
ℵ Programming Language

Programmer’s Guide

Volume 1 Revision 0.9.0

This documentation is bound to theAleph programming language license and therefore shall be considered
free. This documentation can be redistributed and/or modified, providing that the copyright notice is kept
intact. This documentation is distributed in the hope that it will be useful, but without any warranty; without
even the implied warranty of merchantability or fitness for aparticular purpose. In no event shall the copyright
holder be liable for any direct, indirect, incidental or special damages arising in any way out of the use of this
documentation or the software it refers to.

c© 1999-2003 Amaury C. Darsch

CONTENTS

Preface ix
The Aleph programming language ix
Features ix
Aleph engine x
Flexible Distribution x

License xiii

1 Getting Started 1
1.1 First programs 1

1.1.1 Hello world 1
1.1.2 Interpreter command 2
1.1.3 Interactive line editing 2
1.1.4 Command line arguments 2
1.1.5 Loading a source file 3
1.1.6 The compiler 3
1.1.7 Builtin objects 3
1.1.8 Comments 4
1.1.9 Forms 4

1.2 Lambda expression 5
1.2.1 Block form 5
1.2.2 Gamma expression 6
1.2.3 Lambda generation 6
1.2.4 Multiple arguments binding 7

1.3 Nameset and bindings 7
1.3.1 Symbol 8
1.3.2 Creating a nameset 8
1.3.3 Qualified name 8
1.3.4 Symbol binding 8
1.3.5 Constant binding 9
1.3.6 Arguments 9

1.4 Control flow 9
1.4.1 If statement 10
1.4.2 While statement 10
1.4.3 Do statement 10
1.4.4 Loop statement 11

iv CONTENTS

1.4.5 Switch statement 11
1.4.6 Return statement 11
1.4.7 Eval and protect 11
1.4.8 Assert statement 12
1.4.9 Block statement 12

1.5 Builtin objects 12
1.5.1 Arithmetic operations 12
1.5.2 Logical operations 13
1.5.3 Predicates 13

1.6 Class and Instance 13
1.6.1 Class and members 13
1.6.2 Instance 14
1.6.3 Instance method 15

1.7 Miscellaneous features 15
1.7.1 Iteration 15
1.7.2 Exception 16
1.7.3 Delayed evaluation 17
1.7.4 Regular Expressions 17

1.8 Threads 17
1.8.1 Form synchronization 18
1.8.2 Thread completion 18
1.8.3 Condition variable 19

2 Numbers and Strings 21
2.1 Integer 21

2.1.1 Integer format 21
2.1.2 Integer arithmetic 21
2.1.3 Integer comparison 22
2.1.4 Integer calculus 23
2.1.5 Other Integer methods 23

2.2 Relatif Number 23
2.2.1 Relatif operations 23

2.3 Real Number 24
2.3.1 Real format 24
2.3.2 Real arithmetic 24
2.3.3 Real comparison 25
2.3.4 A complex example 25
2.3.5 Other real methods 26
2.3.6 Accuracy and formating 26

2.4 Character 27
2.4.1 Character format 27
2.4.2 Character arithmetic 28
2.4.3 Character comparison 28
2.4.4 Other character methods 28

2.5 String 29
2.5.1 String format 29
2.5.2 String operations 29
2.5.3 String hash value 30

3 Container Objects 31

CONTENTS v

3.1 Cons builtin object 31
3.1.1 Cons cell constructors 31
3.1.2 Cons cell methods 31

3.2 List builtin object 32
3.2.1 List construction 32
3.2.2 List methods 32

3.3 Vector builtin object 32
3.3.1 Vector construction 32
3.3.2 Vector methods 32

3.4 Iteration 33
3.4.1 Function mapping 33
3.4.2 Multiple iteration 33
3.4.3 Conversion of iterable objects 33
3.4.4 Explicit iterator 34

3.5 Special Object 34
3.5.1 Queue object 34
3.5.2 Bitset object 35

4 Class 37
4.1 The Class object 37

4.1.1 Class declaration and binding 37
4.1.2 Class closure binding 37
4.1.3 Class symbol access 38

4.2 Instance 38
4.2.1 Instance construction 38
4.2.2 Instance initialization 39
4.2.3 Initialization with data member list 39
4.2.4 Instance symbol access 39
4.2.5 Instance method 40
4.2.6 Instance operators 41
4.2.7 Complex number example 41

4.3 Inheritance 42
4.3.1 Derivation construction 43
4.3.2 Derived symbol access 43

5 Advanced Concepts 45
5.1 Exception 45

5.1.1 Throwing an exception 45
5.1.2 Exception handler 45

5.2 Nameset 46
5.2.1 Default namesets 46
5.2.2 Nameset and inheritance 47

5.3 Delayed Evaluation 47
5.3.1 Creating a promise 47
5.3.2 Forcing a promise 47

5.4 Enumeration 47
5.5 Interpreter 48

5.5.1 Arguments vector 48
5.5.2 Interpreter version and os 49
5.5.3 File loading 49

vi CONTENTS

5.5.4 Library loading 49

6 Threads Operations 51
6.1 Normal and Daemon threads 51

6.1.1 Starting a normal thread 51
6.1.2 Thread object and result 51

6.2 Shared Objects 52
6.2.1 Various shared objects 52
6.2.2 Shared object predicate 52
6.2.3 Shared protection access 53

6.3 Synchronization 53
6.3.1 Form synchronization 53
6.3.2 Thread completion 54
6.3.3 Complete example 54
6.3.4 Condition variable 56

7 Regular Expressions 57
7.1 Regular expression syntax 57

7.1.1 Regex characters and meta-characters 57
7.1.2 Regex character set 58
7.1.3 Regex blocks and operators 58
7.1.4 Grouping 59

7.2 Regex Object 59
7.2.1 Literal object 59
7.2.2 Regex operators 59
7.2.3 Regex methods 60
7.2.4 Argument conversion 60

8 Functional Programming 61
8.1 Function expression 61

8.1.1 Self reference 61
8.1.2 Closed variables 62
8.1.3 Dynamic binding 62

8.2 Functional objects 63
8.2.1 Lexical and qualified names 63
8.2.2 Symbol and argument access 63
8.2.3 Closure 64

8.3 Combinators example 64
8.3.1 Curried expression 65
8.3.2 Base combinators 65
8.3.3 Form transformation 65
8.3.4 Recursive combinator 66
8.3.5 Other combinators 68

9 Librarian and Resolver 69
9.1 Librarian 69

9.1.1 Creating a librarian 69

CONTENTS vii

9.1.2 Using the librarian 69
9.1.3 Librarian contents 70
9.1.4 Librarian extraction 70

9.2 Librarian object 70
9.2.1 Output librarian 70
9.2.2 Input librarian 70

9.3 Resolver 71
9.3.1 Resolver object 71

A Reserved keywords 73
assert 75
block 77
class 79
const 81
daemon 83
delay 85
do 87
enum 89
errorln 91
eval 93
for 95
force 97
if 99
lambda 101
launch 103
loop 105
nameset 107
println 109
protect 111
return 113
sync 115
switch 117
throw 119
trans 121
try 123
while 125

B Literal Objects 127
Literal 129
Item 131
Boolean 133
Integer 135
Relatif 139
Real 143
Character 149
String 153
regex 157

C Container Objects 161

viii CONTENTS

Cons 163
Enum 167
List 169
Vector 171
Node 173
Edge 175
Graph 177
Queue 179
Bitset 181
Buffer 183

D Special Objects 187
Object 189
Interp 191
Thread 193
Condvar 195
Lexical 197
Qualified 199
Symbol 201
Closure 203
Librarian 205
Resolver 207

Colophon 211

Preface

This manual is part of theAleph Programming Language Series, a multi volume set that describes
the programming environment of theAleph system. The entire set contains 4 volumes :

Volume 0 - Aleph Installation Guide is the distribution installation manual.

Volume 1 - Aleph Programmer Guide is the first volume of this set. It is both an introduction and
an advanced guide for the the developer.

Volume 2 - Aleph Library Reference is the second volume of this set. It is a complete description
of the Aleph standard library.

Volume 3 - Aleph Cross Debuggeris the third volume of this set. It is a reference manual to de-
velop and debug Aleph programs.

Volume 4 - Aleph C++ API is the fourth volume of this set. It is a reference manual of the C++
Application Programming Interface (API).

The Aleph programming language

Aleph is a multi-threaded functional programming language with dynamic symbol bindings that
support the object oriented paradigm.Aleph features a state of the art runtime engine that supports
both 32 and 64 bits platforms.Aleph comes with a rich set of libraries that are designed to be
platform independent.Aleph is a free software. A flexible license has been designed for both
individuals and corporations. Everybody is encouraged to use, distribute and/or modify the aleph
engine for any purpose.

Features

TheAleph engine is written in C++ and provides runtime compatibilitywith it. Such compatibility
includes the ability to instantiate C++ classes, use virtual methods and raise or catch exceptions. A
comprehensive API has been designed to ease the integrationof foreign libraries.

• Builtin objects
More than 50 reserved keywords and predicates. Various containers like list, vector, hash
table, bitset, and graphs.

• Functional programming
Support forlambda expressionwith explicit closure. Symbol scope limitation withgamma
expression. Form like notation with an easy block declaration.

x PREFACE

• Object oriented
Single inheritance object mechanism with dynamic symbol resolution. Native class deriva-
tion and method override. Static class data member and methods.

• Multi-threaded engine
True multi-threaded engine with automatic object protection mechanism against concurrent
access. Read and write locking system and thread activationvia condition objects.

• Original regular expression
Builtin regular expression engine with group matching, exact or partial match and substitu-
tion.

Aleph is a core language and libraries. The libraries are a specificset of classes and functions which
are structured per application domains.Aleph is delivered with a set of standard libraries.

• aleph-sys
The aleph-sys library is the system calls library. Standard classes and functions are
provided to interact with the running machine.

• aleph-sio
Thealeph-sio library is the standard input/output All input/output operations are per-
formed with this library.

• aleph-net
The aleph-net library is the networking library. The library is based on the standard
Internet Protocoland provides various classes to manipulates IP address, client or server
sockets.

• aleph-www
Thealeph-www library is the World Wide Web library. The library provides various classes
that ease the development of web applications or CGI scripts.

• aleph-txt
Thealeph-txt library is the text processing library. The library provides various func-
tions and classes that ease text manipulation. Sorting data, computing message digest and
formatting table is among others, features available in this library.

• aleph-odb
Thealeph-odb library is the object database library. The library provides several objects
that can be used to design a database. A client is also provided to directly access the database
contents.

Aleph providesextensions. An extension is a library or an application which is not installed by
default. The user selects during the installation process which extension is needed. For example, the
static version of the interpreter is an extension.

Aleph engine

Aleph is an interpreted language. When used interactively, commands are entered on the command
line and executed when a complete and valid syntactic objecthas been constructed. Alternatively,
the interpreter can execute a source file.Aleph does not have a garbage collector.Aleph operates
with a lazy, scope based, object destruction mechanism. Each time an object is no longer visible,
it is destroyed automatically. At this time, theAleph interpreter is unable to reclaim memory with
circular structures. This is a well known problem when usinga reference count mechanism. In the
future, theAleph engine will provide some mechanisms to resolve this problem.

