loading apis.

17.1 Dynamic Modules

In order to dynamically load some code into your executable, that code must be compiled
in some special but architecture dependent fashion. Depending on the compiler you use and
the platform you are compiling for, there are different conventions you must observe in the
code for the module, and for the particular combination of compiler options you need to
select if the resulting objects are to be suitable for use in a dynamic module. For the rest
of this chapter I will concentrate on the conventions used when compiling dynamic modules
with gcc on gnu/Linux, which although peculiar to this particular combination of compiler
and host architecture, are typical of the sorts of conventions you would need to observe on
other architectures or with a different compiler.

With gcc on gnu/Linux, you must compile each of the source files with ‘-fPIC’1, the
resulting objects must be linked into a loadable module with gcc’s ‘-shared’ option:

$ gcc -fPIC -c foo.c
$ gcc -fPIC -c bar.c
$ gcc -shared -o baz.so foo.o bar.o

This is pretty similar to how you might go about linking a shared library, except that
the ‘baz.so’ module will never be linked with a ‘-lbaz’ option, so the ‘lib’ prefix isn’t
necessary. In fact, it would probably be confusing if you used the prefix. Similarly, there
is no constraint to use any particular filename suffix, but it is sensible to use the target’s
native shared library suffix (gnu/Linux uses ‘.so’) to make it obvious that the compiled
file is some sort of shared object, and not a normal executable.

Apart from that, the only difference between a shared library built for linking at compile-
time and a dynamic module built for loading at run-time is that the module must provide
known entry points for the main executable to call. That is, when writing code destined
for a dynamic module, you must provide functions or variables with known names and
semantics that the main executable can use to access the functionality of the module. This
is different to the function and variable names in a regular library, which are already known
when you write the client code, since the libraries are always written before the code that

1 Not essential but will be slower without this option, see Section 10.2.1 [Position Independent Code],
page 72.

156 Autoconf, Automake, and Libtool

uses them; a runtime module loading system must, by definition, be able to cope with
modules that are written after the code that uses those modules.

17.2 Module Access Functions

In order to access the functionality of dynamic modules, different architectures provide
various apis to bring the code from the module into the address space of the loading
program, and to access the symbols exported by that module.

gnu/Linux uses the dynamic module api introduced by Sun’s Solaris operating system,
and widely adopted (and adapted!) by the majority of modern Unices2. The interface
consists of four functions. In practice, you really ought not to use these functions, since you
would be locking your project into this single api, and the class of machines that supports
it. This description is over-simplified to serve as a comparison with the fully portable libltdl
api described in Chapter 18 [Using GNU libltdl], page 161. The minutiae are not discussed,
because therein lie the implementation peculiarities that spoil the portability of this api.
As they stand, these descriptions give a good overview of how the functions work at a high
level, and are broadly applicable to the various implementations in use. If you are curious,
the details of your machines particular dynamic loading api will be available in its system
manual pages.

Functionvoid * dlopen (const char *filename, int flag)
This function brings the code from a named module into the address space of the
running program that calls it, and returns a handle which is used by the other api
functions. If filename is not an absolute path, gnu/Linux will search for it in directo-
ries named in the ‘LD_LIBRARY_PATH’ environment variable, and then in the standard
library directories before giving up.

The flag argument is made by ‘OR’ing together various flag bits defined in the system
headers. On gnu/Linux, these flags are defined in ‘dlfcn.h’:

‘RTLD_LAZY’
Resolve undefined symbols when they are first used.

‘RTLD_NOW’
If all symbols cannot be resolved when the module is loaded, dlopen will
fail and return ‘NULL’.

‘RTLD_GLOBAL’
All of the global symbols in the loaded module will be available to resolve
undefined symbols in subsequently loaded modules.

Functionvoid * dlsym (void *handle, char *name)
Returns the address of the named symbol in the module which returned handle when
it was dlopened. You must cast the returned address to a known type before using
it.

2 hp-ux being the most notable exception.

Chapter 17: Dynamic Loading 157

Functionint dlclose (void *handle)
When you are finished with a particular module, it can be removed from memory
using this function.

Functionconst char * dlerror (void)
If any of the other three api calls fails, this function returns a string which describes
the last error that occured.

In order to use these functions on gnu/Linux, you must #include <dlfcn.h> for the
function prototypes, and link with ‘-ldl’ to provide the api implementation. Other Unices
use ‘-ldld’ or provide the implementation of the api inside the standard C library.

17.3 Finding a Module

When you are writing a program that will load dynamic modules, a major stumbling
block is writing the code to find the modules you wish to load. If you are worried about
portability (which you must be, or you wouldn’t be reading this book!), you can’t rely on the
default search algorithm of the vendor dlopen function, since it varies from implementation
to implementation. You can’t even rely on the name of the module, since the module suffix
will vary according to the conventions of the target host (though you could insist on a
particular suffix for modules you are willing to load).

Unfortunately, this means that you will need to implement your own searching algorithm
and always use an absolute pathname when you call dlopen. A widely adopted mechanism
is to look for each module in directories listed in an environment variable specific to your
application, allowing your users to inform the application of the location of any modules
they have written. If a suitable module is not yet found, the application would then default
to looking in a list of standard locations – say, in a subdirectory of the user’s home directory,
and finally a subdirectory of the application installation tree. For application ‘foo’, you
might use ‘/usr/lib/foo/module.so’ – that is, ‘$(pkglibdir)/module.so’ if you are using
Automake.

This algorithm can be further improved:
• If you try different module suffixes to the named module for every directory in the

search path, which will avoid locking your code into a subset of machines that use
the otherwise hardcoded module suffix. With this in place you could ask the module
loader for module ‘foomodule’, and if it was not found in the first search directory, the
module loader could try ‘foomodule.so’, ‘foomodule.sl’ and ‘foomodule.dll’ before
moving on to the next directory.

• You might also provide command line options to your application which will preload
modules before starting the program proper or to modify the module search path. For
example, gnu M4, version 1.5, will have the following dynamic loading options:
$ m4 --help
Usage: m4 [OPTION]... [FILE]...
...
Dynamic loading features:

-M, --module-directory=DIRECTORY add DIRECTORY to the search path
-m, --load-module=MODULE load dynamic MODULE from M4MODPATH

158 Autoconf, Automake, and Libtool

...
Report bugs to <bug-m4@gnu.org>.

17.4 A Simple GNU/Linux Module Loader

Something to be aware of, is that when your users write dynamic modules for your
application, they are subject to the interface you design. It is very important to design a
dynamic module interface that is clean and functional before other people start to write
modules for your code. If you ever need to change the interface, your users will need to
rewrite their modules. Of course you can carefully change the interface to retain backwards
compatibility to save your users the trouble of rewriting their modules, but that is no
substitute for designing a good interface from the outset. If you do get it wrong, and
subsequently discover that the design you implemented is misconceived (this is the voice
of experience speaking!), you will be left with a difficult choice: try to tweak the broken
api so that it does work while retaining backwards compatibility, and the maintenance and
performace penalty that brings? Or start again with a fresh design born of the experience
gained last time, and rewrite all of the modules you have so far?

If there are other applications which have similar module requirements to you, it is worth
writing a loader that uses the same interface and semantics. That way, you will (hopefully)
be building from a known good api design, and you will have access to all the modules for
that other application too, and vice versa.

For the sake of clarity, I have sidestepped any issues of api design for the following
example, by choosing this minimal interface:

Functionint run (const char *argument)
When the module is successfully loaded a function with the following prototype is
called with the argument given on the command line. If this entry point is found and
called, but returns ‘-1’, an error message is displayed by the calling program.

Here’s a simplistic but complete dynamic module loading application you can build for
this interface with the gnu/Linux dynamic loading api:

You would compile this on a gnu/Linux machine like so:
$ gcc -o simple-loader simple-loader.c -ldl

However, despite making reasonable effort with this loader, and ignoring features which
could easily be added, it still has some seemingly insoluble problems:

1. It will fail if the user’s platform doesn’t have the dlopen api. This also includes
platforms which have no shared libraries.

2. It relies on the implementation to provide a working self-opening mechanism. ‘dlopen
(NULL, RTLD_NOW)’ is very often unimplemented, or buggy, and without that, it is
impossible to access the symbols of the main program through the ‘dlsym’ mechanism.

3. It is quite difficult to figure out at compile time whether the target host needs
‘libdl.so’ to be linked.

I will use GNU Autotools to tackle these problems in the next chapter.

Chapter 17: Dynamic Loading 159

17.5 A Simple GNU/Linux Dynamic Module

As an appetiser for working with dynamic loadable modules, here is a minimal module
written for the interface used by the loader in the previous section:

Again, to compile on a gnu/Linux machine:
$ gcc -fPIC -c simple-module.c
$ gcc -shared -o simple-module.so

Having compiled both loader and module, a test run looks like this:
$./simple-loader simple-module World
Hello, World!

=> 0

If you have a gnu/Linux system, you should experiment with the simple examples from
this chapter to get a feel for the relationship between a dynamic module loader and its
modules – tweak the interface a little; try writing another simple module. If you have a
machine with a different dynamic loading api, try porting these examples to that machine
to get a feel for the kinds of problems you would encounter if you wanted a module system
that would work with both apis.

The next chapter will do just that, and develop these examples into a fully portable
module loading system with the aid of GNU Autotools. In Section 20.1 [A Module Loading
Subsystem], page 183, I will add a more realistic mdoule loader into the Sic project last
discussed in Chapter 12 [A Large GNU Autotools Project], page 107.

160 Autoconf, Automake, and Libtool

Chapter 18: Using GNU libltdl 161

18 Using GNU libltdl

Now that you are conversant with the mechanics and advantages of using dynamic run
time modules in your projects, you can probably already imagine a hundred and one uses
for a plugin architecture. As I described in the last chapter, there are several gratuitously
different architecture dependent dynamic loading apis, and yet several more shortcomings
in many of those.

If you have Libtool installed on your machine, then you almost certainly have libltdl
which has shipped as part of the standard Libtool distribution since release 1.3.In this
chapter I will describe gnu libltdl, the LibTool Dynamic Loading library, and explain some
of its features and how to make use of them.

18.1 Introducing libltdl

Probably the best known and supported Unix run time linking api is the ‘dlopen’ inter-
face, used by Solaris and gnu/Linux amongst others, and discussed earlier in Chapter 17
[Dynamic Loading], page 155. libltdl is based on the ‘dlopen’ api, with a few small differ-
ences and several enhancements.

The following libltdl api functions are declared in ‘ltdl.h’:

Functionlt_dlhandle lt dlopen (const char *filename)
This function brings the code from a named module into the address space of the
running program that calls it, and returns a handle which is used by the other api
functions. If filename is not an absolute path, libltdl will search for it in directories
named in the ‘LTDL_LIBRARY_PATH’ environment variable, and then in the standard
library directories before giving up. It is safe to call this function many times, libltdl
will keep track of the number of calls made, but will require the same number of calls
to ‘lt_dlclose’ to actually unload the module.

Functionlt_ptr_t lt dlsym (lt_dlhandle handle, const char *name)
Returns the address of the named symbol in the module which returned handle when
it was lt_dlopened. You must cast the returned address to a known type before
using it.

Functionint lt dlclose (lt_dlhandle handle)
When you are finished with a particular module, it can be removed from memory
using this function.

Functionconst char * lt dlerror (void)
If any of the libltdl api calls fail, this function returns a string which describes the
last error that occured.

In order to use these functions, you must #include <ltdl.h> for the function proto-
types, and link with ‘-lltdl’ to provide the api implementation. Assuming you link your
application with libtool, and that you call the necessary macros from your ‘configure.in’

162 Autoconf, Automake, and Libtool

(see Section 18.2 [Using libltdl], page 163), then any host specific dependent libraries (for ex-
ample, ‘libdl’ on gnu/Linux) will automatically be added to the final link line by libtool.

You don’t limit yourself to using only Libtool compiled modules when you use libltdl.
By writing the module loader carefully, it will be able to load native modules too—although
you will not be able to preload non-Libtool modules (see Section 18.4 [dlpreopen Loading],
page 170. The loader in Section 18.2.3 [libltdl Module Loader], page 166 is written in this
way. It is useful to be able to load modules flexibly like this, because you don’t tie your
users into using Libtool for any modules they write.

Compare the descriptions of the functions above with the api descibed in Section 17.2
[Module Access Functions], page 156. You will notice that they are very similar.

Back-linking is the process of resolving any remaining symbols by referencing
back into the application that loads the library at runtime – a mechanism
implemented on almost all modern Unices.
For instance, your main application may provide some utility function,
‘my_function’, which you want a module to have access to. There are two
ways to do that:
• You could use Libtool to link your application, using the

‘-export-dynamic’ option to ensure that the global application symbols
are available to modules. When libltdl loads a module into an application
compiled like this, it will back-link symbols from the application to
resolve any otherwise undefined symbols in a module. When the module
is ‘ltdlopen’ed, libltdl will arrange for calls to ‘my_function’ in the
module, to execute the ‘my_function’ implementation in the application.
If you have need of this functionality, relying on back-linking is the sim-
plest way to achieve it. Unfortunately, this simplicity is at the expense of
portability: some platforms have no support for back-linking at all, and
others will not allow a module to be created with unresolved symbols.
Never-the-less, libltdl allows you to do this if you want to.

• You could split the code that implements the symbols you need to
share with modules into a separate library. This library would then
be used to resolve the symbols you wish to share, by linking it into
modules and application alike. The definition of ‘my_function’ would be
compiled separately into a library, ‘libmy_function.la’. References to
‘my_function’ from the application would be resolved by linking it with
‘libmy_function.la’, and the library would be installed so that modules
which need to call ‘my_function’ would be able to resolve the symbol by
linking with ‘-lmy_function’.
This method requires support for neither back-linking nor unresolved link
time symbols from the host platform. The disadvantage is that when you
realise you need this functionality, it may be quite complicated to extract
the shared functionality from the application to be compiled in a stand
alone library.

On those platforms which support back-linking, libltdl can be configured to resolve
external symbol references in a dynamic module with any global symbols already present
in the main application. This has two implications for the libltdl api:
• There is no need to pass ‘RTLD_GLOBAL’ (or equivalent) to lt_dlopen as might be

necessary with the native module loading api.

Chapter 18: Using GNU libltdl 163

• You should be aware that your application will not work on some platforms—most
notably, Windows and aix—if you rely on a back-linking.

Similarly, there is no need to specify whether the module should be integrated into the
application core before lt_dlopen returns, or else when the symbols it provides are first
referenced. libltdl will use lazy loading if it is supported, since this is a slight performance
enhancement, or else fall back to loading everything immediately. Between this feature and
the support of back-linking, there is no need to pass flags into lt_dlopen as there is with
most native dlopen apis.

There are a couple of other important api functions which you will need when using
libltdl:

Functionint lt dlinit (void)
You must call this function to initialise libltdl before calling any of the other libltdl
api functions. It is safe to call this function many times, libltdl will keep track of the
number of calls made, but will require the same number of calls to ‘lt_dlexit’ to
actually recycle the library resources. If you don’t call ‘lt_dlinit’ before any other
api call, the other calls, including ‘lt_dlerror’, will return their respective failure
codes (‘NULL’ or ‘1’, as appropriate).

Functionint lt dlexit (void)
When you are done with libltdl and all dynamic modules have been unloaded you
can call this function to finalise the library, and recycle its resources. If you forget to
unload any modules, the call to ‘lt_dlexit’ will ‘lt_dlclose’ them for you.

Another useful departure that the libltdl api makes from a vanilla dlopen implementa-
tion is that it also will work correctly with old K&R C compilers, by virtue of not relying on
‘void *’ pointers. libltdl uses lt_dlhandles to pass references to loaded modules, and this
also improves ansi C compiler’s type checking compared to the untyped addresses typically
used by native dlopen apis.

18.2 Using libltdl

Various aspects of libltdl are addressed in the following subsections, starting with a step
by step guide to adding libltdl to your own GNU Autotools projects (see Section 18.2.1
[libltdl Configury], page 164) and an explanation of how to initialise libltdl’s memory man-
agement (see Section 18.2.2 [libltdl Memory Management], page 166). After this comes a
simple libltdl module loader which you can use as the basis for a module loader in your own
projects (see Section 18.2.3 [libltdl Module Loader], page 166), including an explanation
of how libltdl finds and links any native dynamic module library necessary for the host
platform. The next subsection (see Section 18.2.4 [libltdl Dependent Libraries], page 167)
deals with the similar problem of dynamic modules which depend on other libraries – take
care not to confuse the problems discussed in the previous two subsections. Following that,
the source code for and use of a simple dynamic module for use with this section’s module
loader is detailed (see Section 18.2.5 [libltdl Dynamic Module], page 168).

164 Autoconf, Automake, and Libtool

18.2.1 Configury

Because libltdl supports so many different platforms1 it needs to be configured for the
host platform before it can be used.

The path of least resistance to successfully integrating libltdl into your own
project, dictates that the project use Libtool for linking its module loader with
libltdl. This is certainly the method I use and recommend, and is the method
discussed in this chapter. However, I have seen projects which did not use
Libtool (specifically because Libtool’s poor C++ support made it difficult to
adopt), but which wanted the advantages of libltdl. It is possible to use libltdl
entirely without Libtool, provided you take care to use the configuration macros
described here, and use the results of those running these macros to determine
how to link your application with libltdl.

The easiest wat to add libltdl support to your own projects is with the following simple
steps:
1. You must add the libltdl sources to your project distribution. If you are not already

using Libtool in some capacity for your project, you should add ‘AC_PROG_LIBTOOL’2

to your ‘configure.in’. That done, move to the top level directory of the project, and
execute:

$ libtoolize --ltdl
$ ls -F
aclocal.m4 configure.in libltdl/
$ ls libltdl/
COPYING.LIB README aclocal.m4 configure.in stamp-h.in
Makefile.am acconfig.h config.h.in ltdl.c
Makefile.in acinclude.m4 configure ltdl.h

2. libltdl has its own configuration to run in addition to the configuration for your project,
so you must be careful to call the subdirectory configuration from your top level
‘configure.in’:

AC_CONFIG_SUBDIRS(libltdl)

And you must ensure that Automake knows that it must descend into the libltdl source
directory at make time, by adding the name of that subdirectory to the ‘SUBDIRS’ macro
in your top level ‘Makefile.am’:

SUBDIRS = libltdl src

3. You must also arrange for the code of libltdl to be linked into your application. There
are two ways to do this: as a regular Libtool library; or as a convenience library (see
Section 10.2.4 [Creating Convenience Libraries with libtool], page 75). Either way there
are catches to be aware of, which will be addressed in a future release. Until libltdl
is present on the average user’s machine, I recommend building a convenience library.
You can do that in ‘configure.in’:

AC_LIBLTDL_CONVENIENCE
AC_PROG_LIBTOOL

1 As I always like to say, ‘from BeOS to Windows!’. And yes, I do think that it is a better catchphrase
than ‘from aix to Xenix’ !

2 Use ‘AM_PROG_LIBTOOL’ if you have automake version 1.4 or older or a version of libtool earlier than
1.4.

Chapter 18: Using GNU libltdl 165

The main thing to be aware of when you follow these steps, is that you can only have
one copy of the code from libltdl in any application. Once you link the objects into
a library, that library will not work with any other library which has also linked with
libltdl, or any application which has its own copy of the objects. If you were to try,
the libltdl symbol names would clash.
The alternative is to substitute ‘AC_LIBLTDL_CONVENIENCE’ with
‘AC_LIBLTDL_INSTALLABLE’. Unfortunately there are currently many potential prob-
lems with this approach. This macro will try to find an already installed libltdl and use
that, or else the embedded libltdl will be built as a standard shared library, which must
be installed along with any libraries or applications that use it. There is no testing
for version compatibility, so it is possible that two or more applications that use this
method will overwrite one anothers copies of the installed libraries and headers. Also,
the code which searches for the already installed version of libltdl tends not to find
the library on many hosts, due to the native libraries it depends on being difficult to
predict.
Both of the ‘AC_LIBLTDL_...’ macros set the values of ‘INCLTDL’ and ‘LIBLTDL’ so that
they can be used to add the correct include and library flags to the compiler in your
Makefiles. They are not substituted by default. If you need to use them you must also
add the following macros to your ‘configure.in’:

AC_SUBST(INCLTDL)
AC_SUBST(LIBLTDL)

4. Many of the libltdl supported hosts require that a separate shared library be linked
into any application that uses dynamic runtime loading. libltdl is wrapped around this
native implementation on these hosts, so it is important to link that library too. Adding
support for module loading through the wrapped native implementation is independent
of Libtools determination of how shared objects are compiled. On gnu/Linux, you
would need to link your program with libltdl and ‘libdl’, for example.
Libtool installs a macro, ‘AC_LIBTOOL_DLOPEN’, which adds tests to your ‘configure’
that will search for this native library. Whenever you use libltdl you should add this
macro to your ‘configure.in’ before ‘AC_PROG_LIBTOOL’:

AC_LIBTOOL_DLOPEN
AC_LIBLTDL_CONVENIENCE
AC_PROG_LIBTOOL
...
AC_SUBST(INCLTDL)
AC_SUBST(LIBLTDL)

‘AC_LIBTOOL_DLOPEN’ takes care to substitute a suitable value of ‘LIBADD_DL’ into your
‘Makefile.am’, so that your code will compile correctly wherever the implementation
library is discovered:

INCLUDES += @INCLTDL@

bin_PROGRAMS = your_app
your_app_SOURCES = main.c support.c
your_app_LDADD = @LIBLTDL@ @LIBADD_DL@

Libtool 1.4 has much improved inter-library dependency tracking code which no longer
requires ‘@LIBADD_DL@’ be explicitly referenced in your ‘Makefile.am’. When you install

166 Autoconf, Automake, and Libtool

libltdl, Libtool 1.4 (or better) will make a note of any native library that libltdl depends on
– linking it automatically, provided that you link ‘libltdl.la’ with libtool. You might
want to omit the ‘@LIBADD_DL@’ from your ‘Makefile.am’ in this case, if seeing the native
library twice (once as a dependee of libltdl, and again as an expansion of ‘@LIBADD_DL@’)
on the link line bothers you.

Beyond this basic configury setup, you will also want to write some code to form a
module loading subsystem for your project, and of course some modules! That process
is described in Section 18.2.3 [libltdl Module Loader], page 166 and Section 18.2.5 [libltdl
Dynamic Module], page 168 respectively.

18.2.2 Memory Management

Internally, libltdl maintains a list of loaded modules and symbols on the heap. If you
find that you want to use it with a project that has an unusual memory management api,
or if you simply want to use a debugging ‘malloc’, libltdl provides hook functions for you
to set the memory routines it should call.

The way to use these hooks is to point them at the memory allocation routines you want
libltdl to use before calling any of its api functions:

lt_dlmalloc = (lt_prt_t (*) PARAMS((size_t))) mymalloc;
lt_dlfree = (void (*) PARAMS((lt_ptr_t))) myfree;

Notice that the function names need to be cast to the correct type before assigning them
to the hook symbols. You need to do this because the prototypes of the functions you
want libltdl to use will vary slightly from libltdls own function pointer types— libltdl uses
lt_ptr_t for compatibility with K&R compilers, for example.

18.2.3 Module Loader

This section contains a fairly minimal libltdl based dynamic module loader that you can
use as a base for your own code. It implements the same api as the simple module loader
in Section 17.4 [A Simple GNU/Linux Module Loader], page 158, and because of the way
libltdl is written is able to load modules written for that loader, too. The only part of this
code which is arguably more complex than the equivalent from the previous example loader,
is that lt_dlinit and lt_dlexit must be called in the appropriate places. In contrast, The
module search path initialisation is much simplified thanks to another relative improvement
in the libltdl api:

Functionint lt dlsetsearchpath (const char *path)
This function takes a colon separated list of directories, which will be the first direc-
tories libltdl will search when trying to locate a dynamic module.

Another new api function is used to actually load the module:

Functionlt_dlhandle lt dlopenext (const char *filename)
This function is used in precisely the same way as lt_dlopen. However, if the search
for the named module by exact match against filename fails, it will try again with
a ‘.la’ extension, and then the native shared library extension (‘.sl’ on hp-ux, for
example).

Chapter 18: Using GNU libltdl 167

The advantage of using lt_dlopenext to load dynamic modules is that it will work
equally well when loading modules not compiled with Libtool. Also, by passing the module
name parameter with no extension, this function allows module coders to manage without
Libtool.

This file must be compiled with libtool, so that the dependent libraries (‘libdl.so’
on my gnu/Linux machine) are handled correctly, and so that the dlpreopen support is
compiled in correctly (see Section 18.4 [dlpreopen Loading], page 170):

$ libtool --mode=link gcc -g -o ltdl-loader -dlopen self \
-rpath /tmp/lib ltdl-loader.c -lltdl
gcc -g -o ltdl-loader -Wl,--rpath,/tmp/lib ltdl-loader.c -lltdl -ldl

By using both of lt_dlopenext and lt_dlsetsearchpath, this module loader will make
a valiant attempt at loading anything you pass to it – including the module I wrote for
the simple gnu/Linux module loader earlier (see Section 17.5 [A Simple GNU/Linux Dy-
namic Module], page 159). Here, you can see the new ltdl-loader loading and using
the ‘simple-module’ module from Section 17.5 [A Simple GNU/Linux Dynamic Module],
page 159:

$ ltdl-loader simple-module World
Hello, World!

=> 0

18.2.4 Dependent Libraries

On modern Unices3, the shared library architecture is smart enough to encode all of the
other libraries that a dynamic module depends on as part of the format of the file which is
that module. On these architectures, when you lt_dlopen a module, if any shared libraries
it depends on are not already loaded into the main application, the system runtime loader
will ensure that they too are loaded so that all of the module’s symbols are satisfied.

Less well endowed systems4, cannot do this by themselves. Since Libtool release 1.4,
libltdl uses the record of inter-library dependencies in the libtool pseudo-library (see Chap-
ter 10 [Introducing GNU Libtool], page 69) to manually load dependent libraries as part of
the lt_dlopen call.

An example of the sort of difficulties that can arise from trying to load a module that has
a complex library dependency chain is typified by a problem I encountered with gnu Guile
a few years ago: Earlier releases of the libXt Athena widget wrapper library for gnu Guile
failed to load on my a.out based gnu/Linux system. When I tried to load the module into
a running Guile interpreter, it couldn’t resolve any of the symbols that referred to libXt.
I soon discovered that the libraries that the module depended upon were not loaded by
virtue of loading the module itself. I needed to build the interpreter itself with libXt and
rely on back-linking to resolve the ‘Xt’ references when I loaded the module. This pretty
much defeated the whole point of having the wrapper library as a module. Had Libtool
been around in those days, it would have been able to load libXt as part of the process of
loading the module.

3 Architectures which use elf and ecoff binary format for example.
4 Those which use a.out binary format, for example.

168 Autoconf, Automake, and Libtool

If you program with the X window system, you will know that the list of libraries you
need to link into your applications soon grows to be very large. Worse, if you want to load
an X extension module into a non-X aware application, you will encounter the problems I
found with Guile, unless you link your module with libtool and dynamically load it with
libltdl. At the moment, the various X Window libraries are not built with libtool, so you
must be sure to list all of the dependencies when you link a module. By doing this, Libtool
can use the list to check that all of the libraries required by a module are loaded correctly
as part of the call to lt_dlopen, like this:

$ libtool --mode=link gcc -o module.so -module -avoid-version \
source.c -L/usr/X11R6/lib -lXt -lX11
...
$ file .libs/module.so
.libs/module.so: ELF 32-bit LSB shared object, Intel 80386,
version 1, not stripped
$ ldd .libs/module.so

libX11.so.6 => /usr/X11R6/lib/libX11.so.6 (0x4012f00)
libXt.so.6 => /usr/X11R6/lib/libXt.so.6 (0x4014500)

Or, if you are using Automake:
...
lib_LTLIBRARIES = module.la
module_la_SOURCES = source.c
module_la_LDFLAGS = -module -avoid-version -L$(X11LIBDIR)
module_la_LIBADD = -lXt -lX11
...

It is especially important to be aware of this if you develop on a modern platform which
correctly handles these dependencies natively (as in the example above), since the code may
still work on your machine even if you don’t correctly note all of the dependencies. It will
only break if someone tries to use it on a machine that needs Libtool’s help for it to work,
thus reducing the portability of your project.

18.2.5 Dynamic Module

Writing a module for use with the libltdl based dynamic module loader is no more
involved than before: It must provide the correct entry points, as expected by the simple
api I designed – the ‘run’ entry point described in Section 17.4 [A Simple GNU/Linux
Module Loader], page 158. Here is such a module, ‘ltdl-module.c’:

To take full advantage of the new module loader, the module itself must be compiled
with Libtool. Otherwise dependent libraries will not have been stored when libltdl tries to
load the module on an architecture that doesn’t load them natively, or which doesn’t have
shared libraries at all (see Section 18.4 [dlpreopen Loading], page 170).

$ libtool --mode=compile gcc -c ltdl-module.c
rm -f .libs/ltdl-module.lo
gcc -c ltdl-module.c -fPIC -DPIC -o .libs/ltdl-module.lo
gcc -c ltdl-module.c -o ltdl-module.o >/dev/null 2>&1
mv -f .libs/ltdl-module.lo ltdl-module.lo

Chapter 18: Using GNU libltdl 169

$ libtool --mode=link gcc -g -o ltdl-module.la -rpath ‘pwd‘ \
-no-undefined -module -avoid-version ltdl-module.lo -lm
rm -fr .libs/ltdl-module.la .libs/ltdl-module.* .libs/ltdl-module.*
gcc -shared ltdl-module.lo -lm -lc -Wl,-soname \
-Wl,ltdl-module.so -o .libs/ltdl-module.so
ar cru .libs/ltdl-module.a ltdl-module.o
creating ltdl-module.la
(cd .libs && rm -f ltdl-module.la && ln -s ../ltdl-module.la \
ltdl-module.la)

You can see from the interaction below that ‘ltdl-loader’ does not load the math
library, ‘libm’, and that the shared part of the Libtool module, ‘ltdl-module’, does have a
reference to it. The pseudo-library also has a note of the ‘libm’ dependency so that libltdl
will be able to load it even on architectures that can’t do it natively:

$ libtool --mode=execute ldd ltdl-loader
libltdl.so.0 => /usr/lib/libltdl.so.0 (0x4001a000)
libdl.so.2 => /lib/libdl.so.2 (0x4001f000)
libc.so.6 => /lib/libc.so.6 (0x40023000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

$ ldd .libs/ltdl-module.so
libm.so.6 => /lib/libm.so.6 (0x40008000)
libc.so.6 => /lib/libc.so.6 (0x40025000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x80000000)

$ fgrep depend ltdl-module.la
Libraries that this one depends upon.
dependency_libs=’ -lm’

This module is now ready to load from ‘ltdl-loader’:
$ ltdl-loader ltdl-module 9
Square root of 9 is 3.000000

=> 0

18.3 Portable Library Design

When partitioning the functionality of your project into libraries, and particularly load-
able modules, it easy to inadvertantly rely on modern shared library features such as back-
linking or dependent library loading. If you do accidentally use any of these features, you
probably won’t find out about it until someone first tries to use your project on an older or
less featureful host.

I have already used the ‘-module’ and ‘-avoid-version’ libtool linking options when
compiling the libltdl module in the last section, the others are useful to know also. All of
these are used with the ‘link’ mode of libtool (‘libtool --mode=link’):

‘-module’ This option tells libtool that the target is a dynamically loadable module (as
opposed to a conventional shared library) and as such need not have the ‘lib’
prefix.

‘-avoid-version’
When linking a dynamic module, this option can be used instead of the
‘-version-info’ option, so that the module is not subject to the usual shared
library version number suffixes.

170 Autoconf, Automake, and Libtool

‘-no-undefined’
This is an extremely important option when you are aiming for maximum porta-
bility. It declares that all of the symbols required by the target are resolved at
link time. Some shared library architectures do not allow undefined symbols
by default (Tru64 Unix), and others do not allow them at all (aix). By using
this switch, and ensuring that all symbols really are resolved at link time, your
libraries will work on even these platforms. See Section 11.2.1 [Creating Libtool
Libraries with Automake], page 94.

‘-export-dynamic’
Almost the opposite of ‘-no-undefined’, this option will compile the target
so that the symbols it exports can be used to satisfy unresolved symbols in
subsequently loaded modules. Not all shared library architectures support this
feature, and many that do support it, do so by default regardless of whether
this option is supplied. If you rely on this feature, then you should use this op-
tion, in the knowledge that you project will not work correctly on architectures
that have no support for the feature. For maximum portability, you should
neither rely on this feature nor use the ‘-export-dynamic’ option – but, on the
occasions you do need the feature, this option is necessary to ensure that the
linker is called correctly.

When you have the option to do so, I recommend that you design your project so that
each of the libraries and modules is self contained, except for minimal number of dependent
libraries, arranged in a directional graph shaped like a tree. That is, by relying on back-
linking, or mutual or cyclic dependencies you reduce the portability of your project. In the
diagrams below, an arrow indicates that the compilation object relies on symbols from the
objects that it points to:

main .---> main main
| | | |

.----+----, | .----+----, .----+----,
v v | v v v v
liba libb liba libb liba<-----libb
| | | ^
v v v |
libc libc libc-------’

Tree: good Backlinking: bad Cyclic: bad

18.4 dlpreopen Loading

On machines which do not have any facility for shared libraries or dynamic modules,
libltdl allows an application to lt_dlopen modules, provided that the modules are known
at link time. This works by linking the code for the modules into the application in advance,
and then looking up the addresses of the already loaded symbols when lt_dlsym is called.
We call this mechanism dlpreopening – so named because the modules must be loaded at
link time, not because the api to use modules loaded in this way is any different.

This feature is extremely useful for debugging, allowing you to make a fully statically
linked application from the executable and module objects, without changing any source

Chapter 18: Using GNU libltdl 171

code to work around the module loading calls. As far as the code outside the libltdl api
can tell, these modules really are being loaded dynamically. Driving a symbolic debugger
across module boundaries is however much easier when blocks of code aren’t moving in and
out of memory during execution.

You may have wondered about the purpose of the following line in the dynamic module
code in Section 18.2.4 [libltdl Dependent Libraries], page 167:

#define run ltdl_module_LTX_run

The reason for redefining the entry point symbol in this way is to prevent a symbol
clash when two or more modules that provide identically named entry point functions
are preloaded into an executable. It would be otherwise impossible to preload both
‘simple-module.c’ and ‘ltdl-module.c’, for example, since each defines the symbol ‘run’.
To allow us to write dynamic modules that are potentially preloaded, lt_dlsym will first
try to lookup the address of a named symbol with a prefix consisting of the canonicalized
name of the module being searched, followed by the characters ‘_LTX_’. The module name
part of this prefix is canonicalized by replacing all non-alphanumeric characters with an
underscore. If that fails, lt_dlsym resorts to the unadorned symbol name, which is how
‘run’ was found in ‘simple-module.la’ by ‘ltdl-loader’ earlier.

