Thu Oct 8 21:57:25 2009

Asterisk developer's documentation


dsp.c

Go to the documentation of this file.
00001 /*
00002  * Asterisk -- An open source telephony toolkit.
00003  *
00004  * Copyright (C) 1999 - 2005, Digium, Inc.
00005  *
00006  * Mark Spencer <markster@digium.com>
00007  *
00008  * Goertzel routines are borrowed from Steve Underwood's tremendous work on the
00009  * DTMF detector.
00010  *
00011  * See http://www.asterisk.org for more information about
00012  * the Asterisk project. Please do not directly contact
00013  * any of the maintainers of this project for assistance;
00014  * the project provides a web site, mailing lists and IRC
00015  * channels for your use.
00016  *
00017  * This program is free software, distributed under the terms of
00018  * the GNU General Public License Version 2. See the LICENSE file
00019  * at the top of the source tree.
00020  */
00021 
00022 /*! \file
00023  *
00024  * \brief Convenience Signal Processing routines
00025  *
00026  * \author Mark Spencer <markster@digium.com>
00027  * \author Steve Underwood <steveu@coppice.org>
00028  */
00029 
00030 /* Some routines from tone_detect.c by Steven Underwood as published under the zapata library */
00031 /*
00032    tone_detect.c - General telephony tone detection, and specific
00033                         detection of DTMF.
00034 
00035         Copyright (C) 2001  Steve Underwood <steveu@coppice.org>
00036 
00037         Despite my general liking of the GPL, I place this code in the
00038         public domain for the benefit of all mankind - even the slimy
00039         ones who might try to proprietize my work and use it to my
00040         detriment.
00041 */
00042 
00043 #include "asterisk.h"
00044 
00045 ASTERISK_FILE_VERSION(__FILE__, "$Revision: 114207 $")
00046 
00047 #include <sys/types.h>
00048 #include <stdlib.h>
00049 #include <unistd.h>
00050 #include <string.h>
00051 #include <math.h>
00052 #include <errno.h>
00053 #include <stdio.h>
00054 
00055 #include "asterisk/frame.h"
00056 #include "asterisk/channel.h"
00057 #include "asterisk/logger.h"
00058 #include "asterisk/dsp.h"
00059 #include "asterisk/ulaw.h"
00060 #include "asterisk/alaw.h"
00061 #include "asterisk/utils.h"
00062 
00063 /*! Number of goertzels for progress detect */
00064 enum gsamp_size {
00065    GSAMP_SIZE_NA = 183,       /*!< North America - 350, 440, 480, 620, 950, 1400, 1800 Hz */
00066    GSAMP_SIZE_CR = 188,       /*!< Costa Rica, Brazil - Only care about 425 Hz */
00067    GSAMP_SIZE_UK = 160        /*!< UK disconnect goertzel feed - should trigger 400hz */
00068 };
00069 
00070 enum prog_mode {
00071    PROG_MODE_NA = 0,
00072    PROG_MODE_CR,
00073    PROG_MODE_UK
00074 };
00075 
00076 enum freq_index { 
00077    /*! For US modes { */
00078    HZ_350 = 0,
00079    HZ_440,
00080    HZ_480,
00081    HZ_620,
00082    HZ_950,
00083    HZ_1400,
00084    HZ_1800, /*!< } */
00085 
00086    /*! For CR/BR modes */
00087    HZ_425 = 0,
00088 
00089    /*! For UK mode */
00090    HZ_400 = 0
00091 };
00092 
00093 static struct progalias {
00094    char *name;
00095    enum prog_mode mode;
00096 } aliases[] = {
00097    { "us", PROG_MODE_NA },
00098    { "ca", PROG_MODE_NA },
00099    { "cr", PROG_MODE_CR },
00100    { "br", PROG_MODE_CR },
00101    { "uk", PROG_MODE_UK },
00102 };
00103 
00104 static struct progress {
00105    enum gsamp_size size;
00106    int freqs[7];
00107 } modes[] = {
00108    { GSAMP_SIZE_NA, { 350, 440, 480, 620, 950, 1400, 1800 } }, /*!< North America */
00109    { GSAMP_SIZE_CR, { 425 } },                                 /*!< Costa Rica, Brazil */
00110    { GSAMP_SIZE_UK, { 400 } },                                 /*!< UK */
00111 };
00112 
00113 #define DEFAULT_THRESHOLD  512
00114 
00115 enum busy_detect {
00116    BUSY_PERCENT = 10,      /*!< The percentage difference between the two last silence periods */
00117    BUSY_PAT_PERCENT = 7,   /*!< The percentage difference between measured and actual pattern */
00118    BUSY_THRESHOLD = 100,   /*!< Max number of ms difference between max and min times in busy */
00119    BUSY_MIN = 75,          /*!< Busy must be at least 80 ms in half-cadence */
00120    BUSY_MAX =3100          /*!< Busy can't be longer than 3100 ms in half-cadence */
00121 };
00122 
00123 /*! Remember last 15 units */
00124 #define DSP_HISTORY     15
00125 
00126 /*! Define if you want the fax detector -- NOT RECOMMENDED IN -STABLE */
00127 #define FAX_DETECT
00128 
00129 #define TONE_THRESH     10.0  /*!< How much louder the tone should be than channel energy */
00130 #define TONE_MIN_THRESH    1e8   /*!< How much tone there should be at least to attempt */
00131 
00132 /*! All THRESH_XXX values are in GSAMP_SIZE chunks (us = 22ms) */
00133 enum gsamp_thresh {
00134    THRESH_RING = 8,           /*!< Need at least 150ms ring to accept */
00135    THRESH_TALK = 2,           /*!< Talk detection does not work continuously */
00136    THRESH_BUSY = 4,           /*!< Need at least 80ms to accept */
00137    THRESH_CONGESTION = 4,     /*!< Need at least 80ms to accept */
00138    THRESH_HANGUP = 60,        /*!< Need at least 1300ms to accept hangup */
00139    THRESH_RING2ANSWER = 300   /*!< Timeout from start of ring to answer (about 6600 ms) */
00140 };
00141 
00142 #define  MAX_DTMF_DIGITS      128
00143 
00144 /* Basic DTMF specs:
00145  *
00146  * Minimum tone on = 40ms
00147  * Minimum tone off = 50ms
00148  * Maximum digit rate = 10 per second
00149  * Normal twist <= 8dB accepted
00150  * Reverse twist <= 4dB accepted
00151  * S/N >= 15dB will detect OK
00152  * Attenuation <= 26dB will detect OK
00153  * Frequency tolerance +- 1.5% will detect, +-3.5% will reject
00154  */
00155 
00156 #define DTMF_THRESHOLD          8.0e7
00157 #define FAX_THRESHOLD           8.0e7
00158 #define FAX_2ND_HARMONIC        2.0     /* 4dB */
00159 
00160 #ifdef  RADIO_RELAX
00161 #define DTMF_NORMAL_TWIST               ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 11.3 : 6.3)    /* 8dB sph 12.3 was 6.3 */
00162 #define DTMF_REVERSE_TWIST              ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 9.5  : 2.5)    /* 4dB normal sph 12.5 : 5.5 was 6.5 : 2.5 */
00163 #define DTMF_RELATIVE_PEAK_ROW  ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 3.3  : 6.3)    /* 8dB sph was 6.3 */
00164 #define DTMF_RELATIVE_PEAK_COL  ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 3.3  : 6.3)    /* 8dB sph was 6.3 */
00165 #define DTMF_TO_TOTAL_ENERGY    ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 26.0 : 42.0)
00166 #else
00167 #define DTMF_NORMAL_TWIST               6.3
00168 #define DTMF_REVERSE_TWIST              ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 4.0  : 2.5)    /* 4dB normal */
00169 #define DTMF_RELATIVE_PEAK_ROW  6.3     /* 8dB */
00170 #define DTMF_RELATIVE_PEAK_COL  6.3     /* 8dB */
00171 #define DTMF_TO_TOTAL_ENERGY    42.0
00172 #endif
00173 
00174 #ifdef OLD_DSP_ROUTINES
00175 #define DTMF_2ND_HARMONIC_ROW       ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 1.7 : 2.5)     /* 4dB normal */
00176 #define DTMF_2ND_HARMONIC_COL 63.1    /* 18dB */
00177 
00178 #define MF_THRESHOLD    8.0e7
00179 #define MF_NORMAL_TWIST    5.3     /* 8dB */
00180 #define MF_REVERSE_TWIST   4.0     /* was 2.5 */
00181 #define MF_RELATIVE_PEAK   5.3     /* 8dB */
00182 #define MF_2ND_HARMONIC    1.7   /* was 2.5  */
00183 #else
00184 #define BELL_MF_THRESHOLD  1.6e9
00185 #define BELL_MF_TWIST      4.0     /* 6dB */
00186 #define BELL_MF_RELATIVE_PEAK 12.6    /* 11dB */
00187 #endif
00188 
00189 #if !defined(BUSYDETECT_MARTIN) && !defined(BUSYDETECT) && !defined(BUSYDETECT_TONEONLY) && !defined(BUSYDETECT_COMPARE_TONE_AND_SILENCE)
00190 #define BUSYDETECT_MARTIN
00191 #endif
00192 
00193 typedef struct {
00194    float v2;
00195    float v3;
00196    float fac;
00197 #ifndef OLD_DSP_ROUTINES
00198    int samples;
00199 #endif   
00200 } goertzel_state_t;
00201 
00202 typedef struct
00203 {
00204    goertzel_state_t row_out[4];
00205    goertzel_state_t col_out[4];
00206 #ifdef FAX_DETECT
00207    goertzel_state_t fax_tone;
00208 #endif
00209 #ifdef OLD_DSP_ROUTINES
00210    goertzel_state_t row_out2nd[4];
00211    goertzel_state_t col_out2nd[4];
00212 #ifdef FAX_DETECT
00213    goertzel_state_t fax_tone2nd;    
00214 #endif
00215    int hit1;
00216    int hit2;
00217    int hit3;
00218    int hit4;
00219 #else
00220    int lasthit;
00221 #endif   
00222    int mhit;
00223    float energy;
00224    int current_sample;
00225 
00226    char digits[MAX_DTMF_DIGITS + 1];
00227    
00228    int current_digits;
00229    int detected_digits;
00230    int lost_digits;
00231    int digit_hits[16];
00232 #ifdef FAX_DETECT
00233    int fax_hits;
00234 #endif
00235 } dtmf_detect_state_t;
00236 
00237 typedef struct
00238 {
