operator_times.hpp

Go to the documentation of this file.
00001 // Copyright (C) 2010 NICTA and the authors listed below
00002 // http://nicta.com.au
00003 // 
00004 // Authors:
00005 // - Conrad Sanderson (conradsand at ieee dot org)
00006 // 
00007 // This file is part of the Armadillo C++ library.
00008 // It is provided without any warranty of fitness
00009 // for any purpose. You can redistribute this file
00010 // and/or modify it under the terms of the GNU
00011 // Lesser General Public License (LGPL) as published
00012 // by the Free Software Foundation, either version 3
00013 // of the License or (at your option) any later version.
00014 // (see http://www.opensource.org/licenses for more info)
00015 
00016 
00017 
00018 //! \addtogroup operator_times
00019 //! @{
00020 
00021 
00022 
00023 //! Base * scalar
00024 template<typename T1>
00025 arma_inline
00026 const eOp<T1, eop_scalar_times>
00027 operator*
00028 (const Base<typename T1::elem_type,T1>& X, const typename T1::elem_type k)
00029   {
00030   arma_extra_debug_sigprint();
00031   
00032   return eOp<T1, eop_scalar_times>(X.get_ref(),k);
00033   }
00034 
00035 
00036 
00037 //! scalar * Base
00038 template<typename T1>
00039 arma_inline
00040 const eOp<T1, eop_scalar_times>
00041 operator*
00042 (const typename T1::elem_type k, const Base<typename T1::elem_type,T1>& X)
00043   {
00044   arma_extra_debug_sigprint();
00045   
00046   return eOp<T1, eop_scalar_times>(X.get_ref(),k);  // NOTE: order is swapped
00047   }
00048 
00049 
00050 
00051 //! non-complex Base * complex scalar (experimental)
00052 template<typename T1>
00053 arma_inline
00054 Mat<typename std::complex<typename T1::pod_type> >
00055 operator*
00056   (
00057   const Base<typename T1::pod_type, T1>&     X,
00058   const std::complex<typename T1::pod_type>& k
00059   )
00060   {
00061   arma_extra_debug_sigprint();
00062   
00063   typedef typename std::complex<typename T1::pod_type> eT;
00064   typedef typename T1::pod_type                         T;
00065   
00066   const Proxy<T1> A(X.get_ref());
00067   
00068   Mat<eT> out(A.n_rows, A.n_cols);
00069   
00070   const u32 n_elem  = A.n_elem;
00071         eT* out_mem = out.memptr();
00072   
00073   for(u32 i=0; i<n_elem; ++i)
00074     {
00075     out_mem[i] = A[i] * k;
00076     }
00077   
00078   return out;
00079   }
00080 
00081 
00082 
00083 //! complex scalar * non-complex Base (experimental)
00084 template<typename T1>
00085 arma_inline
00086 Mat<typename std::complex<typename T1::pod_type> >
00087 operator*
00088   (
00089   const std::complex<typename T1::pod_type>& k,
00090   const Base<typename T1::pod_type, T1>&     X
00091   )
00092   {
00093   arma_extra_debug_sigprint();
00094   
00095   typedef typename std::complex<typename T1::pod_type> eT;
00096   typedef typename T1::pod_type                         T;
00097   
00098   const Proxy<T1> A(X.get_ref());
00099   
00100   Mat<eT> out(A.n_rows, A.n_cols);
00101   
00102   const u32 n_elem  = A.n_elem;
00103         eT* out_mem = out.memptr();
00104   
00105   for(u32 i=0; i<n_elem; ++i)
00106     {
00107     out_mem[i] = k * A[i];
00108     }
00109   
00110   return out;
00111   }
00112 
00113 
00114 
00115 //! scalar * trans(T1)
00116 template<typename T1>
00117 arma_inline
00118 const Op<T1, op_trans2>
00119 operator*
00120 (const typename T1::elem_type k, const Op<T1, op_trans>& X)
00121   {
00122   arma_extra_debug_sigprint();
00123   
00124   return Op<T1, op_trans2>(X.m, k);
00125   }
00126 
00127 
00128 
00129 //! trans(T1) * scalar
00130 template<typename T1>
00131 arma_inline