Supporting this feature in your module loading code is a simple matter of initialising the
address lookup table, and ‘ltdl.h’ defines a convenient macro to do exactly that:

MacroLTDL SET PRELOADED SYMBOLS ()
Add this macro to the code of your module loading code, before the first call to a
libltdl function, to ensure that the dlopen address lookup table is populated.

Now change the contents of ‘ltdl-loader.c’, and add a call to this macro, so that it
looks like this:

/* Initialise preloaded symbol lookup table. */
LTDL_SET_PRELOADED_SYMBOLS();

/* Initialise libltdl. */
errors = lt_dlinit ();

Libtool will now be able to fall back to using preloaded static modules if you tell it to, or
if the host platform doesn’t support native dynamic loading.

If you use ‘LTDL_SET_PRELOADED_SYMBOLS’ in your module loader, you must
also specify something to preload to avoid compilation failure due to undefined
‘lt_preloaded_symbols’. You can name modules on the Libtool link command
line using one of ‘-dlopen’ or ‘-dlpreopen’. This includes support for accessing
the symbols of the main executable opened with ‘lt_dlopen(NULL)’—you can
ask Libtool to fall back to preopening the main modules like this:

$ libtool gcc -g -o ltdl-loader -dlopen self -rpath /tmp/lib \
ltdl-loader.c -lltdl
rm -f .libs/ltdl-loader.nm .libs/ltdl-loader.nmS \
.libs/ltdl-loader.nmT
creating .libs/ltdl-loaderS.c
(cd .libs && gcc -c -fno-builtin -fno-rtti -fno-exceptions
"ltdl-loaderS.c")

172 Autoconf, Automake, and Libtool

rm -f .libs/ltdl-loaderS.c .libs/ltdl-loader.nm .libs/ltdl-loader.nmS
.libs/ltdl-loader.nmT
gcc -o ltdl-loader .libs/ltdl-loaderS.o ltdl-loader.c
-Wl,--export-dynamic /usr/lib/libltdl.so -ldl -Wl,--rpath -Wl,/tmp/lib
rm -f .libs/ltdl-loaderS.o

It doesn’t make sense to add preloaded module support to a project, when you
have no modules to preopen, so the compilation failure in that case is actually
a feature of sorts.

The ‘LTDL_SET_PRELOADED_SYMBOLS’ macro does not interfere with the normal operation
of the code when modules are dynamically loaded, provided you use the ‘-dlopen’ option on
the link line. The advantage of referencing the macro by default is that you can recompile
the application with or without preloaded module, and all without editing the sources.

If you have no modules to link in by default, you can force Libtool to populate the preload
symbol table by using the ‘-dlopen force’ option. This is the option used to preload the
symbols of the main executable so that you can subsequently call ‘lt_dlopen(NULL)’.

Multiple modules can be preloaded, although at the time of writing only Libtool compiled
modules can be used. If there is a demand, Libtool will be extended to include native library
preloading in a future revision.

To illustrate, I have recompiled the ‘simple-module.c’ module with libtool:

$ libtool --mode=compile gcc -c simple-module.c
rm -f .libs/simple-module.lo
gcc -c simple-module.c -fPIC -DPIC -o .libs/simple-module.lo
gcc -c simple-module.c -o simple-module.o >/dev/null 2>&1
mv -f .libs/simple-module.lo simple-module.lo
$ libtool --mode=link gcc -g -o simple-module.la -rpath ‘pwd‘
-no-undefined -module -avoid-version simple-module.lo
rm -fr .libs/simple-module.la .libs/simple-module.*
.libs/simple-module.*
gcc -shared simple-module.lo -lc -Wl,-soname \
-Wl,simple-module.so -o .libs/simple-module.so
ar cru .libs/simple-module.a simple-module.o
creating simple-module.la
(cd .libs && rm -f simple-module.la && ln -s ../simple-module.la \
simple-module.la)

The names of the modules that may be subsequently lt_dlopened are added to the appli-
cation link line. I am using the ‘-static’ option to force a static only link, which must use
dlpreopened modules by definition. I am only specifying this because my host has native
dynamic loading, and Libtool will use that unless I force a static only link, like this:

Chapter 18: Using GNU libltdl 173

$ libtool --mode=link gcc -static -g -o ltdl-loader ltdl-loader.c \
-lltdl -dlopen ltdl-module.la -dlopen simple-module.la
rm -f .libs/ltdl-loader.nm .libs/ltdl-loader.nmS \
.libs/ltdl-loader.nmT
creating .libs/ltdl-loaderS.c
extracting global C symbols from ./.libs/ltdl-module.a
extracting global C symbols from ./.libs/simple-module.a
(cd .libs && gcc -c -fno-builtin -fno-rtti -fno-exceptions \
"ltdl-loaderS.c")
rm -f .libs/ltdl-loaderS.c .libs/ltdl-loader.nm \
.libs/ltdl-loader.nmS .libs/ltdl-loader.nmT
gcc -g -o ltdl-loader ltdl-loader.c .libs/ltdl-loaderS.o \
./.libs/ltdl-module.a -lm ./.libs/simple-module.a \
/usr/lib/libltdl.a -ldl
rm -f .libs/ltdl-loaderS.o
$./ltdl-loader ltdl-module 345
Square root of 345 is 18.574176

=> 0
$./ltdl-loader simple-module World
Hello, World!

=> 0

Note that the current release of Libtool requires that the pseudo-library be present for
any libltdl loaded module, even preloaded ones. Once again, if there is sufficient demand,
this may be fixed in a future release. Until then, if the pseudo-library was deleted or cannot
be found, this will happen:

$ rm -f simple-module.la
$./ltdl-loader simple-module World
./ltdl-loader: file not found.

A side effect of using the ‘LTDL_SET_PRELOADED_SYMBOLS’ macro is that if you sub-
sequently link the application without Libtool, you will get an undefined symbol for the
Libtool supplied ‘lt_preloaded_symbols’. If you need to link in this fashion, you will need
to provide a stub that supplies the missing definition. Conversely, you must be careful not
to link the stub file when you do link with Libtool, because it will clash with the Libtool
generated table it is supposed to replace:

#include <ltdl.h>
const lt_dlsymlist lt_preloaded_symbols[] = { { 0, 0 } };

Of course, if you use this stub, and link the application without the benefits of Libtool, you
will not be able to use any preloaded modules – even if you statically link them, since there
is no preloaded symbol lookup table in this case.

18.5 User Module Loaders

While writing the module loading code for gnu M4 1.5, I found that libltdl did not
provide a way for loading modules in exactly the way I required: As good as the preloading
feature of libltdl may be, and as useful as it is for simplifying debugging, it doesn’t have
all the functionality of full dynamic module loading when the host platform is limited to
static linking. After all, you can only ever load modules that were specified at link time, so

174 Autoconf, Automake, and Libtool

for access to user supplied modules the whole application must be relinked to preload these
new modules before lt_dlopen will be able to make use of the additional module code.

In this situation, it would be useful to be able to automate this process. That is, if a
libltdl using process is unable to lt_dlopen a module in any other fashion, but can find a
suitable static archive in the module search path, it should relink itself along with the static
archive (using libtool to preload the module), and then exec the new executable. Assum-
ing all of this is successful, the attempt to lt_dlopen can be tried again – if the ‘suitable’
static archive was chosen correctly it should now be possible to access the preloaded code.

18.5.1 Loader Mechanism

Since Libtool 1.4, libltdl has provided a generalized method for loading modules, which
can be extended by the user. libltdl has a default built in list of module loading mechanisms,
some of which are peculiar to a given platform, others of which are more general. When the
‘libltdl’ subdirectory of a project is configured, the list is narrowed to include only those
mechanisms, or simply loaders, which can work on the host architecture. When ‘lt_dlopen’
is called, the loaders in this list are tried, in order, until the named module has loaded, or
all of the loaders in the list have been exhausted. The entries in the final list of loaders each
have a unique name, although there may be several candidate loaders for a single name
before the list is narrowed. For example, the ‘dlopen’ loader is implemented differently on
BeOS and Solaris – for a single host, there can be only one implementation of any named
loader. The name of a module loader is something entirely different to the name of a loaded
module, something that should become clearer as you read on.

In addition to the loaders supplied with libltdl, your project can add more loaders of its
own. New loaders can be added to the end of the existing list, or immediately before any
other particular loader, thus giving you complete control of the relative priorities of all of
the active loaders in your project.

In your module loading api, you might even support the dynamic loading of user supplied
loaders: that is your users would be able to create dynamic modules which added more
loading mechanisms to the existing list of loaders!

Version 1.4 of Libtool has a default list that potentially contains an implementation of
the following loaders (assuming all are supported by the host platform):

dlpreopen
If the named module was preloaded, use the preloaded symbol table for subse-
quent lt_dlsym calls.

dlopen If the host machine has a native dynamic loader api use that to try and load
the module.

dld If the host machine has gnu dld5, use that to try and load the module.

Note that loader names with a ‘dl’ prefix are reserved for future use by Libtool, so you
should choose something else for your own module names to prevent a name clash with
future Libtool releases.

5 http://www.gnu.org/software/dld

http://www.gnu.org/software/dld

Chapter 18: Using GNU libltdl 175

18.5.2 Loader Management

The api supplies all of the functions you need to implement your own module loading
mechanisms to solve problems just like this:

Functionlt_dlloader_t * lt dlloader find (const char *loader name)
Each of the module loaders implemented by libltdl is stored according to a unique
name, which can be used to lookup the associated handle. These handles operate
in much the same way as lt_dlhandles: They are used for passing references to
modules in and out of the api, except that they represent a kind of module loading
method, as opposed to a loaded module instance.

This function finds the ‘lt_dlloader_t’ handle associated with the unique name
passed as the only argument, or else returns ‘NULL’ if there is no such module loader
registered.

Functionint lt dlloader add (lt_dlloader_t *place,
lt_user_dlloader *dlloader, const char *loader name)

This function is used to register your own module loading mechanisms with libltdl.
If place is given it must be a handle for an already registered module loader, which
the new loader dlloader will be placed in front of for the purposes of which order to
try loaders in. If place is ‘NULL’, on the other hand, the new dlloader will be added
to the end of the list of loaders to try when loading a module instance. In either case
loader name must be a unique name for use with lt_dlloader_find.

The dlloader argument must be a C structure of the following format, populated with
suitable function pointers which determine the functionality of your module loader:

struct lt_user_dlloader {
const char *sym_prefix;
lt_module_open_t *module_open;
lt_module_close_t *module_close;
lt_find_sym_t *find_sym;
lt_dlloader_exit_t *dlloader_exit;
lt_dlloader_data_t dlloader_data;

};

Functionint lt dlloader remove (const char *loader name)
When there are no more loaded modules that were opened by the given module loader,
the loader itself can be removed using this function.

When you come to set the fields in the lt_user_dlloader structure, they must each be of
the correct type, as described below:

Typeconst char * sym prefix
If a particular module loader relies on a prefix to each symbol being looked up (for
example, the Windows module loader necessarily adds a ‘_’ prefix to each symbol
name pased to lt_dlsym), it should be recorded in the ‘sym_prefix’ field.

176 Autoconf, Automake, and Libtool

Typelt_module_t lt module open t (lt_dlloader_data_t loader data,
const char *module name)

When lt_dlopen has reached your registered module loader when attempting to load
a dynamic module, this is the type of the module_open function that will be called.
The name of the module that libltdl is attempting to load, along with the module
loader instance data associated with the loader being used currently, are passed as
arguments to such a function call.

The lt_module_t returned by functions of this type can be anything at all that can be
recognised as unique to a successfully loaded module instance when passed back into
the module_close or find_sym functions in the lt_user_dlloader module loader
structure.

Typeint lt module close t (lt_dlloader_data_t loader data,
lt_module_t module)

In a similar vein, a function of this type will be called by lt_dlclose, where module
is the returned value from the ‘module_open’ function which loaded this dynamic
module instance.

Typelt_ptr_t lt find sym t (lt_dlloader_data_t loader data,
lt_module_t module, const char *symbol name)

In a similar vein once more, a function of this type will be called by lt_dlsym, and
must return the address of symbol name in module.

Typeint lt dlloader exit t (lt_dlloader_data_t loader data)
When a user module loader is lt_dlloader_removed, a function of this type will be
called. That function is responsible for releasing any resouces that were allocated
during the initialisation of the loader, so that they are not ‘leaked’ when the lt_
user_dlloader structure is recycled.

Note that there is no initialisation function type: the initialisation of a user module
loader should be performed before the loader is registered with lt_dlloader_add.

Typelt_dlloader_data_t dlloader data
The dlloader data is a spare field which can be used to store or pass any data specific
to a particular module loader. That data will always be passed as the value of the
first argument to each of the implementation functions above.

18.5.3 Loader Errors

When writing the code to fill out each of the functions needed to populate the lt_user_
dlloader structure, you will often need to raise an error of some sort. The set of standard
errors which might be raised by the internal module loaders are available for use in your
own loaders, and should be used where possible for the sake of uniformity if nothing else.
On the odd occasion where that is not possible, libltdl has api calls to register and set your
own error messages, so that users of your module loader will be able to call lt_dlerror
and have the error message you set returned:

Chapter 18: Using GNU libltdl 177

Functionint lt dlseterror (int errorcode)
By calling this function with one of the error codes enumerated in the header file,
‘ltdl.h’, lt_dlerror will return the associated diagnostic until the error code is
changed again.

Functionint lt dladderror (const char *diagnostic)
Often you will find that the existing error diagnostics do not describe the failure
you have encountered. By using this function you can register a more suitable di-
agnostic with libltdl, and subsequently use the returned integer as an argument to
lt_dlseterror.

libltdl provides several other functions which you may find useful when writing a cus-
tom module loader. These are covered in the Libtool manual, along with more detailed
descriptions of the functions described in the preceding paragraphs.

In the next chapter, we will discuss the more complex features of Automake, before
moving on to show you how to use those features and add libltdl module loading to the Sic
project from Chapter 12 [A Large GNU Autotools Project], page 107 in the chapter after
that.

178 Autoconf, Automake, and Libtool

Chapter 19: Advanced GNU Automake Usage 179

19 Advanced GNU Automake Usage

This chapter covers a few seemingly unrelated Automake features which are commonly
considered ‘advanced’: conditionals, user-added language support, and automatic depen-
dency tracking.

19.1 Conditionals

Automake conditionals are a way to omit or include different parts of the ‘Makefile’
depending on what configure discovers. A conditional is introduced in ‘configure.in’
using the ‘AM_CONDITIONAL’ macro. This macro takes two arguments: the first is the name
of the condition, and the second is a shell expression which returns true when the condition
is true.

For instance, here is how to make a condition named ‘TRUE’ which is always true:
AM_CONDITIONAL(TRUE, true)

As another example, here is how to make a condition named ‘DEBUG’ which is true when
the user has given the ‘--enable-debug’ option to configure:

AM_CONDITIONAL(DEBUG, test "$enable_debug" = yes)

Once you’ve defined a condition in ‘configure.in’, you can refer to it in your
‘Makefile.am’ using the ‘if’ statement. Here is a part of a sample ‘Makefile.am’ that
uses the conditions defined above:

if TRUE
This is always used.
bin_PROGRAMS = foo
endif

if DEBUG
AM_CFLAGS = -g -DDEBUG
endif

It’s important to remember that Automake conditionals are configure-time conditionals.
They don’t rely on any special feature of make, and there is no way for the user to affect
the conditionals from the make command line. Automake conditionals work by rewriting
the ‘Makefile’ – make is unaware that these conditionals even exist.

Traditionally, Automake conditionals have been considered an advanced feature. How-
ever, practice has shown that they are often easier to use and understand than other ap-
proaches to solving the same problem. I now recommend the use of conditionals to everyone.

For instance, consider this example:
bin_PROGRAMS = echo
if FULL_ECHO
echo_SOURCES = echo.c extras.c getopt.c
else
echo_SOURCES = echo.c
endif

In this case, the equivalent code without conditionals is more confusing and correspond-
ingly more difficult for the new Automake user to figure out:

180 Autoconf, Automake, and Libtool

bin_PROGRAMS = echo
echo_SOURCES = echo.c
echo_LDADD = @echo_extras@
EXTRA_echo_SOURCES = extras.c getopt.c

Automake conditionals have some limitations. One known problem is that conditionals
don’t interact properly with ‘+=’ assignment. For instance, consider this code:

bin_PROGRAMS = z
z_SOURCES = z.c
if SOME_CONDITION
z_SOURCES += cond.c
endif

This code appears to have an unambiguous meaning, but Automake 1.4 doesn’t im-
plement this and will give an error. This bug will be fixed in the next major Automake
release.

19.2 Language support

Automake comes with built-in knowledge of the most common compiled languages: C,
C++, Objective C, Yacc, Lex, assembly, and Fortran. However, programs are sometimes
written in an unusual language, or in a custom language that is translated into something
more common. Automake lets you handle these cases in a natural way.

Automake’s notion of a ‘language’ is tied to the suffix appended to each source file written
in that language. You must inform Automake of each new suffix you introduce. This is
done by listing them in the ‘SUFFIXES’ macro. For instance, suppose you are writing part
of your program in the language ‘M’, which is compiled to object code by a program named
mc. The typical suffix for an ‘M’ source file is ‘.m’. In your ‘Makefile.am’ you would write:

SUFFIXES = .m

This differs from ordinary make usage, where you would use the special .SUFFIX target
to list suffixes.

Now you need to tell Automake (and make) how to compile a ‘.m’ file to a ‘.o’ file. You
do this by writing an ordinary make suffix rule:

MC = mc
.m.o:

$(MC) $(MCFLAGS) $(AM_MCFLAGS) -c $<

Note that we introduced the ‘MC’, ‘MCFLAGS’, and ‘AM_MCFLAGS’ variables. While not
required, this is good style in case you want to override any of these later (for instance from
the command line).

Automake understands enough about suffix rules to recognize that ‘.m’ files can be
treated just like any file it already understands, so now you can write:

bin_PROGRAMS = myprogram
myprogram_SOURCES = foo.c something.m

Note that Automake does not really understand chained suffix rules; however, frequently
the right thing will happen anyway. For instance, if you have a .m.c rule, Automake will
naively assume that ‘.m’ files should be turned into ‘.o’ files – and then it will proceed to
rely on make to do the real work. In this example, if the translation takes three steps—from

Chapter 19: Advanced GNU Automake Usage 181

‘.m’ to ‘.x’, then from ‘.x’ to ‘.c’, and finally to ‘.o’—then Automake’s simplistic approach
will break. Fortunately, these cases are very rare.

19.3 Automatic dependency tracking

Keeping track of dependencies for a large program is tedious and error-prone. Many edits
require the programmer to update dependencies, but for some changes, such as adding a
#include to an existing header, the change is large enough that he simply refuses (or does
it incorrectly). To fix this problem, Automake supports automatic dependency tracking.

The implementation of automatic dependency tracking in Automake 1.4 requires gcc and
gnu make. These programs are only required for maintainers; the ‘Makefile’s generated
by make dist are completely portable. If you can’t use gcc or gnu make for your project,
then you are simply out of luck; you have to disable dependency tracking.

Automake 1.5 will include a completely new dependency tracking implementation. This
new implementation will work with any compiler and any version of make.

Another limitation of the current scheme is that the dependencies included into the
portable ‘Makefile’s by make dist are derived from the current build environment. First,
this means that you must use make all before you can meaningfully run make dist (oth-
erwise the dependencies won’t have been created). Second, this means that any files not
built in your current tree will not have dependencies in the distributed ‘Makefile’s. The
new implementation will avoid both of these shortcomings as well.

Automatic dependency tracking is on by default; you don’t have to do anything spe-
cial to get it. To turn it off, either run automake -i instead of plain automake, or put
‘no-dependencies’ into the ‘AUTOMAKE_OPTIONS’ macro in each ‘Makefile.am’.

182 Autoconf, Automake, and Libtool

Chapter 20: A Complex GNU Autotools Project 183

20 A Complex GNU Autotools Project

This chapter polishes the worked example I introduced in Chapter 9 [A Small GNU
Autotools Project], page 49, and developed in Chapter 12 [A Large GNU Autotools Project],
page 107. As always, the ideas presented here are my own views and not necessarily the
only way to do things. Everything I present here has, however, served me well for quite
some time, and you should find plenty of interesting ideas for your own projects.

Herein, I will add a libltdl module loading system to Sic, as well as some sample modules
to illustrate how extensible such a project can be. I will also explain how to integrate the
‘dmalloc’ library into the development of a project, and show why this is important.

If you noticed that, as it stands, Sic is only useful as an interactive shell unable to read
commands from a file, then go to the top of the class! In order for it to be of genuine use,
I will extend it to interpret commands from a file too.

20.1 A Module Loading Subsystem

As you saw in Chapter 18 [Using GNU libltdl], page 161, I need to put an invocation of
the macro ‘AC_LIBTOOL_DLOPEN’ just before ‘AC_PROG_LIBTOOL’, in the file ‘configure.in’.
But, as well as being able to use libtoolize --ltdl, which adds libltdl in a subdirectory
with its own subconfigure, you can also manually copy just the ltdl source files into your
project1, and use AC_LIB_LTDL in your existing ‘configure.in’. At the time of writing,
this is still a very new and (as yet) undocumented feature, with a few kinks that need to
be ironed out. In any case you probably shouldn’t use this method to add ‘ltdl.lo’ to a
C++ library, since ‘ltdl.c’ is written in C. If you do want to use libltdl with a C++ library,
things will work much better if you build it in a subdirectory generated with libtoolize
--ltdl.

For this project, lets:
$ cp /usr/share/libtool/libltdl/ltdl.[ch] sic/

The Sic module loader is probably as complicated as any you will ever need to write,
since it must support two kinds of modules: modules which contain additional built-in
commands for the interpreter; and modules which extend the Sic syntax table. A single
module can also provide both syntax extensions and additional built-in commands.

20.1.1 Initialising the Module Loader

Before using this code (or any other libltdl based module loader for that matter), a
certain amount of initialisation is required:

• libltdl itself requires initialisation.
1. libltdl should be told to use the same memory allocation routines used by the rest

of Sic.
2. Any preloaded modules (see Section 18.4 [dlpreopen Loading], page 170) need to

be initialised with LTDL_SET_PRELOADED_SYMBOLS().

1 If you have an early 1.3c snapshot of Libtool, you will also need to copy the ‘ltdl.m4’ file into your
distribution.

184 Autoconf, Automake, and Libtool

3. ltdl_init() must be called.

• The module search path needs to be set. Here I allow the installer to specify a default
search path to correspond with the installed Sic modules at compile time, but search
the directories in the runtime environment variable ‘SIC_MODULES_PATH’ first.

• The internal error handling needs to be initialised.

Here is the start of the module loader, ‘sic/module.c’, including the initialisation code
for libltdl:

20.1.2 Managing Module Loader Errors

The error handling is a very simplistic wrapper for the libltdl error functions, with the
addition of a few extra errors specific to this module loader code2. Here are the error
messages from ‘module.c’:

20.1.3 Loading a Module

Individual modules are managed by finding specified entry points (prescribed exported
symbols) in the module:

Variableconst Builtin * builtin table
An array of names of built-in commands implemented by a module, with associated
handler functions.

Functionvoid module init (Sic *sic)
If present, this function will be called when the module is loaded.

Functionvoid module finish (Sic *sic)
If supplied, this function will be called just before the module is unloaded.

Variableconst Syntax * syntax table
An array of syntactically significant symbols, and associated handler functions.

Functionint syntax init (Sic *sic)
If specified, this function will be called by Sic before the syntax of each input line is
analysed.

Functionint syntax finish (Sic *sic, BufferIn *in, BufferOut *out)
Similarly, this function will be call after the syntax analysis of each line has completed.

2 This is very different to the way errors are managed when writing a custom loader for libltdl. Compare
this section with Section 18.5.3 [libltdl Loader Errors], page 176.

Chapter 20: A Complex GNU Autotools Project 185

All of the hard work in locating and loading the module, and extracting addresses for the
symbols described above is performed by libltdl. The module_load function below simply
registers these symbols with the Sic interpreter so that they are called at the appropriate
times – or diagnoses any errors if things don’t go according to plan:

Notice that the generalised List data type introduced earlier (see Chapter 9 [A Small GNU
Autotools Project], page 49) is reused to keep a list of accumulated module initialisation
and finalisation functions.

20.1.4 Unloading a Module

When unloading a module, several things must be done:
• Any built-in commands implemented by this module must be unregistered so that Sic

doesn’t try to call them after the implementation has been removed.
• Any syntax extensions implemented by this module must be similarly unregistered,

including syntax_init and syntax_finish functions.
• If there is a finalisation entry point in the module, ‘module_finish’ (see Section 20.1.3

[Loading a Module], page 184), it must be called.

My first cut implementation of a module subsystem kept a list of the entry points as-
sociated with each module so that they could be looked up and removed when the module
was subsequently unloaded. It also kept track of multiply loaded modules so that a module
wasn’t unloaded prematurely. libltdl already does all of this though, and it is wasteful
to duplicate all of that work. This system uses lt_dlforeach and lt_dlgetinfo to ac-
cess libltdls records of loaded modules, and save on duplication. These two functions are
described fully insection “Libltdl interface” in The Libtool Manual.

This function asks libltdl to call the function unload_ltmodule for each of the modules it
has loaded, along with some details of the module it wants to unload. The tricky part of
the callback function below is recalculating the ntry point addresses for the module to be
unloaded and then removing all matching addresses from the appropriate internal structures.
Otherwise, the balance of this callback is involved in informing the calling lt_dlforeach
loop of whether a matching module has been found and handled:

The userdata_address_compare helper function at the end is used to compare the address
of recalculated entry points against the already registered functions and handlers to find
which items need to be unregistered.

There is also a matching header file to export the module interface, so that the code for
loadable modules can make use of it:

This header also includes some of the other Sic headers, so that in most cases, the source
code for a module need only ‘#include <sic/module.h>’.

To make the module loading interface useful, I have added built-ins for ‘load’ and
‘unload’. Naturally, these must be compiled into the bare sic executable, so that it is able
to load additional modules:

186 Autoconf, Automake, and Libtool

These new built-in commands are simply wrappers around the module loading code in
‘module.c’.

As with ‘dlopen’, you can use libltdl to ‘lt_dlopen’ the main executable, and then
lookup its symbols. I have simplified the initialisation of Sic by replacing the sic_init
function in ‘src/sic.c’ by ‘loading’ the executable itself as a module. This works because
I was careful to use the same format in ‘sic_builtin.c’ and ‘sic_syntax.c’ as would be
required for a genuine loadable module, like so:

20.2 A Loadable Module

A feature of the Sic interpreter is that it will use the ‘unknown’ built-in to handle any
command line which is not handled by any of the other registered built-in callback functions.
This mechanism is very powerful, and allows me to lookup unhandled built-ins in the user’s
‘PATH’, for instance.

Before adding any modules to the project, I have created a separate subdirectory,
‘modules’, to put the module source code into. Not forgetting to list this new subdi-
rectory in the AC_OUTPUT macro in ‘configure.in’, and the SUBDIRS macro in the top level
‘Makefile.am’, a new ‘Makefile.am’ is needed to build the loadable modules:

pkglibdir is a Sic specific directory where modules will be installed, See Chapter 14 [In-
stalling and Uninstalling Configured Packages], page 121.

For a library to be maximally portable, it should be written so that it does not
require back-linking3 to resolve its own symbols. That is, if at all possible you
should design all of your libraries (not just dynamic modules) so that all of their
symbols can be resolved at linktime. Sometimes, it is impossible or undesireable
to architect your libraries and modules in this way. In that case you sacrifice
the portability of your project to platforms such as aix and Windows.

The key to building modules with libtool is in the options that are specified when the
module is linked. This is doubly true when the module must work with libltdl’s dlpreopening
mechanism.

Sic modules are built without a ‘lib’ prefix (‘-module’), and without version suffixes
(‘-avoid-version’). All of the undefined symbols are resolved at linktime by ‘libsic.la’,
hence ‘-no-undefined’.
Having added ‘ltdl.c’ to the ‘sic’ subdirectory, and called the AC_LIB_LTDL macro in
‘configure.in’, ‘libsic.la’ cannot build correctly on those architectures which do not
support back-linking. This is because ‘ltdl.c’ simply abstracts the native dlopen api with
a common interface, and that local interface often requires that a special library be linked
– ‘-ldl’ on linux, for example. AC_LIB_LTDL probes the system to determine the name of
any such dlopen library, and allows you to depend on it in a portable way by using the
configure substitution macro, ‘@LIBADD_DL@’. If I were linking a libtool compiled libltdl

3 See Section 18.1 [Introducing libltdl], page 161

Chapter 20: A Complex GNU Autotools Project 187

at this juncture, the system library details would have already been taken care of. In this
project, I have bypassed that mechanism by compiling and linking ‘ltdl.c’ myself, so I
have altered ‘sic/Makefile.am’ to use ‘@LIBADD_DL@’:

Having put all this infrastructure in place, the code for the ‘unknown’ module is a breeze
(helper functions omitted for brevity):

In the first instance, notice that I have used the preprocessor to redefine the entry point func-
tions to be compatible with libltdls dlpreopen, hence the unknown_LTX_builtin_table cpp
macro. The ‘unknown’ handler function itself looks for a suitable executable in the user’s
path, and if something suitable is found, executes it.

Notice that Libtool doesn’t relink dependent libraries (‘libsic’ depends on ‘libcommon’,
for example) on my gnu/Linux system, since they are not required for the static library in
any case, and because the dependencies are also encoded directly into the shared archive,
‘libsic.so’, by the original link. On the other hand, Libtool will relink the dependent
libraries if that is necessary for the target host.

$ make
/bin/sh ../libtool --mode=compile gcc -DHAVE_CONFIG_H -I. -I. -I.. \
-I.. -I.. -I../sic -I../sic -I../src -I../src -g -O2 -c unknown.c
mkdir .libs
gcc -DHAVE_CONFIG_H -I. -I. -I.. -I.. -I.. -I../sic -I../sic -I../src \
-I../src -g -O2 -Wp,-MD,.deps/unknown.pp -c unknown.c -fPIC -DPIC \
-o .libs/unknown.lo
gcc -DHAVE_CONFIG_H -I. -I. -I.. -I.. -I.. -I../sic -I../sic -I../src \
I../src -g -O2 -Wp,-MD,.deps/unknown.pp -c unknown.c -o unknown.o \
>/dev/null 2>&1
mv -f .libs/unknown.lo unknown.lo
/bin/sh ../libtool --mode=link gcc -g -O2 -o unknown.la -rpath \
/usr/local/lib/sic -no-undefined -module -avoid-version unknown.lo \
../sic/libsic.la
rm -fr .libs/unknown.la .libs/unknown.* .libs/unknown.*
gcc -shared unknown.lo -L/tmp/sic/sic/.libs ../sic/.libs/libsic.so \
-lc -Wl,-soname -Wl,unknown.so -o .libs/unknown.so
ar cru .libs/unknown.a unknown.o
creating unknown.la
(cd .libs && rm -f unknown.la && ln -s ../unknown.la unknown.la)
$./libtool --mode=execute ldd ./unknown.la

libsic.so.0 => /tmp/sic/.libs/libsic.so.0 (0x40002000)
libc.so.6 => /lib/libc.so.6 (0x4000f000)
libcommon.so.0 => /tmp/sic/.libs/libcommon.so.0 (0x400ec000)
libdl.so.2 => /lib/libdl.so.2 (0x400ef000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x80000000)

After compiling the rest of the tree, I can now use the ‘unknown’ module:
$ SIC_MODULE_PATH=‘cd ../modules; pwd‘ ./sic
] echo hello!
command "echo" not found.
] load unknown

188 Autoconf, Automake, and Libtool

] echo hello!
hello!
] unload unknown
] echo hello!
command "echo" not found.
] exit
$

20.3 Interpreting Commands from a File

For all practical purposes, any interpreter is pretty useless if it only works interactively.
I have added a ‘source’ built-in command to ‘sic_builtin.c’ which takes lines of input
from a file and evaluates them using ‘sic_repl.c’ in much the same way as lines typed at
the prompt are evaluated otherwise. Here is the built-in handler:

And the source function from ‘sic_repl.c’:

The reason for separating the source function in this way, is that it makes it easy for
the startup sequence in main to evaluate a startup file. In traditional Unix fashion, the
startup file is named ‘.sicrc’, and is evaluated if it is present in the user’s home directory:

20.4 Integrating Dmalloc

A huge number of bugs in C and C++ code are caused by mismanagement of memory.
Using the wrapper functions described earlier (see Section 9.2.1.2 [Memory Management],
page 58), or their equivalent, can help immensely in reducing the occurence of such bugs.
Ultimately, you will introduce a difficult-to-diagnose memory bug inspite of these measures.

That is where Dmalloc4 comes in. I recommend using it routinely in all of your projects
— you will find all sorts of leaks and bugs that might otherwise have lain dormant for
some time. Automake has explicit support for Dmalloc to make using it in your own
projects as painless as possible. The first step is to add the macro ‘AM_WITH_DMALLOC’ to
‘configure.in’. Citing this macro adds a ‘--with-dmalloc’ option to configure, which,
when specified by the user, adds ‘-ldmalloc’ to ‘LIBS’ and defines ‘WITH_DMALLOC’.

The usefulness of Dmalloc is much increased by compiling an entire project with the
header, ‘dmalloc.h’ – easily achieved in Sic by conditionally adding it to ‘common-h.in’:

I have been careful to include the ‘dmalloc.h’ header from the end of this file so that it
overrides my own definitions without renaming the function prototypes. Similarly I must be
careful to accomodate Dmalloc’s redefinition of the mallocation routines in ‘sic/xmalloc.c’
and ‘sic/xstrdup.c’, by putting each file inside an ‘#ifndef WITH_DMALLOC’. That way,
when compiling the project, if ‘--with-dmalloc’ is specified and the ‘WITH_DMALLOC’ pre-
processor symbol is defined, then Dmalloc’s debugging definitions of xstrdup et. al. will
be used in place of the versions I wrote.

4 Dmalloc is distributed from http://www.dmalloc.com.

http://www.dmalloc.com

Chapter 20: A Complex GNU Autotools Project 189

Enabling Dmalloc is now simply a matter of reconfiguring the whole package using the
‘--with-dmalloc’ option, and disabling it again is a matter of recofiguring without that
option.

The use of Dmalloc is beyond the scope of this book, and is in any case described very
well in the documentation that comes with the package. I strongly recommend you become
familiar with it – the time you invest here will pay dividends many times over in the time
you save debugging.

This chapter completes the description of the Sic library project, and indeed tis part of
the book. All of the infrastructure for building an advanced command line shell is in place
now – you need only add the builtin and syntax function definitions to create a complete
shell of your own.