00239    goertzel_state_t tone_out[6];
00240    int mhit;
00241 #ifdef OLD_DSP_ROUTINES
00242    int hit1;
00243    int hit2;
00244    int hit3;
00245    int hit4;
00246    goertzel_state_t tone_out2nd[6];
00247    float energy;
00248 #else
00249    int hits[5];
00250 #endif
00251    int current_sample;
00252    
00253    char digits[MAX_DTMF_DIGITS + 1];
00254 
00255    int current_digits;
00256    int detected_digits;
00257    int lost_digits;
00258 #ifdef FAX_DETECT
00259    int fax_hits;
00260 #endif
00261 } mf_detect_state_t;
00262 
00263 static float dtmf_row[] =
00264 {
00265    697.0,  770.0,  852.0,  941.0
00266 };
00267 static float dtmf_col[] =
00268 {
00269    1209.0, 1336.0, 1477.0, 1633.0
00270 };
00271 
00272 static float mf_tones[] =
00273 {
00274    700.0, 900.0, 1100.0, 1300.0, 1500.0, 1700.0
00275 };
00276 
00277 #ifdef FAX_DETECT
00278 static float fax_freq = 1100.0;
00279 #endif
00280 
00281 static char dtmf_positions[] = "123A" "456B" "789C" "*0#D";
00282 
00283 #ifdef OLD_DSP_ROUTINES
00284 static char mf_hit[6][6] = {
00285    /*  700 + */ {   0, '1', '2', '4', '7', 'C' },
00286    /*  900 + */ { '1',   0, '3', '5', '8', 'A' },
00287    /* 1100 + */ { '2', '3',   0, '6', '9', '*' },
00288    /* 1300 + */ { '4', '5', '6',   0, '0', 'B' },
00289    /* 1500 + */ { '7', '8', '9', '0',  0, '#' },
00290    /* 1700 + */ { 'C', 'A', '*', 'B', '#',  0  },
00291 };
00292 #else
00293 static char bell_mf_positions[] = "1247C-358A--69*---0B----#";
00294 #endif
00295 
00296 static inline void goertzel_sample(goertzel_state_t *s, short sample)
00297 {
00298    float v1;
00299    float fsamp  = sample;
00300    
00301    v1 = s->v2;
00302    s->v2 = s->v3;
00303    s->v3 = s->fac * s->v2 - v1 + fsamp;
00304 }
00305 
00306 static inline void goertzel_update(goertzel_state_t *s, short *samps, int count)
00307 {
00308    int i;
00309    
00310    for (i=0;i<count;i++) 
00311       goertzel_sample(s, samps[i]);
00312 }
00313 
00314 
00315 static inline float goertzel_result(goertzel_state_t *s)
00316 {
00317    return s->v3 * s->v3 + s->v2 * s->v2 - s->v2 * s->v3 * s->fac;
00318 }
00319 
00320 static inline void goertzel_init(goertzel_state_t *s, float freq, int samples)
00321 {
00322    s->v2 = s->v3 = 0.0;
00323    s->fac = 2.0 * cos(2.0 * M_PI * (freq / 8000.0));
00324 #ifndef OLD_DSP_ROUTINES
00325    s->samples = samples;
00326 #endif
00327 }
00328 
00329 static inline void goertzel_reset(goertzel_state_t *s)
00330 {
00331    s->v2 = s->v3 = 0.0;
00332 }
00333 
00334 struct ast_dsp {
00335    struct ast_frame f;
00336    int threshold;
00337    int totalsilence;
00338    int totalnoise;
00339    int features;
00340    int ringtimeout;
00341    int busymaybe;
00342    int busycount;
00343    int busy_tonelength;
00344    int busy_quietlength;
00345    int historicnoise[DSP_HISTORY];
00346    int historicsilence[DSP_HISTORY];
00347    goertzel_state_t freqs[7];
00348    int freqcount;
00349    int gsamps;
00350    enum gsamp_size gsamp_size;
00351    enum prog_mode progmode;
00352    int tstate;
00353    int tcount;
00354    int digitmode;
00355    int thinkdigit;
00356    float genergy;
00357    union {
00358       dtmf_detect_state_t dtmf;
00359       mf_detect_state_t mf;
00360    } td;
00361 };
00362 
00363 static void ast_dtmf_detect_init (dtmf_detect_state_t *s)
00364 {
00365    int i;
00366 
00367 #ifdef OLD_DSP_ROUTINES
00368    s->hit1 = 
00369    s->mhit = 
00370    s->hit3 =
00371    s->hit4 = 
00372    s->hit2 = 0;
00373 #else
00374    s->lasthit = 0;
00375 #endif
00376    for (i = 0;  i < 4;  i++) {
00377       goertzel_init (&s->row_out[i], dtmf_row[i], 102);
00378       goertzel_init (&s->col_out[i], dtmf_col[i], 102);
00379 #ifdef OLD_DSP_ROUTINES
00380       goertzel_init (&s->row_out2nd[i], dtmf_row[i] * 2.0, 102);
00381       goertzel_init (&s->col_out2nd[i], dtmf_col[i] * 2.0, 102);
00382 #endif   
00383       s->energy = 0.0;
00384    }
00385 #ifdef FAX_DETECT
00386    /* Same for the fax dector */
00387    goertzel_init (&s->fax_tone, fax_freq, 102);
00388 
00389 #ifdef OLD_DSP_ROUTINES
00390    /* Same for the fax dector 2nd harmonic */
00391    goertzel_init (&s->fax_tone2nd, fax_freq * 2.0, 102);
00392 #endif   
00393 #endif /* FAX_DETECT */
00394    s->current_sample = 0;
00395    s->detected_digits = 0;
00396    s->current_digits = 0;
00397    memset(&s->digits, 0, sizeof(s->digits));
00398    s->lost_digits = 0;
00399    s->digits[0] = '\0';
00400 }
00401 
00402 static void ast_mf_detect_init (mf_detect_state_t *s)
00403 {
00404    int i;
00405 #ifdef OLD_DSP_ROUTINES
00406    s->hit1 = 
00407    s->hit2 = 0;
00408 #else 
00409    s->hits[0] = s->hits[1] = s->hits[2] = s->hits[3] = s->hits[4] = 0;
00410 #endif
00411    for (i = 0;  i < 6;  i++) {
00412       goertzel_init (&s->tone_out[i], mf_tones[i], 160);
00413 #ifdef OLD_DSP_ROUTINES
00414       goertzel_init (&s->tone_out2nd[i], mf_tones[i] * 2.0, 160);
00415       s->energy = 0.0;
00416 #endif
00417    }
00418    s->current_digits = 0;
00419    memset(&s->digits, 0, sizeof(s->digits));
00420    s->current_sample = 0;
00421    s->detected_digits = 0;
00422    s->lost_digits = 0;
00423    s->digits[0] = '\0';
00424    s->mhit = 0;
00425 }
00426 
00427 static int dtmf_detect (dtmf_detect_state_t *s, int16_t amp[], int samples, 
00428        int digitmode, int *writeback, int faxdetect)
00429 {
00430    float row_energy[4];
00431    float col_energy[4];
00432 #ifdef FAX_DETECT
00433    float fax_energy;
00434 #ifdef OLD_DSP_ROUTINES
00435    float fax_energy_2nd;
00436 #endif   
00437 #endif /* FAX_DETECT */
00438    float famp;
00439    float v1;
00440    int i;
00441    int j;
00442    int sample;
00443    int best_row;
00444    int best_col;
00445    int hit;
00446    int limit;
00447 
00448    hit = 0;
00449    for (sample = 0;  sample < samples;  sample = limit) {
00450       /* 102 is optimised to meet the DTMF specs. */
00451       if ((samples - sample) >= (102 - s->current_sample))
00452          limit = sample + (102 - s->current_sample);
00453       else
00454          limit = samples;
00455 #if defined(USE_3DNOW)
00456       _dtmf_goertzel_update (s->row_out, amp + sample, limit - sample);
00457       _dtmf_goertzel_update (s->col_out, amp + sample, limit - sample);
00458 #ifdef OLD_DSP_ROUTINES
00459       _dtmf_goertzel_update (s->row_out2nd, amp + sample, limit2 - sample);
00460       _dtmf_goertzel_update (s->col_out2nd, amp + sample, limit2 - sample);
00461 #endif      
00462       /* XXX Need to fax detect for 3dnow too XXX */
00463       #warning "Fax Support Broken"
00464 #else
00465       /* The following unrolled loop takes only 35% (rough estimate) of the 
00466          time of a rolled loop on the machine on which it was developed */
00467       for (j=sample;j<limit;j++) {
00468          famp = amp[j];
00469          s->energy += famp*famp;
00470          /* With GCC 2.95, the following unrolled code seems to take about 35%
00471             (rough estimate) as long as a neat little 0-3 loop */
00472          v1 = s->row_out[0].v2;
00473          s->row_out[0].v2 = s->row_out[0].v3;
00474          s->row_out[0].v3 = s->row_out[0].fac*s->row_out[0].v2 - v1 + famp;
00475          v1 = s->col_out[0].v2;
00476          s->col_out[0].v2 = s->col_out[0].v3;
00477          s->col_out[0].v3 = s->col_out[0].fac*s->col_out[0].v2 - v1 + famp;
00478          v1 = s->row_out[1].v2;
00479          s->row_out[1].v2 = s->row_out[1].v3;
00480          s->row_out[1].v3 = s->row_out[1].fac*s->row_out[1].v2 - v1 + famp;
00481          v1 = s->col_out[1].v2;
00482          s->col_out[1].v2 = s->col_out[1].v3;
00483          s->col_out[1].v3 = s->col_out[1].fac*s->col_out[1].v2 - v1 + famp;
00484          v1 = s->row_out[2].v2;
00485          s->row_out[2].v2 = s->row_out[2].v3;
00486          s->row_out[2].v3 = s->row_out[2].fac*s->row_out[2].v2 - v1 + famp;
00487          v1 = s->col_out[2].v2;
00488          s->col_out[2].v2 = s->col_out[2].v3;
00489          s->col_out[2].v3 = s->col_out[2].fac*s->col_out[2].v2 - v1 + famp;
00490          v1 = s->row_out[3].v2;
00491          s->row_out[3].v2 = s->row_out[3].v3;
00492          s->row_out[3].v3 = s->row_out[3].fac*s->row_out[3].v2 - v1 + famp;
00493          v1 = s->col_out[3].v2;
00494          s->col_out[3].v2 = s->col_out[3].v3;
00495          s->col_out[3].v3 = s->col_out[3].fac*s->col_out[3].v2 - v1 + famp;
00496 #ifdef FAX_DETECT
00497          /* Update fax tone */
00498          v1 = s->fax_tone.v2;
00499          s->fax_tone.v2 = s->fax_tone.v3;
00500          s->fax_tone.v3 = s->fax_tone.fac*s->fax_tone.v2 - v1 + famp;
00501 #endif /* FAX_DETECT */
00502 #ifdef OLD_DSP_ROUTINES
00503          v1 = s->col_out2nd[0].v2;
00504          s->col_out2nd[0].v2 = s->col_out2nd[0].v3;