PREFACE xi

Flexible Distribution

Aleph is a free software. A flexible license model encourages individuals or corporations to use,
copy, modify and/or distribute this software.Aleph is designed by software professionals. Quality is
one the driving force of the development effort. This is reflected in this distribution by the extensive
documentation. A large test suite is used to assess the quality of the distribution. Right now, the
engine has been successfully tested on most Linux platforms, Free BSD and Solaris.

xii PREFACE

License

Aleph is a free software. It can be used, modified and distributed byanybody for personal or com-
mercial use. The only restriction is altering the copyrightnotice associated with the material. In-
dividual or corporation are permitted to use, include or modify the Aleph engine. All material
developed with theAleph language belongs to their respective copyright holder.
This program is a free software. it can be redistributed and/or modified, providing that this copyright
notice is kept intact. This program is distributed in the hope that it will be useful, but without any
warranty; without even the implied warranty of merchantability or fitness for a particular purpose.
In no event shall the copyright holder be liable for any direct, indirect, incidental or special damages
arising in any way out of the use of this software.

xiv LICENSE

CHAPTER 1

Getting Started

This chapter is a quick introduction to the Aleph Programming Language, simply calledaleph. The
chapter describes the fundamental syntax without enteringinto the details which are described in
later chapters.

1.1 First programs

The fundamental aleph syntactic object is a form. A form is parsed and immediately executed by
the Aleph engine. A form is generally constructed with a function name and a set of arguments. The
process of executing a form is called theevaluation. As a simple program, the traditional"hello
world" program is shown below.

1.1.1 Hello world

The "hello world" program isde rigueurwhen introducing a new programming language. Here is
the aleph version of it.

aleph >println "hello world"

Aleph is an interpreted language. You can therefore invoke the interpreter and enter the above
commands, or use your favorite editor and executes the file. By convention, an aleph source file has
the extension.als. A simple session to run the above program (assuming the source file is called
hello.als) is shown below.

zsh >aleph hello.als
hello world

You can also simply invokealephand enter the command interactively. The result will be the same.
Simply typeCtrl-D to exit the session. Another way to operate is to call theAleph compiler called
axc, and then invoke the interpreter with the compiled file, evenlet the interpreter to figure this out.
Note that the interpreter assume the.axcfor compiled file.

zsh >axc hello.als
zsh >aleph hello.axc
hello world
zsh >aleph hello
hello world

2 Getting Started

The order of search is determined by a special system called the file resolver. Its behavior is de-
scribed in a special chapter of this manual.

1.1.2 Interpreter command

Thealeph interpreter can be invoked with several options, a file to execute and program arguments.
The-h option prints the various interpreter options.

zsh >aleph -h
usage: aleph [options] [file] [arguments]

[-h] print this help message
[-v] print version information
[-i] path add a path to the resolver
[-f] assert enable assertion checking
[-f] nopath do not set initial path

The-v option prints the interpreter version and operating system. The-f option turn on or off
some additional options like assertion checking. The program arguments are illustrated later in this
chapter. The-i option add a path to the interpreter file path resolver. Several -i options can be
specified. The order of search is determined by the option order. The use of the resolver combined
with the librarian is described in a specific chapter. If the initial file name to execute contains a
directory path, such path is added automatically to the interpreter resolver path unless thenopath
option is specified.

1.1.3 Interactive line editing

Line editing capabilities are supported when the interpreter is used interactively. Error messages are
displayed in red if the terminal supports colors. The following table is a resume of the default key
bindings.

Table 1Terminal keyboard mapping

Binding Description

backspace erase the previous character
delete erase at the cursor position
insert toggle insert with in-place
left move the cursor to the left
rigth move the cursor to the right
up move up in the history list
down move down in the history list
ctrl-a move to the beginning of the line
ctrl-e move to the end of the line
ctrl-u clear the input line
ctrl-k clear from the cursor position
ctrl-l refresh the line editing

1.1.4 Command line arguments

The command line arguments to the interpreter are stored in avector calledargv which is part of
theinterp class. A complete discussion about class data member is covered in chapter 4. At this
stage, just look at the example below which illustrates the use of the vector argument.

First programs 3

argv.als
print the argument length and the first one

println "argument length: " (interp:argv:length)
println "first argument : " (interp:argv:get 0)

zsh >aleph argv.als hello world
2
hello

1.1.5 Loading a source file

The interpreter class provides also theload method to load a source file. The argument must be a
valid file path or an exception is raised. Theload method returnsnil. When the file is loaded, the
interpreter input, output and error streams are used. The load operation read one form after another
and executes them sequentially.

load the source file fred.als
aleph >interp:load "fred.als"

If the file has been compiled theaxcextension can be used instead. This force the interpreter toload
the compiled version. If you are not sure, or do not care aboutwhich file is loaded, the extension can
be omitted.

load the compiled file fred.axc
aleph >interp:load "fred.axc"
load whatever is found
aleph >interp:load "fred"

Without extension, the compiled file is searched first. If it is not found the source file is searched and
loaded.

1.1.6 The compiler

axc is theAleph cross compiler. It generates a binary file that can be run across platforms. The-h
option prints the various interpreter options.

usage: axc [options] [files]
[-h] print this help message
[-v] print version information
[-i] path add a path to the resolver

One or several files can be specified on the command line. The source file can be searched by the
resolver by using the-i option.

1.1.7 Builtin objects

Aleph provides several builtin objects, namely Boolean, Integer, Real, Character and String. A
builtin object can be constructed literally for each of these types. The best way to build such object
is to bind it to asymbol. Theconstandtrans reserved keywords are used to declare a new symbol.
A symbol is simply a binding between a name and an object. Almost any standard characters can be
used to declare a symbol.

4 Getting Started

const boolean true ➞ true
const integer 1999 ➞ 1999
const real 2000.0 ➞ 2000.0
const string "aleph" ➞ aleph
const char ’a’ ➞ a

None of the symbols (or names) used in the program above are reserved keywords. In fact, the
capitalize names are builtin objects (like Integer or String). Theconst reserved keyword creates a
const symbol and returns the last evaluated object. As a consequence, nestedconstconstructs are
possible liketrans b (const a 1). Thetrans reserved keyword declare a new non-constant
symbol. That is, the symbol can be changed. Note that it is thesymbol which is marked constant,
not the object.

trans a-symbol "hello world" ➞ "hello world"
trans a-symbol 2000 ➞ 2000
println a-symbol ➞ 2000

1.1.8 Comments

Comments starts with the character ’#’. All characters until the end of line are consumed. Comments
can be placed anywhere in the source file. Comments entered during an interactive session are
discarded.

1.1.9 Forms

The previous program was an illustration of the simplest form declaration, referred asimplicit form.
An implicit form is a single line command. When a command is becoming complex, the use of the
standard form notation is more readable. The standard form uses the ’(’ and ’)’ characters to start
and close a form. The previous programs could have been written with the standard form notation
instead of the implicit one. The use of standard form notation versus the implicit is one is a matter
of style and readability.
A form causes anevaluation. When a form is evaluated, each symbol in the form are evaluated
to their corresponding internal object. Then the interpreter treats the first object of the form as the
object to execute and the rest is the argument list for the calling object. The use of form inside a
form is the standard way to perform recursive evaluation forcomplex expression.

const three (+ 1 2) ➞ 3

The previous program defines a symbol which is initialized with the integer 3, that is the result of
the computation (+ 1 2). The program shows also that Polish notation is used for arithmetic. If fact,
’+’ is a builtin operator which causes the arguments to be summed (if possible).
Evaluation can be nested as well as definition and assignation. When a form is evaluated, the result
of the evaluation is made available to the calling form. If the result is obtained at the top level, that
result is discarded.

const b (trans a (+ 1 2))
assert a 3
assert b 3
trans a 4
assert b 3

This program illustrates the mechanic of the evaluation process. The evaluation is done recursively.
The(+ 1 2) form is evaluated as 3 and the result transmitted to the form(trans a 3). This

Lambda expression 5

form not only creates the symbol ’a’ and binds to it the integer 3, but returns also 3 (i.e. the result
of the previous evaluation). Finally, the form(const b 3) is evaluated, that is, b is created and
the result discarded. Internally, things are a little more complex, but the idea remains the same. This
program illustrates also the usage of theassertkeyword.

1.2 Lambda expression

A lambda expressionis a function in the aleph terminology. The term come historically from Lisp to
express the fact that a lambda expression is analog to the concept of expression found in the lambda
calculus. There are various ways to create a lambda expression. A lambda expression is created with
the trans reserved keywords. A lambda expression takes 0 or more arguments and return an object.
A lambda expression is also an object by itself. When a lambdaexpression is called, the arguments
are evaluated from left to right and placed on the interpreter eval stack. The function is then called
and the object result is transmitted to the calling form. Theuse oftrans vsconstis explain later. As
an example, we define the factorial of an integer in a recursive way.

declare the factorial function
trans fact (n) (
if (== n 1) 1 (* n (fact (- n 1))))

compute factorial 5
println "factorial 5 = " (fact 5)

This program calls for several comments. First thetrans keyword defines a new function object
with one argument calledn. The body of the function is defined with theif reserved keyword
and can be easily understood. The function is called in the next form when theprintln reserved
keyword is executed. Note that here, the call tofact produces an integer object, which is converted
automatically by theprintln keyword.

1.2.1 Block form

The notation used in thefact program is the standard form notation originating from Lispand the
Scheme dialect.Aleph offers another notation called theblock formnotation with the use of the{
and} characters. A block form is a syntactic notation where each form in the block form is executed
sequentially. The form can be either an implicit or a regularform. Thefact procedure can be
rewritten with the block notation as illustrated below.

declare the factorial procedure
trans fact (n) {
if (== n 1) 1 (* n (fact (- n 1)))

}

compute factorial 5
println "factorial 5 = " (fact 5)

Another way to create a lambda expression is via the reservedkeywordlambda. Recall that a lambda
expression is an object. So when such object is created, it can be bounded to a symbol. The factorial
example could be rewritten with an explicit lambda call.

declare the factorial procedure
const fact (lambda (n) (
if (== n 1) 1 (* n (fact (- n 1))))

6 Getting Started

compute factorial 5
println "factorial 5 = " (fact 5)

Note that here, the symbolfact is a constant symbol. The use ofconst is rather reserved for
gamma expression.

1.2.2 Gamma expression

A lambda expression can somehow becomes very slow during theexecution, since the symbol evalu-
ation is done within a set of nested call to resolve the symbols. In other words, each recursive call to
a function creates a new symbol set which is linked with its parent. When the recursion is becoming
deep, so is the path to traverse from the lower set to the top one. Aleph provides another mechanism
calledgamma expressionwhich binds only the function symbol set to the top level one.The rest
remains the same. Using a gamma expression can speedup significantly the execution. Here is the
factorial program.

declare the factorial procedure
const fact (n) (
if (== n 1) 1 (* n (fact (- n 1))))

compute factorial 5
println "factorial 5 = " (fact 5)

We will come back later to the concept ofgamma expression. The use of the reserved keywordconst
to declare agamma expressionmakes now sense. Since most function definitions are constant with
one level, it was a language choice to implement this syntactic sugar. Note thatgammais a reserved
keyword and can be used to create a gamma expression object. On the other hand, note that the
gamma expression mechanism does not work for instance method. We will illustrate this point later
in the book.