Each of the chapters in the next part of the book explores a more specialised application
of the GNU Autotools, starting with a discussion of M4, a major part of the implementation
of Autoconf.

190 Autoconf, Automake, and Libtool

Part III 191

Part III

192 Autoconf, Automake, and Libtool

Chapter 21: M4 193

21 M4

M4 is a general purpose tool for processing text and has existed on Unix systems of all
kinds for many years, rarely catching the attention of users. Text generation through macro
processing is not a new concept. Originally M4 was designed as the preprocessor for the
Rational FORTRAN system and was influenced by the General Purpose Macro generator,
GPM, first described by Stratchey in 1965! gnu M4 is the gnu project’s implementation
of M4 and was written by René Seindal in 1990.

In recent years, awareness of M4 has grown through its use by popular free software
packages. The Sendmail package incorporates a configuration system that uses M4 to gen-
erate its complex ‘sendmail.cf’ file from a simple specification of the desired configuration.
Autoconf uses M4 to generate output files such as a ‘configure’ script.

It is somewhat unfortunate that users of GNU Autotools need to know so much about
M4, because it has been too exposed. Many of these tools’ implementation details were
simply left up to M4, forcing the user to know about M4 in order to use them. It is a well-
known problem and there is a movement amongst the development community to improve
this shortcoming in the future. This deficiency is the primary reason that this chapter
exists—it is important to have a good working knowledge of M4 in order to use the GNU
Autotools and to extend it with your own macros (see Chapter 23 [Writing New Macros for
Autoconf], page 217).

The GNU M4 manual provides a thorough tutorial on M4. Please refer to it for addi-
tional information.

21.1 What does M4 do?

m4 is a general purpose tool suitable for all kinds of text processing applications—not
unlike the C preprocessor, cpp, with which you are probably familiar. Its obvious application
is as a front-end for a compiler—m4 is in many ways superior to cpp.

Briefly, m4 reads text from the input and writes processed text to the output. Symbolic
macros may be defined which have replacement text. As macro invocations are encountered
in the input, they are replaced (‘expanded’) with the macro’s definition. Macros may be
defined with a set of parameters and the definition can specify where the actual param-
eters will appear in the expansion. These concepts will be elaborated on in Section 21.3
[Fundamentals of M4 processing], page 194.

M4 includes a set of pre-defined macros that make it substantially more useful. The
most important ones will be discussed in Section 21.4 [Features of M4], page 198. These
macros perform functions such as arithmetic, conditional expansion, string manipulation
and running external shell commands.

21.2 How GNU Autotools uses M4

The GNU Autotools may all appear to use M4, but in actual fact, it all boils down to
autoconf that invokes m4 to generate your ‘configure’ script. You might be surprised to
learn that the shell code in ‘configure’ does not use m4 to generate a final ‘Makefile’ from
‘Makefile.in’. Instead, it uses sed, since that is more likely to be present on an end-user’s
system and thereby removes the dependency on m4.

194 Autoconf, Automake, and Libtool

Automake and Libtool include a lot of M4 input files. These are macros provided with
each package that you can use directly (or indirectly) from your ‘configure.in’. These
packages don’t invoke m4 themselves.

If you have already installed Autoconf on your system, you may have encountered prob-
lems due to its strict M4 requirements. Autoconf demands to use gnu M4, mostly due to
it exceeding limitations present in other M4 implementations. As noted by the Autoconf
manual, this is not an onerous requirement, as it only affects package maintainers who must
regenerate ‘configure’ scripts.

Autoconf’s own ‘Makefile’ will freeze some of the Autoconf ‘.m4’ files containing macros
as it builds Autoconf. When M4 freezes an input file, it produces another file which repre-
sents the internal state of the M4 processor so that the input file does not need to be parsed
again. This helps to reduce the startup time for autoconf.

21.3 Fundamentals of M4 processing

When properly understood, M4 seems like child’s play. However, it is common to learn
M4 in a piecemeal fashion and to have an incomplete or inaccurate understanding of certain
concepts. Ultimately, this leads to hours of furious debugging. It is important to understand
the fundamentals well before progressing to the details.

21.3.1 Token scanning

m4 scans its input stream, generating (often, just copying) text to the output stream.
The first step that m4 performs in processing is to recognize tokens. There are three kinds
of tokens:

Names A name is a sequence of characters that starts with a letter or an underscore
and may be followed by additional letters, characters and underscores. The end
of a name is recognized by the occurrence a character which is not any of the
permitted characters—for example, a period. A name is always a candidate
for macro expansion (Section 21.3.2 [Macros and macro expansion], page 195),
whereby the name will be replaced in the output by a macro definition of the
same name.

Quoted strings
A sequence of characters may be quoted (Section 21.3.3 [Quoting], page 197)
with a starting quote at the beginning of the string and a terminating quote
at the end. The default M4 quote characters are ‘‘’ and ‘’’, however Auto-
conf reassigns them to ‘[’ and ‘]’, respectively. Suffice to say, M4 will remove
the quote characters and pass the inner string to the output (Section 21.3.3
[Quoting], page 197).

Other tokens
All other tokens are those single characters which are not recognized as belong-
ing to any of the other token types. They are passed through to the output
unaltered.

Like most programming languages, M4 allows you to write comments in the input which
will be ignored. Comments are delimited by the ‘#’ character and by the end of a line.

Chapter 21: M4 195

Comments in M4 differ from most languages, though, in that the text within the comment,
including delimiters, is passed through to the output unaltered. Although the comment
delimiting characters can be reassigned by the user, this is highly discouraged, as it may
break GNU Autotools macros which rely on this fact to pass Bourne shell comment lines–
which share the same comment delimiters–through to the output unaffected.

21.3.2 Macros and macro expansion

Macros are definitions of replacement text and are identified by a name—as defined
by the syntax rules given in Section 21.3.1 [Token scanning], page 194. M4 maintains
an internal table of macros, some of which are built-ins defined when m4 starts. When a
name is found in the input that matches a name registered in M4’s macro table, the macro
invocation in the input is replaced by the macro’s definition in the output. This process is
known as expansion—even if the new text may be shorter! Many beginners to M4 confuse
themselves the moment they start to use phrases like ‘I am going to call this particular
macro, which returns this value’. As you will see, macros differ significantly from functions
in other programming languages, regardless of how similar their syntax may seem. You
should instead use phrases like ‘If I invoke this macro, it will expand to this text’.

Suppose M4 knows about a simple macro called ‘foo’ that is defined to be ‘bar’. Given
the following input, m4 would produce the corresponding output:

That is one big foo.
⇒That is one big bar.

The period character at the end of this sentence is not permitted in macro names, thus
m4 knows when to stop scanning the ‘foo’ token and consult the table of macro definitions
for a macro named ‘foo’.

Curiously, macros are defined to m4 using the built-in macro define. The example shown
above would be defined to m4 with the following input:

define(‘foo’, ‘bar’)

Since define is itself a macro, it too must have an expansion—by definition, it is the
empty string, or void. Thus, m4 will appear to consume macro invocations like these from
the input. The ‘ and ’ characters are M4’s default quote characters and play an important
role (Section 21.3.3 [Quoting], page 197). Additional built-in macros exist for managing
macro definitions (Section 21.4.2 [Macro management], page 199).

We’ve explored the simplest kind of macros that exist in M4. To make macros substan-
tially more useful, M4 extends the concept to macros which accept a number of arguments1.
If a macro is given arguments, the macro may address its arguments using the special macro
names ‘$1’ through to ‘$n’, where ‘n’ is the maximum number of arguments that the macro
cares to reference. When such a macro is invoked, the argument list must be delimited
by commas and enclosed in parentheses. Any whitespace that precedes an argument is
discarded, but trailing whitespace (for example, before the next comma) is preserved. Here
is an example of a macro which expands to its third argument:

define(‘foo’, ‘$3’)
That is one big foo(3, ‘0x’, ‘beef’).

1 gnu M4 permits an unlimited number of arguments, whereas other versions of M4 limit the number of
addressable arguments to nine.

196 Autoconf, Automake, and Libtool

⇒That is one big beef.

Arguments in M4 are simply text, so they have no type. If a macro which accepts
arguments is invoked, m4 will expand the macro regardless of how many arguments are
provided. M4 will not produce errors due to conditions such as a mismatched number
of arguments, or arguments with malformed values/types. It is the responsibility of the
macro to validate the argument list and this is an important practice when writing GNU
Autotools macros. Some common M4 idioms have developed for this purpose and are
covered in Section 21.4.3 [Conditionals], page 200. A macro that expects arguments can
still be invoked without arguments—the number of arguments seen by the macro will be
zero:

This is still one big foo.
⇒That is one big .

A macro invoked with an empty argument list is not empty at all, but rather is considered
to be a single empty string:

This is one big empty foo().
⇒That is one big .

It is also important to understand how macros are expanded. It is here that you will see
why an M4 macro is not the same as a function in any other programming language. The
explanation you’ve been reading about macro expansion thus far is a little bit simplistic:
macros are not exactly matched in the input and expanded in the output. In actual fact,
the macro’s expansion replaces the invocation in the input stream and it is rescanned for
further expansions until there are none remaining. Here is an illustrative example:

define(‘foobar’, ‘FUBAR’)
define(‘f’, ‘foo’)
f()bar
⇒FUBAR

If the token ‘a1’ were to be found in the input, m4 would replace it with ‘a2’ in the
input stream and rescan. This continues until no definition can be found for a4, at which
point the literal text ‘a4’ will be sent to the output. This is by far the biggest point of
misunderstanding for new M4 users.

The same principles apply for the collection of arguments to macros which accept argu-
ments. Before a macro’s actual arguments are handed to the macro, they are expanded until
there are no more expansions left. Here is an example—using the built-in define macro
(where the problems are no different) which highlights the consequences of this. Normally,
define will redefine any existing macro:

define(foo, bar)
define(foo, baz)

In this example, we expect ‘foo’ to be defined to ‘bar’ and then redefined to ‘baz’.
Instead, we’ve defined a new macro ‘bar’ that is defined to be ‘baz’! Why? The second
define invocation has its arguments expanded prior to the expanding the define macro.
At this stage, the name ‘foo’ is expanded to its original definition, bar. In effect, we’ve
stated:

define(foo, bar)
define(bar, baz)

Chapter 21: M4 197

Sometimes this can be a very useful property, but mostly it serves to thoroughly confuse
the GNU Autotools macro writer. The key is to know that m4 will expand as much text as
it can as early as possible in its processing. Expansion can be prevented by quoting2 and is
discussed in detail in the following section.

21.3.3 Quoting

It is been shown how m4 expands macros when it encounters a name that matches a
defined macro in the input. There are times, however, when you wish to defer expansion.
Principally, there are three situations when this is so:

Free-form text
There may be free-form text that you wish to appear at the output–and as such,
be unaltered by any macros that may be inadvertently invoked in the input. It
is not always possible to know if some particular name is defined as a macro,
so it should be quoted.

Overcoming syntax rules
Sometimes you may wish to form strings which would violate M4’s syntax rules
– for example, you might wish to use leading whitespace or a comma in a macro
argument. The solution is to quote the entire string.

Macro arguments
This is the most common situation for quoting: when arguments to macros are
to be taken literally and not expanded as the arguments are collected. In the
previous section, an example was given that demonstrates the effects of not
quoting the first argument to define. Quoting macro arguments is considered
a good practice that you should emulate.

Strings are quoted by surrounding the quoted text with the ‘‘’ and ‘’’ characters. When
m4 encounters a quoted string–as a type of token (Section 21.3.1 [Token scanning], page 194)–
the quoted string is expanded to the string itself, with the outermost quote characters
removed.

Here is an example of a string that is triple quoted:
‘‘‘foo’’’
⇒‘‘foo’’

A more concrete example uses quoting to demonstrate how to prevent unwanted expan-
sion within macro definitions:

define(‘foo’, ‘‘bar’’)dnl
define(‘bar’, ‘zog’)dnl
foo
⇒bar

When the macro ‘foo’ is defined, m4 strips off the outermost quotes and registers the
definition ‘bar’. The dnl text has a special purpose, too, which will be covered in Sec-
tion 21.4.1 [Discarding input], page 198.

As the macro ‘foo’ is expanded, the next pair of quote characters are stripped off and
the string is expanded to ‘bar’. Since the expansion of the quoted string is the string itself

2 Which is precisely what the ‘‘’ and ‘’’ characters in all of the examples in this section are.

198 Autoconf, Automake, and Libtool

(minus the quote characters), we have prevented unwanted expansion from the string ‘bar’
to ‘zog’.

As mentioned in Section 21.3.1 [Token scanning], page 194, the default M4 quote char-
acters are ‘‘’ and ‘’’. Since these are two commonly used characters in Bourne shell
programming3, Autoconf reassigns these to the ‘[’ and ‘]’ characters–a symmetric look-
ing pair of characters least likely to cause problems when writing GNU Autotools macros.
From this point forward, we shall use ‘[’ and ‘]’ as the quote characters and you can forget
about the default M4 quotes.

Autoconf uses M4’s built-in changequote macro to perform this reassignment and, in
fact, this built-in is still available to you. In recent years, the common practice when needing
to use the quote characters ‘[’ or ‘]’ or to quote a string with an legitimately imbalanced
number of the quote characters has been to invoke changequote and temporarily reassign
them around the affected area:

dnl Uh-oh, we need to use the apostrophe! And even worse, we have two
dnl opening quote marks and no closing quote marks.
changequote(<<, >>)dnl
perl -e ’print "$]\n";’
changequote([,])dnl

This leads to a few potential problems, the least of which is that it’s easy to reassign
the quote characters and then forget to reset them, leading to total chaos! Moreover,
it is possible to entirely disable M4’s quoting mechanism by blindly changing the quote
characters to a pair of empty strings.

In hindsight, the overwhelming conclusion is that using changequote within the GNU
Autotools framework is a bad idea. Instead, leave the quote characters assigned as ‘[’ and
‘]’ and use the special strings @<:@ and @:>@ anywhere you want real square brackets to
appear in your output. This is an easy practice to adopt, because it’s faster and less error
prone than using changequote:

perl -e ’print "$@:>@\n";’

This, and other guidelines for using M4 in the GNU Autotools framework are covered
in detail in Section 21.5 [Writing macros within the GNU Autotools framework], page 202.

21.4 Features of M4

M4 includes a number of pre-defined macros that make it a powerful preprocessor. We
will take a tour of the most important features provided by these macros. Although some of
these features are not very relevant to GNU Autotools users, Autoconf is implemented using
most of them. For this reason, it is useful to understand the features to better understand
Autoconf’s behavior and for debugging your own ‘configure’ scripts.

21.4.1 Discarding input

A macro called dnl discards text from the input. The dnl macro takes no arguments
and expands to the empty string, but it has the side effect of discarding all input up to and
including the next newline character. Here is an example of dnl from the Autoconf source
code:

3 The ‘‘’ is used in grave redirection and ‘’’ for the shell’s own quote character!

Chapter 21: M4 199

AC_LANG_POP

Restore the previous language.
define([AC_LANG_POP],
[popdef([_AC_LANG])dnl
ifelse(_AC_LANG, [_AC_LANG],

[AC_FATAL([too many $0])])dnl
AC_LANG(_AC_LANG)])

It is important to remember dnl’s behavior: it discards the newline character, which can
have unexpected effects on generated ‘configure’ scripts! If you want a newline to appear
in the output, you must add an extra blank line to compensate.

dnl need not appear in the first column of a given line – it will begin discarding input
at any point that it is invoked in the input file. However, be aware of the newline eating
problem again! In the example of AC_TRY_LINK_FUNC above, note the deliberate use of dnl
to remove surplus newline characters.

In general, dnl makes sense for macro invocations that appear on a single line, where you
would expect the whole line to simply vanish from the output. In the following subsections,
dnl will be used to illustrate where it makes sense to use it.

21.4.2 Macro management

A number of built-in macros exist in M4 to manage macros. We shall examine the most
common ones that you’re likely to encounter. There are others and you should consult the
gnu M4 manual for further information.

The most obvious one is define, which defines a macro. It expands to the empty string:
define([foo], [bar])dnl
define([combine], [$1 and $2])dnl

It is worth highlighting again the liberal use of quoting. We wish to define a pair of
macros whose names are literally foo and combine. If another macro had been previously
defined with either of these names, m4 would have expanded the macro immediately and
passed the expansion of foo to define, giving unexpected results.

The undefine macro will remove a macro’s definition from M4’s macro table. It also
expands to the empty string:

undefine([foo])dnl
undefine([combine])dnl

Recall that once removed from the macro table, unmatched text will once more be passed
through to the output.

The defn macro expands to the definition of a macro, named by the single argument to
defn. It is quoted, so that it can be used as the body of a new, renamed macro:

define([newbie], defn([foo]))dnl
undefine([foo])dnl

The ifdef macro can be used to determine if a macro name has an existing definition.
If it does exist, ifdef expands to the second argument, otherwise it expands to the third:

ifdef([foo], [yes], [no])dnl

200 Autoconf, Automake, and Libtool

Again, yes and no have been quoted to prevent expansion due to any pre-existing macros
with those names. Always consider this a real possibility!

Finally, a word about built-in macros: these macros are all defined for you when m4 is
started. One common problem with these macros is that they are not in any kind of name
space, so it’s easier to accidentally invoke them or want to define a macro with an existing
name. One solution is to use the define and defn combination shown above to rename all
of the macros, one by one. This is how Autoconf makes the distinction clear.

21.4.3 Conditionals

Macros which can expand to different strings based on runtime tests are extremely useful–
they are used extensively throughout macros in GNU Autotools and third party macros.
The macro that we will examine closely is ifelse. This macro compares two strings and
expands to a different string based on the result of the comparison. The first form of ifelse
is akin to the if/then/else construct in other programming languages:

ifelse(string1, string2, equal, not-equal)

The other form is unusual to a beginner because it actually resembles a case statement
from other programming languages:

ifelse(string1, string2, equala, string3, string4, equalb, default)

If ‘string1’ and ‘string2’ are equal, this macro expands to ‘equala’. If they are not
equal, m4 will shift the argument list three positions to the left and try again:

ifelse(string3, string4, equalb, default)

If ‘string3’ and ‘string4’ are equal, this macro expands to ‘equalb’. If they are not
equal, it expands to ‘default’. The number of cases that may be in the argument list is
unbounded.

As it has been mentioned in Section 21.3.2 [Macros and macro expansion], page 195,
macros that accept arguments may access their arguments through specially named macros
like ‘$1’. If a macro has been defined, no checking of argument counts is performed before
it is expanded and the macro may examine the number of arguments given through the
‘$#’ macro. This has a useful result: you may invoke a macro with too few (or too many)
arguments and the macro will still be expanded. In the example below, ‘$2’ will expand to
the empty string.

define([foo], [$1 and $2])dnl
foo([a])
⇒a and

This is useful because m4 will expand the macro and give the macro the opportunity
to test each argument for the empty string. In effect, we have the equivalent of default
arguments from other programming languages. The macro can use ifelse to provide a
default value if, say, ‘$2’ is the empty string. You will notice in much of the documentation
for existing Autoconf macros that arguments may be left blank to accept the default value.
This is an important idiom that you should practice in your own macros.

In this example, we wish to accept the default shell code fragment for the case where
‘/etc/passwd’ is found in the build system’s file system, but output ‘Big trouble!’ if it is
not.

AC_CHECK_FILE([/etc/passwd], [], [echo "Big trouble!"])

Chapter 21: M4 201

21.4.4 Looping

There is no support in M4 for doing traditional iterations (ie. ‘for-do’ loops), however
macros may invoke themselves. Thus, it is possible to iterate using recursion. The recursive
definition can use conditionals (Section 21.4.3 [Conditionals], page 200) to terminate the
loop at its completion by providing a trivial case. The gnu M4 manual provides some clever
recursive definitions, including a definition for a forloop macro that emulates a ‘for-do’
loop.

It is conceivable that you might wish to use these M4 constructs when writing macros to
generate large amounts of in-line shell code or arbitrarily nested if; then; fi statements.

21.4.5 Diversions

Diversions are a facility in M4 for diverting text from the input stream into a holding
buffer. There is a large number of diversion buffers in gnu M4, limited only by available
memory. Text can be diverted into any one of these buffers and then ‘undiverted’ back to
the output (diversion number 0) at a later stage.

Text is diverted and undiverted using the divert and undivert macros. They expand
to the empty string, with the side effect of setting the diversion. Here is an illustrative
example:

divert(1)dnl
This goes at the end.
divert(0)dnl
This goes at the beginning.
undivert(1)dnl
⇒This goes at the beginning.
⇒This goes at the end.

It is unlikely that you will want to use diversions in your own macros, and it is difficult
to do reliably without understanding the internals of Autoconf. However, it is interesting
to note that this is how autoconf generates fragments of shell code on-the-fly that must
precede shell code at the current point in the ‘configure’ script.

21.4.6 Including files

M4 permits you to include files into the input stream using the include and sinclude
macros. They simply expand to the contents of the named file. Of course, the expansion
will be rescanned as the normal rules dictate (Section 21.3 [Fundamentals of M4 processing],
page 194).

The difference between include and sinclude is subtle: if the filename given as an
argument to include is not present, an error will be raised. The sinclude macro will
instead expand to the empty string—presumably the ‘s’ stands for ‘silent’.

Older GNU Autotools macros that tried to be modular would use the include and
sinclude macros to import libraries of macros from other sources. While this is still
a workable mechanism, there is an active effort within the GNU Autotools development
community to improve the packaging system for macros. An ‘--install’ option is being
developed to improve the mechanism for importing macros from a library.

202 Autoconf, Automake, and Libtool

21.5 Writing macros within the GNU Autotools framework

With a good grasp of M4 concepts, we may turn our attention to applying these principles
to writing ‘configure.in’ files and new ‘.m4’ macro files. There are some differences
between writing generic M4 input files and macros within the GNU Autotools framework
and these will be covered in this section, along with some useful hints on working within the
framework. This section ties in closely with Chapter 23 [Writing New Macros for Autoconf],
page 217.

Now that you are familiar with the capabilities of M4, you can forget about the names of
the built-in M4 macros–they should be avoided in the GNU Autotools framework. Where
appropriate, the framework provides a collection of macros that are laid on top of the M4
built-ins. For instance, the macros in the AC_ family are just regular M4 macros that take
a number of arguments and rely on an extensive library of AC_ support macros.

21.5.1 Syntactic conventions

Some conventions have grown over the life of the GNU Autotools, mostly as a disciplined
way of avoiding M4 pitfalls. These conventions are designed to make your macros more
robust, your code easier to read and, most importantly, improve your chances for getting
things to work the first time! A brief list of recommended conventions appears below:
− Do not use the M4 built-in changequote. Any good macro will already perform suffi-

cient quoting.
− Never use the argument macros (e.g. ‘$1’) within shell comments and dnl remarks.

If such a comment were to be placed within a macro definition, M4 will expand the
argument macros leading to strange results. Instead, quote the argument number to
prevent unwanted expansion. For instance, you would use ‘$[1]’ in the comment.

− Quote the M4 comment character, ‘#’. This can appear often in shell code fragments
and can have undesirable effects if M4 ignores any expansions in the text between the
‘#’ and the next newline.

− In general, macros invoked from ‘configure.in’ should be placed one per line. Many of
the GNU Autotools macros conclude their definitions with a dnl to prevent unwanted
whitespace from accumulating in ‘configure’.

− Many of the AC_ macros, and others which emulate their good behavior, permit default
values for unspecified arguments. It is considered good style to explicitly show your
intention to use an empty argument by using a pair of quotes, such as [].

− Always quote the names of macros used within the definitions of other macros.
− When writing new macros, generate a small ‘configure.in’ that uses (and abuses!)

the macro—particularly with respect to quoting. Generate a ‘configure’ script with
autoconf and inspect the results.

21.5.2 Debugging with M4

After writing a new macro or a ‘configure.in’ template, the generated ‘configure’
script may not contain what you expect. Frequently this is due to a problem in quoting (see
Section 21.3.3 [Quoting], page 197), but the interactions between macros can be complex.
When you consider that the arguments to GNU Autotools macros are often shell scripts,

Chapter 21: M4 203

things can get rather hairy. A number of techniques exist for helping you to debug these
kinds of problems.

Expansion problems due to over-quoting and under-quoting can be difficult to pinpoint.
Autoconf half-heartedly tries to detect this condition by scanning the generated ‘configure’
script for any remaining invocations of the AC_ and AM_ families of macros. However, this
only works for the AC_ and AM_ macros and not for third party macros.

M4 provides a comprehensive facility for tracing expansions. This makes it possible to
see how macro arguments are expanded and how a macro is finally expanded. Often, this
can be half the battle in discovering if the macro definition or the invocation is at fault.
Autoconf 2.15 will include this tracing mechanism. To trace the generation of ‘configure’,
Autoconf can be invoked like so:

$ autoconf --trace=AC_PROG_CC

Autoconf provides fine control over which macros are traced and the format of the trace
output. You should refer to the Autoconf manual for further details.

GNU m4 also provides a debugging mode that can be helpful in discovering problems
such as infinite recursion. This mode is activated with the ‘-d’ option. In order to pass
options to m4, invoke Autoconf like so:

$ M4=’m4 -dV’ autoconf

Another situation that can arise is the presence of shell syntax errors in the generated
‘configure’ script. These errors are usually obvious, as the shell will abort ‘configure’
when the syntax error is encountered. The task of then locating the troublesome shell code
in the input files can be potentially quite difficult. If the erroneous shell code appears in
‘configure.in’, it should be easy to spot–presumably because you wrote it recently! If the
code is imported from a third party macro, though, it may only be present because you
invoked that macro. A trick to help locate these kinds of errors is to place some magic text
(__MAGIC__) throughout ‘configure.in’:

AC_INIT
AC_PROG_CC
__MAGIC__
MY_SUSPECT_MACRO
__MAGIC__
AC_OUTPUT(Makefile)

After autoconf has generated ‘configure’, you can search through it for the magic text
to determine the extremities of the suspect macro. If your erroneous code appears within
the magic text markers, you’ve found the culprit! Don’t be afraid to hack up ‘configure’.
It can easily be regenerated.

Finally, due to an error on your part, m4 may generate a ‘configure’ script that contains
semantic errors. Something as simple as inverted logic may lead to a nonsense test result:

checking for /etc/passwd... no

Semantic errors of this kind are usually easy to solve once you can spot them. A fast
and simple way of tracing the shell execution is to use the shell’s ‘-x’ and ‘-v’ options to
turn on its own tracing. This can be done by explicitly placing the required set commands
into ‘configure.in’:

AC_INIT

204 Autoconf, Automake, and Libtool

AC_PROG_CC
set -x -v
MY_BROKEN_MACRO
set +x +v
AC_OUTPUT(Makefile)

This kind of tracing is invaluable in debugging shell code containing semantic errors.

Chapter 22: Writing Portable Bourne Shell 205

22 Writing Portable Bourne Shell

This chapter is a whistle stop tour of the accumulated wisdom of the free software
community, with respect to best practices for portable shell scripting, as encoded in the
sources for Autoconf and Libtool, as interpreted and filtered by me. It is by no means
comprehensive – entire books have been devoted to the subject – though it is, I hope,
authoritative.

22.1 Why Use the Bourne Shell?

Unix has been around for more than thirty years and has splintered into hundreds of
small and not so small variants, See Section 2.1 [Unix Diversity], page 7. Much of the subject
matter of this book is concerned with how best to approach writing programs which will
work on as many of these variants as possible. One of the few programming tools that is
absolutely guaranteed to be present on every flavour of Unix in use today is Steve Bourne’s
original shell, sh – the Bourne Shell. That is why Libtool is written as a Bourne Shell script,
and why the configure files generated by Autoconf are Bourne Shell scripts: they can be
executed on all known Unix flavours, and as a bonus on most POSIX based non-Unix
operating systems too.

However, there are complications. Over the years, os vendors have improved Steve
Bourne’s original shell or have reimplemented it in an almost, but not quite, compatible
way. There also a great number of Bourne compatible shells which are often used as a
system’s default ‘/bin/sh’: ash, bash, bsh, ksh, sh5 and zsh are some that you may come
across. For the rest of this chapter, when I say ‘shell’, I mean a Bourne compatible shell.

This leads us to the black art known as portable shell programming, the art of writing
a single script which will run correctly through all of these varying implementations of
‘/bin/sh’. Of course, Unix systems are constantly evolving and new variations are being
introduced all the time (and very old systems which have fallen into disuse can perhaps
be ignored by the pragmatic). The amount of system knowledge required to write a truly
portable shell script is vast, and a great deal of the information that sets a precedent for a
given idiom is necessarily second or third (or tenth) hand. Practically, this means that some
of the knowledge accumulated in popular portable shell scripts is very probably folklore –
but that doesn’t really matter too much, the important thing is that if you adhere to these
idioms, you shouldn’t have any problems from people who can’t run your program on their
system.

22.2 Implementation

By their very nature, a sizeable part of the functionality of shell scripts, is provided by
the many utility programs that they routinely call to perform important subsidiary tasks.
Addressing the portability of the script involves issues of portability in the host operating
system environment, and portability of the utility programs as well as the portability of the
shell implementation itself.

This section discusses differences between shell implementations to which you must cater
when writing a portable script. It is broken into several subsections, each covering a single
aspect of shell programming that needs to be approached carefully to avoid pitfalls with

206 Autoconf, Automake, and Libtool

unexpected behaviour in some shell implementations. The following section discusses how
to cope with the host environment in a portable fashion. The last section in this chapter
addresses the portability of common shell utilities.

22.2.1 Size Limitations

Quite a lot of the Unix vendor implementations of the Bourne shell have a fixed buffer
for storing command lines, as small as 512 characters in the worst cases. You may have an
error akin to this:

$ ls -d /usr/bin/* | wc -l
sh: error: line too long

Notice that the limit applies to the expanded command line, not just the characters
typed in for the line. A portable way to write this would be:

$ (cd /usr/bin && ls | wc -l)
1556

22.2.2 #!

When the kernel executes a program from the file system, it checks the first few bytes
of the file, and compares them with its internal list of known magic numbers, which encode
how the file can be executed. This is a similar, but distinct, system to the ‘/etc/magic’
magic number list used by user space programs.

Having determined that the file is a script by examining its magic number, the kernel
finds the path of the interpreter by removing the ‘#!’ and any intervening space from the
first line of the script. One optional argument is allowed (additional arguments are not
ignored, they constitute a syntax error), and the resulting command line is executed. There
is a 32 character limit to the significant part of the ‘#!’ line, so you must ensure that the
full path to the interpreter plus any switches you need to pass to it do not exceed this limit.
Also, the interpreter must be a real binary program, it cannot be a ‘#!’ file itself.

It used to be thought, that the semantics between different kernels’ idea of the magic
number for the start of an interpreted script varied slightly between implementations. In
actual fact, all look for ‘#!’ in the first two bytes – in spite of commonly held beliefs, there
is no evidence that there are others which require ‘#! /’.

A portable script must give an absolute path to the interpreter, which causes problems
when, say, some machines have a better version of Bourne shell in an unusual directory –
say ‘/usr/sysv/bin/sh’. See Section 22.2.4 [Functions], page 208 for a way to re-execute
the script with a better interpreter.

For example, imagine a script file called ‘/tmp/foo.pl’ with the following first line:
#! /usr/local/bin/perl

Now, the script can be executed from the ‘tmp’ directory, with the following sequence of
commands:

$ cd /tmp
$./foo.pl

When executing these commands, the kernel will actually execute the following from the
‘/tmp’ directory directory:

Chapter 22: Writing Portable Bourne Shell 207

/usr/local/bin/perl ./foo.pl

This can pose problems of its own though. A script such as the one described above will
not work on a machine where the perl interpreter is installed as ‘/usr/bin/perl’. There
is a way to circumvent this problem, by using the env program to find the interpreter by
looking in the user’s ‘PATH’ environment variable. Change the first line of the ‘foo.pl’ to
read as follows:

#! /usr/bin/env perl

This idiom does rely on the env command being installed as ‘/usr/bin/env’, and that, in
this example, perl can be found in the user’s ‘PATH’. But that is indeed the case on the
great majority of machines. In contrast, perl is installed in ‘usr/local/bin’ as often as
‘/usr/bin’, so using env like this is a net win overall. You can also use this method to get
around the 32 character limit if the path to the interpreter is too long.

Unfortunately, you lose the ability to pass an option flag to the interpreter if you choose
to use env. For example, you can’t do the following, since it requires two arguments:

#! /usr/bin/env guile -s

22.2.3 :

In the beginning, the magic number for Bourne shell scripts used to be a colon followed
by a newline. Most Unices still support this, and will correctly pass a file with a single colon
as its first line to ‘/bin/sh’ for interpretation. Nobody uses this any more and I suspect
some very new Unices may have forgotten about it entirely, so you should stick to the more
usual ‘#! /bin/sh’ syntax for your own scripts. You may occasionally come across a very
old script that starts with a ‘:’ though, and it is nice to know why!

In addition, all known Bourne compatible shells have a builtin command, ‘:’ which
always returns success. It is equivalent to the system command /bin/true, but can be
used from a script without the overhead of starting another process. When setting a shell
variable as a flag, it is good practice to use the commands, : and false as values, and
choose the sense of the variable to be ‘:’ in the common case: When you come to test the
value of the variable, you will avoid the overhead of additional processes most of the time.

var=:
if $var; then
foo

fi

The : command described above can take any number of arguments, which it will fas-
tidiously ignore. This allows the ‘:’ character to double up as a comment leader of sorts.
Be aware that the characters that follow are not discarded, they are still interpreted by the
shell, so metacharacters can have unexpected effects:

$ cat foo
:
: echo foo
: ‘echo bar‘
: ‘echo baz >&2’
$./foo
baz

208 Autoconf, Automake, and Libtool

You may find very old shell scripts that are commented using ‘:’, or new scripts that
exploit this behavior in some esoteric fashion. My advice is, don’t: It will bite you later.

22.2.4 ()

There are still a great number of shells that, like Steve Bourne’s original implementation,
do not have functions! So, strictly speaking, you can’t use shell functions in your scripts.
Luckily, in this day and age, even though ‘/bin/sh’ itself may not support shell functions,
it is not too far from the truth to say that almost every machine will have some shell that
does.

Taking this assumption to its logical conclusion, it is a simple matter of writing your
script to find a suitable shell, and then feed itself to that shell so that the rest of the script
can use functions with impunity:

Note that this script finds a shell that supports functions of the following syntax, since the
use of the function keyword is much less widely supported:

foo () { ... }

A notable exception to the assertion that all machines have a shell that can handle
functions is 4.3bsd, which has only a single shell: a shell function deprived Bourne shell.
There are two ways you can deal with this:
1. Ask 4.3bsd users of your script to install a more featureful shell such as bash, so that

the technique above will work.
2. Have your script run itself through sed, chopping itself into pieces, with each function

written to it’s own script file, and then feed what’s left into the original shell. Whenever
a function call is encountered, one of the fragments from the original script will be
executed in a subshell.