00505          s->col_out2nd[0].v3 = s->col_out2nd[0].fac*s->col_out2nd[0].v2 - v1 + famp;
00506          v1 = s->row_out2nd[0].v2;
00507          s->row_out2nd[0].v2 = s->row_out2nd[0].v3;
00508          s->row_out2nd[0].v3 = s->row_out2nd[0].fac*s->row_out2nd[0].v2 - v1 + famp;
00509          v1 = s->col_out2nd[1].v2;
00510          s->col_out2nd[1].v2 = s->col_out2nd[1].v3;
00511          s->col_out2nd[1].v3 = s->col_out2nd[1].fac*s->col_out2nd[1].v2 - v1 + famp;
00512          v1 = s->row_out2nd[1].v2;
00513          s->row_out2nd[1].v2 = s->row_out2nd[1].v3;
00514          s->row_out2nd[1].v3 = s->row_out2nd[1].fac*s->row_out2nd[1].v2 - v1 + famp;
00515          v1 = s->col_out2nd[2].v2;
00516          s->col_out2nd[2].v2 = s->col_out2nd[2].v3;
00517          s->col_out2nd[2].v3 = s->col_out2nd[2].fac*s->col_out2nd[2].v2 - v1 + famp;
00518          v1 = s->row_out2nd[2].v2;
00519          s->row_out2nd[2].v2 = s->row_out2nd[2].v3;
00520          s->row_out2nd[2].v3 = s->row_out2nd[2].fac*s->row_out2nd[2].v2 - v1 + famp;
00521          v1 = s->col_out2nd[3].v2;
00522          s->col_out2nd[3].v2 = s->col_out2nd[3].v3;
00523          s->col_out2nd[3].v3 = s->col_out2nd[3].fac*s->col_out2nd[3].v2 - v1 + famp;
00524          v1 = s->row_out2nd[3].v2;
00525          s->row_out2nd[3].v2 = s->row_out2nd[3].v3;
00526          s->row_out2nd[3].v3 = s->row_out2nd[3].fac*s->row_out2nd[3].v2 - v1 + famp;
00527 #ifdef FAX_DETECT
00528          /* Update fax tone */            
00529          v1 = s->fax_tone.v2;
00530          s->fax_tone2nd.v2 = s->fax_tone2nd.v3;
00531          s->fax_tone2nd.v3 = s->fax_tone2nd.fac*s->fax_tone2nd.v2 - v1 + famp;
00532 #endif /* FAX_DETECT */
00533 #endif
00534       }
00535 #endif
00536       s->current_sample += (limit - sample);
00537       if (s->current_sample < 102) {
00538          if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
00539             /* If we had a hit last time, go ahead and clear this out since likely it
00540                will be another hit */
00541             for (i=sample;i<limit;i++) 
00542                amp[i] = 0;
00543             *writeback = 1;
00544          }
00545          continue;
00546       }
00547 #ifdef FAX_DETECT
00548       /* Detect the fax energy, too */
00549       fax_energy = goertzel_result(&s->fax_tone);
00550 #endif
00551       /* We are at the end of a DTMF detection block */
00552       /* Find the peak row and the peak column */
00553       row_energy[0] = goertzel_result (&s->row_out[0]);
00554       col_energy[0] = goertzel_result (&s->col_out[0]);
00555 
00556       for (best_row = best_col = 0, i = 1;  i < 4;  i++) {
00557          row_energy[i] = goertzel_result (&s->row_out[i]);
00558          if (row_energy[i] > row_energy[best_row])
00559             best_row = i;
00560          col_energy[i] = goertzel_result (&s->col_out[i]);
00561          if (col_energy[i] > col_energy[best_col])
00562             best_col = i;
00563       }
00564       hit = 0;
00565       /* Basic signal level test and the twist test */
00566       if (row_energy[best_row] >= DTMF_THRESHOLD && 
00567           col_energy[best_col] >= DTMF_THRESHOLD &&
00568           col_energy[best_col] < row_energy[best_row]*DTMF_REVERSE_TWIST &&
00569           col_energy[best_col]*DTMF_NORMAL_TWIST > row_energy[best_row]) {
00570          /* Relative peak test */
00571          for (i = 0;  i < 4;  i++) {
00572             if ((i != best_col &&
00573                 col_energy[i]*DTMF_RELATIVE_PEAK_COL > col_energy[best_col]) ||
00574                 (i != best_row 
00575                  && row_energy[i]*DTMF_RELATIVE_PEAK_ROW > row_energy[best_row])) {
00576                break;
00577             }
00578          }
00579 #ifdef OLD_DSP_ROUTINES
00580          /* ... and second harmonic test */
00581          if (i >= 4 && 
00582              (row_energy[best_row] + col_energy[best_col]) > 42.0*s->energy &&
00583                       goertzel_result(&s->col_out2nd[best_col])*DTMF_2ND_HARMONIC_COL < col_energy[best_col]
00584              && goertzel_result(&s->row_out2nd[best_row])*DTMF_2ND_HARMONIC_ROW < row_energy[best_row]) {
00585 #else
00586          /* ... and fraction of total energy test */
00587          if (i >= 4 &&
00588              (row_energy[best_row] + col_energy[best_col]) > DTMF_TO_TOTAL_ENERGY*s->energy) {
00589 #endif
00590             /* Got a hit */
00591             hit = dtmf_positions[(best_row << 2) + best_col];
00592             if (!(digitmode & DSP_DIGITMODE_NOQUELCH)) {
00593                /* Zero out frame data if this is part DTMF */
00594                for (i=sample;i<limit;i++) 
00595                   amp[i] = 0;
00596                *writeback = 1;
00597             }
00598 #ifdef OLD_DSP_ROUTINES
00599             /* Look for two successive similar results */
00600             /* The logic in the next test is:
00601                We need two successive identical clean detects, with
00602                something different preceeding it. This can work with
00603                back to back differing digits. More importantly, it
00604                can work with nasty phones that give a very wobbly start
00605                to a digit */
00606             if (hit == s->hit3  &&  s->hit3 != s->hit2) {
00607                s->mhit = hit;
00608                s->digit_hits[(best_row << 2) + best_col]++;
00609                s->detected_digits++;
00610                if (s->current_digits < MAX_DTMF_DIGITS) {
00611                   s->digits[s->current_digits++] = hit;
00612                   s->digits[s->current_digits] = '\0';
00613                } else {
00614                   s->lost_digits++;
00615                }
00616             }
00617 #endif
00618          }
00619       } 
00620 
00621 #ifndef OLD_DSP_ROUTINES
00622       /* Look for two successive similar results */
00623       /* The logic in the next test is:
00624          We need two successive identical clean detects, with
00625          something different preceeding it. This can work with
00626          back to back differing digits. More importantly, it
00627          can work with nasty phones that give a very wobbly start
00628          to a digit */
00629       if (hit == s->lasthit  &&  hit != s->mhit) {
00630          if (hit) {
00631             s->digit_hits[(best_row << 2) + best_col]++;
00632             s->detected_digits++;
00633             if (s->current_digits < MAX_DTMF_DIGITS) {
00634                s->digits[s->current_digits++] = hit;
00635                s->digits[s->current_digits] = '\0';
00636             } else {
00637                s->lost_digits++;
00638             }
00639          }
00640          s->mhit = hit;
00641       }
00642 #endif
00643 
00644 #ifdef FAX_DETECT
00645       if (!hit && (fax_energy >= FAX_THRESHOLD) && 
00646          (fax_energy >= DTMF_TO_TOTAL_ENERGY*s->energy) &&
00647          (faxdetect)) {
00648 #if 0
00649          printf("Fax energy/Second Harmonic: %f\n", fax_energy);
00650 #endif               
00651          /* XXX Probably need better checking than just this the energy XXX */
00652          hit = 'f';
00653          s->fax_hits++;
00654       } else {
00655          if (s->fax_hits > 5) {
00656             hit = 'f';
00657             s->mhit = 'f';
00658             s->detected_digits++;
00659             if (s->current_digits < MAX_DTMF_DIGITS) {
00660                s->digits[s->current_digits++] = hit;
00661                s->digits[s->current_digits] = '\0';
00662             } else {
00663                s->lost_digits++;
00664             }
00665          }
00666          s->fax_hits = 0;
00667       }
00668 #endif /* FAX_DETECT */
00669 #ifdef OLD_DSP_ROUTINES
00670       s->hit1 = s->hit2;
00671       s->hit2 = s->hit3;
00672       s->hit3 = hit;
00673 #else
00674       s->lasthit = hit;
00675 #endif      
00676       /* Reinitialise the detector for the next block */
00677       for (i = 0;  i < 4;  i++) {
00678          goertzel_reset(&s->row_out[i]);
00679          goertzel_reset(&s->col_out[i]);
00680 #ifdef OLD_DSP_ROUTINES
00681          goertzel_reset(&s->row_out2nd[i]);
00682          goertzel_reset(&s->col_out2nd[i]);
00683 #endif         
00684       }
00685 #ifdef FAX_DETECT
00686       goertzel_reset (&s->fax_tone);
00687 #ifdef OLD_DSP_ROUTINES
00688       goertzel_reset (&s->fax_tone2nd);
00689 #endif         
00690 #endif
00691       s->energy = 0.0;
00692       s->current_sample = 0;
00693    }
00694 #ifdef OLD_DSP_ROUTINES
00695    if ((!s->mhit) || (s->mhit != hit)) {
00696       s->mhit = 0;
00697       return(0);
00698    }
00699    return (hit);
00700 #else
00701    return (s->mhit); /* return the debounced hit */
00702 #endif
00703 }
00704 
00705 /* MF goertzel size */
00706 #ifdef OLD_DSP_ROUTINES
00707 #define  MF_GSIZE 160
00708 #else
