glue_kron_meat.hpp

Go to the documentation of this file.
00001 // Copyright (C) 2010 NICTA and the authors listed below
00002 // http://nicta.com.au
00003 // 
00004 // Authors:
00005 // - Conrad Sanderson (conradsand at ieee dot org)
00006 // - Dimitrios Bouzas (dimitris dot mpouzas at gmail dot com)
00007 // 
00008 // This file is part of the Armadillo C++ library.
00009 // It is provided without any warranty of fitness
00010 // for any purpose. You can redistribute this file
00011 // and/or modify it under the terms of the GNU
00012 // Lesser General Public License (LGPL) as published
00013 // by the Free Software Foundation, either version 3
00014 // of the License or (at your option) any later version.
00015 // (see http://www.opensource.org/licenses for more info)
00016 
00017 
00018 //! \addtogroup glue_kron
00019 //! @{
00020 
00021 
00022 
00023 //! \brief
00024 //! both input matrices have the same element type
00025 template<typename eT>
00026 inline
00027 void
00028 glue_kron::direct_kron(Mat<eT>& out, const Mat<eT>& A, const Mat<eT>& B)
00029   {
00030   arma_extra_debug_sigprint();
00031   
00032   const u32 A_rows = A.n_rows;
00033   const u32 A_cols = A.n_cols;
00034   const u32 B_rows = B.n_rows;
00035   const u32 B_cols = B.n_cols;
00036   
00037   out.set_size(A_rows*B_rows, A_cols*B_cols);
00038   
00039   for(u32 i = 0; i < A_rows; i++)
00040     {
00041     for(u32 j = 0; j < A_cols; j++)
00042       {
00043       out.submat(i*B_rows, j*B_cols, (i+1)*B_rows-1, (j+1)*B_cols-1) = A(i,j) * B; 
00044       }
00045     }  
00046   }
00047 
00048 
00049 
00050 //! \brief
00051 //! different types of input matrices
00052 //! A -> complex, B -> basic element type
00053 template<typename T>
00054 inline
00055 void
00056 glue_kron::direct_kron(Mat< std::complex<T> >& out, const Mat< std::complex<T> >& A, const Mat<T>& B)
00057   {
00058   arma_extra_debug_sigprint();
00059   
00060   typedef typename std::complex<T> eT;
00061   
00062   const u32 A_rows = A.n_rows;
00063   const u32 A_cols = A.n_cols;
00064   const u32 B_rows = B.n_rows;
00065   const u32 B_cols = B.n_cols;
00066   
00067   out.set_size(A_rows*B_rows, A_cols*B_cols);
00068   
00069   Mat<eT> tmp_B = conv_to< Mat<eT> >::from(B);
00070   
00071   for(u32 i = 0; i < A_rows; i++)
00072     {
00073     for(u32 j = 0; j < A_cols; j++)
00074       {
00075       out.submat(i*B_rows, j*B_cols, (i+1)*B_rows-1, (j+1)*B_cols-1) = A(i,j) * tmp_B; 
00076       }
00077     }  
00078   }
00079 
00080 
00081 
00082 //! \brief
00083 //! different types of input matrices
00084 //! A -> basic element type, B -> complex
00085 template<typename T>
00086 inline
00087 void
00088 glue_kron::direct_kron(Mat< std::complex<T> >& out, const Mat<T>& A, const Mat< std::complex<T> >& B)
00089   {
00090   arma_extra_debug_sigprint();
00091   
00092   const u32 A_rows = A.n_rows;
00093   const u32 A_cols = A.n_cols;
00094   const u32 B_rows = B.n_rows;
00095   const u32 B_cols = B.n_cols;
00096   
00097   out.set_size(A_rows*B_rows, A_cols*B_cols);
00098   
00099   for(u32 i = 0; i < A_rows; i++)
00100     {
00101     for(u32 j = 0; j < A_cols; j++)
00102       {
00103       out.submat(i*B_rows, j*B_cols, (i+1)*B_rows-1, (j+1)*B_cols-1) = A(i,j) * B; 
00104       }
00105     }  
00106   }
00107 
00108 
00109 
00110 //! \brief
00111 //! apply Kronecker product for two objects with same element type
00112 template<typename T1, typename T2>
00113 inline
00114 void
00115 glue_kron::apply(Mat<typename T1::elem_type>& out, const Glue<T1,T2,glue_kron>& X)
00116   {
00117   arma_extra_debug_sigprint();
00118   
00119   typedef typename T1::elem_type eT;
00120   
00121   const unwrap_check<T1> A_tmp(X.A, out);
00122   const unwrap_check<T2> B_tmp(X.B, out);
00123   
00124   const Mat<eT>& A = A_tmp.M;
00125   const Mat<eT>& B = B_tmp.M;
00126   
00127   glue_kron::direct_kron(out, A, B); 
00128   }
00129 
00130 
00131 
00132 //! @}