If you decide to split the script with sed, you will need to be careful not to rely on shell
variables to communicate between functions, since each ‘function’ will be executed in its
own subshell.

22.2.5 .

The semantics of ‘.’ are rather peculiar to say the least. Here is a simple script – it just
displays its positional parameters:

#! /bin/sh
echo "$0" ${1+"$@"}

Put this in a file, ‘foo’. Here is another simple script – it calls the first script. Put this in
another file, ‘wrapper’:

#! /bin/sh
. ./foo
. ./foo bar baz

Observe what happens when you run this from the command line:
$./wrapper
./wrapper
./wrapper bar baz

Chapter 22: Writing Portable Bourne Shell 209

So ‘$0’ is inherited from the calling script, and the positional parameters are as passed to
the command. Observe what happens when you call the wrapper script with arguments:

$./wrapper 1 2 3
./wrapper 1 2 3
./wrapper bar baz

So the sourced script has access to the calling scripts positional parameters, unless you
override them in the ‘.’ command.

This can cause no end of trouble if you are not expecting it, so you must either be careful
to omit all parameters to any ‘.’ command, or else don’t reference the parameters inside the
sourced script. If you are reexecuting your script with a shell that understands functions,
the best use for the ‘.’ command is to load libraries of functions which can subsequently be
used in the calling script.

Most importantly, don’t forget that, if you call the exit command in a script that you
load with ‘.’, it will cause the calling script to exit too!

22.2.6 [

Although technically equivalent, test is preferable to [in shell code written in conjunc-
tion with Autoconf, since ‘[’ is also used for M4 quoting in Autoconf. Your code will be
much easier to read (and write) if you abstain from the use of ‘[’.

Except in the most degenerate shells, test is a shell builtin to save the overhead of
starting another process, and is no slower than ‘[’. It does mean, however, that there is
a huge range of features which are not implemented often enough that you can use them
freely within a truly portable script. The less obvious ones to avoid are ‘-a’ and ‘-o’ – the
logical ‘and’ and ‘or’ operations. A good litmus test for the portability of any shell feature
is to see whether that feature is used in the source of Autoconf, and it turns out that ‘-a’
and ‘-o’ are used here and there, but never more than once in a single command. All the
same, to avoid any confusion, I always avoid them entirely. I would not use the following,
for example:

test foo -a bar

Instead I would run test twice, like this:
test foo && test bar

The negation operator of test is quite portable and can be used in portable shell scripts.
For example:

if test ! foo; then bar; fi

The negation operator of if is not at all portable and should be avoided. The following
would generate a syntax error on some shell implementations:

if ! test foo; then bar; fi

An implication of this axiom is that when you need to branch if a command fails, and
that command is not test, you cannot use the negation operator. The easiest way to work
around this is to use the ‘else’ clause of the un-negated if, like this:

if foo; then :; else bar; fi

Notice the use of the : builtin as a null operation when foo doesn’t fail.

210 Autoconf, Automake, and Libtool

The test command does not cope with missing or additional arguments, so you must
take care to ensure that the shell does not remove arguments or introduce new ones during
variable and quote expansions. The best way to do that is to enclose any variables in double
quotes. You should also add a single character prefix to both sides in case the value of the
expansion is a valid option to test:

$ for foo in "" "!" "bar" "baz quux"; do
> test x"$foo" = x"bar" && echo 1 || echo 0
> done
0
0
1
0

Here, you can see that using the ‘x’ prefix for the first operand saves test from interpreting
the ‘!’ argument as a real option, or from choking on an empty string – something you must
always be aware of, or else the following behaviour will ensue:

$ foo=!
$ test "$foo" = "bar" && echo 1 || echo 0
test: argument expected
0
$ foo=""
$ test "$foo" = "bar" && echo 1 || echo 0
test: argument expected
0

Also, the double quote marks help test cope with strings that contain whitespace. Without
the double quotes, you will see this errors:

$ foo="baz quux"
$ test x$foo = "bar" && echo 1 || echo 0
test: too many arguments
0

You shouldn’t rely on the default behaviour of test (to return ‘true’ if its single argument
has non-zero length), use the ‘-n’ option to force that behaviour if it is what you want.
Beyond that, the other thing you need to know about test, is that if you use operators
other than those below, you are reducing the portability of your code:

‘-n’ string string is non-empty.

‘-z’ string string is empty.

string1 = string2
Both strings are identical.

string1 != string2
The strings are not the same.

‘-d’ file file exists and is a directory.

‘-f’ file file exists and is a regular file.

You can also use the following, provided that you don’t mix them within a single invo-
cation of test:

Chapter 22: Writing Portable Bourne Shell 211

expression ‘-a’ expression
Both expressions evaluate to ‘true’.

expression ‘-o’ expression
Neither expression evaluates to ‘false’.

22.2.7 $

When using shell variables in your portable scripts, you need to write them in a somewhat
stylised fashion to maximise the number of shell implementations that will interpret your
code as expected:
• Convenient though it is, the posix ‘$(command parameters)’ syntax for command

substitution is not remotely portable. Despite it being more difficult to nest, you must
use ‘‘command parameters‘’ instead.

• The most portable way to set a default value for a shell variable is:
$ echo ${no_such_var-"default value"}
default value

If there is any whitespace in the default value, as there is here, you must be careful to
quote the entire value, since some shells will raise an error:

$ echo ${no_such_var-default value}
sh: bad substitution

• The unset command is not available in many of the degenerate Bourne shell imple-
mentations. Generally, it is not too difficult to get by without it, but following the
logic that led to the shell script in Section 22.2.4 [Functions], page 208, it would be
trivial to extend the test case for confirming a shell’s suitability to include a check for
unset. Although it has not been put to the test, the theory is that all the interesting
machines in use today have some shell that supports unset.

• Be religious about double quoting variable expansions. Using ‘"$foo"’ will avoid trou-
ble with unexpected spaces in filenames, and compression of all whitespace to a single
space in unquoted variable expansions.

• To avoid accidental interpretation of variable expansions as command options you can
use the following technique:

$ foo=-n
$ echo $foo
$ echo x"$foo" | sed -e ’s/^x//’
-n

• If it is set, IFS splits words on whitespace by default. If you change it, be sure to put
it back when you’re done, or the shell may behave very strangely from that point. For
example, when you need to examine each element of ‘$PATH’ in turn:

The whitespace at the end of the following line is a space
followed by literal tab and newline characters.
save_IFS="${IFS=
}"; IFS=":"
set dummy $PATH
IFS="$save_IFS"
shift

212 Autoconf, Automake, and Libtool

Alternatively, you can take advantage of the fact that command substitutions occur in
a separate subshell, and do not corrupt the environment of the calling shell:

set dummy ‘IFS=:; echo $PATH‘
shift

Strictly speaking, the ‘dummy’ argument is required to stop the set command from
interpreting the first word of the expanded backquote expression as a command option.
Realistically, no one is going to have ‘-x’, for example, as the first element of their ‘PATH’
variable, so the ‘dummy’ could be omitted – as I did earlier in the script in Section 22.2.4
[Functions], page 208.

• Some shells expand ‘$@’ to the empty string, even when there are no actual parameters
(‘$#’ is 0). If you need to replicate the parameters that were passed to the executing
script, when feeding the script to a more suitable interpreter for example, you must
use the following:

${1+"$@"}

Similarly, although all known shells do correctly use ‘$@’ as the default argument to a
for command, you must write it like this:

for arg
do
stuff

done

When you rely on implicit ‘$@’ like this, it is important to write the do keyword on a
separate line. Some degenerate shells can not parse the following:

for arg; do
stuff

done

22.2.8 * versus .*

This section compares file globbing with regular expression matching. There are many
Unix commands which are regularly used from shell scripts, and which provide some sort
of pattern matching mechanism: expr, egrep and sed, to name a few. Unfortunately they
each have different quoting rules regarding whether particular meta-characters must be
backslash escaped to revert to their literal meaning and vice-versa. There is no real logic to
the particular dialect of regular expressions accepted by these commands. To confirm the
correctness of each regular expression, you should always check them from the shell prompt
with the relevant tool before committing to a script, so I won’t belabour the specifics.

Shell globbing however is much more regular (no pun intended), and provides a reason-
able and sometimes more cpu efficient solution to many shell matching problems. The key
is to make good use of the case command, which is easier to use (because it uses globbing
rules) and doesn’t require additional processes to be spawned. Unfortunately, gnu Bash
doesn’t handle backslashes correctly in glob character classes – the backslash must be the
first character in the class, or else it will never match. For example, if you want to detect
absolute directory paths on Unix and Windows using case, you should write the code like
this:

Chapter 22: Writing Portable Bourne Shell 213

case $dir in
[\\/]* | ?:[\\/]*) echo absolute ;;
*) echo relative ;;

esac

Even though expr uses regular expressions rather than shell globbing, it is often1 a shell
builtin, so using it to extract sections of strings can be faster than spawning a sed process
to do the same. As with echo and set, for example, you must be careful that variable
or command expansions for the first argument to expr are not accidentally interpreted
as reserved keywords. As with echo, you can work around this problem by prefixing any
expansions with a literal ‘x’, as follows:

$ foo=substr
$ expr $foo : ’.*\(str\)’
expr: syntax error
$ expr x$foo : ’.*\(str\)’
str

22.3 Environment

In addition to the problems with portability in shell implementations discussed in the
previous section, the behaviour of the shell can also be drastically affected by the contents of
certain environment variables, and the operating environment provided by the host machine.

It is important to be aware of the behavior of some of the operating systems within
which your shell script might run. Although not directly related to the implementation of
the shell interpreter, the characteristics of some of target architectures do influence what is
considered to be portable. To ensure your script will work on as many shell implementations
as possible, you must observe the followin points.

sco Unix doesn’t like LANG=C and friends, but without LC_MESSAGES=C, Solaris will
translate variable values in set! Similarly, without LC_CTYPE=C, compiled C code can
behave unexpectedly. The trick is to set the values to ‘C’, except for if they are not already
set at all:

for var in LANG LC_ALL LC_MESSAGES LC_CTYPES LANGUAGES
do
if eval test x"\${$var+set}" = xset; then
eval $var=C; eval export $var

fi
done

hp-ux ksh and all posix shells print the target directory to standard output if ‘CDPATH’
is set.

if test x"${CDPATH+set}" = xset; then CDPATH=:; export CDPATH; fi

The target architecture file system may impose limits on your scripts. IF you want your
scripts to run on the architectures which impose these limits, then your script must adhere
to these limits:
• The ISO9660 filesystem, as used on most CD-ROMs, limits nesting of directories to a

maximum depth of twelve levels.

1 Noteable exceptions are gnu Bash, and both Ksh and the Bourne shell on Solaris.

214 Autoconf, Automake, and Libtool

• Many old Unix filesystems place a 14 character limit on the length of any filename.
If you care about portability to dos, that has an 8 character limit with an optional
extension of 3 or fewer characters (known as 8.3 notation).

A useful idiom when you need to determine whether a particular pathname is relative
or absolute, which works for dos targets to follows:

case "$file" in
[\\/]* | ?:[\\/]*) echo absolute ;;
*) echo default ;;

esac

22.4 Utilities

The utility programs commonly executed by shell scripts can have a huge impact on the
portability of shell scripts, and it is important to know which utilities are universally avail-
able, and any differences certain implementations of these utilities may exhibit. According
to the gnu standards document, you can rely on having access to these utilities from your
scripts:

cat cmp cp diff echo egrep expr false grep install-info
ln ls mkdir mv pwd rm rmdir sed sleep sort tar test touch true

Here are some things that you must be aware of when using some of the tools listed
above:

cat Host architectures supply cat implementations with conflicting interpretations
of, or entirely missing, the various command line options. You should avoid
using any ocommand line options to this command.

cp and mv Unconditionally duplicated or otherwise open file descriptors can not be deleted
on many operating systems, and worse on Windows the destination files cannot
even be moved. Constructs like this must be avoided, for example.

exec > foo
mv foo bar

echo The echo command has at least two flavors: the one takes a ‘-n’ option to
suppress the automatic newline at the end of the echoed string; the other uses
an embedded ‘\c’ notation as the last character in the echoed string for the
same purpose.
If you need to emit a string without a trailing newline character, you can use
the following script fragment to discover which flavor of echo you are using:

case echo "testing\c"‘,‘echo -n testing‘ in
c,-n*) echo_n= echo_c=’2

’ ;;
c,*) echo_n=-n echo_c= ;;
*) echo_n= echo_c=’\c ;;

esac

Any echo command after the shell fragment above, which shouldn’t move the
cursor to a new line, can now be written like so:

2 This is a literal newline.

Chapter 22: Writing Portable Bourne Shell 215

echo $echo_n "prompt:$echo_c"

In addition, you should try to avoid backslashes in echo arguments unless they
are expanded by the shell. Some implementations interpret them and effec-
tively perform another backslash expansion pass, where equally many imple-
mentations do not. This can become a really hairy problem if you need to have
an echo command which doesn’t perform backslash expansion, and in fact the
first 150 lines of the ltconfig script distributed with Libtool are devoted to
finding such a command.

ln Not all systems support soft links. You should use the Autoconf macro
‘AC_PROG_LN_S’ to discover what the target architecture supports, and assign
the result of that test to a variable. Whenever you subsequently need to create
a link you can use the command stored in the variable to do so.

LN_S=@LN_S@
...
$LN_S $top_srcdir/foo $dist_dir/foo

Also, you cannot rely on support for the ‘-f’ option from all implementations
of ln. Use rm before calling ln instead.

mkdir Unfortunately, ‘mkdir -p’ is not as portable as we might like. You must either
create each directory in the path in turn, or use the mkinstalldirs script
supplied by Automake.

sed When you resort to using sed (rather, use case or expr if you can), there is no
need to introduce command line scripts using the ‘-e’ option. Even when you
want to supply more than one script, you can use ‘;’ as a command separator.
The following two lines are equivalent, though the latter is cleaner:

$ sed -e ’s/foo/bar/g -e ’12q’ < infile > outfile
$ sed ’s/foo/bar/g;12q’ < infile > outfile

Some portability zealots still go to great lengths to avoid here documents of
more than twelve lines. The twelve line limit is actually a limitation in some
implementations of sed, which has gradually seeped into the portable shell
folklore as a general limit in all here documents. Autoconf, however, includes
many here documents with far more than twelve lines, and has not generated
any complaints from users. This is testament to the fact that at worst the limit
is only encountered in very obscure cases – and most likely that it is not a real
limit after all.
Also, be aware that branch labels of more than eight characters are not portable
to some imlementations of sed.

Here documents are a way of redirecting literal strings into the standard input
of a command. You have certainly seen them before if you have looked at other
peoples shell scripts, though you may not have realised what they were called:

cat >> /tmp/file$$ << _EOF_
This is the text of a "here document"
EOF

Something else to be aware of is that the temporary files created by your scripts can
become a security problem if they are left in ‘/tmp’ or if the names are predictable. A simple

216 Autoconf, Automake, and Libtool

way around this is to create a directory in ‘/tmp’ that is unique to the process and owned
by the process user. Some machines have a utility program for just this purpose – mktemp
-d – or else you can always fall back to umask 077 && mkdir /tmp/$$. Having created this
directory, all of the temporary files for this process should be written to that directory, and
its contents removed as soon as possible.

Armed with the knowledge of how to write shell code in a portable fashion as discussed
in this chapter, in combination with the M4 details from the last chapter, the specifics of
combining the two to write your own Autoconf macros are covered in the next chapter.

Chapter 23: Writing New Macros for Autoconf 217

23 Writing New Macros for Autoconf

Autoconf is an extensible system which permits new macros to be written and shared
between Autoconf users. Although it is possible to perform custom tests by placing frag-
ments of shell code into your ‘configure.in’ file, it is better practice to encapsulate that
test in a macro. This encourages macro authors to make their macros more general purpose,
easier to test and easier to share with other users.

This chapter presents some guidelines for designing and implementing good Autoconf
macros. It will conclude with a discussion of the approaches being considered by the Auto-
conf development community for improving the creation and distribution of macros. A more
general discussion of macros can be found in Section 21.3.2 [Macros and macro expansion],
page 195.

23.1 Autoconf Preliminaries

In a small package which only uses Autoconf, your own macros are placed in the
‘aclocal.m4’ file–this includes macros that you may have obtained from third parties such as
the Autoconf macro archive (see Section 23.5.1 [Autoconf macro archive], page 222). If your
package additionally uses Automake, then these macros should be placed in ‘acinclude.m4’.
The aclocal program from Automake reads in macro definitions from ‘acinclude.m4’ when
generating ‘aclocal.m4’. When using Automake, for instance, ‘aclocal.m4’ will include
the definitions of AM_ macros needed by Automake.

In larger projects, it’s advisable to keep your custom macros in a more organized struc-
ture. Autoconf version 2.15 will introduce a new facility to explicitly include files from your
‘configure.in’ file. The details have not solidified yet, but it will almost certainly include
a mechanism for automatically included files with the correct filename extension from a
subdirectory, say ‘m4/’.

23.2 Reusing Existing Macros

It goes without saying that it makes sense to reuse macros where possible–indeed, a
search of the Autoconf macro archive might turn up a macro which does exactly what
you want, alleviating the need to write a macro at all (see Section 23.5.1 [Autoconf macro
archive], page 222).

It’s more likely, though, that there will be generic, parameterized tests available that
you can use to help you get your job done. Autoconf”s ‘generic’ tests provide one such
collection of macros. A macro that wants to test for support of a new language keyword,
for example, should rely on the AC_TRY_COMPILE macro. This macro can be used to attempt
to compile a small program and detect a failure due to, say, a syntax error.

In any case, it is good practice when reusing macros to adhere to their publicized
interface–do not rely on implementation details such as shell variables used to record the
test’s result unless this is explicitly mentioned as part of the macro’s behavior. Macros in
the Autoconf core can, and do, change their implementation from time to time.

Reusing a macro does not imply that the macro is necessarily invoked from within the
definition of your macro. Sometimes you might just want to rely on some action performed

218 Autoconf, Automake, and Libtool

by a macro earlier in the configuration run–this is still a form of reuse. In these cases, it
is necessary to ensure that this macro has indeed run at least once before your macro is
invoked. It is possible to state such a dependency by invoking the AC_REQUIRE macro at
the beginning of your macro’s definition.

Should you need to write a macro from scratch, the following sections will provide
guidelines for writing better macros.

23.3 Guidelines for writing macros

There are some guidelines which should be followed when writing a macro. The criteria
for a well-written macro are that it should be easy to use, well documented and, most
importantly, portable. Portability is a difficult problem that requires much anticipation on
the part of the macro writer. This section will discuss the design considerations for using
a static Autoconf test at compile time versus a test at runtime. It will also cover some of
the characteristics of a good macro including non-interactive behavior, properly formatted
output and a clean interface for the user of the macro.

23.3.1 Non-interactive behavior

Autoconf’s generated ‘configure’ scripts are designed to be non-interactive – they
should not prompt the user for input. Many users like the fact that ‘configure’ can be used
as part of a automated build process. By introducing code into ‘configure’ which prompts
a user for more information, you will prohibit unattended operation. Instead, you should
use the AC_ARG_ENABLE macro in ‘configure.in’ to add extra options to ‘configure’ or
consider runtime configuration (see Section 23.3.2 [Testing system features at application
runtime], page 218).

23.3.2 Testing system features at application runtime

When pondering how to handle a difficult portability problem or configurable option,
consider whether the problem is better solved by performing tests at runtime or by providing
a configuration file to customize the application. Keep in mind that the results of tests that
Autoconf can perform will ultimately affect how the program will be built–and can limit
the number of machines that the program can be moved to without recompiling it. Here is
an example where this consideration had to be made in a real life project:

The pthreads for Win32 project has sought to provide a standards compliant imple-
mentation for the posix threads api. It does so by mapping the posix api functions into
small functions which achieve the desired result using the Win32 thread api. Windows 95,
Windows 98 and Windows NT have different levels of support for a system call primitive
that attempts to enter a critical section without blocking. The TryEnterCriticalSection
function is missing on Windows 95, is an inoperative stub on Windows 98, and works as
expected on Windows NT. If this behavior was to be checked by ‘configure’ at compile
time, then the resultant library would only work on the variant of Windows that it was
compiled for. Because it’s more common to distribute packages for Windows in binary
form, this would be an unfortunate situation. Instead, it is sometimes preferable to handle
this kind of portability problem with a test, performed by your code at runtime.

Chapter 23: Writing New Macros for Autoconf 219

23.3.3 Output from macros

Users who run ‘configure’ expect a certain style of output as tests are performed.
As such, you should use the well-defined interface to the existing Autoconf macros for
generating output. Your tests should not arbitrarily echo messages to the standard output.

Autoconf provides the following macros to output the messages for you in a consistent
way (see Chapter 3 [Invoking configure], page 15). They are introduced here with a brief
description of their purpose and are documented in more detail in Appendix D [Autoconf
Macro Reference], page 275. Typically, a test starts by invoking AC_MSG_CHECKING to
describe to the user what the test is doing and AC_MSG_RESULT is invoked to output the
result of the test.

‘AC_MSG_CHECKING’
This macro is used to notify the user that a test is commencing. It prints the
text ‘checking’ followed by your message and ends with ‘...’. You should use
‘AC_MSG_RESULT’ after this macro to output the result of the test.

‘AC_MSG_RESULT’
This macro notifies the user of a test result. In general, the result should be
the word ‘yes’ or ‘no’ for boolean tests, or the actual value of the result, such
as a directory or filename.

‘AC_MSG_ERROR’
This macro emits a hard error message and aborts ‘configure’–this should be
used for fatal errors.

‘AC_MSG_WARN’
This macro emits a warning to the user and proceeds.

23.3.4 Naming macros

Just like functions in a C program, it’s important to choose a good name for your
Autoconf macros. A well-chosen name helps to unambiguously describe the purpose of the
macro. Macros in M4 are all named within a single namespace and, thus, it is necessary
to follow a convention to ensure that names retain uniqueness. This reasoning goes beyond
just avoiding collisions with other macros–if you happen to choose a name that is already
known to M4 as a definition of any kind, your macro’s name could be rewritten by the prior
definition during macro processing.

One naming convention has emerged–prefixing each macro name with the name of the
package that the macro originated in or the initials of the macro’s author. Macros are usually
named in a hierarchical fashion, with each part of the name separated by underscores. As
you move left-to-right through each component of the name, the description becomes more
detailed. There are some high-level categories of macros suggested by the Autoconf manual
that you may wish to use when forming a descriptive name for your own macro. For
example, if your macro tries to discover the existence of a particular C structure, you might
wish to use C and STRUCT as components of its name.

‘C’ Tests related to constructs of the C programming language.

‘DECL’ Tests for variable declarations in header files.

220 Autoconf, Automake, and Libtool

‘FUNC’ Tests for functions present in (or absent from) libraries.

‘HEADER’ Tests for header files.

‘LIB’ Tests for libraries.

‘PATH’ Tests to discover absolute filenames (especially programs).

‘PROG’ Tests to determine the base names of programs.

‘STRUCT’ Tests for definitions of C structures in header files.

‘SYS’ Tests for operating system features, such as restartable system calls.

‘TYPE’ Tests for built-in or declared C data types.

‘VAR’ Tests for C variables in libraries.

Some examples of macro names formed in this way include:

‘AC_PROG_CC’
A test that looks for a program called cc.

‘AC_C_INLINE’
A test that discovers if the C keyword inline is recognized.

‘bje_CXX_MUTABLE’
A test, written by "bje", that discovers if the C++ keyword mutable is recog-
nized.

23.3.5 Macro interface

When designing your macro, it is worth spending some time deciding on what your
macro’s interface–the macro’s name and argument list–will be. Often, it will be possible
to extract general purpose functionality into a generic macro and to write a second macro
which is a client of the generic one. Like planning the prototype for a C function, this is
usually a straightforward process of deciding what arguments are required by the macro to
perform its function. However, there are a couple of further considerations and they are
discussed below.

M4 macros refer to their arguments by number with a syntax such as $1. It is typi-
cally more difficult to read an M4 macro definition and understand what each argument’s
designation is than in a C function body, where the formal argument is referred to by its
name. Therefore, it’s a good idea to include a standard comment block above each macro
that documents the macro and gives an indication of what each argument is for. Here is an
example from the Autoconf source code:

AC_CHECK_FILE(FILE, [ACTION-IF-FOUND], [ACTION-IF-NOT-FOUND])

#
Check for the existence of FILE.

To remain general purpose, the existing Autoconf macros follow the convention of keeping
side-effects outside the definition of the macro. Here, when a user invokes ‘AC_CHECK_FILE’,
they must provide shell code to implement the side effect that they want to occur if the
‘FILE’ is found or is not found. Some macros implement a basic and desirable action like

Chapter 23: Writing New Macros for Autoconf 221

defining a symbol like ‘HAVE_UNISTD_H’ if no user-defined actions are provided. In general,
your macros should provide an interface which is consistent with the interfaces provided by
the core Autoconf macros.

M4 macros may have variable argument lists, so it is possible to implement macros which
have defaults for arguments. By testing each individual argument against the empty string
with ‘ifelse’, it is possible for users to accept the default behavior for individual arguments
by passing empty values:

AC_CHECK_FILE([/etc/passwd], [],
[AC_MSG_ERROR([something is really wrong])])

One final point to consider when designing the interface for a macro is how to han-
dle macros that are generic in nature and, say, wish to set a cache variable whose name
is based on one of the arguments. Consider the ‘AC_CHECK_HEADER’ macro–it defines a
symbol and makes an entry in the cache that reflects the result of the test it performs.
‘AC_CHECK_HEADER’ takes an argument – namely the name of a header file to look for. This
macro cannot just make a cache entry with a name like ac_cv_check_header, since it would
only work once; any further uses of this macro in ‘configure.in’ would cause an incorrect
result to be drawn from the cache. Instead, the name of the symbol that is defined and the
name of the cache variable that is set need to be computed from one of the arguments: the
name of the header file being sought. What we really need is to define HAVE_UNISTD_H and
set the cache variable ac_cv_header_unistd_h. This can be achieved with some sed and
tr magic in the macro which transforms the filename into uppercase characters for the call
to AC_DEFINE and into lowercase for the cache variable name. Unknown characters such as
‘.’ need to be transformed into underscores.

Some existing macros also allow the user to pass in the name of a cache variable name
so that the macro does not need to compute a name. In general, this should be avoided, as
it makes the macro harder to use and exposes details of the caching system to the user.

23.4 Implementation specifics

This section provides some tips about how to actually go about writing your macros
once you’ve decided what it is that you want to test and how to go about testing for it. It
covers writing shell code for the test and optionally caching the results of those tests.

23.4.1 Writing shell code

It is necessary to adopt a technique of writing portable Bourne shell code. Often, shell
programming tricks you might have learned are actually extensions provided by your favorite
shell and are non-portable. When in doubt, check documentation or try the construct on
another system’s Bourne shell. For a thorough treatment of this topic, Chapter 22 [Writing
Portable Bourne Shell], page 205.

23.4.2 Using M4 correctly

Writing macros involves interacting with the M4 macro processor, which expands your
macros when they are used in ‘configure.in’. It is crucial that your macros use M4
correctly–and in particular, that they quote strings correctly. Chapter 21 [M4], page 193
for a thorough treatment of this topic.

222 Autoconf, Automake, and Libtool

23.4.3 Caching results

Autoconf provides a caching facility, whereby the results of a test may be stored in a
cache file. The cache file is itself a Bourne shell script which is sourced by the ‘configure’
script to set any ‘cache variables’ to values that are present in the cache file.

The next time ‘configure’ is run, the cache will be consulted for a prior result. If there
is a prior result, the value is re-used and the code that performs that test is skipped. This
speeds up subsequent runs of ‘configure’ and configuration of deep trees, which can share
a cache file in the top-level directory (see Chapter 3 [Invoking configure], page 15).

A custom macro is not required to do caching, though it is considered best practice.
Sometimes it doesn’t make sense for a macro to do caching–tests for system aspects which
may frequently change should not be cached. For example, a test for free disk space should
not employ caching as it is a dynamic characteristic.

The ‘AC_CACHE_CHECK’ macro is a convient wrapper for caching the results of tests. You
simply provide a description of the test, the name of a cache variable to store the test result
to, and the body of the test. If the test has not been run before, the cache will be primed
with the result. If the result is already in the cache, then the cache variable will be set and
the test will be skipped. Note that the name of the cache variable must contain ‘_cv_’ in
order to be saved correctly.

Here is the code for an Autoconf macro that ties together many of the concepts intro-
duced in this chapter:

23.5 Future directions for macro writers

A future trend for Autoconf is to make it easier to write reliable macros and re-use
macros written by others. This section will describe some of the ideas that are currently
being explored by those actively working on Autoconf.

23.5.1 Autoconf macro archive

In mid-1999, an official Autoconf macro archive was established on the World Wide Web
by Peter Simons in Germany. The archive collects useful Autoconf macros that might be
useful to some users, but are not sufficiently general purpose to include in the core Autoconf
distribution. The URL for the macro archive is:

http://www.gnu.org/software/ac-archive/

It is possible to retrieve macros that perform different kinds of tests from this archive.
The macros can then be inserted, in line, into your ‘aclocal.m4’ or ‘acinclude.m4’ file.
The archive has been steadily growing since its inception. Please try and submit your
macros to the archive!

23.5.2 Primitive macros to aid in building macros

Writing new macros is one aspect of Autoconf that has proven troublesome to users in
the past, since this is one area where Autoconf’s implementation details leak out. Autoconf
extensively uses m4 to perform the translation of ‘configure.in’ to ‘configure’. Thus, it

Chapter 23: Writing New Macros for Autoconf 223

is necessary to understand implementation details such as M4’s quoting rules in order to
write Autoconf macros (Chapter 21 [M4], page 193).

Another aspect of macro writing which is extremely hard to get right is writing portable
Bourne shell scripts (see Chapter 22 [Writing Portable Bourne Shell], page 205). Writing
portable software, be it in Bourne shell or C++, is something that can only be mastered
with years of experience–and exposure to many different kinds of machines! Rather than
expect all macro writers to acquire this experience, it makes sense for Autoconf to become
a ‘knowledge base’ for this experience.

With this in mind, one future direction for Autoconf will be to provide a library of low-
level macros to assist in writing new macros. By way of hypothetical example, consider the
benefit of using a macro named AC_FOREACH instead of needing to learn the hard way that
some vendor’s implementation of Bourne shell has a broken for loop construct. This idea
will be explored in future versions of Autoconf.

When migrating existing packages to the GNU Autotools, which is the topic of the next
chapter, it is worth remember these guidelines for best practices as you write the necessary
tests to make those packages portable.

224 Autoconf, Automake, and Libtool

Chapter 24: Migrating an Existing Package to GNU Autotools 225

24 Migrating an Existing Package to GNU
Autotools

Sometimes you have to take an existing package and wrap it in an Autoconf framework.
This is called autoconfiscating1 a package.

This chapter gives an overview of various approach that have been taken when autocon-
fiscating, explains some important points through examples, and discusses some of potential
pitfalls. It is not an exhaustive guide to autoconfiscation, as this process is much more art
than it is science.

24.1 Why autconfiscate

There are a few reasons to autoconfiscate a package. You might be porting your package
to a new platform for the first time, or your might have outstripped the capabilities of an
ad hoc system. Or, you might be assuming maintenance of a package and you want to make
it fit in with other packages that use the GNU Autotools.

For instance, for libgcj, we wanted to distribute some libraries needed for proper op-
eration, such as the zip archiving program and the Boehm garbage collector. In neither
case was an autoconf framework available. However, we felt one was required in order to
give the overall package a seamless and easy-to-use configuration and build system. This
attention to ease of install by users is important; it is one reason that the GNU Autotools
were written.

In another case, a group I worked with was taking over maintenance of a preexisting
package. We preferred an Autoconf-based solution to the home-grown one already in use
by the package – the existing system was based on platform tests, not feature tests, and
was difficult to navigate and extend.

24.2 Overview of the Two Approaches

The two fundamental approaches to autoconfiscation, which we call ‘quick and dirty’,
and ‘the full pull’. In practice each project is a mix of the two.

There are no hard-and-fast rules when autoconficating an existing package, particularly
when you are planning to track future releases of the original source. However, since Auto-
conf is so flexible, it is usually possible to find some reasonable way to implement whatever
is required. Automake isn’t as flexible, and with ‘strangely’ constructed packages you’re
sometimes required to make a difficult choice: restructure the package, or avoid automake.
1. Quick And Dirty.

In the quick and dirty approach, the goal is to get the framework up and running
with the least effort. This is the approach we took when we autoconficated both
zip and the Boehm garbage collector. Our reasons were simple: we knew we would
be tracking the original packages closely, so we wanted to minimize the amount of
work involved in importing the next release and subsequently merging in our changes.
Also, both packages were written to be portable (but in very different ways), so major
modifications to the source were not required.

1 A term coined by Noah Friedman in the early days of Autoconf to denote the process of converting a
package that configures itself without Autoconf to one which does.

226 Autoconf, Automake, and Libtool

2. The Full Pull.
Sometimes you’d rather completely convert a package to GNU Autotools. For instance,
you might have just assumed maintenance of a package. Or, you might read this
book and decide that your company’s internal projects should use a state-of-the-art
configuration system.
The full pull is more work than the quick-and-dirty approach, but in the end it yields
a more easily understood, and more idiomatic package. This in turn has maintenance
benefits due to the relative absence of quirks, traps, and special cases – oddities which
creep into quick and dirty ports due to the need, in that case, to structure the build
system around the package instead of having the ability to restructure the package to
fit the build system.

24.3 Example: Quick And Dirty

As part of the libgcj project2, I had to incorporate the zip program into our source tree.
Since this particular program is only used in one part of the build, and since this program
was already fairly portable, I decided to take a quick-and-dirty approach to autoconfiscation.

First I read through the ‘README’ and ‘install.doc’ files to see how zip is ordinarily
built. From there I learned that zip came with a ‘Makefile’ used to build all Unix ports
(and, for the initial autoconfiscation, Unix was all I was interested in), so I read that. This
file indicated that zip had few configurability options.