00709 #define MF_GSIZE 120
00710 #endif
00711 
00712 static int mf_detect (mf_detect_state_t *s, int16_t amp[],
00713                  int samples, int digitmode, int *writeback)
00714 {
00715 #ifdef OLD_DSP_ROUTINES
00716    float tone_energy[6];
00717    int best1;
00718    int best2;
00719    float max;
00720    int sofarsogood;
00721 #else
00722    float energy[6];
00723    int best;
00724    int second_best;
00725 #endif
00726    float famp;
00727    float v1;
00728    int i;
00729    int j;
00730    int sample;
00731    int hit;
00732    int limit;
00733 
00734    hit = 0;
00735    for (sample = 0;  sample < samples;  sample = limit) {
00736       /* 80 is optimised to meet the MF specs. */
00737       if ((samples - sample) >= (MF_GSIZE - s->current_sample))
00738          limit = sample + (MF_GSIZE - s->current_sample);
00739       else
00740          limit = samples;
00741 #if defined(USE_3DNOW)
00742       _dtmf_goertzel_update (s->row_out, amp + sample, limit - sample);
00743       _dtmf_goertzel_update (s->col_out, amp + sample, limit - sample);
00744 #ifdef OLD_DSP_ROUTINES
00745       _dtmf_goertzel_update (s->row_out2nd, amp + sample, limit2 - sample);
00746       _dtmf_goertzel_update (s->col_out2nd, amp + sample, limit2 - sample);
00747 #endif
00748       /* XXX Need to fax detect for 3dnow too XXX */
00749       #warning "Fax Support Broken"
00750 #else
00751       /* The following unrolled loop takes only 35% (rough estimate) of the 
00752          time of a rolled loop on the machine on which it was developed */
00753       for (j = sample;  j < limit;  j++) {
00754          famp = amp[j];
00755 #ifdef OLD_DSP_ROUTINES
00756          s->energy += famp*famp;
00757 #endif
00758          /* With GCC 2.95, the following unrolled code seems to take about 35%
00759             (rough estimate) as long as a neat little 0-3 loop */
00760          v1 = s->tone_out[0].v2;
00761          s->tone_out[0].v2 = s->tone_out[0].v3;
00762          s->tone_out[0].v3 = s->tone_out[0].fac*s->tone_out[0].v2 - v1 + famp;
00763          v1 = s->tone_out[1].v2;
00764          s->tone_out[1].v2 = s->tone_out[1].v3;
00765          s->tone_out[1].v3 = s->tone_out[1].fac*s->tone_out[1].v2 - v1 + famp;
00766          v1 = s->tone_out[2].v2;
00767          s->tone_out[2].v2 = s->tone_out[2].v3;
00768          s->tone_out[2].v3 = s->tone_out[2].fac*s->tone_out[2].v2 - v1 + famp;
00769          v1 = s->tone_out[3].v2;
00770          s->tone_out[3].v2 = s->tone_out[3].v3;
00771          s->tone_out[3].v3 = s->tone_out[3].fac*s->tone_out[3].v2 - v1 + famp;
00772          v1 = s->tone_out[4].v2;
00773          s->tone_out[4].v2 = s->tone_out[4].v3;
00774          s->tone_out[4].v3 = s->tone_out[4].fac*s->tone_out[4].v2 - v1 + famp;
00775          v1 = s->tone_out[5].v2;
00776          s->tone_out[5].v2 = s->tone_out[5].v3;
00777          s->tone_out[5].v3 = s->tone_out[5].fac*s->tone_out[5].v2 - v1 + famp;
00778 #ifdef OLD_DSP_ROUTINES
00779          v1 = s->tone_out2nd[0].v2;
00780          s->tone_out2nd[0].v2 = s->tone_out2nd[0].v3;
00781          s->tone_out2nd[0].v3 = s->tone_out2nd[0].fac*s->tone_out2nd[0].v2 - v1 + famp;
00782          v1 = s->tone_out2nd[1].v2;
00783          s->tone_out2nd[1].v2 = s->tone_out2nd[1].v3;
00784          s->tone_out2nd[1].v3 = s->tone_out2nd[1].fac*s->tone_out2nd[1].v2 - v1 + famp;
00785          v1 = s->tone_out2nd[2].v2;
00786          s->tone_out2nd[2].v2 = s->tone_out2nd[2].v3;
00787          s->tone_out2nd[2].v3 = s->tone_out2nd[2].fac*s->tone_out2nd[2].v2 - v1 + famp;
00788          v1 = s->tone_out2nd[3].v2;
00789          s->tone_out2nd[3].v2 = s->tone_out2nd[3].v3;
00790          s->tone_out2nd[3].v3 = s->tone_out2nd[3].fac*s->tone_out2nd[3].v2 - v1 + famp;
00791          v1 = s->tone_out2nd[4].v2;
00792          s->tone_out2nd[4].v2 = s->tone_out2nd[4].v3;
00793          s->tone_out2nd[4].v3 = s->tone_out2nd[4].fac*s->tone_out2nd[2].v2 - v1 + famp;
00794          v1 = s->tone_out2nd[3].v2;
00795          s->tone_out2nd[5].v2 = s->tone_out2nd[6].v3;
00796          s->tone_out2nd[5].v3 = s->tone_out2nd[6].fac*s->tone_out2nd[3].v2 - v1 + famp;
00797 #endif
00798       }
00799 #endif
00800       s->current_sample += (limit - sample);
00801       if (s->current_sample < MF_GSIZE) {
00802          if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
00803             /* If we had a hit last time, go ahead and clear this out since likely it
00804                will be another hit */
00805             for (i=sample;i<limit;i++) 
00806                amp[i] = 0;
00807             *writeback = 1;
00808          }
00809          continue;
00810       }
00811 #ifdef OLD_DSP_ROUTINES    
00812       /* We're at the end of an MF detection block.  Go ahead and calculate
00813          all the energies. */
00814       for (i=0;i<6;i++) {
00815          tone_energy[i] = goertzel_result(&s->tone_out[i]);
00816       }
00817       /* Find highest */
00818       best1 = 0;
00819       max = tone_energy[0];
00820       for (i=1;i<6;i++) {
00821          if (tone_energy[i] > max) {
00822             max = tone_energy[i];
00823             best1 = i;
00824          }
00825       }
00826 
00827       /* Find 2nd highest */
00828       if (best1) {
00829          max = tone_energy[0];
00830          best2 = 0;
00831       } else {
00832          max = tone_energy[1];
00833          best2 = 1;
00834       }
00835 
00836       for (i=0;i<6;i++) {
00837          if (i == best1) continue;
00838          if (tone_energy[i] > max) {
00839             max = tone_energy[i];
00840             best2 = i;
00841          }
00842       }
00843       hit = 0;
00844       if (best1 != best2) 
00845          sofarsogood=1;
00846       else 
00847          sofarsogood=0;
00848       /* Check for relative energies */
00849       for (i=0;i<6;i++) {
00850          if (i == best1) 
00851             continue;
00852          if (i == best2) 
00853             continue;
00854          if (tone_energy[best1] < tone_energy[i] * MF_RELATIVE_PEAK) {
00855             sofarsogood = 0;
00856             break;
00857          }
00858          if (tone_energy[best2] < tone_energy[i] * MF_RELATIVE_PEAK) {
00859             sofarsogood = 0;
00860             break;
00861          }
00862       }
00863       
00864       if (sofarsogood) {
00865          /* Check for 2nd harmonic */
00866          if (goertzel_result(&s->tone_out2nd[best1]) * MF_2ND_HARMONIC > tone_energy[best1]) 
00867             sofarsogood = 0;
00868          else if (goertzel_result(&s->tone_out2nd[best2]) * MF_2ND_HARMONIC > tone_energy[best2])
00869             sofarsogood = 0;
00870       }
00871       if (sofarsogood) {
00872          hit = mf_hit[best1][best2];
00873          if (!(digitmode & DSP_DIGITMODE_NOQUELCH)) {
00874             /* Zero out frame data if this is part DTMF */
00875             for (i=sample;i<limit;i++) 
00876                amp[i] = 0;
00877             *writeback = 1;
00878          }
00879          /* Look for two consecutive clean hits */
00880          if ((hit == s->hit3) && (s->hit3 != s->hit2)) {
00881             s->mhit = hit;
00882             s->detected_digits++;
00883             if (s->current_digits < MAX_DTMF_DIGITS - 2) {
00884                s->digits[s->current_digits++] = hit;
00885                s->digits[s->current_digits] = '\0';
00886             } else {
00887                s->lost_digits++;
00888             }
00889          }
00890       }
00891       
00892       s->hit1 = s->hit2;
00893       s->hit2 = s->hit3;
00894       s->hit3 = hit;
00895       /* Reinitialise the detector for the next block */
00896       for (i = 0;  i < 6;  i++) {
00897          goertzel_reset(&s->tone_out[i]);
00898          goertzel_reset(&s->tone_out2nd[i]);
00899       }
00900       s->energy = 0.0;
00901       s->current_sample = 0;
00902    }
00903 #else
00904       /* We're at the end of an MF detection block.  */
00905       /* Find the two highest energies. The spec says to look for
00906          two tones and two tones only. Taking this literally -ie
00907          only two tones pass the minimum threshold - doesn't work
00908          well. The sinc function mess, due to rectangular windowing
00909          ensure that! Find the two highest energies and ensure they
00910          are considerably stronger than any of the others. */
00911       energy[0] = goertzel_result(&s->tone_out[0]);
00912       energy[1] = goertzel_result(&s->tone_out[1]);
00913       if (energy[0] > energy[1]) {
00914          best = 0;
00915          second_best = 1;
00916       } else {
00917          best = 1;
00918          second_best = 0;
00919       }
00920       /*endif*/
00921       for (i=2;i<6;i++) {
00922          energy[i] = goertzel_result(&s->tone_out[i]);