1.2.3 Lambda generation

A lambda expression can be used to generate another lambda expression. In other word, a function
can generate a function, hence the term that Aleph is afunctional programminglanguage. Suppose
one might want to write a function which take an argument and generate a function which add this
argument to the generated function argument (got that!). Here is the program.

a gamma which creates a lambda
const gen (n) (
lambda (x) (n) (+ x n))

create a function which add 2 to its argument
const add-2 (gen 2)

call add-2 with an argument and check
println "result = " (add-2 3)

The interesting part in the previous program is the concept of closed variables. Looking at the
lambda expression insidegen, notice that the argument to the gamma isx while n is marked in
a form before the body of the gamma. This notation indicates that the gamma should retain the
value of the argumentn when the closure is created. In the literature, you might discover a similar
mechanism referenced as aclosure. A closure is simply a variable which is closed under a certain
context. When a variable is reference in a context without any definition, such variable is called a
free variable. We will see later more programs with closures. Note that in the Aleph terminology, it

Nameset and bindings 7

is the object created by the gamma call which is called a closure. Note also that the same mechanism
apply with lambda.
In short, a lambda expression is a function with or without closed variables, which works with nested
symbol sets (or namesets). A gamma expression is a function with or without closed variable which
is binded to the top level nameset. The reserved keywordtrans binds a lambda expression. The
reserved keywordconst binds a gamma expression. A gamma expression cannot be used as an
instance method.

1.2.4 Multiple arguments binding

A lambda or gamma expression can be defined to work with extra arguments using the specialargs
binding. During a lambda or gamma expression execution, thespecial symbolargs is defined with
the extra arguments passed at the call. For example, a gamma expression with 0 formal argument
and 2 actual arguments hasargs defined as a cons cell.

const proc-nilp (args) {
trans result 0
for (i) (args) (result:+= i)
eval result

}
assert 3 (proc-nilp 1 2)
assert 7 (proc-nilp 1 2 4)

args can also be defined with formal arguments. In that case,args is defined as a cons cell with
the remaining actual arguments.

check with arguments
const proc-args (a b args) {
trans result (+ a b)
for (i) (args) (result:+= i)
eval result

}
assert 3 (proc-args 1 2)
assert 7 (proc-args 1 2 4)

It is an error to specify formal arguments afterargs. Multiple args formal definition are not
allowed.args can also be defined as aconstargument.

check with arguments
const proc-args (a b (const args)) {
trans result (+ a b)
for (i) (args) (result:+= i)
eval result

}
assert 7 (proc-args 1 2 4)

1.3 Nameset and bindings

A nameset is a container of bindings between a name andsymbolic variable. We use the term
symbolic variableto denote any binding between a name and an object. There are various ways to
express such bindings. The common one in Aleph is called a symbol. Another type of binding is
an argument. Despite the fact they are different, they sharea set of common properties, like being

8 Getting Started

settable. Another point to note is the nature of the nameset.As a matter of fact, Aleph has various
type of namesets. The top level nameset is called aglobal setand is designed to handle a large
number of symbols. In a lambda or gamma expression, the nameset is called alocal setand is
designed to be fast with a small number of symbols. The moral of this little story is to think always
in terms of namesets, no matter how it is implemented. All namesets support the concept of parent
binding. When a nameset is created (typically during the execution of a lambda expression), this
nameset is linked with its parent one. This means that a symbol lookup is done by traversing all
nameset from the bottom to the top and stopping when one is found. In term of Aleph notation, the
current namesetis referenced with the special symbol.. Theparent namesetis referenced with the
special symbol... Thetop level namesetis referenced with the symbol....

1.3.1 Symbol

A symbol is an object which defines a binding between a name andan object. When a symbol
is evaluated, the evaluation process consists in returningthe associated object. There are various
ways to create or set a symbol, and the different reserved keywords account for the various nature of
binding which has to be done depending on the current namesetstate. One of the symbol property is
to beconstor not. When a symbol is marked as a constant, it cannot be modified. Note here that it
is the symbol which is constant, not the object. A symbol can be created with the reserved keywords
constor trans.

1.3.2 Creating a nameset

A nameset is an object which can be constructed directly by using the object construction notation.
Once the object is created, it can be binded to a symbol. Here is a nameset calledexample in the
top level nameset.

create a new nameset called example
const example (nameset .)

bind a symbol in this nameset
const example:hello "hello"
println example:hello

1.3.3 Qualified name

In the previous example, a symbol is referenced in a given nameset by using aqualified namelike
example:hello. A qualified name define a path to access a symbol. The use of qualified name
is a powerful notation to reference an object in reference toanother object. For example, the qual-
ified name.:hello refers to the symbolhello in the current nameset. The qualified name
...:hello refers to the symbolhello in the top level nameset. There are other use for qualified
names, like method call with an instance.

1.3.4 Symbol binding

The trans reserved keyword has been shown in all previous example.trans creates or set a
symbol in the current nameset. For example, the formtrans a 1 is evaluated as follow. First, a
symbol nameda is searched in the current nameset. At this stage, two situations can occur. If the
symbol is found, it is set with the corresponding value. If the symbol is not found, it is created in the
current nameset and set. The use of qualified name is also permitted (and encouraged) withtrans.
The exact nature of the symbol binding with a qualified name depends on the partial evaluation of

Control flow 9

the qualified name. For example,trans example:hello 1 will set or create a symbol binding
in reference to theexample object. If examplerefers to a nameset, the symbol is binded in this
nameset. Ifexample is a class,hello is binded as a static symbol for that class. In theory, there
is no restriction to usetrans on any object. If the object does not have a symbol binding capability,
an exception is raised. For example, ifn is an integer object, the formtrans n:i 1 will fail.
With 3 or 4 arguments,trans defines automatically a lambda expression. This notation isa syntac-
tic sugar. The lambda expression is constructed from the argument list and bounded to the specified
symbol. The rule used to set or define the symbol are the same asdescribed above.

create automatically a lambda expression
trans min (x y) (if (< x y) x y)

1.3.5 Constant binding

Theconst reserved keyword is similar totrans, except that it creates aconstantsymbol. Once
the symbol is created, it cannot be changed. Thisconst property is hold by the symbol itself.
When trying to set aconst symbol, an exception is raised.constworks also with qualified names.
The rules described previously are the same. When a partial evaluation is done, the partial object is
called to perform a constant binding. If such capability does not exist, an exception is raised.
With 3 or 4 arguments,const defines automatically alambdalambda expression. Liketrans the
rule are the same except that the symbol is marked constant.

create automatically a const lambda expression
const max (x y) (if (> x y) x y)

1.3.6 Arguments

An expression argument is similar to a symbol, except that itis used only with function argument.
The concept of binding between a name and an object is still the same, but with an argument, the
object is not stored as part of the argument, but rather at another location (in fact, it is the execution
stack). An argument can also beconstant. On the other hand, a single argument can have multiple
bindings. Such situation is found during the same function call in two different threads. An argument
list is part of the lambda or gamma expression declaration. If the argument is defined as a constant
argument a sub form notation is used to defined this matter. For example, themax gamma expression
is given below.

create a const gamma expression with const argument
const max (gamma ((const x) (const y)) (if (> x y) x y))

A special symbols namedargs is defined during a lambda or gamma expression evaluation with the
remaining arguments passed at the time the call is made. The symbol can be eithernil or bound to
a list of objects.

const proc-args (a b)
trans result (+ a b)
for (i) (args) (result:+= i)
eval result

assert 3 (proc-args 1 2)
assert 7 (proc-args 1 2 4)

10 Getting Started

1.4 Control flow

Aleph provides various reserved keywords which can be seen as standardimperative statements.
Such statements are useful to writereadableprogram but are not necessary the best in terms of
efficiency. In most cases, a statement returns the last evaluated object. Most of the statements are
control flowstatements.

1.4.1 If statement

The if reserved keyword takes two or three arguments. The first argument is the boolean condition
to check. If the condition evaluates totrue the second argument is evaluated. The form return the
result of such evaluation. If the condition evaluates tofalse, the third argument is evaluated or nil
is returned if it does not exist. An interesting example which combines theif reserved keyword and
a deep recursion is the computation of theFibonaccisequence.

const fibo (gamma (n) (
if (< n 2) n (+ (fibo (- n 1)) (fibo (- n 2))))

1.4.2 While statement

Thewhile reserved keyword takes 2 arguments. The first is the loop condition. The second argument
is the loop body. The first argument must evaluate to a boolean. The body is executed as long as
the boolean condition is true. An interesting example related to integer arithmetic with awhile
loop is the computation of thegreatest common divisor or gcd. We illustrate here its computation as
describe by Knuth in the volume 2 of theArt of Computer Programming.

const gcd (u v) {
while (!= v 0) {

trans r (u:mod v)
u:= v
v:= r

}
eval u

}

Note in this previous example the use of the symbol=. The qualified nameu:= is in fact amethod
call. Here, the integeru is assigned with a value. In this case, the symbol is not changed. It is the
object which is muted.

1.4.3 Do statement

Thedo reserved keyword is similar to thewhile reserved keyword, except that the loop condition is
evaluated after the body execution. The syntax call is opposite to thewhile. The first argument is
the loop body and the second argument is the exit loop condition.

count the number of digits in a string
const number-of-digits (s) {

const len (s:length)
trans index 0
trans count 0
do {

trans c (s:get index)
if (c:digit-p) (count:++)

Control flow 11

} (< (index:++) len)
eval count

}

1.4.4 Loop statement

Theloop reserved keyword is another form of loop. It take four arguments. The first is the initialize
form. The second is the exit condition. The third is the step form and the fourth is the form to
execute at each loop step. Unlike thewhile anddo loop, theloop statement creates its own
nameset, since the initialize condition generally createsnew symbol for the loop only.

a simple loop from 0 to 10
loop (trans i 0) (< i 10) (i:++) (println i)

1.4.5 Switch statement

Theswitch reserved keyword is a condition selector. The first argumentis the switch selector. The
second argument is a list of various value which can be matched by the switch value. A special
symbol calledelsecan be used to match any value.

return the primary color in a rgb
const get-primary-color (color value) (
switch color (

("red" (return (value:substr 0 2))
("green" (return (value:substr 2 4))
("blue" (return (value:substr 4 6))

)
)

1.4.6 Return statement

The return reserved keyword indicates an exceptional condition in theflow of execution within a
lambda or gamma expression. When a return is executed, the associated argument is returned and
the execution terminates. Ifreturn is used at the top level, the result is simply discarded.

initialize a vector with a value
const vector-init (length value) {
treat nil vector first
if (<= length 0) return (Vector)
trans result (Vector)
do (result:add value) (> (length:--) 0)

}

1.4.7 Eval and protect

Theeval reserved keyword forces the evaluation of the object argument. eval is typically used in a
function body to return a particular symbol value.eval can also be used to force the evaluation of a
protectedobject. In many cases,eval is more efficient thanreturn . Theprotect reserved keyword
constructs an aleph object without evaluating it. Typically when used with a form,protect return the

12 Getting Started

form itself. protect can also be used to prevent a symbol evaluation. When used with a symbol, the
symbol object itself is returned.

const add (protect (+ 1 2)) ➞ cons cell
(eval add) ➞ 3

1.4.8 Assert statement

Theassertreserved keyword check for equality between the two arguments and abort the execution
in case of failure. By default, the assertion checking is turn off, and can be activated with the
command option-f assert. Needless to say thatassertis used for debugging purpose.

assert true (> 2 0)
assert 0 (- 2 2)
assert "true" (String true)

1.4.9 Block statement

The block reserved keyword executes a form in a new local set. The localset is destroyed at the
completion of the execution. Theblock reserved keyword returns the value of the last evaluated
form. Since a new local set is created, any new symbol createdin this nameset is destroyed at the
completion of the execution. In other word, theblock reserved keyword allows the creation of a
local scope.

trans a 1
block {
assert a 1
trans a (+ 1 1)
assert a 2
assert ..:a 1

}
assert 1 a

1.5 Builtin objects

Aleph provides several builtin objects and builtin operators for arithmetic and logical operations.
TheInteger andReal classes are primarily used to manipulate numbers. TheBoolean class is
used to for boolean operation. Other builtin objects includeCharacter andString. The exact
usage of these classes is described in the next chapter.