Running ifnames on the sources, both Unix and generic, confirmed that the zip sources
were mostly self-configuring, using system-specific ‘#defines’—a practice which we recom-
mend against; however for a quicky-and-dirty port it is not worth cleaning up:

$ ifnames *.[ch] unix/*.[ch] | grep ^__ | head
__386BSD__ unix/unix.c
__CYGWIN32__ unix/osdep.h
__CYGWIN__ unix/osdep.h
__DATE__ unix/unix.c zipcloak.c zipnote.c zipsplit.c
__DEBUG_ALLOC__ zip.c
__ELF__ unix/unix.c
__EMX__ fileio.c ttyio.h util.c zip.c
__FreeBSD__ unix/unix.c
__G ttyio.h
__GNUC__ unix/unix.c zipcloak.c zipnote.c zipsplit.c

Based on this information I wrote my initial ‘configure.in’, which is the one still in
use today:

AC_INIT(ziperr.h)
AM_INIT_AUTOMAKE(zip, 2.1)
AM_MAINTAINER_MODE

AC_PROG_CC

2 See http://sourceware.cygnus.com/java/

http://sourceware.cygnus.com/java/

Chapter 24: Migrating an Existing Package to GNU Autotools 227

AC_HEADER_DIRENT
AC_DEFINE(UNIX)

AC_LINK_FILES(unix/unix.c, unix.c)

AC_OUTPUT(Makefile)

The one mysterious part of this ‘configure.in’ is the define of the ‘UNIX’ preprocessor
macro. This define came directly from zip’s ‘unix/Makefile’ file; zip uses this define to
enable certain Unix-specific pieces of code.

In this particular situation, I lucked out. zip was unusually easy to autoconficate. Typ-
ically more actual checks are required in ‘configure.in’, and more than a single iteration
is required to get a workable configuration system.

From ‘unix/Makefile’ I also learned which files were expected to be built in order to
produce the zip executable. This information let me write my ‘Makefile.am’:

Process this file with automake to create Makefile.in.

NOTE: this file doesn’t really try to be complete. In particular
‘make dist’ won’t work at all. We’re just aiming to get the
program built. We also don’t bother trying to assemble code, or
anything like that.

AUTOMAKE_OPTIONS = no-dependencies

INCLUDES = -I$(srcdir)/unix

bin_PROGRAMS = zip

zip_SOURCES = zip.c zipfile.c zipup.c fileio.c util.c globals.c \
crypt.c ttyio.c unix.c crc32.c crctab.c deflate.c trees.c bits.c

This isn’t really correct, but we don’t care.
$(zip_OBJECTS) : zip.h ziperr.h tailor.h unix/osdep.h crypt.h \
revision.h ttyio.h unix/zipup.h

This file provides a good look at some of the tradeoffs involved. In my case, I didn’t
care about full correctness of the resulting ‘Makefile.am’ – I wasn’t planning to maintain
the project, I just wanted it to build in my particular set of environments.

So, I sacrificed ‘dist’ capability to make my work easier. Also, I decided to disable
dependency tracking and instead make all the resulting object files depend on all the headers
in the project. This approach is inefficient, but in my situation perfectly reasonable, as I
wasn’t planning to do any actual development on this package – I was simply looking to
make it build so that it could be used to build the parts of the package I was actually
hacking.

228 Autoconf, Automake, and Libtool

24.4 Example: The Full Pull

Suppose instead that I wanted to fully autoconfiscate zip. Let’s ignore for now that zip
can build on systems to which the GNU Autotools have not been ported, like TOPS-20—
perhaps a big problem back in the real world.

The first step should always be to run autoscan. autoscan is a program which examines
your source code and then generates a file called ‘configure.scan’ which can be used as a
rough draft of a ‘configure.in’. autoscan isn’t perfect, and in fact in some situations can
generate a ‘configure.scan’ which autoconf won’t directly accept, so you should examine
this file by hand before renaming it to ‘configure.in’.

autoscan doesn’t take into account macro names used by your program. For instance,
if autoscan decides to generate a check for ‘<fcntl.h>’, it will just generate ordinary
autoconf code which in turn might define ‘HAVE_FCNTL_H’ at configure time. This just
means that autoscan isn’t a panacea – you will probably have to modify your source to
take advantage of the code that autoscan generates.

Here is the ‘configure.scan’ I get when I run autoscan on zip:
dnl Process this file with autoconf to produce a configure script.
AC_INIT(bits.c)

dnl Checks for programs.
AC_PROG_AWK
AC_PROG_CC
AC_PROG_CPP
AC_PROG_INSTALL
AC_PROG_LN_S
AC_PROG_MAKE_SET

dnl Checks for libraries.
dnl Replace ‘main’ with a function in -lx:
AC_CHECK_LIB(x, main)

dnl Checks for header files.
AC_HEADER_DIRENT
AC_HEADER_STDC
AC_CHECK_HEADERS(fcntl.h malloc.h sgtty.h strings.h sys/ioctl.h \
termio.h unistd.h)

dnl Checks for typedefs, structures, and compiler characteristics.
AC_C_CONST
AC_TYPE_SIZE_T
AC_STRUCT_ST_BLKSIZE
AC_STRUCT_ST_BLOCKS
AC_STRUCT_ST_RDEV
AC_STRUCT_TM

dnl Checks for library functions.
AC_PROG_GCC_TRADITIONAL
AC_FUNC_MEMCMP

Chapter 24: Migrating an Existing Package to GNU Autotools 229

AC_FUNC_MMAP
AC_FUNC_SETVBUF_REVERSED
AC_TYPE_SIGNAL
AC_FUNC_UTIME_NULL
AC_CHECK_FUNCS(getcwd mktime regcomp rmdir strstr)

AC_OUTPUT(acorn/makefile unix/Makefile Makefile atari/Makefile)

As you can see, this isn’t suitable for immediate use as ‘configure.in’. For instance,
it generates several ‘Makefile’s which we know we won’t need. At this point there are two
things to do in order to fix this file.

First, we must fix outright flaws in ‘configure.scan’, add checks for libraries, and the
like. For instance, we might also add code to see if we are building on Windows and set a
variable appropriately:

AC_CANONICAL_HOST
case "$target" in
-cygwin | *-mingw*)
INCLUDES=’-I$(srcdir)/win32’
;;

*)
Assume Unix.
INCLUDES=’-I$(srcdir)/unix’
;;

esac
AC_SUBST(INCLUDES)

Second, we must make sure that the zip sources use the results we compute. So, for
instance, we would check the zip source to see if we should use ‘HAVE_MMAP’, which is the
result of calling AC_FUNC_MMAP.

At this point you might also consider using a configuration header such as is generated
by AC_CONFIG_HEADER. Typically this involves editing all your source files to include the
header, but in the long run this is probably a cleaner way to go than using many -D options
on the command line. If you are making major source changes in order to fully adapt your
code to autoconf’s output, adding a ‘#include’ to each file will not be difficult.

This step can be quite difficult if done thoroughly, as it can involve radical changes to the
source. After this you will have a minimal but functional ‘configure.in’ and a knowledge
of what portability information your program has already incorporated.

Next, you want to write your ‘Makefile.am’s. This might involve restructuring your
package so that it can more easily conform to what Automake expects. This work might
also involve source code changes if the program makes assumptions about the layout of the
install tree – these assumptions might very well break if you follow the gnu rules about the
install layout.

At the same time as you are writing your ‘Makefile.am’s, you might consider libtoolizing
your package. This makes sense if you want to export shared libraries, or if you have libraries
which several executables in your package use.

In our example, since there is no library involed, we won’t use Libtool. The
‘Makefile.am’ used in the minimal example is nearly sufficient for our use, but not quite.
Here’s how we change it to add dependency tracking and dist support:

230 Autoconf, Automake, and Libtool

Process this file with automake to create Makefile.in.

bin_PROGRAMS = zip

if UNIX
bin_SCRIPTS = unix/zipgrep
os_sources = unix/unix.c
else
os_sources = win32/win32.c win32zip.c
endif
zip_SOURCES = zip.c zipfile.c zipup.c fileio.c util.c globals.c \

crypt.c ttyio.c crc32.c crctab.c deflate.c trees.c \
bits.c $(os_sources)

It was easier to just list all the source files than to pick out the
non-source files.
EXTRA_DIST = algorith.doc README TODO Where crc_i386.S bits.c crc32.c \
acorn/RunMe1st acorn/ReadMe acorn/acornzip.c acorn/makefile \
acorn/match.s acorn/osdep.h acorn/riscos.c acorn/riscos.h \
acorn/sendbits.s acorn/swiven.h acorn/swiven.s acorn/zipup.h crctab.c \
crypt.c crypt.h deflate.c ebcdic.h fileio.c globals.c history \
...
wizdll/wizdll.def wizdll/wizmain.c wizdll/wizzip.h wizdll/zipdll16.mak \
wizdll/zipdll32.mak

The extremely long ‘EXTRA_DIST’ macro above has be truncated for brevity, denoted by the
‘...’ line.

Note that we no longer define INCLUDES – it is now automatically defined by configure.
Note also that, due to a small technicality, this ‘Makefile.am’ won’t really work with Au-
tomake 1.4. Instead, we must modify things so that we don’t try to compile ‘unix/unix.c’
or other files from subdirectories.

Chapter 25: Using GNU Autotools with Cygnus Cygwin 231

25 Using GNU Autotools with Cygnus Cygwin

It is possible to use the GNU Autotools to build software packages on Windows. Since
the tools were developed on Unix, it is easier to get them to work using Cygnus Solutions’
Cygwin distribution which provides a posix wrapper for the Win32 api, See Section 2.1 [The
Diversity of Unix Systems], page 7, but it is certainly possible to run the tools within other
Windows environments, notably Colin Peters’ Mingw32 and D.J. Delorie’s djgpp. These
development environments are freely available on the Internet1. Unlike Cygwin, these other
environments are designed for developing with the Win32 api directly and consequently they
are not as useful for porting Unix projects to Windows or writing code that works on both
Windows and Unix, see Section 15.3 [Unix/Windows Portability], page 133 for more details.
This chapter describes the process of using GNU Autotools with Cygwin, although some of
this advice also applies to employing some of the other gnu based Windows development
environments.

It is notable that the recent Cygwin ports of gcc and binutils can produce bi-
naries which will run with the ‘cygwin1.dll’ emulation layer, or linked against
‘CRTDLL.DLL’, the Windows native C RunTime Dynamic Link Library depend-
ing on the needs of particular source code. Recent versions2 of the binutils
implement the pe-coff binary format used by Windows, so by specifying the
‘-mno-cygwin’ compiler option to the Cygwin compiler and using only the
api from ‘CRTDLL.DLL’, you can build binaries which are independent of the
‘cygwin1.dll’ dll. Such binaries will generally run faster, since they bypass
the posix emulation, and give easier access to Windows specific things such
as drive letters. Source code designed to be compiled this way will not com-
pile on Unix however, since it will be limited to the Win32 api provided by
‘CRTDLL.DLL’.

After reading this chapter, you will be able to install and use GNU Autotools natively
under Windows using Cygnus Solutions’ Cygwin environment, both to develop your own
packages with the aid of Cygwin, and to compile, install, and to a certain degree port other
peoples packages for use with Cygwin. As a Unix package developer, you will learn how to
write your configury to be Windows friendly, and to be aware of certain quirks of Windows
which can affect the portability of packages which need to work on Windows in addition to
your Unix development machine.

25.1 Preliminaries

As explained in Section 25.2 [Installing GNU Autotools on Cygwin], page 232, GNU
Autotools requires several other tools to operate. Most Unices provide the majority, if not
all, of these prerequisites by default. Windows, unfortunately, does not. Cygwin is better
than most in this respect, and only a few extras are required. The latest net release of
Cygwin3 has a packaging mechanism which downloads and installs various Unix tools that
have been precompiled for the Cygwin environment by the Cygnus folks. To develop with

1 Mingw32 home page, http://www.geocities.com/Tokyo/Towers/6162/gcc.html; and DJGPP home
page, http://www.delorie.com/djgpp/.

2 since Cygwin-b20.1, I believe.
3 1.1.1 at the time of writing.

http://www.geocities.com/Tokyo/Towers/6162/gcc.html
http://www.delorie.com/djgpp/

232 Autoconf, Automake, and Libtool

GNU Autotools and Cygwin, you need to install all of these packages to make sure you
have all of the necessary header files and compiler tools.

Bourne shell
Cygwin provides a port of ash which is smaller and faster than bash, but some-
times rejects arcane Bourne shell scripts. If you can stand to sacrifice a little
speed, it is worth copying the supplied bash.exe to ‘/bin/sh.exe’ to forestall
any such problems.

gnu M4 Cygwin provides a port of gnu M4.

gnu Make At the time of writing, developers need gnu Make in order to do dependency
tracking (see Chapter 19 [Automatic depedency tracking], page 179), though
this is set to change in a future release of Automake. Cygwin version 1.1.1
comes with a port of gnu make-3.77, which I have personally never had any
problems with. The received wisdom from users is to manually upgrade to the
latest version, make-3.794, which compiles and installs from source without
modification. Should you experience (or anticipate) any Make related problems,
you might try upgrading to this version or later.

gnu gcc At the time of writing, gnu gcc is also needed by Automake in order to do
dependency tracking. Cygwin version 1.1.1 comes with a port of the latest gnu
gcc compiler.

Perl The current implementation of Automake (1.4) is written in perl4, though it
is likely that perl5 will be needed for Automake 1.5. The very latest versions
of Perl now compile out of the box on Cygwin5.

There are some other pitfalls to installing a fully working Cygwin environment on your
Windows machine, but that is outside the scope of this chapter. Cygnus host a mailing list
archive and an faq6 to provide some level of support, and these should be your first port
of call in case the installation does not go according to plan.

25.2 Installing GNU Autotools on Cygwin

With all of the above infrastructure in place, each of the GNU Autotools can be built
natively and installed from source right out of the box. It is worth taking care with the
installation directories, as there is no package management under Cygwin, and it is easy to
let everything get thrown into a big pile in ‘/usr/local’, which makes it relatively difficult
to upgrade and remove packages.

Support for Cygwin has been in Autoconf for several years, as far back as version 2.0 as
best as I can tell. Building it has never been a problem as long as gnu M4 and a Bourne Shell
are available, it is the macros themselves which offer this support. Of course, any Autoconf
macros you write yourself must be designed carefully to not make any assumptions about
being executed on Unix if the Cygwin compatibility is to remain. A binary package of
Autoconf for Cygwin version 1.1.1 is available from the CygUtils website7.

4 ftp://ftp.gnu.org/gnu/make/make-3.79.tar.gz
5 You can get a precompiled package from http://cygutils.netpedia.net/, also an excellent resource

for other packages ported to Cygwin.
6 http://sourceware.cygnus.com/cygwin/
7 The CygUtils website is http://cygutils.netpedia.net/V1.1/.

ftp://ftp.gnu.org/gnu/make/make-3.79.tar.gz
http://cygutils.netpedia.net/
http://sourceware.cygnus.com/cygwin/
http://cygutils.netpedia.net/V1.1/

Chapter 25: Using GNU Autotools with Cygnus Cygwin 233

Automake joined the fray much later than the Cygwin support code was added to Auto-
conf, and has consequently always supported Cygwin. Until the last release of Cygwin, the
stumbling block has always been finding (or building) a Cygwin compatible Perl interpreter
for Automake to use. Thanks to the work of Eric Fifer, Perl 5.6.0 builds right out of the box
on Cygwin, removing this problem entirely. Ready built packages of Perl and Automake
are available from the CygUtils website.

The initial Libtool support for Windows was written by Ian Lance Taylor of Cygnus
Solutions, when Cygwin was at release b18, See Section 2.6 [Microsoft Windows], page 10.
More recent releases of Cygwin in general, and gcc in particular have much better facilities
for building and linking with Windows dlls, to the extent that with a little perseverance it
is possible to build dlls with gcc from C++ sources, and to have those dlls interoperate
with dlls built with Windows development environments. In time, automation of these
facilities will make their way into Libtool. The method that Libtool currently uses to build
dlls works with Cygwin releases at least as far back as b18, and at least as far forward as
the version I am now using, Cygwin-1.1.1. The same code will also build dlls correctly with
Mingw32. There are certainly simpler ways to assemble a dll, but Libtool aims to combine
two goals which are somewhat in contention with Windows’ treatment of dlls; Libtool
is aiming for maximum portability across the various flavours of dll-using Windows build
environments; not forgetting Libtool’s raison d’être which is to abstract the many and varied
ways of building libraries on different targets behind a single unified interface. To meet these
two goals, Libtool must only use tools which exist across the range of versions it supports,
and must at the same time try to make dlls appear to have the same characteristics as a
modern elf shared library, such as the shared libraries under gnu/Linux. This is no mean
feat, and in fact Libtool still has some way to go in order to be able to do this convincingly.
It turns out that Windows dlls lack many, many features that packages developed on Unix
are likely to take for granted. Emulation of these missing features are making their way into
Libtool. Although support for dlls is improving steadily with every release, there are some
severe technical problems with the Windows library architecture that will prevent Libtool
from ever being able to build dlls completely transparently. The details are extremely
technical and beyond the scope of this book.

As noted in Section A.3 [Installing the tools], page 262, things will only work correctly if
each of Autoconf, Automake and Libtool are installed with the same ‘--prefix’ argument,
since they all share a macro directory in ‘$prefix/share/aclocal’.

25.3 Writing A Cygwin Friendly Package

One approach to using the Cygwin support offered by GNU Autotools in your own
package is to have an eye towards having it compile nicely on Unix and on Windows, or
indeed of tweaking the configuration of existing packages which use GNU Autotools but
which do not compile under Cygwin, or do not behave quite right after compilation. There
are several things you need to be aware of in order to design a package to work seamlessly
under Cygwin, and yet several more if portability to DOS and (non-Cygwin) Windows is
important too. We discussed many of these issues in Section 15.3.5 [Unix/Windows Issues],
page 135. In this section, we will expand on those issues with ways in which GNU Autotools
can help deal with them.

234 Autoconf, Automake, and Libtool

If you only need to build executables and static libraries, then Cygwin provides an
environment close enough to Unix that any packages which ship with a relatively recent
configuration will compile pretty much out of the box, except for a few peculiarites of
Windows which are discussed throughout the rest of this section. If you want to build a
package which has not been maintained for a while, and which consequently uses an old
Autoconf, then it is usually just a matter of removing the generated files, rebootstrapping
the package with the installed (up to date!) Autoconf, and rerunning the ‘configure’
script. On occasion some tweaks will be needed in the ‘configure.in’ to satisfy the newer
autoconf, but autoconf will almost always diagnose these for you while it is being run.

25.3.1 Text vs Binary Modes

As discussed in Section 15.3.5.1 [Unix/Windows Text/Binary], page 135, text and binary
files are different on Windows. Lines in a Windows text files end in a carriage return/line
feed pair, but a C program reading the file in text mode will see a single line feed.

Cygwin has several ways to hide this dichotomy, and the solution(s) you choose will
depend on how you plan to use your program. I will outline the relative tradeoffs you make
with each choice:

mounting Before installing an operating system to your hard drive, you must first organise
the disk into partitions. Under Windows, you might only have a single partition
on the disk, which would be called ‘C:’8. Provided that some media is present,
Windows allows you to access the contents of any drive letter – that is you
can access ‘A:’ when there is a floppy disk in the drive, and ‘F:’ provided you
divided you available drives into sufficient partitions for that letter to be in
use. With Unix, things are somewhat different: hard disks are still divided
into partitions (typically several), but there is only a single filesystem mounted
under the root directory. You can use the mount command to hook a partition
(or floppy drive or CD-ROM, etc.) into a subdirectory of the root filesystem:

$ mount /dev/fd0 /mnt/floppy
$ cd /mnt/floppy

Until the directory is unmounted, the contents of the floppy disk will be available
as part of the single Unix filesystem in the directory, ‘/mnt/floppy’. This is
in contrast with Windows’ multiple root directories which can be accessed by
changing filesystem root – to access the contents of a floppy disk:

C:\WINDOWS\> A:
A:> DIR
...

Cygwin has a mounting facility to allow Cygwin applications to see a single
unified file system starting at the root directory, by mounting drive letters to
subdirectories. When mounting a directory you can set a flag to determine
whether the files in that partition should be treated the same whether they are
text or binary mode files. Mounting a file system to treat text files the same
as binary files, means that Cygwin programs can behave in the same way as
they might on Unix and treat all files as equal. Mounting a file system to treat

8 Typically you would also have a floppy drive named ‘A:’, and a CD-ROM named ‘D:’.

Chapter 25: Using GNU Autotools with Cygnus Cygwin 235

text files properly, will cause Cygwin programs to translate between Windows
cr-lf line end sequences and Unix cr line endings, which plays havoc with
file seeking, and many programs which make assumptions about the size of a
char in a FILE stream. However ‘binmode’ is the default method because it is
the only way to interoperate between Windows binaries and Cygwin binaries.
You can get a list of which drive letters are mounted to which directories, and
the modes they are mounted with by running the mount command without
arguments:

BASH.EXE-2.04$ mount
Device Directory Type flags
C:\cygwin / user binmode
C:\cygwin\bin /usr/bin user binmode
C:\cygwin\lib /usr/lib user binmode
D:\home /home user binmode

As you can see, the Cygwin mount command allows you to ‘mount’ arbitrary
Windows directories as well as simple drive letters into the single filesystem
seen by Cygwin apllications.

binmode The CYGWIN environment variable holds a space separated list of setup
options which exert some minor control over the way the ‘cygwin1.dll’ (or
‘cygwinb19.dll’ etc.) behaves. One such option is the ‘binmode’ setting;
if CYGWIN contains the ‘binmode’ option, files which are opened through
‘cygwin1.dll’ without an explicit text or binary mode, will default to binary
mode which is closest to how Unix behaves.

system calls
‘cygwin1.dll’, gnu libc and other modern C api implementations accept extra
flags for fopen and open calls to determine in which mode a file is opened. On
Unix it makes no difference, and sadly most Unix programmers are not aware
of this subtlety, so this tends to be the first thing that needs to be fixed when
porting a Unix program to Cygwin. The best way to use these calls portably
is to use the following macros with a package’s ‘configure.in’ to be sure that
the extra arguments are available:

Add the following preprocessor code to a common header file that will be included by
any sources that use fopen calls:

#define fopen rpl_fopen

Save the following function to a file, and link that into your program so that in combi-
nation with the preprocessor magic above, you can always specify text or binary mode to
open and fopen, and let this code take care of removing the flags on machines which do
not support them:

The correct operation of the file above relies on several things having been checked by the
configure script, so you will also need to ensure that the following macros are present in
your ‘configure.in’ before you use this code:

236 Autoconf, Automake, and Libtool

25.3.2 File System Limitations

We discussed some differences between Unix and Windows file systems in Section 15.3.5.2
[Unix/Windows Filesystems], page 135. You learned about some of the differences between
Unix and Windows file syatems. This section expands on that discussion, covering filename
differences and separator and drive letter distinctions.

25.3.2.1 8.3 Filenames

As discussed earlier, dos file systems have severe restrictions on possible file names: they
must follow an 8.3 format. See Section 15.3.5.3 [DOS Filename Restrictions], page 135.

This is quite a severe limitation, and affects some of the inner workings of GNU Autotools
in two ways. The first is handled automatically, in that if .libs isn’t a legal directory name
on the host system, Libtool and Automake will use the directory _libs instead. The other
is that the traditional ‘config.h.in’ file is not legal under this scheme, and it must be
worked around with a little known feature of Autoconf:

AC_CONFIG_HEADER(config.h:config.hin)

25.3.2.2 Separators and Drive Letters

As discussed earlier (see Section 15.3.5.6 [Windows Separators and Drive Letters],
page 136), the Windows file systems use different delimiters for separating directories and
path elements than their Unix cousins. There are three places where this has an effect:

the shell command line
Up until Cygwin b20.1, it was possible to refer to drive letter prefixed paths
from the shell using the ‘//c/path/to/file’ syntax to refer to the directory
root at ‘C:\path\to\file’. Unfortunately, the Windows kernel confused this
with the its own network share notation, causing the shell to pause for a short
while to look for a machine named ‘c’ in its network neighbourhood. Since
release 1.0 of Cygwin, the ‘//c/path/to/file’ notation now really does refer
to a machine named ‘c’ from Cygwin as well as from Windows. To refer to
drive letter rooted paths on the local machine from Cygwin there is a new
hybrid ‘c:/path/to/file’ notation. This notation also works in Cygwin b20,
and is probably the system you should use.
On the other hand, using the new hybrid notation in shell scripts means that
they won’t run on old Cygwin releases. Shell code embedded In ‘configure.in’
scripts, should test whether the hybrid notation works, and use an alternate
macro to translate hybrid notation to the old style if necessary.
I must confess that from the command line I now use the longer
‘/cygdrive/c/path/to/file’ notation, since 〈TAB〉 completion doesn’t yet
work for the newer hybrid notation. It is important to use the new notation in
shell scripts however, or they will fail on the latest releases of Cygwin.

shell scripts
For a shell script to work correctly on non-Cygwin development environments,
it needs to be aware of and handle Windows path and directory separator and
drive letters. The Libtool scripts use the following idiom:

Chapter 25: Using GNU Autotools with Cygnus Cygwin 237

case "$path" in
Accept absolute paths.
[\\/]* | [A-Za-\]:[\\/]*)
take care of absolute paths
insert some code here
;;

*)
what is left must be a relative path
insert some code here
;;

esac

source code
When porting Unix software to Cygwin, this is much less of an issue because
these differences are hidden beneath the emulation layer, and by the mount
command respectively; although I have found that gcc, for example, returns
a mixed mode ‘/’ and ‘\’ delimitted include path which upsets Automake’s
dependency tracking on occasion.

Cygwin provides convenience functions to convert back and forth between the
different notations, which we call POSIX paths or path lists, and WIN32 paths
or path lists:

Functionint posix path list p (const char *path)
Return ‘0’, unless path is a ‘/’ and ‘:’ separated path list. The determi-
nation is rather simplistic, in that a string which contains a ‘;’ or begins
with a single letter followed by a ‘:’ causes the ‘0’ return.

Functionvoid cygwin win32 to posix path list (const char
*win32, char *posix)

Converts the ‘\’ and ‘;’ delimiters in win32, into the equivalent ‘/’ and
‘:’ delimiters while copying into the buffer at address posix. This buffer
must be preallocated before calling the function.

Functionvoid cygwin conv to posix path (const char *path,
char *posix path)

If path is a ‘\’ delimitted path, the equivalent, ‘/’ delimitted path is writ-
ten to the buffer at address posix path. This buffer must be preallocated
before calling the function.

Functionvoid cygwin conv to full posix path (const char
*path, char *posix path)

If path is a, possibly relative, ‘\’ delimitted path, the equivalent, absolute,
‘/’ delimitted path is written to the buffer at address posix path. This
buffer must be preallocated before calling the function.

238 Autoconf, Automake, and Libtool

Functionvoid cygwin posix to win32 path list (const char
*posix, char *win32)

Converts the ‘/’ and ‘:’ delimiters in posix, into the equivalent ‘\’ and
‘;’ delimiters while copying into the buffer at address win32. This buffer
must be preallocated before calling the function.

Functionvoid cygwin conv to win32 path (const char *path,
char *win32 path)

If path is a ‘/’ delimitted path, the equivalent, ‘\’ delimitted path is writ-
ten to the buffer at address win32 path. This buffer must be preallocated
before calling the function.

Functionvoid cygwin conv to full win32 path (const char
*path, char *win32 path)

If path is a, possibly relative, ‘/’ delimitted path, the equivalent, absolute,
‘\’ delimitted path is written to the buffer at address win32 path. This
buffer must be preallocated before calling the function.

You can use these functions something like this:

void
display_canonical_path(const char *maybe_relative_or_win32)
{

char buffer[MAX_PATH];
cygwin_conv_to_full_posix_path(maybe_relative_or_win32,

buffer);
printf("canonical path for %s: %s\n",

maybe_relative_or_win32, buffer);
}

For your code to be fully portable however, you cannot rely on these Cygwin functions
as they are not implemented on Unix, or even mingw or djgpp. Instead you should add the
following to a shared header, and be careful to use it when processing and building paths
and path lists:

#if defined __CYGWIN32__ && !defined __CYGWIN__
/* For backwards compatibility with Cygwin b19 and

earlier, we define __CYGWIN__ here, so that
we can rely on checking just for that macro. */

define __CYGWIN__ __CYGWIN32__
#endif

Chapter 25: Using GNU Autotools with Cygnus Cygwin 239

#if defined _WIN32 && !defined __CYGWIN__
/* Use Windows separators on all _WIN32 defining

environments, except Cygwin. */
define DIR_SEPARATOR_CHAR ’\\’
define DIR_SEPARATOR_STR "\\"
define PATH_SEPARATOR_CHAR ’;’
define PATH_SEPARATOR_STR ";"
#endif
#ifndef DIR_SEPARATOR_CHAR

/* Assume that not having this is an indicator that all
are missing. */

define DIR_SEPARATOR_CHAR ’/’
define DIR_SEPARATOR_STR "/"
define PATH_SEPARATOR_CHAR ’:’
define PATH_SEPARATOR_STR ":"
#endif /* !DIR_SEPARATOR_CHAR */

With this in place we can use the macros defined above to write code which will compile
and work just about anywhere:

char path[MAXBUFLEN];
snprintf(path, MAXBUFLEN, "%ctmp%c%s\n",

DIR_SEPARATOR_CHAR, DIR_SEPARATOR_CHAR, foo);
file = fopen(path, "tw+");

25.3.3 Executable Filename Extensions

As I already noted in Section 25.5 [Package Installation], page 250, the fact that Windows
requires that all program files be named with the extension ‘.exe’, is the cause of several
inconsistencies in package behaviour between Windows and Unix.

For example, where Libtool is involved, if a package builds an executable which is linked
against an as yet uninstalled library, libtool puts the real executable in the ‘.libs’ (or
‘_libs’) subdirectory, and writes a shell script to the original destination of the executable9,
which ensures the runtime library search paths are adjusted to find the correct (uninstalled)
libraries that it depends upon. On Windows, only a PE-COFF executable is allowed to
bear the .exe extension, so the wrapper script has to be named differently to the executable
it is substituted for (i.e the script is only executed correctly by the operating system if it
does not have an ‘.exe’ extension). The result of this confusion is that the ‘Makefile’
can’t see some of the executables it builds with Libtool because the generated rules assume
an ‘.exe’ extension will be in evidence. This problem will be addressed in some future
revision of Automake and Libtool. In the mean time, it is sometimes necessary to move the
executables from the ‘.libs’ directory to their install destination by hand. The continual
rebuilding of wrapped executables at each invocation of make is another symptom of using
wrapper scripts with a different name to the executable which they represent.

It is very important to correctly add the ‘.exe’ extension to program file names in your
‘Makefile.am’, otherwise many of the generated rules will not work correctly while they
await a file without the ‘.exe’ extension. Fortunately, Automake will do this for you where

9 See Section 10.5 [Executing Uninstalled Binaries], page 83.

240 Autoconf, Automake, and Libtool

ever it is able to tell that a file is a program – everything listed in ‘bin_PROGRAMS’ for
example. Occasionaly you will find cases where there is no way for Automake to be sure
of this, in which case you must be sure to add the ‘$(EXEEXT)’ suffix. By structuring your
‘Makefile.am’ carefully, this can be avoided in the majority of cases:

TESTS = $(check_SCRIPTS) script-test bin1-test$(EXEEXT)

could be rewritten as:

check_PROGRAMS = bin1-test
TESTS = $(check_SCRIPTS) script-test $(check_PROGRAMS)

The value of ‘EXEEXT’ is always set correctly with respect to the host machine if you
use Libtool in your project. If you don’t use Libtool, you must manually call the Autoconf
macro, ‘AC_EXEEXT’ in your ‘configure.in’ to make sure that it is initialiesed correctly.
If you don’t call this macro (either directly or implicity with ‘AC_PROG_LIBTOOL’), your
project will almost certainly not build correctly on Cygwin.

25.4 DLLs with Libtool

Windows’ dlls, are very different to their nearest equivalent on Unix: shared libraries.
This makes Libtool’s job of hiding both behind the same abstraction extremely difficult –
it is not fully implemented at the time of writing. As a package author that wants to use
dlls on Windows with Libtool, you must construct your packages very carefully to enable
them to build and link with dlls in the same way that they build and link with shared
libraries on Unix.

Some of the difficulties that must be addressed follow:

• At link time, a dll effectively consists of two parts; the dll itself which contains the
shared object code, and an import library which consists of the stub10 functions which
are actually linked into the executable, at a rate of one stub per entry point. Unix has
a run time loader which links shared libraries into the main program as it is executed,
so the shared library is but a single file.

• Pointer comparisons do not always work as expected when the pointers cross a dll
boundary, since you can be comparing the addresses of the stubs in the import library
rather than the addresses of the actual objects in the dll. gcc provides the __declspec
extension to alleviate this problem a little.

• The search algorithm for the runtime library loader is very different to the algorithms
typically used on Unix; I’ll explain how to dela with this in Section 25.4.5 [Runtime
Loading of DLLs], page 249.

• All of the symbols required by a dll at runtime, must be resolved at link time. With
some creative use of import libraries, it is usually possible to work around this short-
coming, but it is easy to forget this limitation if you are developing on a modern system
which has lazy symbol resolution. Be sure to keep it at the back of your mind if you
intend to have your package portable to Windows.

10 In general, a stub function will satisfy the linker’s requirements to resolve an undefined symbol at link
time, but has no functionality of its own. In this context, the stubs do have some boilerplate code to
pass execution flow into the correct full function in the dll.

Chapter 25: Using GNU Autotools with Cygnus Cygwin 241

• Worst of all, is that it is impossible to reference a non-pointer item imported from a
dll. In practice, when you think you have exported a data item from a dll, you are
actually exporting it’s address (in fact the address of the address if you take the import
library into consideration), and it is necessary to add an extra level of indirection to any
non-pointers imported from a dll to take this into account. The gnu gcc __declspec
extension can handle this automatically too, at the expense of obfuscating your code a
little.

Cygwin support in Libtool is very new, and is being developed very quickly, so newer
versions generally improve vastly over their predecessors when it comes to Cygwin, so you
should get the newest release you can. The rest of this section is correct with respect to
Libtool version 1.3.5.

In some future version, Libtool might be able to work as transparently as Autoconf
and Automake, but for now designing your packages as described in this chapter will help
Libtool to help us have dlls and Unix shared libraries from the same codebase.

The bottom line here is that setting a package up to build and use modules and libraries
as both dlls and Unix shared libraries is not straightforward, but the rest of this section
provides a recipe which I have used successfully in several projects, including the module
loader for gnu m4 1.5 which works correctly with dlls on Windows. Lets create hello world
as a dll, and an executable where the runtime loader loads the dll.