00923          if (energy[i] >= energy[best]) {
00924             second_best = best;
00925             best = i;
00926          } else if (energy[i] >= energy[second_best]) {
00927             second_best = i;
00928          }
00929       }
00930       /* Basic signal level and twist tests */
00931       hit = 0;
00932       if (energy[best] >= BELL_MF_THRESHOLD && energy[second_best] >= BELL_MF_THRESHOLD
00933                && energy[best] < energy[second_best]*BELL_MF_TWIST
00934                && energy[best]*BELL_MF_TWIST > energy[second_best]) {
00935          /* Relative peak test */
00936          hit = -1;
00937          for (i=0;i<6;i++) {
00938             if (i != best && i != second_best) {
00939                if (energy[i]*BELL_MF_RELATIVE_PEAK >= energy[second_best]) {
00940                   /* The best two are not clearly the best */
00941                   hit = 0;
00942                   break;
00943                }
00944             }
00945          }
00946       }
00947       if (hit) {
00948          /* Get the values into ascending order */
00949          if (second_best < best) {
00950             i = best;
00951             best = second_best;
00952             second_best = i;
00953          }
00954          best = best*5 + second_best - 1;
00955          hit = bell_mf_positions[best];
00956          /* Look for two successive similar results */
00957          /* The logic in the next test is:
00958             For KP we need 4 successive identical clean detects, with
00959             two blocks of something different preceeding it. For anything
00960             else we need two successive identical clean detects, with
00961             two blocks of something different preceeding it. */
00962          if (hit == s->hits[4] && hit == s->hits[3] &&
00963             ((hit != '*' && hit != s->hits[2] && hit != s->hits[1])||
00964              (hit == '*' && hit == s->hits[2] && hit != s->hits[1] && 
00965              hit != s->hits[0]))) {
00966             s->detected_digits++;
00967             if (s->current_digits < MAX_DTMF_DIGITS) {
00968                s->digits[s->current_digits++] = hit;
00969                s->digits[s->current_digits] = '\0';
00970             } else {
00971                s->lost_digits++;
00972             }
00973          }
00974       } else {
00975          hit = 0;
00976       }
00977       s->hits[0] = s->hits[1];
00978       s->hits[1] = s->hits[2];
00979       s->hits[2] = s->hits[3];
00980       s->hits[3] = s->hits[4];
00981       s->hits[4] = hit;
00982       /* Reinitialise the detector for the next block */
00983       for (i = 0;  i < 6;  i++)
00984          goertzel_reset(&s->tone_out[i]);
00985       s->current_sample = 0;
00986    }
00987 #endif   
00988    if ((!s->mhit) || (s->mhit != hit)) {
00989       s->mhit = 0;
00990       return(0);
00991    }
00992    return (hit);
00993 }
00994 
00995 static int __ast_dsp_digitdetect(struct ast_dsp *dsp, short *s, int len, int *writeback)
00996 {
00997    int res;
00998    
00999    if (dsp->digitmode & DSP_DIGITMODE_MF)
01000       res = mf_detect(&dsp->td.mf, s, len, dsp->digitmode & DSP_DIGITMODE_RELAXDTMF, writeback);
01001    else
01002       res = dtmf_detect(&dsp->td.dtmf, s, len, dsp->digitmode & DSP_DIGITMODE_RELAXDTMF, writeback, dsp->features & DSP_FEATURE_FAX_DETECT);
01003    return res;
01004 }
01005 
01006 int ast_dsp_digitdetect(struct ast_dsp *dsp, struct ast_frame *inf)
01007 {
01008    short *s;
01009    int len;
01010    int ign=0;
01011 
01012    if (inf->frametype != AST_FRAME_VOICE) {
01013       ast_log(LOG_WARNING, "Can't check call progress of non-voice frames\n");
01014       return 0;
01015    }
01016    if (inf->subclass != AST_FORMAT_SLINEAR) {
01017       ast_log(LOG_WARNING, "Can only check call progress in signed-linear frames\n");
01018       return 0;
01019    }
01020    s = inf->data;
01021    len = inf->datalen / 2;
01022    return __ast_dsp_digitdetect(dsp, s, len, &ign);
01023 }
01024 
01025 static inline int pair_there(float p1, float p2, float i1, float i2, float e)
01026 {
01027    /* See if p1 and p2 are there, relative to i1 and i2 and total energy */
01028    /* Make sure absolute levels are high enough */
01029    if ((p1 < TONE_MIN_THRESH) || (p2 < TONE_MIN_THRESH))
01030       return 0;
01031    /* Amplify ignored stuff */
01032    i2 *= TONE_THRESH;
01033    i1 *= TONE_THRESH;
01034    e *= TONE_THRESH;
01035    /* Check first tone */
01036    if ((p1 < i1) || (p1 < i2) || (p1 < e))
01037       return 0;
01038    /* And second */
01039    if ((p2 < i1) || (p2 < i2) || (p2 < e))
01040       return 0;
01041    /* Guess it's there... */
01042    return 1;
01043 }
01044 
01045 int ast_dsp_getdigits (struct ast_dsp *dsp, char *buf, int max)
01046 {
01047    if (dsp->digitmode & DSP_DIGITMODE_MF) {
01048       if (max > dsp->td.mf.current_digits)
01049          max = dsp->td.mf.current_digits;
01050       if (max > 0) {
01051          memcpy(buf, dsp->td.mf.digits, max);
01052          memmove(dsp->td.mf.digits, dsp->td.mf.digits + max, dsp->td.mf.current_digits - max);
01053          dsp->td.mf.current_digits -= max;
01054       }
01055       buf[max] = '\0';
01056       return  max;
01057    } else {
01058       if (max > dsp->td.dtmf.current_digits)
01059          max = dsp->td.dtmf.current_digits;
01060       if (max > 0) {
01061          memcpy (buf, dsp->td.dtmf.digits, max);
01062          memmove (dsp->td.dtmf.digits, dsp->td.dtmf.digits + max, dsp->td.dtmf.current_digits - max);
01063          dsp->td.dtmf.current_digits -= max;
01064       }
01065       buf[max] = '\0';
01066       return  max;
01067    }
01068 }
01069 
01070 static int __ast_dsp_call_progress(struct ast_dsp *dsp, short *s, int len)
01071 {
01072    int x;
01073    int y;
01074    int pass;
01075    int newstate = DSP_TONE_STATE_SILENCE;
01076    int res = 0;
01077    while(len) {
01078       /* Take the lesser of the number of samples we need and what we have */
01079       pass = len;
01080       if (pass > dsp->gsamp_size - dsp->gsamps) 
01081          pass = dsp->gsamp_size - dsp->gsamps;
01082       for (x=0;x<pass;x++) {
01083          for (y=0;y<dsp->freqcount;y++) 
01084             goertzel_sample(&dsp->freqs[y], s[x]);
01085          dsp->genergy += s[x] * s[x];
01086       }
01087       s += pass;
01088       dsp->gsamps += pass;
01089       len -= pass;
01090       if (dsp->gsamps == dsp->gsamp_size) {
01091          float hz[7];
01092          for (y=0;y<7;y++)
01093             hz[y] = goertzel_result(&dsp->freqs[y]);
01094 #if 0
01095          printf("\n350:     425:     440:     480:     620:     950:     1400:    1800:    Energy:   \n");
01096          printf("%.2e %.2e %.2e %.2e %.2e %.2e %.2e %.2e %.2e\n", 
01097             hz[HZ_350], hz[HZ_425], hz[HZ_440], hz[HZ_480], hz[HZ_620], hz[HZ_950], hz[HZ_1400], hz[HZ_1800], dsp->genergy);
01098 #endif
01099          switch(dsp->progmode) {
01100          case PROG_MODE_NA:
01101             if (pair_there(hz[HZ_480], hz[HZ_620], hz[HZ_350], hz[HZ_440], dsp->genergy)) {
01102                newstate = DSP_TONE_STATE_BUSY;
01103             } else if (pair_there(hz[HZ_440], hz[HZ_480], hz[HZ_350], hz[HZ_620], dsp->genergy)) {
01104                newstate = DSP_TONE_STATE_RINGING;
01105             } else if (pair_there(hz[HZ_350], hz[HZ_440], hz[HZ_480], hz[HZ_620], dsp->genergy)) {
01106                newstate = DSP_TONE_STATE_DIALTONE;
01107             } else if (hz[HZ_950] > TONE_MIN_THRESH * TONE_THRESH) {
01108                newstate = DSP_TONE_STATE_SPECIAL1;
01109             } else if (hz[HZ_1400] > TONE_MIN_THRESH * TONE_THRESH) {
01110                if (dsp->tstate == DSP_TONE_STATE_SPECIAL1)
01111                   newstate = DSP_TONE_STATE_SPECIAL2;
01112             } else if (hz[HZ_1800] > TONE_MIN_THRESH * TONE_THRESH) {
01113                if (dsp->tstate == DSP_TONE_STATE_SPECIAL2)
01114                   newstate = DSP_TONE_STATE_SPECIAL3;
01115             } else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
01116                newstate = DSP_TONE_STATE_TALKING;
01117             } else
01118                newstate = DSP_TONE_STATE_SILENCE;
01119             break;
01120          case PROG_MODE_CR:
01121             if (hz[HZ_425] > TONE_MIN_THRESH * TONE_THRESH) {
01122                newstate = DSP_TONE_STATE_RINGING;
01123             } else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
01124                newstate = DSP_TONE_STATE_TALKING;
01125             } else
01126                newstate = DSP_TONE_STATE_SILENCE;
01127             break;
01128          case PROG_MODE_UK:
01129             if (hz[HZ_400] > TONE_MIN_THRESH * TONE_THRESH) {
01130                newstate = DSP_TONE_STATE_HUNGUP;
01131             }