00132 const Op<T1, op_trans2>
00133 operator*
00134 (const Op<T1, op_trans>& X, const typename T1::elem_type k)
00135   {
00136   arma_extra_debug_sigprint();
00137   
00138   return Op<T1, op_trans2>(X.m, k);
00139   }
00140 
00141 
00142 
00143 //! Base * diagmat
00144 template<typename T1, typename T2>
00145 arma_inline
00146 const Glue<T1, Op<T2, op_diagmat>, glue_times_diag>
00147 operator*
00148 (const Base<typename T2::elem_type,T1>& X, const Op<T2, op_diagmat>& Y)
00149   {
00150   arma_extra_debug_sigprint();
00151   
00152   return Glue<T1, Op<T2, op_diagmat>, glue_times_diag>(X.get_ref(), Y);
00153   }
00154 
00155 
00156 
00157 //! diagmat * Base
00158 template<typename T1, typename T2>
00159 arma_inline
00160 const Glue<Op<T1, op_diagmat>, T2, glue_times_diag>
00161 operator*
00162 (const Op<T1, op_diagmat>& X, const Base<typename T1::elem_type,T2>& Y)
00163   {
00164   arma_extra_debug_sigprint();
00165   
00166   return Glue<Op<T1, op_diagmat>, T2, glue_times_diag>(X, Y.get_ref());
00167   }
00168 
00169 
00170 
00171 //! diagmat * diagmat
00172 template<typename T1, typename T2>
00173 arma_inline
00174 Mat< typename promote_type<typename T1::elem_type, typename T2::elem_type>::result >
00175 operator*
00176 (const Op<T1, op_diagmat>& X, const Op<T2, op_diagmat>& Y)
00177   {
00178   arma_extra_debug_sigprint();
00179   
00180   typedef typename T1::elem_type eT1;
00181   typedef typename T2::elem_type eT2;
00182   
00183   typedef typename promote_type<eT1,eT2>::result out_eT;
00184   
00185   promote_type<eT1,eT2>::check();
00186   
00187   const diagmat_proxy<T1> A(X.m);
00188   const diagmat_proxy<T2> B(Y.m);
00189   
00190   arma_debug_assert_mul_size(A.n_elem, A.n_elem, B.n_elem, B.n_elem, "matrix multiply");
00191   
00192   const u32 N = A.n_elem;
00193   
00194   Mat<out_eT> out(N,N);
00195   
00196   out.zeros();
00197   
00198   for(u32 i=0; i<N; ++i)
00199     {
00200     out.at(i,i) = upgrade_val<eT1,eT2>::apply( A[i] ) * upgrade_val<eT1,eT2>::apply( B[i] );
00201     }
00202   
00203   return out;
00204   }
00205 
00206 
00207 
00208 //! multiplication of Base objects with same element type
00209 template<typename T1, typename T2>
00210 arma_inline
00211 const Glue<T1, T2, glue_times>
00212 operator*
00213 (const Base<typename T1::elem_type,T1>& X, const Base<typename T1::elem_type,T2>& Y)
00214   {
00215   arma_extra_debug_sigprint();
00216   
00217   return Glue<T1, T2, glue_times>(X.get_ref(), Y.get_ref());
00218   }
00219 
00220 
00221 
00222 //! multiplication of Base objects with different element types
00223 template<typename T1, typename T2>
00224 arma_inline
00225 Mat<typename promote_type<typename T1::elem_type, typename T2::elem_type>::result>
00226 operator*
00227   (
00228   const Base< typename force_different_type<typename T1::elem_type, typename T2::elem_type>::T1_result, T1>& X,
00229   const Base< typename force_different_type<typename T1::elem_type, typename T2::elem_type>::T2_result, T2>& Y
00230   )
00231   {
00232   arma_extra_debug_sigprint();
00233   
00234   typedef typename T1::elem_type eT1;
00235   typedef typename T2::elem_type eT2;
00236   
00237   typedef typename promote_type<eT1,eT2>::result out_eT;
00238   
00239   promote_type<eT1,eT2>::check();
00240   
00241   const unwrap<T1> tmp1(X.get_ref());
00242   const unwrap<T2> tmp2(Y.get_ref());
00243   
00244   const Mat<eT1>& A = tmp1.M;
00245   const Mat<eT2>& B = tmp2.M;
00246   
00247   Mat<out_eT> out;
00248   
00249   glue_times::apply_mixed(out, A, B);
00250   
00251   return out;
00252   }
00253 
00254 
00255 
00256 //! @}