25.4.1 DLL Support with GNU Autotools

Here are the contents of the three source files used as an example for the remainder of
this chapter (for brevity, they are missing most of the special code one would normally use
to maximise portability):

‘hello.h’ documents the interface to ‘libhello.dll’:
#ifndef HELLO_H
#define HELLO_H 1

extern int hello (const char *who);

#endif /* !HELLO_H */

‘hello.c’ is the implementation of ‘libhello.dll’:
#if HAVE_CONFIG_H
include <config.h>
#endif

#include <stdio.h>

#include "hello.h"

int
hello (const char *who)
{

printf("Hello, %s!\n", who);
return 0;

}

242 Autoconf, Automake, and Libtool

‘main.c’ is the source for the executable which uses ‘libhello.dll’:

#if HAVE_CONFIG_H
include <config.h>
#endif

#include "hello.h"

int
main (int argc, const char *const argv[])
{

return hello("World");
}

25.4.2 A Makefile.am for DLLs

First of all we will autoconfiscate11 the source files above with a minimal setup:

‘Makefile.am’ is used to generate the ‘Makefile.in’ template for the ‘configure’ script:

Process this file with automake to produce Makefile.in.

lib_LTLIBRARIES = libhello.la
libhello_la_SOURCES = hello.c
libhello_la_LDFLAGS = -no-undefined -version-info 0:0:0

include_HEADERS = hello.h

bin_PROGRAMS = hello
hello_SOURCES = main.c
hello_LDADD = libhello.la

The new feature introduced in this file is the use of the ‘-no-undefined’ flag in the
libhello_la_LDFLAGS value. This flag is required for Windows dll builds. It asserts to
the linker that there are no undefined symbols in the ‘libhello.la’ target, which is one of
the requirements for building a dll outlined earlier. See Section 11.2.1 [Creating Libtool
Libraries with Automake], page 94.

For an explanation of the contents of the rest of this ‘Makefile.am’, See Chapter 7
[Introducing GNU automake], page 39.

25.4.3 A configure.in for DLLs

‘configure.in’ is used to generate the ‘configure’ script:

11 Some people prefer to use the term autoconfuse – if you should meet any, be sure to tell them about
this book

Chapter 25: Using GNU Autotools with Cygnus Cygwin 243

Process this file with autoconf to create configure.

AC_INIT(hello.h)
AM_CONFIG_HEADER(config.h:config.hin)
AM_INIT_AUTOMAKE(hello, 1.0)

AC_PROG_CC
AM_PROG_CC_STDC
AC_C_CONST
AM_PROG_LIBTOOL

AC_OUTPUT(Makefile)

The ‘AC_PROG_CC’ and ‘AM_PROG_CC_STDC’ macros in the ‘configure.in’ above will
conspire to find a suitable compiler for the C code in this example, and to discover any
extra switches required to put that compiler into an ansi mode. I have used the const
keyword in the sources, so I need to specify the ‘AC_C_CONST’ macro, in case the compiler
doesn’t understand it, and finally I have specified the ‘AM_PROG_LIBTOOL’ macro since I
want the library to be built with Libtool.

In order to set the build environment up we need to create the autogenerated files:
$ ls
Makefile.in hello.c main.c
configure.in hello.h
$ aclocal
$ autoheader
$ libtoolize --force --copy
$ automake --foreign --add-missing --copy
automake: configure.in: installing ./install-sh
automake: configure.in: installing ./mkinstalldirs
automake: configure.in: installing ./missing
$ autoconf
$ ls
Makefile.am config.hin hello.c ltmain.sh stamp-h.in
Makefile.in config.sub hello.h main.c
aclocal.m4 configure install-sh missing
config.guess configure.in ltconfig mkinstalldirs

If you have already tried to build dlls with Libtool, you have probably noticed that
the first point of failure is during the configuration process. For example, running the new
configure script you might see:

...
checking if libtool supports shared libraries... yes
checking if package supports dlls... no
checking whether to build shared libraries... no
...

libtool provides a macro, ‘AC_LIBTOOL_WIN32_DLL’, which must be added to a pack-
age’s ‘configure.in’ to communicate to the libtool machinery that the package supports
dlls. Without this macro, libtool will never try to build a dll on Windows. Add this
macro to ‘configure.in’ before the ‘AM_PROG_LIBTOOL’ macro, and try again:

244 Autoconf, Automake, and Libtool

$ make
cd . && aclocal
cd . && automake --foreign Makefile
cd . && autoconf
...
checking if libtool supports shared libraries... yes
checking if package supports dlls... yes
checking whether to build shared libraries... yes
...
gcc -DHAVE_CONFIG_H -I. -I. -I. -g -O2 -Wp,-MD,.deps/hello.pp \
-c -DDLL_EXPORT -DPIC hello.c -o .libs/hello.lo
gcc -DHAVE_CONFIG_H -I. -I. -I. -g -O2 -Wp,-MD,.deps/hello.pp \
-c hello.c -o hello.o >/dev/null 2>&1
mv -f .libs/hello.lo hello.lo
...
gcc -g -O2 -o ./libs/hello main.o .libs/libimp-hello-0-0-0.a \
-Wl,--rpath -Wl,/usr/local/lib
creating hello
...
$./hello
Hello, World!

If you run this and watch the full output of the ‘make’ command, Libtool uses a rather
contorted method of building dlls, with several invocations each of dlltool and gcc. I
have omitted these from the example above, since they really are very ugly, and in any case
are almost incomprehensible to most people. To see it all in its full horror you can always
examine the output after running the commands yourself! In a future release of Cygwin,
recent work on the binutils linker by DJ Delorie, will allow gcc to link dlls in a single pass
using the same syntax used on other systems to produce shared libraries. Libtool will adopt
this method when it becomes available, deprecating the use of dlltool.

I have extracted the interesting lines from amongst the many calls to dlltool12 and gcc
generated by make in the shell log. The main thing to notice is that we have a ‘hello’
binary, which is executable, and which gives the right result when we run it! From the
partial log above, it certainly appears that it has built ‘libhello’ as a dll and linked that
into ‘hello’, but just to double check we can use ldd13:

$ libtool --mode=execute ldd ./hello
lt-hello.exe -> /tmp/.libs/lt-hello.exe
libhello-0-0-0.dll -> /tmp/.libs/libhello-0-0-0.dll
cygwin1.dll -> /usr/bin/cygwin1.dll
kernel32.dll -> /WINNT/system32/kernel32.dll
ntdll.dll -> /WINNT/system32/ntdll.dll
advapi32.dll -> /WINNT/system32/advapi32.dll
user32.dll -> /WINNT/system32/user32.dll
gdi32.dll -> /WINNT/system32/gdi32.dll
rpcrt4.dll -> /WINNT/system32/rpcrt4.dll

12 Part of the Binutils port to Windows, and necessary to massage compiler objects into a working dll.
13 This is a shell script for Cygwin which emulates the behaviour of ldd on gnu/Linux, available online

from http://www.oranda.demon.co.uk/dist/ldd.

http://www.oranda.demon.co.uk/dist/ldd

Chapter 25: Using GNU Autotools with Cygnus Cygwin 245

So now you know how to build and link a simple Windows dll using GNU
Autotools: You add ‘-no-undefined’ to the Libtool library ‘LDFLAGS’, and include the
‘AC_LIBTOOL_WIN32_DLL’ macro in your ‘configure.in’.

25.4.4 Handling Data Exports from DLLs

Unfortunately, things are not quite that simple in reality, except in the rare cases where
no data symbols are exported across a dll boundary. If you look back at the example in
Section 25.4.3 [A configure.in for DLLs], page 242, you will notice that the Libtool object,
‘hello.lo’ was built with the preprocessor macro ‘DLL_EXPORT’ defined. Libtool does this
deliberately so that it is possible to distinguish between a static object build and a Libtool
object build, from within the source code.

Lets add a data export to the dll source to illustrate:

The ‘hello.h’ header must be changed quite significantly:
#ifndef HELLO_H
#define HELLO_H 1

#if HAVE_CONFIG_H
include <config.h>
#endif

#ifdef _WIN32
ifdef DLL_EXPORT
define HELLO_SCOPE __declspec(dllexport)
else
ifdef LIBHELLO_DLL_IMPORT
define HELLO_SCOPE extern __declspec(dllimport)
endif
endif
#endif
#ifndef HELLO_SCOPE
define HELLO_SCOPE extern
#endif

HELLO_SCOPE const char *greet;
extern int hello (const char *who);

#endif /* !HELLO_H */

The nasty block of preprocessor would need to be shared among all the source files which
comprise the ‘libhello.la’ Libtool library, which in this example is just ‘hello.c’. It
needs to take care of five different cases:

compiling ‘hello.lo’
When compiling the Libtool object which will be included in the dll, we need
to tell the compiler which symbols are exported data so that it can do the
automatic extra dereference required to refer to that data from a program
which uses this dll. We need to flag the data with __declspec(dllexport),
See Section 25.4 [DLLs with Libtool], page 240.

246 Autoconf, Automake, and Libtool

compilation unit which will link with ‘libhello-0-0-0.dll’
When compiling an object which will import data from the dll, again we need
to tell the compiler so that it can perform the extra dereference, except this
time we use extern __declspec(dllimport). From the preprocessor block,
you will see that we need to define ‘LIBHELLO_DLL_IMPORT’ to get this define,
which I will describe shortly.

compiling ‘hello.o’
When compiling the object for inclusion in the static archive, we must be careful
to hide the __declspec() declarations from the compiler, or else it will start
dereferencing variables for us by mistake at runtime, and in all likelihood cause
a segmentation fault. In this case we want the compiler to see a simple extern
declaration.

compilation unit which will link with ‘libhello.a’
Similarly, an object which references a data symbol which will be statically
linked into the final binary from a static archive must not see any of the
__declspec() code, and requires a simple extern.

non Windows host
It seems obvious, but we must also be careful not to contaminate the code when
it is compiled on a machine which doesn’t need to jump through the dll hoops.

The changes to ‘hello.c’ are no different to what would be required on a Unix machine.
I have declared the greet variable to allow the caller to override the default greeting:

#if HAVE_CONFIG_H
include <config.h>
#endif

#include <stdio.h>

#include "hello.h"

const char *greet = "Hello";

int
hello (const char *who)
{

printf("%s, %s!\n", greet, who);
return 0;

}

Again, since the dll specific changes have been encapsulated in the ‘hello.h’ file, en-
hancements to ‘main.c’ are unsurprising too:

Chapter 25: Using GNU Autotools with Cygnus Cygwin 247

#if HAVE_CONFIG_H
include <config.h>
#endif

#include "hello.h"

int
main (int argc, const char *const argv[])
{

if (argc > 1)
{
greet = argv[1];

}
return hello("World");

}

The final thing to be aware of is to be careful about ensuring that
‘LIBHELLO_DLL_IMPORT’ is defined when we link an executable against the
‘libhello’ dll, but not defined if we link it against the static archive. It is impossible
to automate this completely, particularly when the executable in question is from another
package and is using the installed ‘hello.h’ header. In that case it is the responsibility
of the author of that package to probe the system with configure to decide whether it
will be linking with the dll or the static archive, and defining ‘LIBHELLO_DLL_IMPORT’ as
appropriate.

Things are a little simpler when everything is under the control of a single package, but
even then it isn’t quite possible to tell for sure whether Libtool is going to build a dll
or only a static library. For example, if some dependencies are dropped for being static,
Libtool may disregard ‘-no-undefined’ (see Section 11.2.1 [Creating Libtool Libraries with
Automake], page 94). One possible solution is:

1. Define a function in the library that invokes ‘return 1’ from a dll. Fortunately that’s
easy to accomplish thanks to ‘-DDLL_EXPORT’, in this case, by adding the following to
‘hello.c’:

#if defined WIN32 && defined DLL_EXPORT
char
libhello_is_dll (void)
{
return 1;

}
#endif /* WIN32 && DLL_EXPORT */

2. Link a program with the library, and check whether it is a dll by seeing if the link
succeeded.

3. To get cross builds to work, you must, in the same vein, test whether linking a
program which calls ‘libhello_is_dll’ succeeds to tell whether or not to define
‘LIBHELLO_DLL_IMPORT’.

As an example of building the ‘hello’ binary we can add the following code to
‘configure.in’, just before the call to ‘AC_OUTPUT’:

248 Autoconf, Automake, and Libtool

--
Win32 objects need to tell the header whether they will be linking
with a dll or static archive in order that everything is imported
to the object in the same way that it was exported from the
archive (extern for static, __declspec(dllimport) for dlls)
--
LIBHELLO_DLL_IMPORT=
case "$host" in
--cygwin* | *-*-mingw*)
if test X"$enable_shared" = Xyes; then
AC_TRY_LINK_FUNC([libhello_is_dll],

[LIBHELLO_DLL_IMPORT=-DLIBHELLO_DLL_IMPORT])
fi
;;

esac
AC_SUBST(LIBHELLO_DLL_IMPORT)

And we must also arrange for the flag to be passed while compiling any objects which
will end up in a binary which links with the dll. For this simple example, only ‘main.c’ is
affected, and we can add the following rule to the end of ‘Makefile.am’:

main.o: main.c
$(COMPILE) @LIBHELLO_DLL_IMPORT@ -c main.c

In a more realistic project, there would probably be dozens of files involved, in which
case it would probably be easier to move them all to a separate subdirectory, and give them
a ‘Makefile.am’ of their own which could include:

CPPFLAGS = @LIBHELLO_DLL_IMPORT@

Now, lets put all this into practice, and check that it works:

$ make
cd . && aclocal
cd . && automake --foreign Makefile
cd . && autoconf
...
checking for gcc option to produce PIC ... -DDLL_EXPORT
checking if gcc PIC flag -DDLL_EXPORT works... yes
...
checking whether to build shared libraries... yes
...
gcc -DHAVE_CONFIG_H -I. -I. -I. -g -O2 -Wp,-MD,.deps/hello.pp \
-c -DDLL_EXPORT -DPIC hello.c -o .libs/hello.lo
gcc -DHAVE_CONFIG_H -I. -I. -I. -g -O2 -Wp,-MD,.deps/hello.pp \
-c hello.c -o hello.o >/dev/null 2>&1
...
gcc -DHAVE_CONFIG_H -I. -I. -I. -g -O2 -DLIBHELLO_DLL_IMPORT \
-c main.c
...
gcc -g -O2 -o ./libs/hello main.o .libs/libimp-hello-0-0-0.a \
-Wl,--rpath -Wl,/usr/local/lib
creating hello
...

Chapter 25: Using GNU Autotools with Cygnus Cygwin 249

$./hello
Hello, World!
$./hello Howdy
Howdy, World!

The recipe also works if I use only the static archives:

$ make clean
...
$./configure --disable-shared
...
checking whether to build shared libraries... no
...
$ make
...
gcc -DHAVE_CONFIG_H -I. -I. -I. -f -O2 -Wp,-MD,.deps/hello.pp \
-c hello.c -o hello.o
...
ar cru ./libs/libhello.a hello.o
...
gcc -DHAVE_CONFIG_H -I. -I. -I. -g -O2 -c main.c
...
gcc -g -O2 -o hello main.o ./.libs/libhello.a
$./hello
Hello, World!
$./hello "G’Day"
G’day, World!

And just to be certain that I am really testing a new statically linked executable:

$ ldd ./hello
hello.exe -> /tmp/hello.exe
cygwin1.dll -> /usr/bin/cygwin1.dll
kernel32.dll -> /WINNT/system32/kernel32.dll
ntdll.dll -> /WINNT/system32/ntdll.dll
advapi32.dll -> /WINNT/system32/advapi32.dll
user32.dll -> /WINNT/system32/user32.dll
gdi32.dll -> /WINNT/system32/gdi32.dll
rpcrt4.dll -> /WINNT/system32/rpcrt4.dll

25.4.5 Runtime Loading of DLLs

dlls built using the recipe described in this chapter can be loaded at runtime in at least
three different ways:

• Using the Cygwin emulation of the posix dlopen/dlclose/dlsym api. Note however
that the emulation is broken up until at least version b20.1, and dlopen(NULL) doesn’t
work at all.

• Using the Windows LoadLibrary/FreeLibrary/GetProcAddress api.

• Using libltdl, which is covered in more detail in Chapter 18 [Using GNU libltdl],
page 161.

250 Autoconf, Automake, and Libtool

25.5 Package Installation

Having successfully built a GNU Autotools managed package, a Systems Administrator
will typically want to install the binaries, libraries and headers of the package. The GNU
standards dictate that this be done with the command make install, and indeed Automake
always generates ‘Makefile’s which work in this way.

Unfortunately, this make install command is often thwarted by the peculiarities of
Window’s file system, and after an apparently successful installation, often the Windows
installation conventions are not always satisfied, so the installed package may not work,
even though the uninstalled build is fully operational.

There are a couple of issues which are worthy of discussion:
Prior to release 1.1.0, the Cygwin install program did not understand the .exe file

extension. Fixing it was only a matter of writing a shell script wrapper for the install
binary. Even though the current release is well behaved in this respect, .exe handling is
still the cause of some complications. See Section 25.3.3 [Executable Filename Extensions],
page 239.

If a package builds any dlls with libtool, they are installed to $prefix/lib by default,
since this is where shared libraries would be installed on Unix. Windows searches for dlls
at runtime using the user’s executable search path ($PATH), which generally doesn’t contain
library paths. The first evidence you will see of this problem is when dlls you have installed
are not found by executables which depend on them, and there are two ways to fix it: The
installed dlls can be moved by hand from their installation directory into the equivalent
executable destination, say from ‘/usr/local/lib’ to ‘/usr/local/bin’; or better, you
can extend your binary search path to include library directories. Adding the following to
your ‘.profile’ would be a good start:

PATH=$PATH:/usr/local/lib:/usr/lib:/lib

Once you are comfortable with setting your packages up like this, they will be relatively
well behaved on Windows and Unix. Of course, you must also write portable code, see
Chapter 15 [Writing Portable C with GNU Autotools], page 127.

Chapter 26: Cross Compilation with GNU Autotools 251

26 Cross Compilation with GNU Autotools

Normally, when you build a program, it runs on the system on which you built it. For
example, if you compile a simple program, you can immediately run it on the same machine.

This is normally how GNU Autotools is used as well. You run the ‘configure’ script on
a particular machine, you run make on the same machine, and the resulting program also
runs on the same machine. However, there are cases where it is useful to build a program
on one machine and run it on another.

One common example is a program which runs on an embedded system. An embedded
system is a special purpose computer, often part of a larger system, such as the computers
found within modern automobiles. An embedded system often does not support a general
programming environment, so there is no way to run a shell or a compiler on the embedded
system. However, it is still necessary to write programs to run on the embedded system.
These programs are built on a different machine, normally a general purpose computer.
The resulting programs can not be run directly on the general purpose computer. Instead,
they are copied onto the embedded system and run there. (We are omitting many details
and possibilities of programming embedded systems here, but this should be enough to
understand the the points relevant to GNU Autotools. For more information, see a book
such as Programming Embedded Systems by Michael Barr.)

Another example where it is useful to build a program on one machine and run it on
another is the case when one machine is much faster. It can sometimes be useful to use
the faster machine as a compilation server, to build programs which are then copied to the
slower machine and run there.

Building a program on one type of system which runs on a different type of system is
called cross compiling. Doing this requires a specially configured compiler, known as a cross
compiler. Similarly, we speak of cross assemblers, cross linkers, etc. When it is necessary to
explicitly distinguish the ordinary sort of compiler, whose output runs on the same type of
system, from a cross compiler, we call the ordinary compiler a native compiler. Although
the debugger is not strictly speaking a compilation tool, it is meaningful to speak of a cross
debugger: a debugger which is used to debug code which runs on another system.

GNU Autotools supports cross compilation in two distinct though related ways. Firstly,
GNU Autotools supports configuring and building a cross compiler or other cross compila-
tion tools. Secondly, GNU Autotools supports building tools using a cross compiler (this is
sometimes called a Canadian Cross). In the rest of this chapter we will explain how to use
GNU Autotools to do these tasks.

If you are not interested in doing cross compilation, you may skip this chapter. However,
if you are developing ‘configure’ scripts, we recommend that you at least skim this chapter
to get some hints as to how to write them so that it is possible to build your package using
a cross compiler; in particular, see Section 26.4.6 [Supporting Cross Compiler], page 256.
Even if your package is useless for an embedded system, it is possible that somebody with
a very fast compilation server will want to use it to cross compile your package.

252 Autoconf, Automake, and Libtool

26.1 Host and Target

We will first discuss using GNU Autotools to build cross compilation tools. For example,
the information in this section will explain how to configure and build the gnu cc compiler
as a cross compiler.

When building cross compilation tools, there are two different systems involved: the
system on which the tools will run, and the system for which the tools will generate code.
The system on which the tools will run is called the host system. The system for which the
tools generate code is called the target system.

For example, suppose you have a compiler which runs on a gnu/Linux system and
generates elf programs for a MIPS-based embedded system. In this case, the gnu/Linux
system is the host, and the MIPS elf system is the target. Such a compiler could be called a
gnu/Linux cross MIPS elf compiler, or, equivalently, a ‘i386-linux-gnu’ cross ‘mips-elf’
compiler. We discussed the latter sorts of names earlier; see Section 3.4 [Configuration
Names], page 21.

Naturally, most programs are not cross compilation tools. For those programs, it does
not make sense to speak of a target. It only makes sense to speak of a target for programs like
the gnu compiler or the gnu binutils which actually produce running code. For example,
it does not make sense to speak of the target of a program like make.

Most cross compilation tools can also serve as native tools. For a native compilation
tool, it is still meaningful to speak of a target. For a native tool, the target is the same as
the host. For example, for a gnu/Linux native compiler, the host is gnu/Linux, and the
target is also gnu/Linux.

26.2 Specifying the Target

By default, the ‘configure’ script will assume that the target is the same as the host.
This is the more common case; for example, when the target is the same as the host, you
get a native compiler rather than a cross compiler.

If you want to build a cross compilation tool, you must specify the target explicitly by
using the ‘--target’ option when you run ‘configure’ See Chapter 3 [Invoking configure],
page 15. The argument to ‘--target’ is the configuration name of the system for which
you wish to generate code. See Section 3.4 [Configuration Names], page 21. For example, to
build tools which generate code for a MIPS elf embedded system, you would use ‘--target
mips-elf’.

26.3 Using the Target Type

A ‘configure’ script for a cross compilation tool will use the ‘--target’ option to
control how it is built, so that the resulting program will produce programs which run on
the appropriate system. In this section we explain how you can write your own configure
scripts to support the ‘--target’ option.

You must start by putting ‘AC_CANONICAL_SYSTEM’ in ‘configure.in’.
‘AC_CANONICAL_SYSTEM’ will look for a ‘--target’ option and canonicalize it using
the ‘config.sub’ shell script (for more information about configuration names,

Chapter 26: Cross Compilation with GNU Autotools 253

canonicalizing them, and ‘config.sub’, see Section 3.4 [Configuration Names], page 21).
‘AC_CANONICAL_SYSTEM’ will also run ‘AC_CANONICAL_HOST’ to get the host information.

The host and target type will be recorded in the following shell variables:

‘host’ The canonical configuration name of the host. This will normally be determined
by running the ‘config.guess’ shell script, although the user is permitted to
override this by using an explicit ‘--host’ option.

‘target’ The canonical configuration name of the target.

‘host_alias’
The argument to the ‘--host’ option, if used. Otherwise, the same as the ‘host’
variable.

‘target_alias’
The argument to the ‘--target’ option. If the user did not specify a ‘--target’
option, this will be the same as ‘host_alias’.

‘host_cpu’
‘host_vendor’
‘host_os’ The first three parts of the canonical host configuration name.

‘target_cpu’
‘target_vendor’
‘target_os’

The first three parts of the canonical target configuration name.

Note that if ‘host’ and ‘target’ are the same string, you can assume a native configu-
ration. If they are different, you can assume a cross configuration.

It is possible for ‘host’ and ‘target’ to represent the same system, but for the strings
to not be identical. For example, if ‘config.guess’ returns ‘sparc-sun-sunos4.1.4’, and
somebody configures with ‘--target sparc-sun-sunos4.1’, then the slight differences be-
tween the two versions of SunOS may be unimportant for your tool. However, in the general
case it can be quite difficult to determine whether the differences between two configuration
names are significant or not. Therefore, by convention, if the user specifies a ‘--target’
option without specifying a ‘--host’ option, it is assumed that the user wants to configure
a cross compilation tool.

The ‘target’ variable should not be handled in the same way as the ‘target_alias’
variable. In general, whenever the user may actually see a string, ‘target_alias’ should
be used. This includes anything which may appear in the file system, such as a directory
name or part of a tool name. It also includes any tool output, unless it is clearly labelled
as the canonical target configuration name. This permits the user to use the ‘--target’
option to specify how the tool will appear to the outside world. On the other hand, when
checking for characteristics of the target system, ‘target’ should be used. This is because
a wide variety of ‘--target’ options may map into the same canonical configuration name.
You should not attempt to duplicate the canonicalization done by ‘config.sub’ in your
own code.

By convention, cross tools are installed with a prefix of the argument used with the
‘--target’ option, also known as ‘target_alias’. If the user does not use the ‘--target’
option, and thus is building a native tool, no prefix is used. For example, if gcc is configured

254 Autoconf, Automake, and Libtool

with ‘--target mips-elf’, then the installed binary will be named ‘mips-elf-gcc’. If gcc
is configured without a ‘--target’ option, then the installed binary will be named ‘gcc’.

The Autoconf macro ‘AC_ARG_PROGRAM’ will handle the names of binaries for you.
If you are using Automake, no more need be done; the programs will automatically
be installed with the correct prefixes. Otherwise, see the Autoconf documentation for
‘AC_ARG_PROGRAM’.

26.4 Building with a Cross Compiler

It is possible to build a program which uses GNU Autotools on one system and to run it
on a different type of system. In other words, it is possible to build programs using a cross
compiler. In this section, we explain what this means, how to build programs this way, and
how to write your ‘configure’ scripts to support it. Building a program on one system and
running it on another is sometimes referred to as a Canadian Cross1.

26.4.1 Canadian Cross Example

We’ll start with an example of a Canadian Cross, to make sure that the concepts are
clear. Using a gnu/Linux system, you can build a program which will run on a Solaris
system. You would use a gnu/Linux cross Solaris compiler to build the program. You
could not run the resulting programs on your gnu/Linux system. After all, they are Solaris
programs. Instead, you would have to copy the result over to a Solaris system before you
could run it.

Naturally, you could simply build the program on the Solaris system in the first place.
However, perhaps the Solaris system is not available for some reason; perhaps you don’t
actually have one, but you want to build the tools for somebody else to use. Or perhaps
your gnu/Linux system is much faster than your Solaris system.

A Canadian Cross build is most frequently used when building programs to run on a
non-Unix system, such as DOS or Windows. It may be simpler to configure and build on a
Unix system than to support the GNU Autotools tools on a non-Unix system.

26.4.2 Canadian Cross Concepts

When building a Canadian Cross, there are at least two different systems involved: the
system on which the tools are being built, and the system on which the tools will run.
The system on which the tools are being built is called the build system. The system on
which the tools will run is called the host system. For example, if you are building a Solaris
program on a gnu/Linux system, as in the previous example, the build system would be
gnu/Linux, and the host system would be Solaris.

Note that we already discussed the host system above; see Section 26.1 [Host and Target],
page 252. It is, of course, possible to build a cross compiler using a Canadian Cross (i.e.,
build a cross compiler using a cross compiler). In this case, the system for which the
resulting cross compiler generates code is the target system.

1 The name Canadian Cross comes from the most complex case, in which three different types of systems
are used. At the time that these issues were being hashed out, Canada had three national political
parties.

Chapter 26: Cross Compilation with GNU Autotools 255

An example of building a cross compiler using a Canadian Cross would be building a
Windows cross MIPS elf compiler on a gnu/Linux system. In this case the build system
would be gnu/Linux, the host system would be Windows, and the target system would be
MIPS elf.

26.4.3 Build Cross Host Tools

In order to configure a program for a Canadian Cross build, you must first build and
install the set of cross tools you will use to build the program. These tools will be build
cross host tools. That is, they will run on the build system, and will produce code that
runs on the host system. It is easy to confuse the meaning of build and host here. Always
remember that the build system is where you are doing the build, and the host system is
where the resulting program will run. Therefore, you need a build cross host compiler.

In general, you must have a complete cross environment in order to do the build. This
normally means a cross compiler, cross assembler, and so forth, as well as libraries and
header files for the host system. Setting up a complete cross environment can be complex,
and is beyond the scope of this book. You may be able to get more information from the
‘crossgcc’ mailing list and FAQ; see http://www.objsw.com/CrossGCC/.

26.4.4 Build and Host Options

When you run ‘configure’ for a Canadian Cross, you must use both the ‘--build’
and ‘--host’ options. The ‘--build’ option is used to specify the configuration name of
the build system. This can normally be the result of running the ‘config.guess’ shell
script, and when using a Unix shell it is reasonable to use ‘--build=‘config.guess‘’. The
‘--host’ option is used to specify the configuration name of the host system.

As we explained earlier, ‘config.guess’ is used to set the default value for the ‘--host’
option (see Section 26.3 [Using the Target Type], page 252). We can now see that since
‘config.guess’ returns the type of system on which it is run, it really identifies the build
system. Since the host system is normally the same as the build system (or, in other words,
people do not normally build using a cross compiler), it is reasonable to use the result of
‘config.guess’ as the default for the host system when the ‘--host’ option is not used.

It might seem that if the ‘--host’ option were used without the ‘--build’ option that the
‘configure’ script could run ‘config.guess’ to determine the build system, and presume a
Canadian Cross if the result of ‘config.guess’ differed from the ‘--host’ option. However,
for historical reasons, some configure scripts are routinely run using an explicit ‘--host’
option, rather than using the default from ‘config.guess’. As noted earlier, it is difficult
or impossible to reliably compare configuration names (see Section 26.3 [Using the Target
Type], page 252). Therefore, by convention, if the ‘--host’ option is used, but the ‘--build’
option is not used, then the build system defaults to the host system. (This convention
may be changing in the Autoconf 2.5 release. Check the release notes.)

26.4.5 Canadian Cross Tools

You must explicitly specify the cross tools which you want to use to build the program.
This is done by setting environment variables before running the ‘configure’ script. You
must normally set at least the environment variables ‘CC’, ‘AR’, and ‘RANLIB’ to the cross

http://www.objsw.com/CrossGCC/

256 Autoconf, Automake, and Libtool

tools which you want to use to build. For some programs, you must set additional cross
tools as well, such as ‘AS’, ‘LD’, or ‘NM’. You would set these environment variables to the
build cross host tools which you are going to use.

For example, if you are building a Solaris program on a gnu/Linux system, and your
gnu/Linux cross Solaris compiler were named ‘solaris-gcc’, then you would set the envi-
ronment variable ‘CC’ to ‘solaris-gcc’.

26.4.6 Supporting Building with a Cross Compiler

If you want to make it possible to build a program which you are developing using a
cross compiler, you must take some care when writing your ‘configure.in’ and make rules.
Simple cases will normally work correctly. However, it is not hard to write configure tests
which will fail when building with a cross compiler, so some care is required to avoid this.

You should write your ‘configure’ scripts to support building with a cross compiler if
you can, because that will permit others to build your program on a fast compilation server.

26.4.6.1 Supporting Building with a Cross Compiler in Configure
Scripts

In a ‘configure.in’ file, after calling ‘AC_PROG_CC’, you can find out whether
the program is being built by a cross compiler by examining the shell variable
‘cross_compiling’. If the compiler is a cross compiler, which means that this is
a Canadian Cross, ‘cross_compiling’ will be ‘yes’. In a normal configuration,
‘cross_compiling’ will be ‘no’.

You ordinarily do not need to know the type of the build system in a ‘configure’
script. However, if you do need that information, you can get it by using the macro
‘AC_CANONICAL_SYSTEM’, the same macro which is used to determine the target system.
This macro will set the variables ‘build’, ‘build_alias’, ‘build_cpu’, ‘build_vendor’,
and ‘build_os’, which correspond to the similar ‘target’ and ‘host’ variables, except that
they describe the build system. See Section 26.3 [Using the Target Type], page 252.

When writing tests in ‘configure.in’, you must remember that you want to test the
host environment, not the build environment. Macros which use the compiler, such as like
‘AC_CHECK_FUNCS’, will test the host environment. That is because the tests will be done
by running the compiler, which is actually a build cross host compiler. If the compiler can
find the function, that means that the function is present in the host environment.

Tests like ‘test -f /dev/ptyp0’, on the other hand, will test the build environment.
Remember that the ‘configure’ script is running on the build system, not the host system.
If your ‘configure’ scripts examines files, those files will be on the build system. Whatever
you determine based on those files may or may not be the case on the host system.

Most Autoconf macros will work correctly when building with a cross compiler. The
main exception is ‘AC_TRY_RUN’. This macro tries to compile and run a test program. This
will fail when building with a cross compiler, because the program will be compiled for the
host system, which means that it will not run on the build system.

The ‘AC_TRY_RUN’ macro provides an optional argument to tell the ‘configure’ script
what to do when building with a cross compiler. If that argument is not present, you will
get a warning when you run ‘autoconf’:

Chapter 26: Cross Compilation with GNU Autotools 257

warning: AC_TRY_RUN called without default to allow cross compiling

This tells you that the resulting ‘configure’ script will not work when building with a cross
compiler.

In some cases while it may better to perform a test at configure time, it is also possible to
perform the test at run time (see Section 23.3.2 [Testing system features at application run-
time], page 218). In such a case you can use the cross compiling argument to ‘AC_TRY_RUN’
to tell your program that the test could not be performed at configure time.

There are a few other autoconf macros which will not work correctly when building
with a cross compiler: a partial list is ‘AC_FUNC_GETPGRP’, ‘AC_FUNC_SETPGRP’,
‘AC_FUNC_SETVBUF_REVERSED’, and ‘AC_SYS_RESTARTABLE_SYSCALLS’. The
‘AC_CHECK_SIZEOF’ macro is generally not very useful when building with a cross compiler;
it permits an optional argument indicating the default size, but there is no way to know
what the correct default should be.

26.4.6.2 Supporting Building with a Cross Compiler in Makefiles

The main cross compiling issue in a ‘Makefile’ arises when you want to use a subsidiary
program to generate code or data which you will then include in your real program. If you
compile this subsidiary program using ‘$(CC)’ in the usual way, you will not be able to run
it. This is because ‘$(CC)’ will build a program for the host system, but the program is
being built on the build system. You must instead use a compiler for the build system,
rather than the host system. This compiler is conventionally called ‘$(CC_FOR_BUILD)’.

A ‘configure’ script should normally permit the user to define ‘CC_FOR_BUILD’ explicitly
in the environment. Your configure script should help by selecting a reasonable default value.
If the ‘configure’ script is not being run with a cross compiler (i.e., the ‘cross_compiling’
shell variable is ‘no’ after calling ‘AC_PROG_CC’), then the proper default for ‘CC_FOR_BUILD’
is simply ‘$(CC)’. Otherwise, a reasonable default is simply ‘cc’.

Note that you should not include ‘config.h’ in a file you are compiling with
‘$(CC_FOR_BUILD)’. The ‘configure’ script will build ‘config.h’ with information for the
host system. However, you are compiling the file using a compiler for the build system
(a native compiler). Subsidiary programs are normally simple filters which do no user
interaction, and it is often possible to write them in a highly portable fashion so that the
absence of ‘config.h’ is not crucial.