01132             break;
01133          default:
01134             ast_log(LOG_WARNING, "Can't process in unknown prog mode '%d'\n", dsp->progmode);
01135          }
01136          if (newstate == dsp->tstate) {
01137             dsp->tcount++;
01138             if (dsp->ringtimeout)
01139                dsp->ringtimeout++;
01140             switch (dsp->tstate) {
01141                case DSP_TONE_STATE_RINGING:
01142                   if ((dsp->features & DSP_PROGRESS_RINGING) &&
01143                       (dsp->tcount==THRESH_RING)) {
01144                      res = AST_CONTROL_RINGING;
01145                      dsp->ringtimeout= 1;
01146                   }
01147                   break;
01148                case DSP_TONE_STATE_BUSY:
01149                   if ((dsp->features & DSP_PROGRESS_BUSY) &&
01150                       (dsp->tcount==THRESH_BUSY)) {
01151                      res = AST_CONTROL_BUSY;
01152                      dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
01153                   }
01154                   break;
01155                case DSP_TONE_STATE_TALKING:
01156                   if ((dsp->features & DSP_PROGRESS_TALK) &&
01157                       (dsp->tcount==THRESH_TALK)) {
01158                      res = AST_CONTROL_ANSWER;
01159                      dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
01160                   }
01161                   break;
01162                case DSP_TONE_STATE_SPECIAL3:
01163                   if ((dsp->features & DSP_PROGRESS_CONGESTION) &&
01164                       (dsp->tcount==THRESH_CONGESTION)) {
01165                      res = AST_CONTROL_CONGESTION;
01166                      dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
01167                   }
01168                   break;
01169                case DSP_TONE_STATE_HUNGUP:
01170                   if ((dsp->features & DSP_FEATURE_CALL_PROGRESS) &&
01171                       (dsp->tcount==THRESH_HANGUP)) {
01172                      res = AST_CONTROL_HANGUP;
01173                      dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
01174                   }
01175                   break;
01176             }
01177             if (dsp->ringtimeout==THRESH_RING2ANSWER) {
01178 #if 0
01179                ast_log(LOG_NOTICE, "Consider call as answered because of timeout after last ring\n");
01180 #endif
01181                res = AST_CONTROL_ANSWER;
01182                dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
01183             }
01184          } else {
01185 #if 0
01186             ast_log(LOG_NOTICE, "Stop state %d with duration %d\n", dsp->tstate, dsp->tcount);
01187             ast_log(LOG_NOTICE, "Start state %d\n", newstate);
01188 #endif
01189             dsp->tstate = newstate;
01190             dsp->tcount = 1;
01191          }
01192          
01193          /* Reset goertzel */                
01194          for (x=0;x<7;x++)
01195             dsp->freqs[x].v2 = dsp->freqs[x].v3 = 0.0;
01196          dsp->gsamps = 0;
01197          dsp->genergy = 0.0;
01198       }
01199    }
01200 #if 0
01201    if (res)
01202       printf("Returning %d\n", res);
01203 #endif      
01204    return res;
01205 }
01206 
01207 int ast_dsp_call_progress(struct ast_dsp *dsp, struct ast_frame *inf)
01208 {
01209    if (inf->frametype != AST_FRAME_VOICE) {
01210       ast_log(LOG_WARNING, "Can't check call progress of non-voice frames\n");
01211       return 0;
01212    }
01213    if (inf->subclass != AST_FORMAT_SLINEAR) {
01214       ast_log(LOG_WARNING, "Can only check call progress in signed-linear frames\n");
01215       return 0;
01216    }
01217    return __ast_dsp_call_progress(dsp, inf->data, inf->datalen / 2);
01218 }
01219 
01220 static int __ast_dsp_silence(struct ast_dsp *dsp, short *s, int len, int *totalsilence)
01221 {
01222    int accum;
01223    int x;
01224    int res = 0;
01225 
01226    if (!len)
01227       return 0;
01228    accum = 0;
01229    for (x=0;x<len; x++) 
01230       accum += abs(s[x]);
01231    accum /= len;
01232    if (accum < dsp->threshold) {
01233       /* Silent */
01234       dsp->totalsilence += len/8;
01235       if (dsp->totalnoise) {
01236          /* Move and save history */
01237          memmove(dsp->historicnoise + DSP_HISTORY - dsp->busycount, dsp->historicnoise + DSP_HISTORY - dsp->busycount +1, dsp->busycount*sizeof(dsp->historicnoise[0]));
01238          dsp->historicnoise[DSP_HISTORY - 1] = dsp->totalnoise;
01239 /* we don't want to check for busydetect that frequently */
01240 #if 0
01241          dsp->busymaybe = 1;
01242 #endif
01243       }
01244       dsp->totalnoise = 0;
01245       res = 1;
01246    } else {
01247       /* Not silent */
01248       dsp->totalnoise += len/8;
01249       if (dsp->totalsilence) {
01250          int silence1 = dsp->historicsilence[DSP_HISTORY - 1];
01251          int silence2 = dsp->historicsilence[DSP_HISTORY - 2];
01252          /* Move and save history */
01253          memmove(dsp->historicsilence + DSP_HISTORY - dsp->busycount, dsp->historicsilence + DSP_HISTORY - dsp->busycount + 1, dsp->busycount*sizeof(dsp->historicsilence[0]));
01254          dsp->historicsilence[DSP_HISTORY - 1] = dsp->totalsilence;
01255          /* check if the previous sample differs only by BUSY_PERCENT from the one before it */
01256          if (silence1 < silence2) {
01257             if (silence1 + silence1*BUSY_PERCENT/100 >= silence2)
01258                dsp->busymaybe = 1;
01259             else 
01260                dsp->busymaybe = 0;
01261          } else {
01262             if (silence1 - silence1*BUSY_PERCENT/100 <= silence2)
01263                dsp->busymaybe = 1;
01264             else 
01265                dsp->busymaybe = 0;
01266          }
01267       }
01268       dsp->totalsilence = 0;
01269    }
01270    if (totalsilence)
01271       *totalsilence = dsp->totalsilence;
01272    return res;
01273 }
01274 
01275 #ifdef BUSYDETECT_MARTIN
01276 int ast_dsp_busydetect(struct ast_dsp *dsp)
01277 {
01278    int res = 0, x;
01279 #ifndef BUSYDETECT_TONEONLY
01280    int avgsilence = 0, hitsilence = 0;
01281 #endif
01282    int avgtone = 0, hittone = 0;
01283    if (!dsp->busymaybe)
01284       return res;
01285    for (x=DSP_HISTORY - dsp->busycount;x<DSP_HISTORY;x++) {
01286 #ifndef BUSYDETECT_TONEONLY
01287       avgsilence += dsp->historicsilence[x];
01288 #endif
01289       avgtone += dsp->historicnoise[x];
01290    }
01291 #ifndef BUSYDETECT_TONEONLY
01292    avgsilence /= dsp->busycount;
01293 #endif
01294    avgtone /= dsp->busycount;
01295    for (x=DSP_HISTORY - dsp->busycount;x<DSP_HISTORY;x++) {
01296 #ifndef BUSYDETECT_TONEONLY
01297       if (avgsilence > dsp->historicsilence[x]) {
01298          if (avgsilence - (avgsilence*BUSY_PERCENT/100) <= dsp->historicsilence[x])
01299             hitsilence++;
01300       } else {
01301          if (avgsilence + (avgsilence*BUSY_PERCENT/100) >= dsp->historicsilence[x])
01302             hitsilence++;
01303       }
01304 #endif
01305       if (avgtone > dsp->historicnoise[x]) {
01306          if (avgtone - (avgtone*BUSY_PERCENT/100) <= dsp->historicnoise[x])
01307             hittone++;
01308       } else {
01309          if (avgtone + (avgtone*BUSY_PERCENT/100) >= dsp->historicnoise[x])
01310             hittone++;
01311       }
01312    }
01313 #ifndef BUSYDETECT_TONEONLY
01314    if ((hittone >= dsp->busycount - 1) && (hitsilence >= dsp->busycount - 1) && 
01315        (avgtone >= BUSY_MIN && avgtone <= BUSY_MAX) && 
01316        (avgsilence >= BUSY_MIN && avgsilence <= BUSY_MAX)) {
01317 #else
01318    if ((hittone >= dsp->busycount - 1) && (avgtone >= BUSY_MIN && avgtone <= BUSY_MAX)) {
01319 #endif
01320 #ifdef BUSYDETECT_COMPARE_TONE_AND_SILENCE
01321 #ifdef BUSYDETECT_TONEONLY
01322 #error You cant use BUSYDETECT_TONEONLY together with BUSYDETECT_COMPARE_TONE_AND_SILENCE
01323 #endif
01324       if (avgtone > avgsilence) {
01325          if (avgtone - avgtone*BUSY_PERCENT/100 <= avgsilence)
01326             res = 1;
01327       } else {
01328          if (avgtone + avgtone*BUSY_PERCENT/100 >= avgsilence)
01329             res = 1;
01330       }
01331 #else
01332       res = 1;
01333 #endif
01334    }
01335    /* If we know the expected busy tone length, check we are in the range */
01336    if (res && (dsp->busy_tonelength > 0)) {
01337       if (abs(avgtone - dsp->busy_tonelength) > (dsp->busy_tonelength*BUSY_PAT_PERCENT/100)) {
01338 #if 0
01339          ast_log(LOG_NOTICE, "busy detector: avgtone of %d not close enough to desired %d\n",
01340                   avgtone, dsp->busy_tonelength);
01341 #endif
01342          res = 0;
01343       }
01344    }
01345 #ifndef BUSYDETECT_TONEONLY
01346    /* If we know the expected busy tone silent-period length, check we are in the range */