1.5.1 Arithmetic operations

Aleph provides various ways to perform arithmetic operations. Chapter 2 gives a thorough discus-
sion on the subject. Theglobal arithmetic is mostly done with the+ for add,- for substract,* for
mult and/ for divide. Each of these operators works with both integer and real number.

(+ 1 2) ➞ 3
(- 1) ➞ -1
(* 3 5.0) ➞ 15.0

Class and Instance 13

(/ 4.0 2) ➞ 2.0

1.5.2 Logical operations

TheBoolean class is used to represent the boolean valuetrue andfalse. These last two symbols
are builtin in the interpreter asconst symbols. Aleph provides also some reserved keywords like
not, and andor. Their usage is self understandable.

not true ➞ false
and true (== 1 0) ➞ false
or (< -1 0) (> 1 0) ➞ true

1.5.3 Predicates

A predicateis a function which returns a boolean object. Aleph providesseveral predicates to check
for some builtin objects. By convention, a predicate terminates with the sequence-p. Thenil-p
predicate is a special predicate which returns true if the object is nil. Aleph provides a predicate for
each builtin objects.

Table 2Aleph builtin predicates

Predicate Description

nil-p return true with nil object
real-p return true with real object
regex-p return true with regex object
string-p return true with string object
number-p return true with number object
boolean-p return true with boolean object
integer-p return true with integer object
character-p return true with character object

For example, one can write a function which returns true if the argument is a number, that is, an
integer or a real number.

return true if the argument is a number
const number-p (n) (
or (integer-p n) (float-p n))

Predicates forfunctionalandsymbolicprogramming are also builtin into the Aleph engine.
Finally, for each object, a predicate is also associated. For example,cons-p is the predicate for the
Cons object.

1.6 Class and Instance

Aleph provides support for the object oriented programmingparadigm. Aclassin the aleph termi-
nology is a nameset which can be binded automatically when aninstanceof that class is created.
Compared to other language, there is no need to declare the data member for a particular class. Data
members are created during the instance construction. A class allows an instance to call function
with the instance nameset visible for that function.

1.6.1 Class and members

14 Getting Started

Table 3Aleph special predicates

Predicate Description

class-p return true with class object
thread-p return true with thread object
promise-p return true with promise object
lexical-p return true with lexical object
literal-p return true with literal object
closure-p return true with closure object
nameset-p return true with nameset object
instance-p return true with instance object
qualified-p return true with qualified object

Table 4Builtin object special predicates

Predicate Description

cons-p return true for a cons object
list-p return true for a list object
node-p return true for a node object
edge-p return true for an edge object
graph-p return true for a graph object
queue-p return true for a queue object
bitset-p return true for a bitset object
vector-p return true for a vector object

A class is declared with the reserved keywordclass. The class acts like a nameset. Functions can be
bounded to this class.

const Color (class)
const Color:BLACK "#000000"
const Color:WHITE "#FFFFFF"

Any object can be bounded as a data member, including lambda or gamma expressions.

const Color (class)
const Color:get-primary-from-string (color value) {
trans val "0x"
val:+= (switch color (

("red" (value:substr 1 3))
("green" (value:substr 3 5))
("blue" (value:substr 5 7))

)
)
Integer val

}

1.6.2 Instance

An instance of a class is created like any builtin object. If amethod calledinitialize is defined
for that class, the method is used as a constructor of that instance.

const Color (class)
trans Color:initialize (red green blue) {

Miscellaneous features 15

const this:red (Integer red)
const this:green (Integer green)
const this:blue (Integer blue)

}

const red (Color 255 0 0)
const green (Color 0 255 0)
const blue (Color 0 0 255)

1.6.3 Instance method

When a lambda expression is bound to the class or the instance, that lambda can be invoked as an
instance method. When an instance method is invoked, the instance nameset is set as the parent
nameset for that lambda. This is the main reason why a gamma expression cannot be used as an
instance method. The instance nameset defines the instance data members and the special symbol
this.

const int-max (x y)
if (> x y) (Integer x) (Integer y))

const Color:RED-FACTOR 0.75
const Color:GREEN-FACTOR 0.75
const Color:BLUE-FACTOR 0.75
trans Color:get-darker nil {
trans red (int-max (this:red:* Color:RED-FACTOR) 0)
trans green (int-max (this:green:* Color:GREEN-FACTOR) 0)
trans red (int-max (this:blue:* Color:BLUE-FACTOR) 0)
Color red green blue

}
get a darker color than red
const dark-red (red:get-darker)

1.7 Miscellaneous features

Aleph provides several facilities for control flow and exceptional operations. Most of these features
are available via the use of reserved keywords.

1.7.1 Iteration

An iteration facility is provided for some objects known asiterable objects. Cons, List and
Vector are typical iterable objects. There are two ways to iterate with these objects. The first
method uses thefor reserved keyword. The second method uses an explicit iterator which can be
constructed by the object.

compute the scalar product of two vectors
const scalar-product (u v) {
trans result 0
for (x y) (u v) (result:+= (* x y))
eval result

}

16 Getting Started

Thefor reserved keyword iterate on both objectu andv. For each iteration, the symbolx andy are
set with their respective object value. In the example above, the result is obtained by summing all
intermediate products.

test the scalar product function
const v1 (Vector 1 2 3)
const v2 (Vector 2 4 6)
(scalar-product v1 v2) ➞ 28

The iteration can be done explicitly by creating an iteratorfor each vectors and advancing steps by
steps.

scalar product with explicit iterators
const scalar-product (u v) {
trans result 0
trans u-it (u:get-iterator)
trans v-it (v:get-iterator)
while (u:valid-p) {

trans x (u:get-object)
trans y (v:get-object)
result:+= (* x y)
u:next
v:next

}
eval result

}

In the example above, two iterators are constructed for bothvectorsu andv. The iteration is done in
awhile loop by invoking thevalid-p predicate. Theget-object method returns the object
value at the current iterator position.

1.7.2 Exception

An exceptionis an unexpected change in the execution flow. The Aleph modelfor exception is
based on a mechanism which throws the exception to be caught by a handler. The mechanism is also
designed to be compatible with the native "C++" implementation.
An exception is thrown with the reserved keywordthrow . When an exception is thrown, the normal
flow of execution is interrupted and an object used to carry the exception information is created.
Such exception object is propagated backward in the call stack until an exception handler catch it.
The reserved keywordtry executes a form and catch an exception if one has been thrown.With one
argument, the form is executed and the result is the result ofthe form execution unless an exception
is caught. If an exception is caught, the result is the exception object. If the exception is a native
one, the result is nil.

try (+ 1 2) ➞ 3
try (throw) ➞ nil
try (throw "hello") ➞ nil
try (throw "hello" "world") ➞ nil
try (throw "hello" "world" "folks") ➞ "folks"

The exception mechanism is also designed to install an exception handler and eventually retrieve
some information from the exception object. The reserved symbol what can be used to retrieve
some exception information.

protected factorial

Threads 17

const fact (n) {
if (not (integer-p n)) (throw "number-error" "invalid argument")
if (== n 0) 1 (* n (fact (- n 1)))

}
exception handler
const handler nil
errorln what:eid ’,’ what:reason

(try (fact 5) handler) ➞ 120
(try (fact "hello") handler) ➞ number-error, invalid argument

1.7.3 Delayed evaluation

TheAleph interpreter provides a special mechanism to delay an evaluation. The reserved keyword
delay creates a special object called apromisewhich records the form to be later evaluated. The
reserved keywordforce causes apromiseto be evaluated. Subsequent call withforce will produce
the same result.

trans y 3
const l ((lambda (x) (+ x y)) 1)
assert 4 (force l)
trans y 0
assert 4 (force l)

1.7.4 Regular Expressions

The Aleph interpreter provides a builtin mechanism for regular expression. Aregex is an object
which is used to match certain text patterns. Regular expressions are built implicitly by theAleph
reader wit the use of the[and] characters.

if (== (const re [(dd):(dd)]) "12:31") {
trans hr (re:get 0)
trans mn (re:get 1)

}

In the previous example,regexis bind to the symbolre. Theregexcontains two groups as defined by
the(and) characters. The call to the operator== returnstrue if the regexmatches the argument
string. Theget method can be used to retrieve the group by index.

1.8 Threads

The Aleph interpreter provides a powerful mechanism which allows the concurrent execution of
forms and the synchronization of shared objects. There are two types of threads, namelynormal
threadanddaemon thread. They differ only by the interpreter exit condition. The interpreter will
wait until all normal threads are completed. On the other hand, the interpreter will not wait for
daemon threads. They are automatically stopped when all normal threads are finished. Normal
threads are created with the reserved keywordlaunch, and daemon threads are created with the
reserved keyworddaemon. When threads are used, the interpreter manages automatically the shared
objects and protect them against concurrent access. Chapter 7 describes in details the shared object
behavior.

18 Getting Started

shared variable access
const var 0

const decr nil (while true (var:= (- var 1)))
const incr nil (while true (var:= (+ var 1)))
const prtv nil (while true (println "value = " var))

start 3 threads
launch (prtv)
launch (decr)
launch (incr)

1.8.1 Form synchronization

Although, Aleph provides an automatic synchronization mechanism for reading or writing an object,
it is sometimes necessary to control the execution flow. There are basically two techniques to do so.
First, protect a form from being executed by several threads. Second, wait for one or several threads
to complete their task before going to the next execution step. The reserved keywordsynccan be
used to synchronize a form. When a form, is synchronized, theAleph engine guarantees that only
one thread will execute this form.

const print-message (code mesg) (
sync {

errorln "error : " code
errorln "message: " mesg

}
)

The previous example create a gamma expression which make sure that both the error code and error
message are printed in one group, when several threads call it.