The gcc ‘Makefile.in’ shows a complex situation in which certain files, such as ‘rtl.c’,
must be compiled into both subsidiary programs run on the build system and into the final
program. This approach may be of interest for advanced GNU Autotools hackers. Note
that, at least in GCC 2.95, the build system compiler is rather confusingly called ‘HOST_CC’.

258 Autoconf, Automake, and Libtool

Appendices 259

Appendices

260 Autoconf, Automake, and Libtool

Appendix A: Installing GNU Autotools 261

Appendix A Installing GNU Autotools

The GNU Autotools may already be installed at your site, particularly if you are using
a gnu/Linux system. If you don’t have these tools installed, or do not have the most recent
versions, this appendix will help you install them.

A.1 Prerequisite tools

The GNU Autotools make use of a few additional tools to get their jobs done. This
makes it necessary to gather all of the prerequisite tools to get started. Before installing
GNU Autotools, it is necessary to obtain and install these tools.

The GNU Autotools are all built around the assumption that the system will have a
relatively functional version of the Bourne shell. If your system is missing a Bourne shell
or your shell behaves different to most, as is the case with the Bourne shell provided with
Ultrix, then you might like to obtain and install gnu bash. See Section A.2 [Downloading
GNU Autotools], page 261, for details on obtaining gnu packages. If you are using a
Windows system, the easiest way to obtain a Bourne shell and all of the shell utilities that
you will need is to download and install Cygnus Solutions’ Cygwin product. You can locate
further information about Cygwin by reading http://www.cygnus.com/cygwin/.

Autoconf requires gnu M4. Vendor-provided versions of M4 have proven to be trouble-
some, so Autoconf checks that gnu M4 is installed on your system. Again, see Section A.2
[Downloading GNU Autotools], page 261, for details on obtaining gnu packages such as
M4. At the time of writing, the latest version is 1.4. Earlier versions of gnu M4 will work,
but they may not be as efficient.

Automake requires Perl version 5 or greater. You should download and install a version
of Perl for your platform which meets these requirements.

A.2 Downloading GNU Autotools

The GNU Autotools are distributed as part of the gnu project, under the terms of the
gnu General Public License. Each tool is packaged in a compressed archive that you can
retrieve from sources such as Internet ftp archives and CD-ROM distributions. While you
may use any source that is convenient to you, it is best to use one of the recognized gnu mir-
ror sites. A current list of mirror sites is listed at http://www.gnu.org/order/ftp.html.

The directory layout of the gnu archives has recently been improved to make it easier to
locate particular packages. The new scheme places package archive files under a subdirectory
whose name reflects the base name of the package. For example, gnu Autoconf 2.13 can
be found at:

/gnu/autoconf/autoconf-2.13.tar.gz

The filenames corresponding to the latest versions of GNU Autotools, at the time of
writing, are:

autoconf-2.13.tar.gz
automake-1.4.tar.gz
libtool-1.3.5.tar.gz

http://www.cygnus.com/cygwin/
http://www.gnu.org/order/ftp.html

262 Autoconf, Automake, and Libtool

These packages are stored as tar archives and compressed with the gzip compression
utility. Once you have obtained all of these packages, you should unpack them using the
following commands:

gunzip TOOL-VERSION.tar.gz
tar xfv TOOL-VERSION.tar

gnu tar archives are created with a directory name prefixed to all of the files in the
archive. This means that files will be tidily unpacked into an appropriately named subdi-
rectory, rather than being written all over your current working directory.

A.3 Installing the tools

When installing GNU Autotools, it is a good idea to install the tools in the same location
(eg. ‘/usr/local’). This allows the tools to discover each others’ presence at installation
time. The location shown in the examples below will be the default, ‘/usr/local’, as this
choice will make the tools available to all users on the system.

Installing Autoconf is usually a quick and simple exercise, since Autoconf itself uses
‘configure’ to prepare itself for building and installation. Automake and Libtool can be
installed using the same steps as for Autoconf. As a matter of personal preference, I like
to create a separate build tree when configuring packages to keep the source tree free of
derived files such as object files. Applying what we know about invoking ‘configure’ (see
Chapter 3 [Invoking configure], page 15), we can now configure and build Autoconf. The
only ‘configure’ option we’re likely to want to use is ‘--prefix’, so if you want to install
the tools in another location, include this option on the command line. It might be desirable
to install the package elsewhere when operating in networked environments.

$ mkdir ac-build && cd ac-build
$ ~/autoconf-2.13/configure

You will see ‘configure’ running its tests and producing a ‘Makefile’ in the build
directory:

creating cache ./config.cache
checking for gm4... no
checking for gnum4... no
checking for m4... /usr/bin/m4
checking whether we are using GNU m4... yes
checking for mawk... no
checking for gawk... gawk
checking for perl... /usr/bin/perl
checking for a BSD compatible install... /usr/bin/install -c
updating cache ./config.cache
creating ./config.status
creating Makefile
creating testsuite/Makefile

To build Autoconf, type the following:
$ make all

Autoconf has no architecture-specific files to be compiled, so this process finishes quickly.
To install files into ‘/usr/local’, it may be necessary to become the root user before
installing.

Appendix A: Installing GNU Autotools 263

make install

Autoconf is now installed on your system.

264 Autoconf, Automake, and Libtool

Appendix B: PLATFORMS 265

Appendix B PLATFORMS

This table lists platforms and toolchains known to be supported by Libtool. Each row
represents completion of the self test suite shipped with the Libtool distribution on the
platform named in that row.

There is a ‘PLATFORMS’ file maintained in the Libtool source tree, updated whenever a
Libtool user volunteers updated information, or when the Libtool team runs pre-release
tests on the platforms to which they individually have access.

The table from the latest source tree at the time of writing follows:

canonical host name
This is the configuration triplet returned by config.guess on each system for
which the test suite was executed. Where the developer who ran the tests
considered it to be significant, versions of tools in the compiler toolchain are
named below the configuration triplet.

compiler The compiler used for the tests.

libtool release
The version number of the Libtool distribution most recently tested for the
associated configuration triplet. The GNU Autotools all use an alpha version
numbering system where ‘odd’ letters (a, c, e, g etc.) represent many cvs
snapshots between the ‘even’ lettered (b, d, f etc) alpha release versions. After
version 1.4, the cvs revision number of the ‘Changelog’ file will be appended
to odd lettered cvs snapshots, ‘1.4a 1.641.2.54’, for example.

results Either ‘ok’ if the Libtool test suite passed all tests, or optionally ‘NS’ if the
test suite would only pass when the distribution was configured with the
‘--disable-shared’ option.

canonical host name compiler libtool results
(tools versions) release

alpha-dec-osf4.0* gcc 1.3b ok

(egcs-1.1.2)
alpha-dec-osf4.0* cc 1.3b ok
alpha-dec-osf3.2 gcc 0.8 ok
alpha-dec-osf3.2 cc 0.8 ok
alpha-dec-osf2.1 gcc 1.2f NS
alpha*-unknown-linux-gnu gcc 1.3b ok

(egcs-1.1.2, GNU ld 2.9.1.0.23)
hppa2.0w-hp-hpux11.00 cc 1.2f ok
hppa2.0-hp-hpux10.20 cc 1.3.2 ok
hppa1.1-hp-hpux10.20 gcc 1.2f ok
hppa1.1-hp-hpux10.20 cc 1.2f ok
hppa1.1-hp-hpux10.10 gcc 1.2f ok
hppa1.1-hp-hpux10.10 cc 1.2f ok
hppa1.1-hp-hpux9.07 gcc 1.2f ok
hppa1.1-hp-hpux9.07 cc 1.2f ok

266 Autoconf, Automake, and Libtool

hppa1.1-hp-hpux9.05 gcc 1.2f ok
hppa1.1-hp-hpux9.05 cc 1.2f ok
hppa1.1-hp-hpux9.01 gcc 1.2f ok
hppa1.1-hp-hpux9.01 cc 1.2f ok
i*86-*-beos gcc 1.2f ok
i*86-*-bsdi4.0.1 gcc 1.3c ok
(gcc-2.7.2.1)

i*86-*-bsdi4.0 gcc 1.2f ok
i*86-*-bsdi3.1 gcc 1.2e NS
i*86-*-bsdi3.0 gcc 1.2e NS
i*86-*-bsdi2.1 gcc 1.2e NS
i*86-pc-cygwin gcc 1.3b NS

(egcs-1.1 stock b20.1 compiler)
i*86-*-dguxR4.20MU01 gcc 1.2 ok
i*86-*-freebsdelf4.0 gcc 1.3c ok

(egcs-1.1.2)
i*86-*-freebsdelf3.2 gcc 1.3c ok

(gcc-2.7.2.1)
i*86-*-freebsdelf3.1 gcc 1.3c ok

(gcc-2.7.2.1)
i*86-*-freebsdelf3.0 gcc 1.3c ok
i*86-*-freebsd3.0 gcc 1.2e ok
i*86-*-freebsd2.2.8 gcc 1.3c ok

(gcc-2.7.2.1)
i*86-*-freebsd2.2.6 gcc 1.3b ok

(egcs-1.1 & gcc-2.7.2.1, native ld)
i*86-*-freebsd2.1.5 gcc 0.5 ok
i*86-*-gnu gcc 1.3c ok (1.602)
i*86-*-netbsd1.4 gcc 1.3c ok

(egcs-1.1.1)
i*86-*-netbsd1.3.3 gcc 1.3c ok

(gcc-2.7.2.2+myc2)
i*86-*-netbsd1.3.2 gcc 1.2e ok
i*86-*-netbsd1.3I gcc 1.2e ok

(egcs 1.1?)
i*86-*-netbsd1.2 gcc 0.9g ok
i*86-*-linux-gnu gcc 1.3b ok

(egcs-1.1.2, GNU ld 2.9.1.0.23)
i*86-*-linux-gnulibc1 gcc 1.2f ok
i*86-*-openbsd2.5 gcc 1.3c ok

(gcc-2.8.1)
i*86-*-openbsd2.4 gcc 1.3c ok

(gcc-2.8.1)
i*86-*-solaris2.7 gcc 1.3b ok

(egcs-1.1.2, native ld)
i*86-*-solaris2.6 gcc 1.2f ok
i*86-*-solaris2.5.1 gcc 1.2f ok
i*86-ncr-sysv4.3.03 gcc 1.2f ok
i*86-ncr-sysv4.3.03 cc 1.2e ok

Appendix B: PLATFORMS 267

(cc -Hnocopyr)
i*86-pc-sco3.2v5.0.5 cc 1.3c ok
i*86-pc-sco3.2v5.0.5 gcc 1.3c ok

(gcc 95q4c)
i*86-pc-sco3.2v5.0.5 gcc 1.3c ok

(egcs-1.1.2)
i*86-UnixWare7.1.0-sysv5 cc 1.3c ok
i*86-UnixWare7.1.0-sysv5 gcc 1.3c ok

(egcs-1.1.1)
m68k-next-nextstep3 gcc 1.2f NS
m68k-sun-sunos4.1.1 gcc 1.2f NS

(gcc-2.5.7)
m88k-dg-dguxR4.12TMU01 gcc 1.2 ok
m88k-motorola-sysv4 gcc 1.3 ok

(egcs-1.1.2)
mips-sgi-irix6.5 gcc 1.2f ok

(gcc-2.8.1)
mips-sgi-irix6.4 gcc 1.2f ok
mips-sgi-irix6.3 gcc 1.3b ok

(egcs-1.1.2, native ld)
mips-sgi-irix6.3 cc 1.3b ok

(cc 7.0)
mips-sgi-irix6.2 gcc 1.2f ok
mips-sgi-irix6.2 cc 0.9 ok
mips-sgi-irix5.3 gcc 1.2f ok

(egcs-1.1.1)
mips-sgi-irix5.3 gcc 1.2f NS

(gcc-2.6.3)
mips-sgi-irix5.3 cc 0.8 ok
mips-sgi-irix5.2 gcc 1.3b ok

(egcs-1.1.2, native ld)
mips-sgi-irix5.2 cc 1.3b ok

(cc 3.18)
mipsel-unknown-openbsd2.1 gcc 1.0 ok
powerpc-ibm-aix4.3.1.0 gcc 1.2f ok

(egcs-1.1.1)
powerpc-ibm-aix4.2.1.0 gcc 1.2f ok

(egcs-1.1.1)
powerpc-ibm-aix4.1.5.0 gcc 1.2f ok

(egcs-1.1.1)
powerpc-ibm-aix4.1.5.0 gcc 1.2f NS

(gcc-2.8.1)
powerpc-ibm-aix4.1.4.0 gcc 1.0 ok
powerpc-ibm-aix4.1.4.0 xlc 1.0i ok
rs6000-ibm-aix4.1.5.0 gcc 1.2f ok

(gcc-2.7.2)
rs6000-ibm-aix4.1.4.0 gcc 1.2f ok

(gcc-2.7.2)
rs6000-ibm-aix3.2.5 gcc 1.0i ok

268 Autoconf, Automake, and Libtool

rs6000-ibm-aix3.2.5 xlc 1.0i ok
sparc-sun-solaris2.7 gcc 1.3b ok
(egcs-1.1.2, GNU ld 2.9.1 & native ld)

sparc-sun-solaris2.6 gcc 1.3.2 ok
(egcs-1.1.2, GNU ld 2.9.1 & native ld)

sparc-sun-solaris2.5.1 gcc 1.2f ok
sparc-sun-solaris2.5 gcc 1.3b ok

(egcs-1.1.2, GNU ld 2.9.1 & native ld)
sparc-sun-solaris2.5 cc 1.3b ok

(SC 3.0.1)
sparc-sun-solaris2.4 gcc 1.0a ok
sparc-sun-solaris2.4 cc 1.0a ok
sparc-sun-solaris2.3 gcc 1.2f ok
sparc-sun-sunos4.1.4 gcc 1.2f ok
sparc-sun-sunos4.1.4 cc 1.0f ok
sparc-sun-sunos4.1.3_U1 gcc 1.2f ok
sparc-sun-sunos4.1.3C gcc 1.2f ok
sparc-sun-sunos4.1.3 gcc 1.3b ok

(egcs-1.1.2, GNU ld 2.9.1 & native ld)
sparc-sun-sunos4.1.3 cc 1.3b ok
sparc-unknown-bsdi4.0 gcc 1.2c ok
sparc-unknown-linux-gnulibc1 gcc 1.2f ok
sparc-unknown-linux-gnu gcc 1.3b ok

(egcs-1.1.2, GNU ld 2.9.1.0.23)
sparc64-unknown-linux-gnu gcc 1.2f ok

Notes:
- "ok" means "all tests passed".
- "NS" means "Not Shared", but OK for static libraries

You too can contribute to this file, either if you use a platform which is missing from
the table entirely, or if you are using a newer release of Libtool than the version listed in
the table. From a freshly unpacked release, do the following:

$ cd libtool-1.4
$./configure
...

Configuring libtool 1.4a (1.641.2.54 2000/06/18 03:02:52)

...
checking host system type... i586-pc-linux-gnu
checking build system type... i586-pc-linux-gnu
...
$ make
...
$ make check
...
===================

Appendix B: PLATFORMS 269

All 76 tests passed
===================
...

If there are no test failures, and you see a message similar to the above, send a short message
to libtool@gnu.org stating what you did and the configuration triplet for your platform
as reported for the ‘host system’ by configure (see the example directly above), and the
precise version number of the release you have tested as reported by ‘libtool --version’:

$ pwd
/tmp/cvs/libtool
$./libtool --version
ltmain.sh (GNU libtool) 1.4a (1.641.2.41 2000/05/29 10:40:46)

The official ‘PLATFORMS’ file will be updated shortly thereafter.

mailto:libtool@gnu.org

270 Autoconf, Automake, and Libtool

Appendix C: Generated File Dependencies 271

Appendix C Generated File Dependencies

These diagrams show the data flows associated with each of the tools you might need
to use when bootstrapping a project with GNU Autotools. A lot of files are consumed and
produced by these tools, and it is important that all of the required input files are present
(and correct) at each stage – configure requires ‘Makefile.in’ and produces ‘Makefile’
for example. There are many of these relationships, and these diagrams should help you to
visualize the dependencies. They will be invaluable while you learn your way around GNU
Autotools, but before long you will find that you need to refer to them rarely, if at all.

They do not show how the individual files are laid out in a project directory tree, since
some of them, ‘config.guess’ for example, have no single place at which they must appear,
and others, ‘Makefile.am’ for example, may be present in several places, depending on how
you want to structure your project directories.

The key to the diagrams in this appendix follows:
• The boxes are the individual tools which comprise GNU Autotools.
• Where multiple interlinked boxes appear in a single diagram, this represents one tool

itself running other helper programs. If a box is behind another box, it is a (group of)
helper program(s) that may be automatically run by the boxes in front.

• Dotted arrows are for optional files, which may be a part of the process.
• Where an input arrow and output arrow are aligned horizontally, the output is created

from the input by the process between the two.
• words in parentheses, "()", are for deprecated files which are supported but no longer

necessary.

Notice that in some cases, a file ouput during one stage of the whole process becomes
the driver for a subsequent stage.

Each of the following diagrams represents the execution of one of the tools in GNU
Autotools; they are presented in the order that we recommend you run them, though some
stages may not be required for your project. You shouldn’t run libtoolize if your project
doesn’t use libtool, for example.

C.1 aclocal

The aclocal program creates the file ‘aclocal.m4’ by combining stock installed macros,
user defined macros and the contents of ‘acinclude.m4’ to define all of the macros required
by ‘configure.in’ in a single file. aclocal was created as a fix for some missing func-
tionality in Autoconf, and as such we consider it a wart. In due course aclocal itself will
disappear, and Autoconf will perform the same function unaided.

user input files optional input process output files
================ ============== ======= ============

acinclude.m4 - - - - -.
V

.-------,
configure.in ------------------------>|aclocal|

{user macro files} ->| |------> aclocal.m4
‘-------’

272 Autoconf, Automake, and Libtool

C.2 autoheader

autoheader runs m4 over ‘configure.in’, but with key macros defined differently than
when autoconf is executed, such that suitable cpp definitions are output to ‘config.h.in’.

user input files optional input process output files
================ ============== ======= ============

aclocal.m4 - - - - - - - .
(acconfig.h) - - - -. |

V V
.----------,

configure.in ----------------------->|autoheader|----> config.h.in
‘----------’

C.3 automake and libtoolize

automake will call libtoolize to generate some extra files if the macro
‘AC_PROG_LIBTOOL’ is used in ‘configure.in’. If it is not present then automake will
install ‘config.guess’ and ‘config.sub’ by itself.

libtoolize can also be run manually if desired; automake will only run libtoolize
automatically if ‘ltmain.sh’ and ‘ltconfig’ are missing.

user input files optional input processes output files
================ ============== ========= ============

.--------,
| | - - -> COPYING
| | - - -> INSTALL
| |------> install-sh
| |------> missing
|automake|------> mkinstalldirs

configure.in ----------------------->| |
Makefile.am ----------------------->| |------> Makefile.in

| |------> stamp-h.in
.---+ | - - -> config.guess
| | | - - -> config.sub
| ‘------+-’
| | - - - -> config.guess
|libtoolize| - - - -> config.sub
| |--------> ltmain.sh
| |--------> ltconfig
‘----------’

The versions of ‘config.guess’ and ‘config.sub’ installed differ between
releases of Automake and Libtool, and might be different depending on
whether libtoolize is used to install them or not. Before releasing
your own package you should get the latest versions of these files from
ftp://ftp.gnu.org/gnu/config, in case there have been changes since
releases of the GNU Autotools.

ftp://ftp.gnu.org/gnu/config

Appendix C: Generated File Dependencies 273

C.4 autoconf

autoconf expands the m4 macros in ‘configure.in’, perhaps using macro definitions
from ‘aclocal.m4’, to generate the configure script.

user input files optional input processes output files
================ ============== ========= ============

aclocal.m4 - - - - - -.
V

.--------,
configure.in ----------------------->|autoconf|------> configure

‘--------’

C.5 configure

The purpose of the preceding processes was to create the input files necessary for
configure to run correctly. You would ship your project with the generated script and
the files in columns, other input and processes (except ‘config.cache’), but configure is
designed to be run by the person installing your package. Naturally, you will run it too
while you develop your project, but the files it produces are specific to your development
machine, and are not shipped with your package – the person installing it later will run
configure and generate output files specific to their own machine.

Running the configure script on the build host executes the various tests originally
specified by the ‘configure.in’ file, and then creates another script, ‘config.status’. This
new script generates the ‘config.h’ header file from ‘config.h.in’, and ‘Makefile’s from
the named ‘Makefile.in’s. Once ‘config.status’ has been created, it can be executed by
itself to regenerate files without rerunning all the tests. Additionally, if ‘AC_PROG_LIBTOOL’
was used, then ltconfig is used to generate a libtool script.

274 Autoconf, Automake, and Libtool

user input files other input processes output files
================ =========== ========= ============

.---------,
config.site - - ->| |

config.cache - - ->|configure| - - -> config.cache
| +-,
‘-+-------’ |

| |----> config.status
config.h.in ------->|config- |----> config.h
Makefile.in ------->| .status|----> Makefile

| |----> stamp-h
| +--,

.-+ | |
| ‘------+--’ |

ltmain.sh ------->|ltconfig|-------> libtool
| | |
‘-+------’ |

|config.guess|
| config.sub |
‘------------’

C.6 make

The final tool to be run is make. Like configure, it is designed to execute on the build
host. make will use the rules in the generated ‘Makefile’ to compile the project sources
with the aid of various other scripts generated earlier on.

user input files other input processes output files
================ =========== ========= ============

.--------,
Makefile ------>| |
config.h ------>| make |

{project sources} ---------------->| |--------> {project targets}
.-+ +--,
| ‘--------’ |
| libtool |
| missing |
| install-sh |
|mkinstalldirs|
‘-------------’

Appendix D: Autoconf Macro Reference 275

Appendix D Autoconf Macro Reference

This is an alphabetical list of each Autoconf macro used in this book, along with a
description of what each does. They are provided for your reference while reading this
book. The descriptions are only brief; see the appropriate reference manual for a complete
description.

AC_ARG_ENABLE(feature, help-text, [if-given], [if-not-given])
This macro allows the maintainer to specify additional package options accepted
by ‘configure’–for example, ‘--enable-zlib’. The action shell code may ac-
cess any arguments to the option in the shell variable enableval. For example,
‘--enable-buffers=128’ would cause ‘configure’ to set enableval to ‘128’.

AC_ARG_PROGRAM
This macro places a sed transformation program into the output variable
program_transform_name that can be used to transform the filenames of in-
stalled programs. If the ‘--program-prefix’, ‘--program-suffix’ or
‘--program-transform-name’ options are passed to ‘configure’, an appropri-
ate transformation program will be generated. If no options are given, but
the type of the host system differs from the type of the target system, pro-
gram names are transformed by prefixing them with the type of the target (eg.
arm-elf-gcc).

AC_ARG_WITH(package, help-text, [if-given], [if-not-given])
This macro allows the maintainer to specify additional packages that this pack-
age should work with (for example, a library to manipulate shadow passwords).
The user indicates this preference by invoking ‘configure’ with an option such
as ‘--with-shadow’. If an optional argument is given, this value is available to
shell code in the shell variable withval.

AC_CACHE_CHECK(message, cache-variable, commands)
This macro is a convenient front-end to the AC_CACHE_VAL macro that takes
care of printing messages to the user, including whether or not the result was
found in the cache. It should be used in preference to AC_CACHE_VAL.

AC_CACHE_VAL(cache-variable, commands)
This is a low-level macro which implements the Autoconf cache feature.
If the named variable is set at runtime (for instance, if it was read from
‘config.cache’), then this macro does nothing. Otherwise, it runs the shell
code in commands, which is assumed to set the cache variable.

AC_CANONICAL_HOST
This macro determines the type of the host system and sets the output variable
‘host’, as well as other more obscure variables.

AC_CANONICAL_SYSTEM
This macro determines the type of the build, host and target systems and sets
the output variables ‘build’, ‘host’ and ‘target’, amongst other more obscure
variables.

276 Autoconf, Automake, and Libtool

AC_CHECK_FILE(file, [if-found], [if-not-found])
This macro tests for the existence of a file in the file system of the build system,
and runs the appropriate shell code depending on whether or not the file is
found.

AC_CHECK_FUNCS(function-list, [if-found], [if-not-found])
This looks for a series of functions. If the function quux is found, the C prepro-
cessor macro HAVE_QUUX will be defined. In addition, if the if-found argument
is given, it will be run (as shell code) when a function is found – this code
can use the sh break command to prevent AC_CHECK_FUNCS from looking for
the remaining functions in the list. The shell code in if-not-found is run if a
function is not found.

AC_CHECK_HEADER(header, [if-found], [if-not-found])
This macro executes some specified shell code if a header file exists. If it is not
present, alternative shell code is executed instead.

AC_CHECK_HEADERS(header-list, [if-found], [if-not-found])
This looks for a series of headers. If the header quux.h is found, the C prepro-
cessor macro HAVE_QUUX_H will be defined. In addition, if the if-found argument
is given, it will be run (as shell code) when a header is found – this code can
use the sh break command to prevent AC_CHECK_HEADERS from looking for the
remaining headers in the list. The shell code in if-not-found is run if a header
is not found.

AC_CHECK_LIB(library, function, [if-found], [if-not-found], [other-libraries])
This looks for the named function in the named library specified by its base
name. For instance the math library, ‘libm.a’, would be named simply ‘m’.
If the function is found in the library ‘foo’, then the C preprocessor macro
HAVE_LIBFOO is defined.

AC_CHECK_PROG(variable, program-name, value-if-found, [value-if-not-found], [path],
[reject])

Checks to see if the program named by program-name exists in the path path.
If found, it sets the shell variable variable to the value value-if-found; if not
it uses the value value-if-not-found. If variable is already set at runtime, this
macro does nothing.

AC_CHECK_SIZEOF(type, [size-if-cross-compiling])
This macro determines the size of C and C++ built-in types and defines SIZEOF_
type to the size, where type is transformed–all characters to upper case, spaces
to underscores and ‘*’ to ‘P’. If the type is unknown to the compiler, the size
is set to 0. An optional argument specifies a default size when cross-compiling.
The ‘configure’ script will abort with an error message if it tries to cross-
compile without this default size.

AC_CONFIG_AUX_DIR(directory)
This macro allows an alternative directory to be specified for the location of
auxiliary scripts such as ‘config.guess’, ‘config.sub’ and ‘install-sh’. By
default, ‘$srcdir’, ‘$srcdir/..’ and ‘$srcdir/../..’ are searched for these
files.

Appendix D: Autoconf Macro Reference 277

AC_CONFIG_HEADER(header-list)
This indicates that you want to use a config header, as opposed to having all the
C preprocessor macros defined via -D options in the DEFS ‘Makefile’ variable.
Each header named in header-list is created at runtime by ‘configure’ (via AC_
OUTPUT). There are a variety of optional features for use with config headers
(different naming schemes and so forth); see the reference manual for more
information.

AC_C_CONST
This macro defines the C preprocessor macro const to the string const if the C
compiler supports the const keyword. Otherwise it is defined to be the empty
string.

AC_C_INLINE
This macro tests if the C compiler can accept the inline keyword. It defines
the C preprocessor macro inline to be the keyword accepted by the compiler
or the empty string if it is not accepted at all.

AC_DEFINE(variable, [value], [description])
This is used to define C preprocessor macros. The first argument is the name
of the macro to define. The value argument, if given, is the value of the macro.
The final argument can be used to avoid adding an ‘#undef’ for the macro to
‘acconfig.h’.

AC_DEFINE_UNQUOTED(variable, [value], [description])
This is like AC_DEFINE, but it handles the quoting of value differently. This
macro is used when you want to compute the value instead of having it used
verbatim.

AC_DEFUN(name, body)
This macro is used to define new macros. It is similar to M4’s define macro,
except that it performs additional internal functions.

AC_DISABLE_FAST_INSTALL
This macro can be used to disable Libtool’s ‘fast install’ feature.

AC_DISABLE_SHARED
This macro changes the default behavior of AC_PROG_LIBTOOL so that shared
libraries will not be built by default. The user can still override this new default
by using ‘--enable-shared’.

AC_DISABLE_STATIC
This macro changes the default behavior of AC_PROG_LIBTOOL so that static
libraries will not be built by default. The user can still override this new default
by using ‘--enable-static’.

AC_EXEEXT
Sets the output variable EXEEXT to the extension of executables produced by
the compiler. It is usually set to the empty string on Unix systems and ‘.exe’
on Windows.

278 Autoconf, Automake, and Libtool

AC_FUNC_ALLOCA
This macro defines the C preprocessor macro HAVE_ALLOCA if the various
tests indicate that the C compiler has built-in alloca support. If there is
an ‘alloca.h’ header file, this macro defines HAVE_ALLOCA_H. If, instead,
the alloca function is found in the standard C library, this macro defines
C_ALLOCA and sets the output variable ALLOCA to alloca.o.

AC_FUNC_GETPGRP
This macro tests if the getpgrp function takes a process ID as an argument or
not. If it does not, the C preprocessor macro GETPGRP_VOID is defined.

AC_FUNC_MEMCMP
This macro tests for a working version of the memcmp function. If absent, or it
does not work correctly, ‘memcmp.o’ is added to the LIBOBJS output variable.

AC_FUNC_MMAP
Defines the C preprocessor macro HAVE_MMAP if the mmap function exists and
works.

AC_FUNC_SETVBUF_REVERSED
On some systems, the order of the mode and buf arguments is reversed with
respect to the ansi C standard. If so, this macro defines the C preprocessor
macro SETVBUF_REVERSED.

AC_FUNC_UTIME_NULL
Defines the C preprocessor macro HAVE_UTIME_NULL if a call to utime with a
NULL utimbuf pointer sets the file’s timestamp to the current time.

AC_FUNC_VPRINTF
Defines the C preprocessor macro HAVE_VPRINTF if the vprintf function is
available. If not and the _doprnt function is available instead, this macro
defines HAVE_DOPRNT.

AC_HEADER_DIRENT
This macro searches a number of specific header files for a declaration of the
C type DIR. Depending on which header file the declaration is found in, this
macro may define one of the C preprocessor macros HAVE_DIRENT_H, HAVE_
SYS_NDIR_H, HAVE_SYS_DIR_H or HAVE_NDIR_H. Refer to the Autoconf manual
for an example of how these macros should be used in your source code.

AC_HEADER_STDC
This macro defines the C preprocessor macro STDC_HEADERS if the system has
the ansi standard C header files. It determines this by testing for the existence
of the ‘stdlib.h’, ‘stdarg.h’, ‘string.h’ and ‘float.h’ header files and testing
if ‘string.h’ declares memchr, ‘stdlib.h’ declares free, and ‘ctype.h’ macros
such as isdigit work with 8-bit characters.

AC_INIT(filename)
This macro performs essential initialization for the generated ‘configure’
script. An optional argument may provide the name of a file from the source
directory to ensure that the directory has been specified correctly.

Appendix D: Autoconf Macro Reference 279

AC_LIBTOOL_DLOPEN
Call this macro before AC_PROG_LIBTOOL to indicate that your package wants
to use Libtool’s support for dlopened modules.

AC_LIBTOOL_WIN32_DLL
Call this macro before AC_PROG_LIBTOOL to indicate that your package has been
written to build dlls on Windows. If this macro is not called, Libtool will only
build static libraries on Windows.

AC_LIB_LTDL
This macro does the configure-time checks needed to cause ‘ltdl.c’ to be
compiled correctly. That is, this is used to enable dynamic loading via libltdl.

AC_LINK_FILES(source-list, dest-list)
Use this macro to create a set of links; if possible, symlinks are made. The
two arguments are parallel lists: the first element of dest-list is the name of a
to-be-created link whose target is the first element of source-list.

AC_MSG_CHECKING(message)
This macro outputs a message to the user in the usual style of ‘configure’
scripts: leading with the word ‘checking’ and ending in ‘...’. This message
gives the user an indication that the ‘configure’ script is still working. A
subsequent invocation of AC_MSG_RESULT should be used to output the result
of a test.

AC_MSG_ERROR(message)
This macro outputs an error message to standard error and aborts the
‘configure’ script. It should only be used for fatal error conditions.

AC_MSG_RESULT(message)
This macro should be invoked after a corresponding invocation of AC_MSG_
CHECKING with the result of a test. Often the result string can be as simple as
‘yes’ or ‘no’.

AC_MSG_WARN(message)
This macro outputs a warning to standard error, but allows the ‘configure’
script to continue. It should be used to notify the user of abnormal, but non-
fatal, conditions.

AC_OBJEXT
Sets the output variable OBJEXT to the extension of object files produced by the
compiler. Usually, it is set to ‘.o’ on Unix systems and ‘.obj’ on Windows.

AC_OUTPUT(files, [extra-commands], [init-commands])
This macro must be called at the end of every ‘configure.in’. It creates each
file listed in files. For a given file, by default, configure reads the template file
whose name is the name of the input file with ‘.in’ appended – for instance,
‘Makefile’ is generated from ‘Makefile.in’. This default can be overridden
by using a special naming convention for the file.
For each name ‘foo’ given as an argument to AC_SUBST, configure will replace
any occurrence of ‘@foo@’ in the template file with the value of the shell variable

280 Autoconf, Automake, and Libtool

‘foo’ in the generated file. This macro also generates the config header, if AC_
CONFIG_HEADER was called, and any links, if AC_LINK_FILES was called. The
additional arguments can be used to further tailor the output processing.

AC_OUTPUT_COMMANDS(extra-commands, [init-commands])
This macro works like the optional final arguments of AC_OUTPUT, except that it
can be called more than once from ‘configure.in’. (This makes it possible for
macros to use this feature and yet remain modular.) See the reference manual
for the precise definition of this macro.

AC_PROG_AWK
This macro searches for an awk program and sets the output variable AWK to be
the best one it finds.

AC_PROG_CC
This checks for the C compiler to use and sets the shell variable CC to the value.
If the gnu C compiler is being used, this sets the shell variable GCC to ‘yes’.
This macro sets the shell variable CFLAGS if it has not already been set. It also
calls AC_SUBST on CC and CFLAGS.

AC_PROG_CC_STDC
This macro attempts to discover a necessary command line option to have the C
compiler accept ansi C. If so, it adds the option to the CC. If it was not possible
to get the C compiler to accept ansi, the shell variable ac_cv_prog_cc_stdc
will be set to ‘no’.

AC_PROG_CPP
This macro sets the output variable CPP to a command that runs the C prepro-
cessor. If ‘$CC -E’ does not work, it will set the variable to ‘/lib/cpp’.

AC_PROG_CXX
This is like AC_PROG_CC, but it checks for the C++ compiler, and sets the vari-
ables CXX, GXX and CXXFLAGS.

AC_PROG_GCC_TRADITIONAL
This macro determines if GCC requires the ‘-traditional’ option in order to
compile code that uses ioctl and, if so, adds ‘-traditional’ to the CC output
variable. This condition is rarely encountered, thought mostly on old systems.