01347    if (res && (dsp->busy_quietlength > 0)) {
01348       if (abs(avgsilence - dsp->busy_quietlength) > (dsp->busy_quietlength*BUSY_PAT_PERCENT/100)) {
01349 #if 0
01350          ast_log(LOG_NOTICE, "busy detector: avgsilence of %d not close enough to desired %d\n",
01351                   avgsilence, dsp->busy_quietlength);
01352 #endif
01353          res = 0;
01354       }
01355    }
01356 #endif
01357 #ifndef BUSYDETECT_TONEONLY
01358 #if 1
01359    if (res)
01360       ast_log(LOG_DEBUG, "ast_dsp_busydetect detected busy, avgtone: %d, avgsilence %d\n", avgtone, avgsilence);
01361 #endif
01362 #endif
01363    return res;
01364 }
01365 #endif
01366 
01367 #ifdef BUSYDETECT
01368 int ast_dsp_busydetect(struct ast_dsp *dsp)
01369 {
01370    int x;
01371    int res = 0;
01372    int max, min;
01373 
01374 #if 0
01375    if (dsp->busy_hits > 5);
01376    return 0;
01377 #endif
01378    if (dsp->busymaybe) {
01379 #if 0
01380       printf("Maybe busy!\n");
01381 #endif      
01382       dsp->busymaybe = 0;
01383       min = 9999;
01384       max = 0;
01385       for (x=DSP_HISTORY - dsp->busycount;x<DSP_HISTORY;x++) {
01386 #if 0
01387          printf("Silence: %d, Noise: %d\n", dsp->historicsilence[x], dsp->historicnoise[x]);
01388 #endif         
01389          if (dsp->historicsilence[x] < min)
01390             min = dsp->historicsilence[x];
01391          if (dsp->historicnoise[x] < min)
01392             min = dsp->historicnoise[x];
01393          if (dsp->historicsilence[x] > max)
01394             max = dsp->historicsilence[x];
01395          if (dsp->historicnoise[x] > max)
01396             max = dsp->historicnoise[x];
01397       }
01398       if ((max - min < BUSY_THRESHOLD) && (max < BUSY_MAX) && (min > BUSY_MIN)) {
01399 #if 0
01400          printf("Busy!\n");
01401 #endif         
01402          res = 1;
01403       }
01404 #if 0
01405       printf("Min: %d, max: %d\n", min, max);
01406 #endif      
01407    }
01408    return res;
01409 }
01410 #endif
01411 
01412 int ast_dsp_silence(struct ast_dsp *dsp, struct ast_frame *f, int *totalsilence)
01413 {
01414    short *s;
01415    int len;
01416    
01417    if (f->frametype != AST_FRAME_VOICE) {
01418       ast_log(LOG_WARNING, "Can't calculate silence on a non-voice frame\n");
01419       return 0;
01420    }
01421    if (f->subclass != AST_FORMAT_SLINEAR) {
01422       ast_log(LOG_WARNING, "Can only calculate silence on signed-linear frames :(\n");
01423       return 0;
01424    }
01425    s = f->data;
01426    len = f->datalen/2;
01427    return __ast_dsp_silence(dsp, s, len, totalsilence);
01428 }
01429 
01430 struct ast_frame *ast_dsp_process(struct ast_channel *chan, struct ast_dsp *dsp, struct ast_frame *af)
01431 {
01432    int silence;
01433    int res;
01434    int digit;
01435    int x;
01436    short *shortdata;
01437    unsigned char *odata;
01438    int len;
01439    int writeback = 0;
01440 
01441 #define FIX_INF(inf) do { \
01442       if (writeback) { \
01443          switch(inf->subclass) { \
01444          case AST_FORMAT_SLINEAR: \
01445             break; \
01446          case AST_FORMAT_ULAW: \
01447             for (x=0;x<len;x++) \
01448                odata[x] = AST_LIN2MU((unsigned short)shortdata[x]); \
01449             break; \
01450          case AST_FORMAT_ALAW: \
01451             for (x=0;x<len;x++) \
01452                odata[x] = AST_LIN2A((unsigned short)shortdata[x]); \
01453             break; \
01454          } \
01455       } \
01456    } while(0) 
01457 
01458    if (!af)
01459       return NULL;
01460    if (af->frametype != AST_FRAME_VOICE)
01461       return af;
01462    odata = af->data;
01463    len = af->datalen;
01464    /* Make sure we have short data */
01465    switch(af->subclass) {
01466    case AST_FORMAT_SLINEAR:
01467       shortdata = af->data;
01468       len = af->datalen / 2;
01469       break;
01470    case AST_FORMAT_ULAW:
01471       shortdata = alloca(af->datalen * 2);
01472       for (x = 0;x < len; x++) 
01473          shortdata[x] = AST_MULAW(odata[x]);
01474       break;
01475    case AST_FORMAT_ALAW:
01476       shortdata = alloca(af->datalen * 2);
01477       for (x = 0; x < len; x++) 
01478          shortdata[x] = AST_ALAW(odata[x]);
01479       break;
01480    default:
01481       ast_log(LOG_WARNING, "Inband DTMF is not supported on codec %s. Use RFC2833\n", ast_getformatname(af->subclass));
01482       return af;
01483    }
01484    silence = __ast_dsp_silence(dsp, shortdata, len, NULL);
01485    if ((dsp->features & DSP_FEATURE_SILENCE_SUPPRESS) && silence) {
01486       memset(&dsp->f, 0, sizeof(dsp->f));
01487       dsp->f.frametype = AST_FRAME_NULL;
01488       ast_frfree(af);
01489       ast_set_flag(&dsp->f, AST_FRFLAG_FROM_DSP);
01490       return &dsp->f;
01491    }
01492    if ((dsp->features & DSP_FEATURE_BUSY_DETECT) && ast_dsp_busydetect(dsp)) {
01493       chan->_softhangup |= AST_SOFTHANGUP_DEV;
01494       memset(&dsp->f, 0, sizeof(dsp->f));
01495       dsp->f.frametype = AST_FRAME_CONTROL;
01496       dsp->f.subclass = AST_CONTROL_BUSY;
01497       ast_frfree(af);
01498       ast_set_flag(&dsp->f, AST_FRFLAG_FROM_DSP);
01499       return &dsp->f;
01500    }
01501    if ((dsp->features & DSP_FEATURE_DTMF_DETECT)) {
01502       digit = __ast_dsp_digitdetect(dsp, shortdata, len, &writeback);
01503 #if 0
01504       if (digit)
01505          printf("Performing digit detection returned %d, digitmode is %d\n", digit, dsp->digitmode);
01506 #endif         
01507       if (dsp->digitmode & (DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX)) {
01508          if (!dsp->thinkdigit) {
01509             if (digit) {
01510                /* Looks like we might have something.  
01511                 * Request a conference mute for the moment */
01512                memset(&dsp->f, 0, sizeof(dsp->f));
01513                dsp->f.frametype = AST_FRAME_DTMF;
01514                dsp->f.subclass = 'm';
01515                dsp->thinkdigit = 'x';
01516                FIX_INF(af);
01517                if (chan)
01518                   ast_queue_frame(chan, af);
01519                ast_frfree(af);
01520                ast_set_flag(&dsp->f, AST_FRFLAG_FROM_DSP);
01521                return &dsp->f;
01522             }
01523          } else {
01524             if (digit) {
01525                /* Thought we saw one last time.  Pretty sure we really have now */
01526                if ((dsp->thinkdigit != 'x') && (dsp->thinkdigit != digit)) {
01527                   /* If we found a digit, and we're changing digits, go
01528                      ahead and send this one, but DON'T stop confmute because
01529                      we're detecting something else, too... */
01530                   memset(&dsp->f, 0, sizeof(dsp->f));
01531                   dsp->f.frametype = AST_FRAME_DTMF_END;
01532                   dsp->f.subclass = dsp->thinkdigit;
01533                   FIX_INF(af);
01534                   if (chan)
01535                      ast_queue_frame(chan, af);
01536                   ast_frfree(af);
01537                } else {
01538                   dsp->thinkdigit = digit;
01539                   memset(&dsp->f, 0, sizeof(dsp->f));
01540                   dsp->f.frametype = AST_FRAME_DTMF_BEGIN;
01541                   dsp->f.subclass = dsp->thinkdigit;
01542                   FIX_INF(af);
01543                   if (chan)
01544                      ast_queue_frame(chan, af);
01545                   ast_frfree(af);
01546                }
01547                ast_set_flag(&dsp->f, AST_FRFLAG_FROM_DSP);
01548                return &dsp->f;
01549             } else {
01550                memset(&dsp->f, 0, sizeof(dsp->f));
01551                if (dsp->thinkdigit != 'x') {
01552                   /* If we found a digit, send it now */
01553                   dsp->f.frametype = AST_FRAME_DTMF_END;
01554                   dsp->f.subclass = dsp->thinkdigit;
01555                   dsp->thinkdigit = 0;
01556                } else {
01557                   dsp->f.frametype = AST_FRAME_DTMF;
01558                   dsp->f.subclass = 'u';
01559                   dsp->thinkdigit = 0;
01560                }
01561                FIX_INF(af);
01562                if (chan)
01563                   ast_queue_frame(chan, af);
01564                ast_frfree(af);
01565                ast_set_flag(&dsp->f, AST_FRFLAG_FROM_DSP);
01566                return &dsp->f;
01567             }
01568          }
01569       } else if (!digit) {
01570          /* Only check when there is *not* a hit... */
01571          if (dsp->digitmode & DSP_DIGITMODE_MF) {
01572             if (dsp->td.mf.current_digits) {
01573                memset(&dsp->f, 0, sizeof(dsp->f));
01574                dsp->f.frametype = AST_FRAME_DTMF;