1.8.2 Thread completion

The other piece of synchronization is the thread completionindicator. The thread descriptor contains
a method calledwait which suspend the calling thread until the thread attached to the descriptor
has been completed. If the thread is already completed, the method returns immediately.

simple flag
const flag false

simple shared tester
const ftest (val) (flag) (assert val (flag:shared-p))

no thread mean not shared
ftest false

in a thread it is shared
const thr (launch (ftest true))
thr:wait
assert true (flag:shared-p)

This example is taken from the test suites. It checks that a closed variable becomes shared when
started in a thread. Note the use of thewait method to make sure the thread has completed before

Threads 19

checking for the shared flag. It is also worth to note thatwait is one of the method which guarantees
that a thread result is valid.
Another use of thewait method can be made with a vector of thread descriptors when one wants
to wait until all of them have completed.

shared vector of threads descriptors
const thr-group (Vector)

wait until all threads in the group are finished
const wait-all nil (for (thr) (thr-group) (thr:wait))

1.8.3 Condition variable

A condition variableis another mechanism to synchronize several threads. A condition variable is
modeled with theCondvar object. At construction, the condition variable is initialized tofalse.
A thread calling thewaitmethod will block until the condition becomestrue. Themark method
can be used by a thread to change the state of a condition variable and eventually awake some threads
which are blocked on it. The use of condition variable is particularly recommended when one need
to make sure a particular thread has been doing a particular task. A detailed description is given in
thethreadchapter.

20 Getting Started

CHAPTER 2

Numbers and Strings

This chapters covers in detail the builtin objects used to manipulate numbers and strings. First the
integer, relatif and real numbers are described.Aleph offers a broad range of methods for these
three objects to support numerical computation. As a secondstep, string and character objects are
described. Many examples show the various operations whichcan be used as automatic conversion
between one type and another. Finally, the boolean object isdescribed. These objects belongs to the
class ofliteral objects. The objects described in this chapter are calledliteral since they always have
a string representation.

2.1 Integer

The fundamental number representation is theInteger. Thealeph integer is a 64 bits signed 2’s
complement number. Even when running with a 32 bits machine,the 64 bits representation is used.
If a larger representation is needed, theRelatif object might be more appropriate.

2.1.1 Integer format

The default literal format for an integer is the decimal notation. The minus sign (without blank)
indicates a negative number. Hexadecimal and binary notations can also be used with prefix0x and
0b. The underscore character_ can be used to make the notation more readable.

const a 123 ➞ 123
trans b -255 ➞ -255
const h 0xff ➞ 255
const b 0b1111_1111 ➞ 255

Integer number are constructed from the literal notation orby using an explicit integer instance.
The Integer class offers standard constructors. The default constructor creates an integer object and
initialize it to 0. The other constructors take either an integer, a real number, a character or a string.

const a (Integer) ➞ 0
const b (Integer 2000) ➞ 2000
const c (Integer "23") ➞ 23

When the hexadecimal or binary notation is used, care shouldbe taken to avoid a negative integer.
For example,0x_8000_0000_0000_0000 is the smallest negative number. This number will
never be positive.

22 Numbers and Strings

2.1.2 Integer arithmetic

Standard arithmetic operators are available as builtin operators. The usual addition ’+’, multiplica-
tion ’*’ and division ’/’ operate with two arguments. The substraction ’-’ operates with one or two
arguments.

(+ 3 4) ➞ 7
(- 3 4) ➞ -1
(- 3) ➞ -3
(* 3 4) ➞ 12
(/ 4 2) ➞ 2

As a builtin object, theInteger object offers various methods for builtin arithmetic whichdirectly
operates on the object. The following example illustrates these methods.

trans i 0 ➞ 0
(i:++) ➞ 1
(i:--) ➞ 0
(i:+ 4) ➞ 4
(i:= 4) ➞ 4
(i:- 1) ➞ 3
(i:* 2) ➞ 8
(i:/ 2) ➞ 2
(i:+= 1) ➞ 5
(i:-= 1) ➞ 4
(i:*= 2) ➞ 8
(i:/= 2) ➞ 4

As a side effect, these methods allows a const symbol to be modified. Since the methods operates
on an object, they do not modify the state of the symbol. Such methods are calledmutablemethods.

const i 0 ➞ 0
(i:= 1) ➞ 1

2.1.3 Integer comparison

The comparison operators works the same. The only difference is that they always return a Boolean
result. The comparison operators are namely equal ’==’, notequal ’!=’, less than ’<’, less equal
’<=’, greater ’>’ and greater equal ’>=’. These operators take two arguments.

(== 0 1) ➞ false
(!= 0 1) ➞ true
(> 4 3) ➞ true
(>= 4 3) ➞ true
(< 4 3) ➞ false
(<= 4 3) ➞ false

Like the arithmetic methods, the comparison operators are supported as object methods. These
methods return a boolean object.

(i:= 1) ➞ 1
(i:== 1) ➞ true
(i:!= 0) ➞ true
(i:> 0) ➞ true

Relatif Number 23

(i:>= 0) ➞ true
(i:< 2) ➞ true
(i:<= 2) ➞ true

2.1.4 Integer calculus

Armed with all these functions, it is possible to develop a battery of functions operating with num-
bers. As another example, we revisit theFibonaccisequence as demonstrated in the previous chap-
ter. Such example was terribly slow, because of the double recursion. Another method suggested by
Springer and Friedman uses two functions to perform the samejob.

const fib-it (gamma (n acc1 acc2) (
if (== n 1) acc2 (fib-it (- n 1) acc2 (+ acc1 acc2))))

const fiboi (gamma (n) (
if (== n 0) 0 (fib-it n 0 1)))

This later example is by far much faster, since it uses only one recursion. Although, it is no the
fastest way to write it, but nobody is going to question the elegant aspect of recursion.

2.1.5 Other Integer methods

TheInteger class offers other convenient methods. Theodd-p andeven-p are predicates. The
mod take one argument and returns the modulo between the callinginteger and the argument. The
to-string method returns a string representation of the integer. Theabs methods returns the
absolute value of the calling integer.

(i:= 2) ➞ 2
(i:even-p) ➞ true
(i:= 3) ➞ 3
(i:odd-p) ➞ true
(i:mod 2) ➞ 1
(i:= -1) ➞ -1
(i:abs) ➞ 1
(i:to-string) ➞ "-1"

2.2 Relatif Number

A relatif or big-num is an integer with infinite precision. TheRelatif class is similar to the
Integer class except that it works with infinitely long number. The relatif notation uses ar or R to
express a relatif number versus an integer one.

const a 123R ➞ 123R
trans b -255R ➞ 255R
const c 0xffR ➞ 255R
const d 0b1111_1111R ➞ 255R
const e (Relatif) ➞ 0R
const f (Relatif 2000) ➞ 2000R
const g (Relatif "23") ➞ 23R

24 Numbers and Strings

2.2.1 Relatif operations

Most of the integer operations are supported by theRelatif object. The only difference is that there
is no limitation on the number size. This naturally comes with a computational price. An amazing
example is to compute the biggest knowprime Mersenne number. The world record exponent is
6972593. The number is therefore.

const i 1R
const m (- (i:shl 6972593) 1)

This number has2098960digits. You can use theprintln method if you wish, but you have been
warned...

2.3 Real Number

TheReal type is another fundamental number representation for floating point number. The internal
representation is machine dependent, and generally follows the double representation with 64 bits as
specified by the IEEE 754-1985 standard for binary floating point arithmetic. All integer operations
are supported for real numbers.

2.3.1 Real format

The Aleph reader supports two types of literal representation for real number. The first representation
is thedotted decimalnotation. The second notation is thescientific notation.

const a 123.0 # a positive real
const b -255.5 # a negative real
const c 2.0e3 # year 2000.0

Real number are constructed from the literal notation or by using an explicit real instance. TheReal
class offers standard constructors. The default constructor creates a real number object and initialize
it to 0.0. The other constructors takes either an integer, a real number, a character or a string.

2.3.2 Real arithmetic

The real arithmetic is similar to the integer one. When an integer is added to a real number, that
number is automatically converted to a real and vice versa. Ultimately, a pure integer operation
might generate a real result. The example below is extractedfrom one of the Aleph test suite.

(+ 1999.0 1) ➞ 2000.0
(+ 1999.0 1.0) ➞ 2000.0
(- 2000.0 1) ➞ 1999.0
(- 2000.0 1.0) ➞ 1999.0
(* 1000 2.0) ➞ 2000.0
(* 1000.0 2.0) ➞ 2000.0
(/ 2000.0 2) ➞ 1000.0
(/ 2000.0 2.0) ➞ 1000.0

Like theInteger object, theReal object has arithmetic builtin methods.

trans r 0.0 ➞ 0.0
(r:++) ➞ 1.0
(r:--) ➞ 0.0

Real Number 25

(r:+ 4.0) ➞ 4.0
(r:= 4.0) ➞ 4.0
(r:- 1.0) ➞ 3.0
(r:* 2.0) ➞ 8.0
(r:/ 2.0) ➞ 2.0
(r:+= 1.0) ➞ 5.0
(r:-= 1.0) ➞ 4.0
(r:*= 2.0) ➞ 8.0
(r:/= 2.0) ➞ 4.0

2.3.3 Real comparison

The comparison operators works as the integer one. As for theother operators, an implicit conversion
between an integer to a real is done automatically.

(== 2000 2000) ➞ true
(!= 2000 1999) ➞ true
(< 1999.0 2000.0) ➞ true
(<= 1999 2000) ➞ true
(<= 2000.0 2000) ➞ true
(> 2000 1999.0) ➞ true
(>= 2000.0 2000.0) ➞ true

Comparison methods are also available for theReal object. These methods take either an integer
or a real as argument.

(r:= 1.0) ➞ 1.0
(r:== 1.0) ➞ true
(r:!= 0.0) ➞ true
(r:> 0.0) ➞ true
(r:>= 0.0) ➞ true
(r:< 2.0) ➞ true
(r:<= 2.0) ➞ true

2.3.4 A complex example

One of the most interesting point with functional programming language is the ability to create
complex computation function. For example, let’s assume wewish to compute the value at a point
x of theLegendre polynom of order n. One of the solution is to encode the function given its order.
Another solution is to compute the function and then computethe value. Here is the implementation
taken from the aleph test suite. Note that the recursive definition of a Legendre polynomis:
P0(x) = 1
P1(x) = x

nPn(x) = (2n − 1)xPn−1(x) − (n − 1)Pn−2(x)

legendre polynom order 0 and 1
const lp-0 (gamma (x) 1)
const lp-1 (gamma (x) x)

legendre polynom of order n
const lp-n (gamma (n) (
if (> n 1) {

26 Numbers and Strings

const lp-n-1 (lp-n (- n 1))
const lp-n-2 (lp-n (- n 2))
gamma (x) (n lp-n-1 lp-n-2)
(/ (- (* (* (- (* 2 n) 1) x)

(lp-n-1 x))
(* (- n 1) (lp-n-2 x))) n)

} (if (== n 1) lp-1 lp-0)
))

generate order 2 polynom
const lp-2 (lp-n 2)

print lp-2 (2)
println "lp2 (2) = " (lp-2 2)

Note that the computation can be done either with integer or real numbers. With integers, you might
get some strange results anyway, but it will work. Note also how the closed variable mechanism is
used. The recursion capture each level of the polynom until it is constructed. As an exercise, try
to use a lambda expression instead of a gamma one, and comparethe execution result with large
number ofn. Note also that we have here a double recursion. try to rewrite the example by using
the same technique demonstrated with the Fibonacci sequence and compare the execution time.