AC_PROG_INSTALL
This looks for an install program and sets the output variables INSTALL,
INSTALL_DATA, INSTALL_PROGRAM, and INSTALL_SCRIPT. This macro assumes
that if an install program cannot be found on the system, your package will
have ‘install-sh’ available in the directory chosen by AC_CONFIG_AUX_DIR.

AC_PROG_LEX
This looks for a lex-like program and sets the ‘Makefile’ variable LEX to the
result. It also sets LEXLIB to whatever might be needed to link against lex
output.

Appendix D: Autoconf Macro Reference 281

AC_PROG_LIBTOOL
This macro is the primary way to integrate Libtool support into ‘configure’.
If you are using Libtool, you should call this macro in ‘configure.in’. Among
other things, it adds support for the ‘--enable-shared’ configure flag.

AC_PROG_LN_S
This sets the ‘Makefile’ variable LN_S to ‘ln -s’ if symbolic links work in the
current working directory. Otherwise it sets LN_S to just ‘ln’.

AC_PROG_MAKE_SET
Some versions of make need to have the ‘Makefile’ variable MAKE set in
‘Makefile’ in order for recursive builds to work. This macro checks whether
this is needed, and, if so, it sets the ‘Makefile’ variable SET_MAKE to the
result. AM_INIT_AUTOMAKE calls this macro, so if you are using Automake, you
don’t need to call it or use SET_MAKE in ‘Makefile.am’.

AC_PROG_RANLIB
This searches for the ranlib program. It sets the ‘Makefile’ variable RANLIB
to the result. If ranlib is not found, or not needed on the system, then the
result is :.

AC_PROG_YACC
This searches for the yacc program – it tries bison, byacc, and yacc. It sets
the ‘Makefile’ variable YACC to the result.

AC_REPLACE_FUNCS(function list)
This macro takes a single argument, which is a list of functions. For a given
function ‘func’, ‘configure’ will do a link test to try to find it. If the function
cannot be found, then ‘func.o’ will be added to LIBOBJS. If function can be
found, then ‘configure’ will define the C preprocessor symbol HAVE_FUNC.

AC_REQUIRE(macro-name)
This macro takes a single argument, which is the name of another macro. (Note
that you must quote the argument correctly: AC_REQUIRE([FOO]) is correct,
while AC_REQUIRE(FOO) is not.) If the named macro has already been invoked,
then AC_REQUIRE does nothing. Otherwise, it invokes the named macro with
no arguments.

AC_REVISION(revision)
This macro takes a single argument, a version string. Autoconf will copy this
string into the generated ‘configure’ file.

AC_STRUCT_ST_BLKSIZE
Defines the C preprocessor macro HAVE_ST_BLKSIZE if struct stat has an st_
blksize member.

AC_STRUCT_ST_BLOCKS
Defines the C preprocessor macro HAVE_ST_BLOCKS if struct stat has an st_
blocks member.

AC_STRUCT_ST_RDEV
Defines the C preprocessor macro HAVE_ST_RDEV if struct stat has an st_rdev
member.

282 Autoconf, Automake, and Libtool

AC_STRUCT_TM
This macro looks for struct tm in ‘time.h’ and defines TM_IN_SYS_TIME if it
is not found there.

AC_SUBST(name)
This macro takes a single argument, which is the name of a shell variable.
When configure generates the files listed in AC_OUTPUT (e.g., ‘Makefile’), it
will substitute the variable’s value (at the end of the configure run – the
value can be changed after AC_SUBST is called) anywhere a string of the form
‘@name@’ is seen.

AC_TRY_COMPILE(includes, body, [if-ok], [if-not-ok])
This macro is used to try to compile a given function, whose body is given in
body. includes lists any ‘#include’ statements needed to compile the function.
If the code compiles correctly, the shell commands in if-ok are run; if not, if-
not-ok is run. Note that this macro will not try to link the test program – it
will only try to compile it.

AC_TRY_LINK(includes, body, [if-found], [if-not-found])
This is used like AC_TRY_COMPILE, but it tries to link the resulting program.
The libraries and options in the LIBS shell variable are passed to the link.

AC_TRY_RUN(program, [if-true, [if-false], [if-cross-compiling])
This macro tries to compile and link the program whose text is in program.
If the program compiles, links, and runs successfully, the shell code if-true is
run. Otherwise, the shell code if-false is run. If the current configure is a cross-
configure, then the program is not run, and on a successful compile and link,
the shell code if-cross-compiling is run.

AC_TYPE_SIGNAL
This macro defines the C preprocessor macro RETSIGTYPE to be the correct
return type of signal handlers. For instance, it might be ‘void’ or ‘int’.

AC_TYPE_SIZE_T
This macro looks for the type size_t. If not defined on the system, it defines
it (as a macro) to be ‘unsigned’.

AM_CONDITIONAL(name, testcode)
This Automake macro takes two arguments: the name of a conditional and a
shell statement that is used to determine whether the conditional should be true
or false. If the shell code returns a successful (0) status, then the conditional
will be true. Any conditional in your ‘configure.in’ is automatically available
for use in any ‘Makefile.am’ in that project.

AM_CONFIG_HEADER(header)
This is just like AC_CONFIG_HEADER, but does some additional setup required
by Automake. If you are using Automake, use this macro. Otherwise, use
AC_CONFIG_HEADER.

AM_INIT_AUTOMAKE(package, version, [nodefine])
This macro is used to do all the standard initialization required by Automake.
It has two required arguments: the package name and the version number. This

Appendix D: Autoconf Macro Reference 283

macro sets and calls AC_SUBST on the shell variables PACKAGE and VERSION. By
default it also defines these variables (via AC_DEFINE_UNQUOTED). However, this
macro also accepts an optional third argument which, if not empty, means that
the AC_DEFINE_UNQUOTED calls for PACKAGE and VERSION should be suppressed.

AM_MAINTAINER_MODE
This macro is used to enable a special Automake feature, maintainer mode,
which we’ve documented elsewhere (see Section 5.3 [Maintaining Input Files],
page 30).

AM_PROG_CC_STDC
This macro takes no arguments. It is used to try to get the C compiler to be
ansi compatible. It does this by adding different options known to work with
various system compilers. This macro is most typically used in conjunction
with Automake when you want to use the automatic de-ansi-fication feature.

AM_PROG_LEX
This is like AC_PROG_LEX, but it does some additional processing used by
Automake-generated ‘Makefile’s. If you are using Automake, then you should
use this. Otherwise, you should use AC_PROG_LEX (and perhaps AC_DECL_
YYTEXT, which AM_PROG_LEX calls).

AM_WITH_DMALLOC
This macro adds support for the ‘--with-dmalloc’ flag to configure. If the
user chooses to enable dmalloc support, then this macro will define the pre-
processor symbol ‘WITH_DMALLOC’ and will add ‘-ldmalloc’ to the ‘Makefile’
variable ‘LIBS’.

284 Autoconf, Automake, and Libtool

Appendix E: OPL 285

Appendix E OPL

OPEN PUBLICATION LICENSE Draft v0.4, 8 June 1999

I. REQUIREMENTS ON BOTH UNMODIFIED AND MODIFIED VERSIONS

The Open Publication works may be reproduced and distributed in whole or
in part, in any medium physical or electronic, provided that the terms
of this license are adhered to, and that this license or an
incorporation of it by reference (with any options elected by the
author(s) and/or publisher) is displayed in the reproduction.

Proper form for an incorporation by reference is as follows:

Copyright (c) <year> by <author’s name or designee>. This material may
be distributed only subject to the terms and conditions set forth in the
Open Publication License, vX.Y or later (the latest version is presently
available at <URL:http:// TBD>).

The reference must be immediately followed with any options elected by
the author(s) and/or publisher of the document (see section VI).

Commercial redistribution of Open Publication-licensed material is
permitted.

Any publication in standard (paper) book form shall require the citation
of the original publisher and author. The publisher and author’s names
shall appear on all outer surfaces of the book. On all outer surfaces
of the book the original publisher’s name shall be as large as the title
of the work and cited as possessive with respect to the title.

II. COPYRIGHT

The copyright to each Open Publication is owned by its author(s) or
designee.

III. SCOPE OF LICENSE

The following license terms apply to all Open Publication works, unless
otherwise explicitly stated in the document.

Mere aggregation of Open Publication works or a portion of an Open
Publication work with other works or programs on the same media shall
not cause this license to apply to those other works. The aggregate work
shall contain a notice specifying the inclusion of the Open Publication
material and appropriate copyright notice.

SEVERABILITY. If any part of this license is found to be unenforceable

286 Autoconf, Automake, and Libtool

in any jurisdiction, the remaining portions of the license remain in
force.

NO WARRANTY. Open Publication works are licensed and provided "as is"
without warranty of any kind, express or implied, including, but not
limited to, the implied warranties of merchantability and fitness for a
particular purpose or a warranty of non-infringement.

IV. REQUIREMENTS ON MODIFIED WORKS

All modified versions of documents covered by this license, including
translations, anthologies, compilations and partial documents, must meet
the following requirements:

1) The modified version must be labeled as such.
2) The person making the modifications must be identified and the

modifications dated.
3) Acknowledgement of the original author and publisher if applicable

must be retained according to normal academic citation practices.
4) The location of the original unmodified document must be identified.
5) The original author’s (or authors’) name(s) may not be used to assert

or imply endorsement of the resulting document without the original
author’s (or authors’) permission.

V. GOOD-PRACTICE RECOMMENDATIONS

In addition to the requirements of this license, it is requested from
and strongly recommended of redistributors that:

1) If you are distributing Open Publication works on hardcopy or CD-ROM,
you provide email notification to the authors of your intent to
redistribute at least thirty days before your manuscript or media
freeze, to give the authors time to provide updated documents. This
notification should describe modifications, if any, made to the
document.

2) All substantive modifications (including deletions) be either clearly
marked up in the document or else described in an attachment to the
document.

Finally, while it is not mandatory under this license, it is considered
good form to offer a free copy of any hardcopy and CD-ROM expression of
an Open Publication-licensed work to its author(s).

VI. LICENSE OPTIONS

The author(s) and/or publisher of an Open Publication-licensed document
may elect certain options by appending language to the reference to or

Appendix E: OPL 287

copy of the license. These options are considered part of the license
instance and must be included with the license (or its incorporation by
reference) in derived works.

A. To prohibit distribution of substantively modified versions without
the explicit permission of the author(s). "Substantive modification"
is defined as a change to the semantic content of the document, and
excludes mere changes in format or typographical corrections.

To accomplish this, add the phrase ‘Distribution of substantively
modified versions of this document is prohibited without the explicit
permission of the copyright holder.’ to the license reference or
copy.

B. To prohibit any publication of this work or derivative works in whole
or in part in standard (paper) book form for commercial purposes is
prohibited unless prior permission is obtained from the copyright
holder.

To accomplish this, add the phrase ‘Distribution of the work or
derivative of the work in any standard (paper) book form is
prohibited unless prior permission is obtained from the copyright
holder.’ to the license reference or copy.

OPEN PUBLICATION POLICY APPENDIX:

(This is not considered part of the license.)

Open Publication works are available in source format via the Open
Publication home page at <URL:tbd>.

Open Publication authors who want to include their own license on Open
Publication works may do so, as long as their terms are not more
restrictive than the Open Publication license.

If you have questions about the Open Publication License, please contact
TBD, and/or the Open Publication Authors’ List at <TBD>, via email.

288 Autoconf, Automake, and Libtool

Index 289

Index

#
#!env . 207

-
‘--build’ option . 255
‘--host’ option . 255
‘--target’ option . 252
‘-all-static’, libtool option 77
‘-DPIC’ . 73
‘-static’, libtool option . 77

8
8.3 filenames . 135
8.3 filenames in GNU Autotools 236

A
‘AC_CANONICAL_SYSTEM’ . 252
AC DISABLE FAST INSTALL 92
AC DISABLE SHARED . 92
AC DISABLE STATIC . 92
AC LIBTOOL WIN32 DLL 243
autogen.sh . 47

B
back-linking . 162
binary files . 135
binary mode fopen . 235
binary mode open . 235
bootstrap script . 47
build option . 255

C
C language portability . 127
canadian cross in configure 256
canadian cross in make . 257
canadian cross, configuring 255
case-folding filesystems . 135
configuration name . 21
configure build system . 255
configure cross compiler support 256
configure host . 255
configure target . 252
configuring a canadian cross 255
cross compilation . 251
cross compiler support in configure 256
cross compiler support in make 257
CRTDLL.DLL . 231
Cygwin autotools compilation 232
CYGWIN binmode setting 235

Cygwin Bourne shell . 232
Cygwin full.exe . 231
Cygwin gcc . 232
Cygwin M4 . 232
Cygwin Make . 232
Cygwin mount . 234
Cygwin package portability 233
Cygwin Perl . 232
Cygwin sh.exe . 232
Cygwin static packages . 233
Cygwin usertools.exe . 231

D
directory separator character 236
DJGPP . 231

F
file name case in Windows 135

H
host optionxgr . 255
host system . 252
‘HOST_CC’ . 257

L
library terminology . 69
Libtool library . 69
Libtool object . 72, 74
LIBTOOL DEPS . 93
loaders . 174
LTALLOCA . 93
LTLIBOBJS. 93

M
make cross compiler support 257

P
partial linking . 75
path element separator character 236
path separator, mixed mode 237
PE-COFF binary format . 231
PIC . 72
pseudo-library . 69

S
shared library . 73

290 Autoconf, Automake, and Libtool

T
target option . 252
target system . 252
text files . 135
text mode fopen . 235
text mode open . 235

V
version.texi . 113

W
Windows CR-LF . 135, 234

Windows text line terminator 135, 234

Windows, Autoconf . 232

Windows, Automake . 232

Windows, Cygwin . 231

Windows, Libtool philosophy 233

Windows, mingw . 231

wrapper scripts . 83

i

Short Contents

Foreword . 1

Part I . 3

1 Introduction. 5

2 History . 7

Part II . 13

3 How to run configure and make . 15

4 Introducing ‘Makefile’s. 23

5 A Minimal GNU Autotools Project 27

6 Writing ‘configure.in’ . 33

7 Introducing GNU Automake . 39

8 Bootstrapping . 47

9 A Small GNU Autotools Project . 49

10 Introducing GNU Libtool . 69

11 Using GNU Libtool with ‘configure.in’ and

‘Makefile.am’ . 89

12 A Large GNU Autotools Project 107

13 Rolling Distribution Tarballs . 117

14 Installing and Uninstalling Configured Packages 121

15 Writing Portable C with GNU Autotools. 127

16 Writing Portable C++ with GNU Autotools. 139

17 Dynamic Loading . 155

18 Using GNU libltdl . 161

19 Advanced GNU Automake Usage 179

20 A Complex GNU Autotools Project 183

Part III . 191

21 M4 . 193

22 Writing Portable Bourne Shell . 205

23 Writing New Macros for Autoconf 217

24 Migrating an Existing Package to GNU Autotools 225

25 Using GNU Autotools with Cygnus Cygwin. 231

26 Cross Compilation with GNU Autotools 251

Appendices . 259

A Installing GNU Autotools . 261

B PLATFORMS . 265

C Generated File Dependencies . 271

ii Autoconf, Automake, and Libtool

D Autoconf Macro Reference . 275

E OPL . 285

Index . 289

iii

Table of Contents

Foreword . 1

Part I . 3

1 Introduction . 5
1.1 What this book is . 5
1.2 What the book is not . 5
1.3 Who should read this book . 6
1.4 How this book is organized . 6

2 History . 7
2.1 The Diversity of Unix Systems . 7
2.2 The First Configure Programs . 8
2.3 Configure Development . 9
2.4 Automake Development . 9
2.5 Libtool Development . 10
2.6 Microsoft Windows . 10

Part II . 13

3 How to run configure and make. 15
3.1 Configuring . 15
3.2 Files generated by configure . 19
3.3 The most useful Makefile targets . 20
3.4 Configuration Names . 21

4 Introducing ‘Makefile’s . 23
4.1 Targets and dependencies . 23
4.2 Makefile syntax . 24
4.3 Macros . 24
4.4 Suffix rules . 25

5 A Minimal GNU Autotools Project 27
5.1 User-Provided Input Files . 27
5.2 Generated Output Files . 28
5.3 Maintaining Input Files . 30
5.4 Packaging Generated Files . 31
5.5 Documentation and ChangeLogs . 31

iv Autoconf, Automake, and Libtool

6 Writing ‘configure.in’ . 33
6.1 What is Portability? . 33
6.2 Brief introduction to portable sh . 33
6.3 Ordering Tests . 34
6.4 What to check for . 35
6.5 Using Configuration Names . 37

7 Introducing GNU Automake 39
7.1 General Automake principles . 39
7.2 Introduction to Primaries . 40
7.3 The easy primaries . 40
7.4 Programs and libraries . 41
7.5 Frequently Asked Questions . 43
7.6 Multiple directories . 44
7.7 Testing . 45

8 Bootstrapping . 47

9 A Small GNU Autotools Project 49
9.1 GNU Autotools in Practice . 49

9.1.1 Project Directory Structure . 49
9.1.2 C Header Files . 50
9.1.3 C++ Compilers . 51
9.1.4 Function Definitions . 52
9.1.5 Fallback Function Implementations 52
9.1.6 K&R Compilers . 53

9.2 A Simple Shell Builders Library . 57
9.2.1 Portability Infrastructure . 57

9.2.1.1 Error Management . 57
9.2.1.2 Memory Management 58
9.2.1.3 Generalised List Data Type 59

9.2.2 Library Implementation . 59
9.2.2.1 ‘sic.c’ & ‘sic.h’ . 60
9.2.2.2 ‘builtin.c’ & ‘builtin.h’ 60
9.2.2.3 ‘eval.c’ & ‘eval.h’ 60
9.2.2.4 ‘syntax.c’ & ‘syntax.h’ 60

9.2.3 Beginnings of a ‘configure.in’ 60
9.3 A Sample Shell Application . 65

9.3.1 ‘sic_repl.c’ . 66
9.3.2 ‘sic_syntax.c’ . 66
9.3.3 ‘sic_builtin.c’ . 66
9.3.4 ‘sic.c’ & ‘sic.h’ . 67

v

10 Introducing GNU Libtool 69
10.1 Creating libtool . 70
10.2 The Libtool Library . 72

10.2.1 Position Independent Code . 72
10.2.2 Creating Shared Libraries . 73
10.2.3 Creating Static Libraries . 75
10.2.4 Creating Convenience Libraries 75

10.3 Linking an Executable . 76
10.4 Linking a Library . 78

10.4.1 Inter-library Dependencies . 79
10.4.2 Using Convenience Libraries 81

10.5 Executing Uninstalled Binaries . 83
10.6 Installing a Library . 83
10.7 Installing an Executable . 86
10.8 Uninstalling . 88

11 Using GNU Libtool with ‘configure.in’ and
‘Makefile.am’ . 89
11.1 Integration with ‘configure.in’ . 89

11.1.1 Extra Configure Options . 90
11.1.2 Extra Macros for Libtool . 92

11.2 Integration with ‘Makefile.am’ . 94
11.2.1 Creating Libtool Libraries with Automake 94
11.2.2 Linking against Libtool Libraries with Automake

. 96
11.3 Using libtoolize . 97
11.4 Library Versioning . 98
11.5 Convenience Libraries . 100

12 A Large GNU Autotools Project 107
12.1 Using Libtool Libraries . 107
12.2 Removing ‘--foreign’ . 109
12.3 Installing Header Files . 109
12.4 Including Texinfo Documentation . 112
12.5 Adding a Test Suite . 113

13 Rolling Distribution Tarballs 117
13.1 Introduction to Distributions . 117
13.2 What goes in . 118
13.3 The distcheck rule . 119
13.4 Some caveats . 119
13.5 Implementation . 119

vi Autoconf, Automake, and Libtool

14 Installing and Uninstalling Configured
Packages . 121
14.1 Where files are installed . 121
14.2 Fine-grained control of install . 123
14.3 Install hooks . 124
14.4 Uninstall . 125

15 Writing Portable C with GNU Autotools
. 127
15.1 C Language Portability . 127

15.1.1 ISO C . 127
15.1.2 C Data Type Sizes. 127
15.1.3 C Endianness . 128
15.1.4 C Structure Layout . 129
15.1.5 C Floating Point . 130
15.1.6 gnu cc Extensions . 130

15.2 Cross-Unix Portability . 131
15.2.1 Cross-Unix Function Calls . 131
15.2.2 Cross-Unix System Interfaces 132

15.3 Unix/Windows Portability . 133
15.3.1 Unix/Windows Emulation . 133
15.3.2 Unix/Windows Portable Scripting Language . . . 134
15.3.3 Unix/Windows User Interface Library 134
15.3.4 Unix/Windows Specific Code 134
15.3.5 Unix/Windows Issues . 135

15.3.5.1 Text and Binary Files 135
15.3.5.2 File system Issues 135
15.3.5.3 DOS Filename Restrictions 135
15.3.5.4 Windows File Name Case 135
15.3.5.5 Whitespace in File Names 136
15.3.5.6 Windows Separators and Drive Letters

. 136
15.3.5.7 Miscellaneous Issues 136

16 Writing Portable C++ with GNU Autotools
. 139
16.1 Brief History of C++ . 139
16.2 Changeable C++ . 140

16.2.1 Built-in bool type . 140
16.2.2 Exceptions . 141
16.2.3 Casts . 141
16.2.4 Variable Scoping in For Loops 142
16.2.5 Namespaces . 142
16.2.6 The explicit Keyword . 143
16.2.7 The mutable Keyword . 143
16.2.8 The typename Keyword . 144
16.2.9 Runtime Type Identification (rtti) 145

vii

16.2.10 Templates . 146
16.2.11 Default template arguments 147
16.2.12 Standard library headers . 147
16.2.13 Standard Template Library 148

16.3 Compiler Quirks . 148
16.3.1 Template Instantiation . 148
16.3.2 Name Mangling . 149

16.4 How GNU Autotools Can Help . 151
16.4.1 Testing C++ Implementations with Autoconf . . . 151
16.4.2 Automake C++ support . 151
16.4.3 Libtool C++ support . 152

16.5 Further Reading . 152

17 Dynamic Loading . 155
17.1 Dynamic Modules . 155
17.2 Module Access Functions . 156
17.3 Finding a Module . 157
17.4 A Simple GNU/Linux Module Loader 158
17.5 A Simple GNU/Linux Dynamic Module 159

18 Using GNU libltdl . 161
18.1 Introducing libltdl . 161
18.2 Using libltdl . 163

18.2.1 Configury . 164
18.2.2 Memory Management . 166
18.2.3 Module Loader . 166
18.2.4 Dependent Libraries . 167
18.2.5 Dynamic Module . 168

18.3 Portable Library Design . 169
18.4 dlpreopen Loading . 170
18.5 User Module Loaders . 173

18.5.1 Loader Mechanism. 174
18.5.2 Loader Management . 175
18.5.3 Loader Errors . 176

19 Advanced GNU Automake Usage 179
19.1 Conditionals . 179
19.2 Language support . 180
19.3 Automatic dependency tracking . 181

viii Autoconf, Automake, and Libtool

20 A Complex GNU Autotools Project 183
20.1 A Module Loading Subsystem . 183

20.1.1 Initialising the Module Loader 183
20.1.2 Managing Module Loader Errors 184
20.1.3 Loading a Module . 184
20.1.4 Unloading a Module . 185

20.2 A Loadable Module . 186
20.3 Interpreting Commands from a File 188
20.4 Integrating Dmalloc . 188

Part III . 191

21 M4 . 193
21.1 What does M4 do? . 193
21.2 How GNU Autotools uses M4 . 193
21.3 Fundamentals of M4 processing . 194

21.3.1 Token scanning . 194
21.3.2 Macros and macro expansion 195
21.3.3 Quoting . 197

21.4 Features of M4 . 198
21.4.1 Discarding input . 198
21.4.2 Macro management . 199
21.4.3 Conditionals . 200
21.4.4 Looping . 201
21.4.5 Diversions . 201
21.4.6 Including files . 201

21.5 Writing macros within the GNU Autotools framework . . 202
21.5.1 Syntactic conventions . 202
21.5.2 Debugging with M4 . 202

22 Writing Portable Bourne Shell 205
22.1 Why Use the Bourne Shell? . 205
22.2 Implementation . 205

22.2.1 Size Limitations . 206
22.2.2 #! . 206
22.2.3 : . 207
22.2.4 () . 208
22.2.5 . 208
22.2.6 [. 209
22.2.7 $. 211
22.2.8 * versus .* . 212

22.3 Environment . 213
22.4 Utilities . 214

ix

23 Writing New Macros for Autoconf 217
23.1 Autoconf Preliminaries . 217
23.2 Reusing Existing Macros . 217
23.3 Guidelines for writing macros . 218

23.3.1 Non-interactive behavior . 218
23.3.2 Testing system features at application runtime

. 218
23.3.3 Output from macros . 219
23.3.4 Naming macros . 219
23.3.5 Macro interface . 220

23.4 Implementation specifics . 221
23.4.1 Writing shell code . 221
23.4.2 Using M4 correctly . 221
23.4.3 Caching results . 222

23.5 Future directions for macro writers . 222
23.5.1 Autoconf macro archive . 222
23.5.2 Primitive macros to aid in building macros 222

24 Migrating an Existing Package to GNU
Autotools . 225
24.1 Why autconfiscate . 225
24.2 Overview of the Two Approaches . 225
24.3 Example: Quick And Dirty . 226
24.4 Example: The Full Pull . 228

25 Using GNU Autotools with Cygnus Cygwin
. 231
25.1 Preliminaries . 231
25.2 Installing GNU Autotools on Cygwin 232
25.3 Writing A Cygwin Friendly Package 233

25.3.1 Text vs Binary Modes . 234
25.3.2 File System Limitations . 236

25.3.2.1 8.3 Filenames . 236
25.3.2.2 Separators and Drive Letters 236

25.3.3 Executable Filename Extensions 239
25.4 DLLs with Libtool . 240

25.4.1 DLL Support with GNU Autotools 241
25.4.2 A Makefile.am for DLLs. 242
25.4.3 A configure.in for DLLs . 242
25.4.4 Handling Data Exports from DLLs 245
25.4.5 Runtime Loading of DLLs . 249

25.5 Package Installation . 250

x Autoconf, Automake, and Libtool

26 Cross Compilation with GNU Autotools
. 251
26.1 Host and Target . 252
26.2 Specifying the Target . 252
26.3 Using the Target Type . 252
26.4 Building with a Cross Compiler . 254

26.4.1 Canadian Cross Example . 254
26.4.2 Canadian Cross Concepts . 254
26.4.3 Build Cross Host Tools . 255
26.4.4 Build and Host Options . 255
26.4.5 Canadian Cross Tools . 255
26.4.6 Supporting Building with a Cross Compiler 256

26.4.6.1 Supporting Building with a Cross
Compiler in Configure Scripts 256

26.4.6.2 Supporting Building with a Cross
Compiler in Makefiles . 257

Appendices . 259

Appendix A Installing GNU Autotools 261
A.1 Prerequisite tools . 261
A.2 Downloading GNU Autotools . 261
A.3 Installing the tools . 262

Appendix B PLATFORMS. 265

Appendix C Generated File Dependencies . . 271
C.1 aclocal . 271
C.2 autoheader . 272
C.3 automake and libtoolize . 272
C.4 autoconf . 273
C.5 configure . 273
C.6 make . 274

Appendix D Autoconf Macro Reference. 275

Appendix E OPL . 285

Index . 289

	Foreword
	Part I
	Introduction
	What this book is
	What the book is not
	Who should read this book
	How this book is organized

	History
	The Diversity of Unix Systems
	The First Configure Programs
	Configure Development
	Automake Development
	Libtool Development
	Microsoft Windows

	Part II
	How to run configure and make
	Configuring
	Files generated by configure
	The most useful Makefile targets
	Configuration Names

	Introducing Makefiles
	Targets and dependencies
	Makefile syntax
	Macros
	Suffix rules

	A Minimal GNU Autotools Project
	User-Provided Input Files
	Generated Output Files
	Maintaining Input Files
	Packaging Generated Files
	Documentation and ChangeLogs

	Writing configure.in
	What is Portability?
	Brief introduction to portable sh
	Ordering Tests
	What to check for
	Using Configuration Names

	Introducing GNU Automake
	General Automake principles
	Introduction to Primaries
	The easy primaries
	Programs and libraries
	Frequently Asked Questions
	Multiple directories
	Testing

	Bootstrapping
	A Small GNU Autotools Project
	GNU Autotools in Practice
	Project Directory Structure
	C Header Files
	C{@char 43}{@char 43} Compilers
	Function Definitions
	Fallback Function Implementations
	K&R Compilers

	A Simple Shell Builders Library
	Portability Infrastructure
	Error Management
	Memory Management
	Generalised List Data Type

	Library Implementation
	sic.c & sic.h
	builtin.c & builtin.h
	eval.c & eval.h
	syntax.c & syntax.h

	Beginnings of a configure.in

	A Sample Shell Application
	sic_repl.c
	sic_syntax.c
	sic_builtin.c
	sic.c & sic.h

	Introducing GNU Libtool
	Creating libtool
	The Libtool Library
	Position Independent Code
	Creating Shared Libraries
	Creating Static Libraries
	Creating Convenience Libraries

	Linking an Executable
	Linking a Library
	Inter-library Dependencies
	Using Convenience Libraries

	Executing Uninstalled Binaries
	Installing a Library
	Installing an Executable
	Uninstalling

	Using GNU Libtool with configure.in and Makefile.am
	Integration with configure.in
	Extra Configure Options
	Extra Macros for Libtool

	Integration with Makefile.am
	Creating Libtool Libraries with Automake
	Linking against Libtool Libraries with Automake

	Using libtoolize
	Library Versioning
	Convenience Libraries

	A Large GNU Autotools Project
	Using Libtool Libraries
	Removing --foreign
	Installing Header Files
	Including Texinfo Documentation
	Adding a Test Suite

	Rolling Distribution Tarballs
	Introduction to Distributions
	What goes in
	The distcheck rule
	Some caveats
	Implementation

	Installing and Uninstalling Configured Packages
	Where files are installed
	Fine-grained control of install
	Install hooks
	Uninstall

	Writing Portable C with GNU Autotools
	C Language Portability
	ISO C
	C Data Type Sizes
	C Endianness
	C Structure Layout
	C Floating Point
	gnu cc Extensions

	Cross-Unix Portability
	Cross-Unix Function Calls
	Cross-Unix System Interfaces

	Unix/Windows Portability
	Unix/Windows Emulation
	Unix/Windows Portable Scripting Language
	Unix/Windows User Interface Library
	Unix/Windows Specific Code
	Unix/Windows Issues
	Text and Binary Files
	File system Issues
	DOS Filename Restrictions
	Windows File Name Case
	Whitespace in File Names
	Windows Separators and Drive Letters
	Miscellaneous Issues

	Writing Portable C{@char 43}{@char 43} with GNU Autotools
	Brief History of C{@char 43}{@char 43}
	Changeable C{@char 43}{@char 43}
	Built-in bool type
	Exceptions
	Casts
	Variable Scoping in For Loops
	Namespaces
	The explicit Keyword
	The mutable Keyword
	The typename Keyword
	Runtime Type Identification (rtti)
	Templates
	Default template arguments
	Standard library headers
	Standard Template Library

	Compiler Quirks
	Template Instantiation
	Name Mangling

	How GNU Autotools Can Help
	Testing C{@char 43}{@char 43} Implementations with Autoconf
	Automake C{@char 43}{@char 43} support
	Libtool C{@char 43}{@char 43} support

	Further Reading

	Dynamic Loading
	Dynamic Modules
	Module Access Functions
	Finding a Module
	A Simple GNU/Linux Module Loader
	A Simple GNU/Linux Dynamic Module

	Using GNU libltdl
	Introducing libltdl
	Using libltdl
	Configury
	Memory Management
	Module Loader
	Dependent Libraries
	Dynamic Module

	Portable Library Design
	dlpreopen Loading
	User Module Loaders
	Loader Mechanism
	Loader Management
	Loader Errors

	Advanced GNU Automake Usage
	Conditionals
	Language support
	Automatic dependency tracking

	A Complex GNU Autotools Project
	A Module Loading Subsystem
	Initialising the Module Loader
	Managing Module Loader Errors
	Loading a Module
	Unloading a Module

	A Loadable Module
	Interpreting Commands from a File
	Integrating Dmalloc

	Part III
	M4
	What does M4 do?
	How GNU Autotools uses M4
	Fundamentals of M4 processing
	Token scanning
	Macros and macro expansion
	Quoting

	Features of M4
	Discarding input
	Macro management
	Conditionals
	Looping
	Diversions
	Including files

	Writing macros within the GNU Autotools framework
	Syntactic conventions
	Debugging with M4

	Writing Portable Bourne Shell
	Why Use the Bourne Shell?
	Implementation
	Size Limitations
	#!
	:
	()
	.
	[
	$
	* versus .*

	Environment
	Utilities

	Writing New Macros for Autoconf
	Autoconf Preliminaries
	Reusing Existing Macros
	Guidelines for writing macros
	Non-interactive behavior
	Testing system features at application runtime
	Output from macros
	Naming macros
	Macro interface

	Implementation specifics
	Writing shell code
	Using M4 correctly
	Caching results

	Future directions for macro writers
	Autoconf macro archive
	Primitive macros to aid in building macros

	Migrating an Existing Package to GNU Autotools
	Why autconfiscate
	Overview of the Two Approaches
	Example: Quick And Dirty
	Example: The Full Pull

	Using GNU Autotools with Cygnus Cygwin
	Preliminaries
	Installing GNU Autotools on Cygwin
	Writing A Cygwin Friendly Package
	Text vs Binary Modes
	File System Limitations
	8.3 Filenames
	Separators and Drive Letters

	Executable Filename Extensions

	DLLs with Libtool
	DLL Support with GNU Autotools
	A Makefile.am for DLLs
	A configure.in for DLLs
	Handling Data Exports from DLLs
	Runtime Loading of DLLs

	Package Installation

	Cross Compilation with GNU Autotools
	Host and Target
	Specifying the Target
	Using the Target Type
	Building with a Cross Compiler
	Canadian Cross Example
	Canadian Cross Concepts
	Build Cross Host Tools
	Build and Host Options
	Canadian Cross Tools
	Supporting Building with a Cross Compiler
	Supporting Building with a Cross Compiler in Configure Scripts
	Supporting Building with a Cross Compiler in Makefiles

	Appendices
	Installing GNU Autotools
	Prerequisite tools
	Downloading GNU Autotools
	Installing the tools

	PLATFORMS
	Generated File Dependencies
	aclocal
	autoheader
	automake and libtoolize
	autoconf
	configure
	make

	Autoconf Macro Reference
	OPL
	Index