01575                dsp->f.subclass = dsp->td.mf.digits[0];
01576                memmove(dsp->td.mf.digits, dsp->td.mf.digits + 1, dsp->td.mf.current_digits);
01577                dsp->td.mf.current_digits--;
01578                FIX_INF(af);
01579                if (chan)
01580                   ast_queue_frame(chan, af);
01581                ast_frfree(af);
01582                ast_set_flag(&dsp->f, AST_FRFLAG_FROM_DSP);
01583                return &dsp->f;
01584             }
01585          } else {
01586             if (dsp->td.dtmf.current_digits) {
01587                memset(&dsp->f, 0, sizeof(dsp->f));
01588                dsp->f.frametype = AST_FRAME_DTMF_END;
01589                dsp->f.subclass = dsp->td.dtmf.digits[0];
01590                memmove(dsp->td.dtmf.digits, dsp->td.dtmf.digits + 1, dsp->td.dtmf.current_digits);
01591                dsp->td.dtmf.current_digits--;
01592                FIX_INF(af);
01593                if (chan)
01594                   ast_queue_frame(chan, af);
01595                ast_frfree(af);
01596                ast_set_flag(&dsp->f, AST_FRFLAG_FROM_DSP);
01597                return &dsp->f;
01598             }
01599          }
01600       }
01601    }
01602    if ((dsp->features & DSP_FEATURE_CALL_PROGRESS)) {
01603       res = __ast_dsp_call_progress(dsp, shortdata, len);
01604       if (res) {
01605          switch(res) {
01606          case AST_CONTROL_ANSWER:
01607          case AST_CONTROL_BUSY:
01608          case AST_CONTROL_RINGING:
01609          case AST_CONTROL_CONGESTION:
01610          case AST_CONTROL_HANGUP:
01611             memset(&dsp->f, 0, sizeof(dsp->f));
01612             dsp->f.frametype = AST_FRAME_CONTROL;
01613             dsp->f.subclass = res;
01614             dsp->f.src = "dsp_progress";
01615             if (chan) 
01616                ast_queue_frame(chan, &dsp->f);
01617             break;
01618          default:
01619             ast_log(LOG_WARNING, "Don't know how to represent call progress message %d\n", res);
01620          }
01621       }
01622    }
01623    FIX_INF(af);
01624    return af;
01625 }
01626 
01627 static void ast_dsp_prog_reset(struct ast_dsp *dsp)
01628 {
01629    int max = 0;
01630    int x;
01631    
01632    dsp->gsamp_size = modes[dsp->progmode].size;
01633    dsp->gsamps = 0;
01634    for (x=0;x<sizeof(modes[dsp->progmode].freqs) / sizeof(modes[dsp->progmode].freqs[0]);x++) {
01635       if (modes[dsp->progmode].freqs[x]) {
01636          goertzel_init(&dsp->freqs[x], (float)modes[dsp->progmode].freqs[x], dsp->gsamp_size);
01637          max = x + 1;
01638       }
01639    }
01640    dsp->freqcount = max;
01641    dsp->ringtimeout= 0;
01642 }
01643 
01644 struct ast_dsp *ast_dsp_new(void)
01645 {
01646    struct ast_dsp *dsp;
01647    
01648    if ((dsp = ast_calloc(1, sizeof(*dsp)))) {      
01649       dsp->threshold = DEFAULT_THRESHOLD;
01650       dsp->features = DSP_FEATURE_SILENCE_SUPPRESS;
01651       dsp->busycount = DSP_HISTORY;
01652       /* Initialize DTMF detector */
01653       ast_dtmf_detect_init(&dsp->td.dtmf);
01654       /* Initialize initial DSP progress detect parameters */
01655       ast_dsp_prog_reset(dsp);
01656    }
01657    return dsp;
01658 }
01659 
01660 void ast_dsp_set_features(struct ast_dsp *dsp, int features)
01661 {
01662    dsp->features = features;
01663 }
01664 
01665 void ast_dsp_free(struct ast_dsp *dsp)
01666 {
01667    if (ast_test_flag(&dsp->f, AST_FRFLAG_FROM_DSP)) {
01668       /* If this flag is still set, that means that the dsp's destruction 
01669        * been torn down, while we still have a frame out there being used.
01670        * When ast_frfree() gets called on that frame, this ast_trans_pvt
01671        * will get destroyed, too. */
01672 
01673       /* Set the magic hint that this has been requested to be destroyed. */
01674       dsp->freqcount = -1;
01675 
01676       return;
01677    }
01678    free(dsp);
01679 }
01680 
01681 void ast_dsp_set_threshold(struct ast_dsp *dsp, int threshold)
01682 {
01683    dsp->threshold = threshold;
01684 }
01685 
01686 void ast_dsp_set_busy_count(struct ast_dsp *dsp, int cadences)
01687 {
01688    if (cadences < 4)
01689       cadences = 4;
01690    if (cadences > DSP_HISTORY)
01691       cadences = DSP_HISTORY;
01692    dsp->busycount = cadences;
01693 }
01694 
01695 void ast_dsp_set_busy_pattern(struct ast_dsp *dsp, int tonelength, int quietlength)
01696 {
01697    dsp->busy_tonelength = tonelength;
01698    dsp->busy_quietlength = quietlength;
01699    ast_log(LOG_DEBUG, "dsp busy pattern set to %d,%d\n", tonelength, quietlength);
01700 }
01701 
01702 void ast_dsp_digitreset(struct ast_dsp *dsp)
01703 {
01704    int i;
01705    
01706    dsp->thinkdigit = 0;
01707    if (dsp->digitmode & DSP_DIGITMODE_MF) {
01708       memset(dsp->td.mf.digits, 0, sizeof(dsp->td.mf.digits));
01709       dsp->td.mf.current_digits = 0;
01710       /* Reinitialise the detector for the next block */
01711       for (i = 0;  i < 6;  i++) {
01712          goertzel_reset(&dsp->td.mf.tone_out[i]);
01713 #ifdef OLD_DSP_ROUTINES
01714          goertzel_reset(&dsp->td.mf.tone_out2nd[i]);
01715 #endif         
01716       }
01717 #ifdef OLD_DSP_ROUTINES
01718       dsp->td.mf.energy = 0.0;
01719       dsp->td.mf.hit1 = dsp->td.mf.hit2 = dsp->td.mf.hit3 = dsp->td.mf.hit4 = dsp->td.mf.mhit = 0;
01720 #else
01721       dsp->td.mf.hits[4] = dsp->td.mf.hits[3] = dsp->td.mf.hits[2] = dsp->td.mf.hits[1] = dsp->td.mf.hits[0] = dsp->td.mf.mhit = 0;
01722 #endif      
01723       dsp->td.mf.current_sample = 0;
01724    } else {
01725       memset(dsp->td.dtmf.digits, 0, sizeof(dsp->td.dtmf.digits));
01726       dsp->td.dtmf.current_digits = 0;
01727       /* Reinitialise the detector for the next block */
01728       for (i = 0;  i < 4;  i++) {
01729          goertzel_reset(&dsp->td.dtmf.row_out[i]);
01730          goertzel_reset(&dsp->td.dtmf.col_out[i]);
01731 #ifdef OLD_DSP_ROUTINES
01732          goertzel_reset(&dsp->td.dtmf.row_out2nd[i]);
01733          goertzel_reset(&dsp->td.dtmf.col_out2nd[i]);
01734 #endif         
01735       }
01736 #ifdef FAX_DETECT
01737       goertzel_reset (&dsp->td.dtmf.fax_tone);
01738 #endif
01739 #ifdef OLD_DSP_ROUTINES
01740 #ifdef FAX_DETECT
01741       goertzel_reset (&dsp->td.dtmf.fax_tone2nd);
01742 #endif
01743       dsp->td.dtmf.hit1 = dsp->td.dtmf.hit2 = dsp->td.dtmf.hit3 = dsp->td.dtmf.hit4 = dsp->td.dtmf.mhit = 0;
01744 #else
01745       dsp->td.dtmf.lasthit = dsp->td.dtmf.mhit = 0;
01746 #endif      
01747       dsp->td.dtmf.energy = 0.0;
01748       dsp->td.dtmf.current_sample = 0;
01749    }
01750 }
01751 
01752 void ast_dsp_reset(struct ast_dsp *dsp)
01753 {
01754    int x;
01755    
01756    dsp->totalsilence = 0;
01757    dsp->gsamps = 0;
01758    for (x=0;x<4;x++)
01759       dsp->freqs[x].v2 = dsp->freqs[x].v3 = 0.0;
01760    memset(dsp->historicsilence, 0, sizeof(dsp->historicsilence));
01761    memset(dsp->historicnoise, 0, sizeof(dsp->historicnoise));  
01762    dsp->ringtimeout= 0;
01763 }
01764 
01765 int ast_dsp_digitmode(struct ast_dsp *dsp, int digitmode)
01766 {
01767    int new;
01768    int old;
01769    
01770    old = dsp->digitmode & (DSP_DIGITMODE_DTMF | DSP_DIGITMODE_MF | DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX);
01771    new = digitmode & (DSP_DIGITMODE_DTMF | DSP_DIGITMODE_MF | DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX);
01772    if (old != new) {
01773       /* Must initialize structures if switching from MF to DTMF or vice-versa */
01774       if (new & DSP_DIGITMODE_MF)
01775          ast_mf_detect_init(&dsp->td.mf);
01776       else
01777          ast_dtmf_detect_init(&dsp->td.dtmf);
01778    }
01779    dsp->digitmode = digitmode;
01780    return 0;
01781 }
01782 
01783 int ast_dsp_set_call_progress_zone(struct ast_dsp *dsp, char *zone)
01784 {
01785    int x;
01786    
01787    for (x=0;x<sizeof(aliases) / sizeof(aliases[0]);x++) {
01788       if (!strcasecmp(aliases[x].name, zone)) {
01789          dsp->progmode = aliases[x].mode;
01790          ast_dsp_prog_reset(dsp);
01791          return 0;
01792       }
01793    }
01794    return -1;
01795 }
01796 
01797 int ast_dsp_get_tstate(struct ast_dsp *dsp) 
01798 {
01799    return dsp->tstate;
01800 }
01801 
01802 int ast_dsp_get_tcount(struct ast_dsp *dsp) 
01803 {
01804    return dsp->tcount;
01805 }
01806 
01807 void ast_dsp_frame_freed(struct ast_frame *fr)
01808 {
01809    struct ast_dsp *dsp;
01810 
01811    ast_clear_flag(fr, AST_FRFLAG_FROM_DSP);
01812 
01813    dsp = (struct ast_dsp *) (((char *) fr) - offsetof(struct ast_dsp, f));
01814 
01815    if (dsp->freqcount != -1)
01816       return;
01817    
01818    ast_dsp_free(dsp);
01819 }

Generated on Thu Oct 8 21:57:26 2009 for Asterisk - the Open Source PBX by  doxygen 1.5.8