2.3.5 Other real methods

The real numbers are delivered with a battery of functions. These include the trigonometric func-
tions, the logarithm and couple others. Hyperbolic functions like sinh, cosh, tanh, asinh,
acosh andatanh are also supported. Thesqrt method return the square root of the calling real.
Thefloor andceiling returns respectively the floor and the ceiling of the callingreal.

const r0 0.0 ➞ 0.0
const r1 1.0 ➞ 1.0
const r2 2.0 ➞ 2.0
const rn -2.0 ➞ -2.0
const rq (r2:sqrt) ➞ 1.414213
const pi 3.1415926 ➞ 3.141592

(rq:floor) ➞ 1.0
(rq:ceiling) ➞ 2.0
(rn:abs) ➞ 2.0
(r1:log) ➞ 0.0
(r0:exp) ➞ 1.0
(r0:sin) ➞ 0.0
(r0:cos) ➞ 1.0
(r0:tan) ➞ 0.0
(r0:asin) ➞ 0.0
(pi:floor) ➞ 3.0
(pi:ceiling) ➞ 4.0

2.3.6 Accuracy and formating

Real numbers are not necessarily accurate, nor precise. Theaccuracy and precision are highly de-
pendent on the hardware as well as the nature of the operationbeing performed. In any case, never

Character 27

assume that a real value is an exact one. Most of the time, a real comparison will fail, even if
the numbers are very close together. When comparing real numbers, it is preferable to use the?=
operator. Such operator result is bounded by the internal precision representation and will gen-
erally return the desired value. The real precision is an interpreter value which is set with the
set-real-precisionmethod while theget-real-precision returns the interpreter pre-
cision. By default, the precision is set to 0.00001.

interp:set-real-precision 0.0001
const r 2.0
const s (r:sqrt) ➞ 1.4142135
(s:?= 1.4142) ➞ true

Real number formating is another story. Theformat method takes aprecision argumentwhich
indicates the number of digits to print for the decimal part.Note that the format command might
round the result as indicated in the example below.

const pi 3.1415926535
pi:format 3 ➞ 3.142

If additional formating is needed, theString fill-left andfill-right methods can be used
as illustrated in theString section.

const pi 3.1415926535 ➞ 3.1415926535
const val (pi:format 4) ➞ 3.1416
(val:fill-left ’0’ 9) ➞ 0003.1416

2.4 Character

TheCharacter object is another builtin object of the aleph engine. A character is internally repre-
sented by a byte and has a literal representation.

2.4.1 Character format

The standard quote notation is used to represent a character. In that respect,Aleph differs substan-
tially from other functional language where the quote protect a form (hence the nameprotect in
Aleph).

const LA01 ’a’ # the character a
const ND10 ’0’ # the digit 0

All characters from theiso-8859-1standard are supported in a string. For a lexical name, the char-
acter set is restricted to a smaller set.

a b c d e f g h j i k l m n o p q r s t u v w x y z
A B C D E F G H J I K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 . + - * / = > < ! ?

Characters are constructed from the literal notation or by using an explicit character instance. The
Character class offers standard constructors. The default constructor creates a null character.
The other constructors take either an integer, a character or a string. The string can be either a single
character or the literal notation.

const nilc (Character) ➞ null character

28 Numbers and Strings

const a (Character ’a’) ➞ ’a’
const 0 (Character 48) ➞ 0
const mul (Character "*") ➞ ’*’
const div (Character "’/’") ➞ ’/’

2.4.2 Character arithmetic

A character is like an integer, except that it operates in therange 0 to 255. The character arithmetic
is simpler compared to the integer one and no overflow or underflow checking is done. Note that the
arithmetic operations take an integer as an argument.

(+ ’a’ 1) ➞ ’b’
(- ’9’ 1) ➞ ’8’

Character object methods are also provided for arithmetic operations. Like the standard’+’ and
’-’ operators, these methods take an integer as an argument.

trans c ’a’ ➞ ’a’
(c:++) ➞ ’b’
trans c ’9’ ➞ ’9’
(c:--) ➞ ’8’
(c:+ 1) ➞ ’9’
(c:- 9) ➞ ’0’

2.4.3 Character comparison

Comparison operators are also working with theCharacter object. The standard operators are
namely equal ’==’, not equal ’!=’, less than ’<’, less equal ’<=’, greater ’>’ and greater equal
’>=’. These operators take two arguments.

(== ’a’ ’b’) ➞ false
(!= ’0’ ’1’) ➞ true
(> ’b’ ’a’) ➞ true
(>= ’A’ ’a’) ➞ true
(< ’4’ ’3’) ➞ false
(<= ’9’ ’0’) ➞ false

The comparison operators are supported as object methods. These methods return a boolean object
and take a character as an argument.

(c:= ’A’) ➞ ’A’
(c:== ’A’) ➞ true
(c:!= ’a’) ➞ true
(c:> ’a’) ➞ true
(c:>= ’a’) ➞ true
(c:< ’Z’) ➞ true
(c:<= ’Z’) ➞ true

2.4.4 Other character methods

TheCharacter object comes with additional methods. These are mostly conversion methods and
predicates. Theto-string method returns a string representation of the calling character. The

String 29

to-integer method returns an integer representation the calling character. The predicates are
alpha-p, digit-p, blank-p, eol-p, eof-p andnil-p.

const LA01 ’a’ ➞ ’a’
const ND10 ’0’ ➞ ’0’
(LA01:to-string) ➞ "a"
(LA01:to-integer) ➞ 97
(LA01:alpha-p) ➞ true
(ND10:digit-p) ➞ true

2.5 String

TheString object is one of the most important builtin object in the aleph engine. A string can be
seen as a vector of characters. However, the internal representation of string is slightly different.

2.5.1 String format

The standard double quote notation is used to represent literally a string. Standard escape sequences
are also accepted to construct a string.

const hello "hello" ➞ true

Any literal object can be used to construct a string. This means that integer, real, boolean or character
objects are all valid to construct strings. The default constructor creates a null string. The string
constructor can also takes a string.

const nils (String) ➞ ""
const one (String 1) ➞ "1"
const a (String ’a’) ➞ "a"
const b (String true) ➞ "true"

2.5.2 String operations

With strings, numerous methods can be provided. We illustrate here the most common one. Volume
2 of this manual series contains a complete description of theString object. The global operators
+, == and!= are supported for strings.

const h "hello"
(h:length) ➞ 5
(h:get 0) ➞ ’h’
(h:== "world") ➞ false
(h:!= "world") ➞ true
(h:+= " world" ➞ "hello world"

The sub-left and sub-right methods return a sub-string, given the position index. For
sub-left, the index is the terminating index, whilesub-right is the starting index, counting
from 0.

const msg "hello world"
(msg:sub-left 5) ➞ "hello"
(msg:sub-right 6) ➞ "world"

30 Numbers and Strings

Thestrip, strip-left andstrip-right are methods used to strip blanks and tabs.strip
combines bothstrip-left andstrip-right.

const h " a lot of blanks "
(h:strip) ➞ "a lot of blanks"

Thesplit method returns a vector of strings by splitting the string according to a break sequence.
By default, the break sequence is the blank, tab and newline characters. The break sequence can be
one or more characters passed as one single argument to the method.

const str "hello:world"
const vec str:split ":"
println (vec:length) ➞ 2

Thefill-left andfill-right methods can be used to fill a string with a character up to a
certain length. If the string is longer than the length, nothing happens.

const pi 3.1415926535 ➞ 3.1415926535
const val (pi:format 4) ➞ 3.1416
(val:fill-left ’0’ 9) ➞ 0003.1416

2.5.3 String hash value

Computing the hash value of a string is an interesting problem. The algorithm used by the aleph
engine is shown as an example below. Note that thehashid method is builtin in theString
object. The program shows both internal and computed values.

compute string hashid
const hashid (s) {
const len (s:length)
trans cnt 0
trans val 0
trans sht 17
do {

compute the hash value
trans i (Integer (s:get cnt))
val:= (val:xor (i:shl sht))
adjust shift index
if (< (sht:-= 7) 0) (sht:+= 24)

} (< (cnt:++) len)
eval val

}

When run,example 0203.als, the following result is obtained.

test our favorite string
const hello "hello world"
(hello:hashid) ➞ 1054055120
(hashid hello) ➞ 1054055120

As a side note, it is recommended to print the shift amount in the program. One may notice, that
the value remains bounded by 24. Since we are xoring the final value, it does illustrate that the
algorithm is design for a 32 bits machine. It will work as wellwith a 64 bits machine (and give
the same result), but the full integer range is not used. As anexercise, try to rewrite it for a 64
bits machine and compare the result. Try also to compute the modulo with a prime number of your
choice.

CHAPTER 3

Container Objects

This chapter covers the builtin container objects and more specifically, theiterableobjects such like
Cons, List andVector. We start this chapter with theCons class and move to theList and
Vector objects. Special objects likeQueueandBitset are mentioned at the end.

3.1 Cons builtin object

Originally, aCons object orcons cellhave been the fundamental object of the Lisp or Scheme
machine. The cons cell is the building block for list and is ofgreat importance inAleph as well. A
Cons object or simply acons cellis a simple element used to build linked list. The cons cell holds
an object and a pointer to the next cons cell. The cons cell object is calledcar and the next cons
cell is called thecdr. This notation, found in Lisp in maintained here for the sakeof tradition.

3.1.1 Cons cell constructors

The default constructor creates a cons cell those car is initialized to the nil object. The constructor
can also take one or several objects.

const nil-cons (Cons)
const lst-cons (Cons 1 ’a’ "hello")

The constructor can take any kind of objects. When all objects have the same type, the result list
is said to behomogeneous. If all objects do not have the same type, the result list is said to be
heterogeneous. Cons list can also be constructed directly from the Aleph reader. Since all internal
forms are built with cons cell, the construction can be achieved by simplyprotectingthe form from
being interpreted.

const blist (protect ((1) ((2) ((3)))))

3.1.2 Cons cell methods

A Cons object provides several methods to access thecar and thecdr of a cons cell. Other
methods allows access to a cons list by index.

const c (Cons "hello" "world")
(c:length) ➞ 2

32 Container Objects

(c:get-car) ➞ "hello"
(c:get-cadr) ➞ "world"
(c:get 0) ➞ "hello"
(c:get 1) ➞ "world"

Theset-car method set the car of the cons cell. Theappend method appends a new cons cell at
the end of the cons list and set the car with the specified object.

3.2 List builtin object

The List builtin object provides the facility of a double-link list.The List object is another
example ofiterableobject. TheList object provides support for forward and backward iteration.

3.2.1 List construction

A list is constructed like a cons cell with zero or more arguments. Unlike the cons cell, theList
can have a null size.

const nil-list (List)
const dbl-list (List 1 ’a’ "hello")

3.2.2 List methods

List methods are similar theCons object. Theappend method appends an object at the end of
the list. Theinsert method inserts an object at the beginning of the list.

const list (List "hello" "world")
(list:length) ➞ 2
(list:get 0) ➞ "hello"
(list:get 1) ➞ "world"
(list:append "folks") ➞ "hello" "world" "folks"

3.3 Vector builtin object

TheVector builtin object provides the facility of an index array of objects. TheVector object is
another example ofiterableobject. TheVector object provides support for forward and backward
iteration.

3.3.1 Vector construction

A vector is constructed like a cons cell or a list. The defaultconstructor creates a vector with 0
objects.

const nil-vector (Vector)
const obj-vector (Vector 1 ’a’ "hello")

3.3.2 Vector methods

Iteration 33

Vector methods are similar to theList object. Theappend method appends an object at the
end of the vector. Theset method set a vector position by index.

const vec (Vector "hello" "world")
(vec:length) ➞ 2
(vec:get 0) ➞ "hello"
(vec:get 1) ➞ "world"
(vec:append "folks") ➞ "hello" "world" "folks"
(vec:set 0 "bonjour") ➞ "bonjour" "world" "folks"

3.4 Iteration

When an object isiterable, it can be used with the reserved keywordfor . for iterates on one or
several objects and binds associated symbols during each step of the iteration process. All iterable
objects provides also the methodget-iterator which returns an iterator for a given object. The
use of iterator is justify during backward iteration, sincefor only perform forward iteration.

3.4.1 Function mapping

Given a functionfunc, it is relatively easy to apply this function to all objects of an iterable object.
The result is a list of successive calls with the function. Such function is called a mapping function
and is generally calledmap.

const map (obj func) {
trans result (Cons)
for (car) (obj) (result:link (func car))
eval result

}

Thelink method differs from theappend method in the sense that the object to append is set to
the cons cell car if the car and cdr is nil.

3.4.2 Multiple iteration

Multiple iteration can be done with one call tofor . The computation of a scalar product is a simple
but illustrative example.

compute the scalar product of two vectors
const scalar-product (u v) {
trans result 0
for (x y) (u v) (result:+= (* x y))
eval result

}

Note that the functionscalar-productdoes not make any assumption about the object to iterate.
One could compute the scalar product between a vector a list for example.

const u (Vector 1 2 3)
const v (List 2 3 4)
(scalar-product u v) ➞ 28

34 Container Objects

3.4.3 Conversion of iterable objects

The use of an iterator is suitable for direct conversion between one object and another. The conver-
sion to a vector can be simply defined as indicted below.

#convert an iterable object to a vector
const to-vector (obj) {
trans result (Vector)
for (i) (obj) (result:append i)
eval result

}

3.4.4 Explicit iterator

An explicit iterator is constructed with theget-iteratormethod. At construction, the iterator is
reset to the beginning position. Theget-object method returns the object at the current iterator
position. Thenext advances the iterator to its next position. Thevalid-p method returnstrue
if the iterator is in a valid position. When the iterator supports backward operations, theprev
method move the iterator to the previous position. Note thatCons objects do not support backward
iteration. Thebeginmethod reset the iterator to the beginning. Theendmethod moves the iterator
the last position. This method is available only with backward iterator.

reverse a list
const reverse-list (obj) {
trans result (List)
trans itlist (obj:get-iterator)
itlist:end
while (itlist:valid-p) {

result:append (itlist:get-object))
itlist:prev

}
eval result

}

3.5 Special Object

Aleph provides several builtin container objects which have proven to be useful. Such objects are
QueueandBitset.

3.5.1 Queue object

A queueis a special object which acts as container with afifo policy. When an object is placed in
the queue, it remains there until it has been dequeued.

create a queue with objects
const q (Queue "hello" "world")
q:empty-p ➞ false
q:length ➞ 2

dequeue some object
q:dequeue ➞ hello

Special Object 35

q:dequeue ➞ world
q:empty-p ➞ true

3.5.2 Bitset object

A bitset is a special container for bit. A bitset can be constructed with a specific size. When the
bitset is constructed, each bit can be marked and tested by index.

create a bitset
const bs (BitSet)
bitset-p bs ➞ true

check, mark and clear
assert false (bs:get 0)
bs:mark 0
assert true (bs:get 0)
bs:clear 0
assert false (bs:get 0)

36 Container Objects

CHAPTER 4

Class

This chapter covers theAleph class model and its associated operations. TheAleph class model is
slightly different compared to traditional one. Because Aleph has dynamic symbol bindings, it is not
necessary to declare the class data members. A class is anAleph object which can be manipulated
by itself. Such class is said to belongs to a group ofmeta classas described later in this chapter.
Once the class concept has been detailed, the chapter moves to the concept of instance of that class
and shows how instance data members and functions can be used. The chapter terminates with a
description of dynamic class programming.

4.1 The Class object

A classin the Aleph terminology is simply a nameset which can be replicated via a construction
mechanism. A class is created with the reserved keywordclass. The result is an object of type
Class which supports various symbol binding operations.

4.1.1 Class declaration and binding

A new class is an object created with the reserved keywordclass. Such class is an object which can
be bound to a symbol.

const Color (class)

A list of initial instance data members can be specified as an argument to theclassreserved keyword.

const Complex (class (re im))

Because a class acts like a nameset, it is possible to bind directly symbols with thequalified name
notation.

const Color (class) ➞ <Class object>
const Color:RED-FACTOR 0.75 ➞ 0.75
const Color:BLUE-FACTOR 0.75 ➞ 0.75
const Color:GREEEN-FACTOR 0.75 ➞ 0.75

When a data is defined in the class nameset, it is common to refer it as astatic data member. A static
data member is invariant over the instance of that class. When the data member is declared with the
const reserved keyword, the symbol binding isconst in the class nameset. It is also possible to
use thetrans reserved keyword.

38 Class

4.1.2 Class closure binding

A lambda or gamma expression can be define for a class. If the class do not reference an instance
of that class, the resulting closure is called astatic methodof that class. Static methods are invariant
among the class instances. The standard declaration syntaxfor a lambda or gamma expression is
still valid with a class.

const Color:get-primary-from-string (color value) {
trans val "0x"
val:+= (switch color (

("red" (value:substr 1 3))
("green" (value:substr 3 5))
("blue" (value:substr 5 7))

)
)
Integer val

}

The invocation of a static method is done with the standardqualified namenotation.

(Color:get-primary-from-string "red" "#23c4e5") ➞ 0x23
(Color:get-primary-from-string "green" "#23c4e5") ➞ 0xc4
(Color:get-primary-from-string "blue" "#23c4e5") ➞ 0xe5

4.1.3 Class symbol access

A class acts as a nameset and therefore provides the mechanism to evaluate any symbol with the
qualified namenotation.

const Color:RED-VALUE "#ff0000" ➞ "#ff0000"
const Color:print-primary-colors (color) {
println "red color " (Color:get-primary-color "red" color)
println "green color " (Color:get-primary-color "green" color)
println "blue color " (Color:get-primary-color "blue" color)

}

print the color components for the red color
Color:print-primary-colors Color:RED-VALUE

4.2 Instance

An instanceof a class is an Aleph object which is constructed by a specialclass method called a
constructor. If an instance constructor does not exist, the instance is said to have a default construc-
tion. An instance acts also as a nameset. The only differencewith a class, is that a symbol resolution
is done first in the instance nameset and then in the instance class. As a consequence, creating an
instance is equivalent to define a default nameset hierarchy.

4.2.1 Instance construction

By default, a instance of the class is an object which defines an instance nameset. The simplest way
to define an anonymous instance is to create it directly.

Instance 39

const i ((class))
const Color (class)
const red (Color)

The example above define an instance of an anonymous class. Ifa class object is bound to a symbol,
such symbol can be used to create an instance of that class. When an instance is created, the special
symbol namedthis is defined in the instance nameset. This symbol is bounded to the instance object
and can be used to reference in an anonymous way the instance itself.

4.2.2 Instance initialization

When an instance is created, the Aleph engine looks for a special lambda expression called
initialize. This lambda expression, if it exists, is executed after thedefault instance has been
constructed. Such lambda expression is a method since it canrefer to thethis symbol and bind some
instance symbols. The arguments which are passed during theinstance construction are passed to
the initialize method.

const Color (class)
trans Color:initialize (red green blue) {
const this:red (Integer red)
const this:green (Integer green)
const this:blue (Integer blue)

}
create some default colors
const Color:RED (Color 255 0 0)
const Color:GREEN (Color 0 255 0)
const Color:BLUE (Color 0 0 255)
const Color:BLACK (Color 0 0 0)
const Color:WHITE (Color 255 255 255)

In the example above, each time a color is created, a new instance object is created. The constructor
is invoked with thethis symbol bound to the newly created instance. Note that the qualified name
this:red defines a new symbol in the instance nameset. Such symbol is sometimes referred as an
instance data member. Note as well that there is no ambiguity in resolving the symbol red. Once
the symbol is created, it shadows the one defined as a constructor argument.

4.2.3 Initialization with data member list

If the class was defined with a list of data members, the instance is created with these data members
initialized to nil. Each symbol is defined as a transient symbol since they are supposed to be modified
later. As a consequence, it is possible to use the reserved keyword trans inside theinitialize
method.

const Complex (class (re im))
trans Complex:initialize (re im)
trans this:re (Real re)
trans this:im (Real im)

The use of a class data member list is primarily dictated by the existence of acopy constructorfor
that class. If a method try to construct an object, an evaluation of an unbound data member with
trans might trigger an inner instance data member to be set insteadof the real one. This behavior
exists only withtrans. Whenconst is used, the implementation guarantee that the symbol binding
will be local to that instance.

40 Class

4.2.4 Instance symbol access

An instance acts as a nameset. It is therefore possible to bind locally to an instance a symbol. When
a symbol needs to be evaluated, the instance nameset is searched first. If the symbol is not found,
the class nameset is searched. When an instance symbol and a class symbol have the same name,
the instance symbol is said to shadow the class symbol. The simple example below illustrates this
property.

const c (class)
const c:a 1 ➞ 1
const i (c)
const j (c)
const i:a 2 ➞ 2

class symbol access
println c:a ➞ 1
shadow symbol access
println i:a ➞ 2
non shadow access
println j:a ➞ 1

When the instance is created, the special symbolmeta is bound in the instance nameset with the
instance class object. This symbol can therefore be used to access a shadow symbol

const c (class)
const i (c)
const c:a 1 ➞ 1
const i:a 2 ➞ 2
println i:a ➞ 2
println i:meta:a ➞ 1

The symbolmeta must be used carefully, especially inside constructor since it might create an
infinite recursion as shown below.

const c (class)
trans c:initialize nil (const i (this:meta))
const i (c)

4.2.5 Instance method

When lambda expression is defined within the class or the instance nameset, that lambda expression
is callable from the instance itself. If the lambda expression uses thethis symbol, that lambda is
called an instance method since the symbolthis is defined in the instance nameset. If the instance
method is defined in the class nameset, the instance method issaid to beglobal (i.e. callable by
any instance of that class). If the method is defined in the instance nameset, that method is said to
be local and is callable by the instance only. Due to the nature of the nameset parent binding, only
lambda expression can be used. Gamma expressions will not work since the gamma nameset has
always the top level nameset as its parent one.

const Color (class)
class constructor
trans Color:initialize (red green blue) {
const this:red (Integer red)
const this:green (Integer green)

Instance 41

const this:blue (Integer blue)
}
const Color:RF 0.75
const Color:GF 0.75
const Color:BF 0.75
this method returns a darker color
trans Color:darker nil {
trans lr (Integer (max (this:red:* Color:RF) 0))
trans lg (Integer (max (this:green:* Color:GF) 0))
trans lb (Integer (max (this:blue:* Color:BF) 0))
Color lr lg lb

}
get a darker color than yellow
const yellow (Color 255 255 0)
const dark-yellow (yellow:darker)

4.2.6 Instance operators

Any operator can be defined at the class or the instance level.Operators like== or != generally
requires the ability to assert if the argument is of the same type of the instance. The global operator
== will return true if two classes are the same. With the use of themeta, it is possible to assert such
equality.

this method checks that two colors are equals
trans Color:== (color)
if (== Color color:meta)

if (!= this:red color:red) (return false)
if (!= this:green color:green) (return false)
if (!= this:blue color:blue) (return false)
eval true

false

create a new yellow color
const yellow (Color 255 255 0)
(yellow:== (Color 255 255 0)) ➞ true

The global operator== returnstrue if both arguments are the same, even for classes. Method
operators are left open to the user.

4.2.7 Complex number example

As a final example, a class simulating the behavior of a complex number is given hereafter. The
interesting point to note is the use of the operators. As illustrated before, the class uses uses a default
method method to initialize the data members.

class declaration
const Complex (class (re im))

constructor initializer
trans Complex:initialize (re im) {
trans this:re (Real re)
trans this:im (Real im)

}

42 Class

class mutators
trans Complex:set-re (x) (trans this:re re)
trans Complex:set-im (x) (trans this:im im)

class accessors
trans Complex:get-re nil (Real this:re)
trans Complex:get-im nil (Real this:im)
trans Complex:module nil {
trans result (Real (+ (* this:re this:re) (* this:im this:im)))
result:sqrt

}
trans Complex:format nil {
trans result (String this:re)
result:+= "+i"
result:+= (String this:im)

}

complex predicate
const complex-p (c) (
if (instance-p c) (== Complex c:meta) false)

operators
trans Complex:== (c) (
if (complex-p c) (and (this:re:== c:re) (this:im:== c:im)) (

if (number-p c) (and (this:re:== c) (this:im:zero-p)) false))

trans Complex:= (c) {
if (complex-p c) {

this:re:= (Real c:re)
this:im:= (Real c:im)
return this

}
this:re:= (Real c)
this:im:= 0.0
return this

}

trans Complex:+ (c) {
trans result (Complex this:re this:im)
if (complex-p c) {

result:re:+= c:re
result:im:+= c:im
return result

}
result:re:+= (Real c)
eval result

}

4.3 Inheritance

Inheritance is the mechanism by which a class or an instance inherits methods and data member

Inheritance 43

access from a parent object. The Aleph class model is based ona single inheritance model. When
an instance object defines a parent object, such object is called asuper instance. The instance which
has a super instance is called aderived instance. The main utilization of inheritance is the ability to
reuse methods for that super instance.

4.3.1 Derivation construction

A derived object is generally defined within theinitialize method of that instance by setting
thesuper data member.super is set to nil at the instance construction. The good news is that any
object can be defined as a super instance, including builtin object.

const c (class)
const c:initialize nil {
trans this:super 0

}

In the example above, an instance of classc is constructed. The super instance is with an integer
object. As a consequence, the instance is derived from theInteger instance.

4.3.2 Derived symbol access

When an instance is derived from another one, any symbol which belongs to the super instance can
be access with the use of thesuper data member. If the super class can evaluate a symbol, that
symbol is resolved automatically by the derived instance.

const c (class)
const i (c)
trans i:a 1
const j (c)
trans j:super i
println j:a ➞ 1

When a symbol is evaluated, a set of search rules is applied. Aleph gives the priority to the class
nameset vs the super instance. As a consequence, a static data member might shadow a super
instance data member. The rule associated with a symbol evaluation can be summarized as follow.

• Look in the instance nameset.

• Look in the class nameset.

• Look in the super instance if it exists.

• Look in the base object.

44 Class

CHAPTER 5

Advanced Concepts

This chapter covers advanced concepts of the Aleph programming language. The first subject is the
exception model. The second subject covers some propertiesof the namesets. Finally, the interpreter
object is described in details.

5.1 Exception

An exceptionis an unexpected change in the execution flow. The Aleph modelfor exception is
based on a mechanism which throws the exception to be caught by a handler. The mechanism is also
designed to be compatible with the native "C++" implementation.

5.1.1 Throwing an exception

An exception is thrown with the reserved keywordthrow . When an exception is thrown, the normal
flow of execution is interrupted and an object used to carry the exception information is created.
Such exception object is propagated backward in the call stack until an exception handler catch it.

if (not (number-p n))
(throw "type-error" "invalid object found" n)

The example above is the general form to throw an exception. The first argument is thethe exception
id. The second argument is theexception reason. The third argument is theexception object. The
exception id and reason are always a string. The exception object can be any object which is carried
by the exception. The reserved keywordthrow accepts 0 or more arguments.

throw
throw "type-error"
throw "type-error" "invalid argument"

With 0 argument, the exception is thrown with the exception id set to "user-exception". With one
argument, the argument is the exception id. With 2 arguments, the exception id and reason are set.

5.1.2 Exception handler

The reserved keywordtry executes a form and catch an exception if one has been thrown.With one
argument, the form is executed and the result is the result ofthe form execution unless an exception
is caught. If an exception is caught, the result is the exception object. If the exception is a native
one, the result is nil.

46 Advanced Concepts

try (+ 1 2) ➞ 3
try (throw) ➞ nil
try (throw "hello") ➞ nil
try (throw "hello" "world") ➞ nil
try (throw "hello" "world" "folks") ➞ "folks"

In its second form, thetry reserved keyword can accept a second form which is executed when an
exception is caught. When an exception is caught, a new nameset is created and the special symbol
what is bounded with the exception object. In such environment, the exception can be evaluated.
The what:eid qualified name is the exception id. Thewhat:reason qualified name is the
exception reason andwhat:object is the exception object.

try (throw "hello")
(eval what:eid) ➞ "hello"

try (throw "hello" "world")
(eval what:reason) ➞ "world"

try (throw "hello" "world" 2000)
(eval what:object) ➞ 2000

Exceptions are useful to notify abruptly that something went wrong. With an untyped language like
Aleph, it is also a convenient mechanism to abort an expression call if some arguments do not match
the expected types.

protected factorial
const fact (n) {
if (not (integer-p n))

(throw "number-error" "invalid argument in fact")
if (== n 0) 1 (* n (fact (- n 1)))

}
(try (fact 5) 0) ➞ 120
(try (fact "hello") 0) ➞ 0

5.2 Nameset

A nameset is created with the reserved keywordnameset. Without argument, thenamesetreserved
keyword creates a nameset without setting its parent. With one argument, a nameset is created and
the parent set with the argument.

const nset (nameset)
const nset (nameset ...)

5.2.1 Default namesets

When a nameset is created, the symbol. is automatically created and bound to the newly created
nameset. If a parent nameset exists, the symbol.. is also automatically created. The use of the
current nameset is a useful notation to resolve a particularname given a hierarchy of namesets.

trans a 1 ➞ 1
block {
trans a (+ a 1) ➞ 2
println ..:a 1 ➞ 1

}

Delayed Evaluation 47

println a ➞ 1

5.2.2 Nameset and inheritance

When a nameset is set as the super object of an instance, some interesting results are obtained.
Because symbols are resolved in the nameset hierarchy, there is no limitation to use a nameset to
simulate a kind of multiple inheritance. The following example illustrates this point.

const cls (class)
const ins (cls)
const ins:super (nameset)
const ins:super:value 2000
const ins:super:hello "hello world "
println ins:hello ins:value ➞ hello world 2000

5.3 Delayed Evaluation

Aleph provides a mechanism calleddelayed evaluation. Such mechanism permits the encapsulation
of a form to be evaluated inside an object called apromise.

5.3.1 Creating a promise

The reserved keyworddelay creates apromise. When thepromiseis created, the associated object
is not evaluated. This means that the promise evaluates to itself.

const a (delay (+ 1 2))
promise-p a ➞ true

The previous example creates apromiseand store the argument form. The form is not yet evaluated.
As a consequence, the symbola evaluates to thepromiseobject.

5.3.2 Forcing a promise

The reserved keywordforce the evaluation of apromise. Once thepromisehas been forced, any
further call will produce the same result. Note also that at this stage, thepromiseevaluates to the
evaluated form.

trans y 3
const l ((lambda (x) (+ x y)) 1)
assert 4 (force l)
trans y 0
assert 4 (force l)

5.4 Enumeration

Enumaration, that is, named constant bound to an object, canbe declared with the reserverd keyword
enum. The enumeration is built with a list of literal and evaluated as is.

const e (enum E1 E2 E3)

48 Advanced Concepts

assert true (enum-p e)

The complete enumeration evaluates to anEnum object. Once built, enumeration item evaluates by
literal and returns anItem object.

assert true (item-p e:E1)
assert "Item" (e:E1:repr)

Items are comparable objects. Only items can be compared. For a given, item, the source enumera-
tion can be obtained with theget-enum method.

check for item equality
const i1 e:E1
const i2 e:E2
assert true (i1:== i1)
assert false (== i1 i2)

get back the enumeration
assert true (enum-p (i1:get-enum))

5.5 Interpreter

TheAleph interpreter is by itself a special object with specialized methods which do not have equiv-
alent using the standard aleph notation. The interpreter isalways referred with the special symbol
interp. The following table is a summary of the symbols and methods bound to the interpreter.

Table 5 Interpreter builtin symbols

Symbol Description

argv command arguments vector
os-name operating system name
os-type operating system type
version full aleph version
program-name interpreter program name
major-version aleph major version number
minor-version aleph minor version number
patch-version aleph patch version number
aleph-url aleph official url name
load load a file and execute it
clone clone the interpreter
launch launch a normal thread
daemon launch a daemon thread
library load and initialize a library
set-real-precision set real number precision
get-real-precision set real number precision

5.5.1 Arguments vector

Theinterp:argv qualified name evaluates to a vector of strings. Each argument is stored in the
vector during the interpreter initialization.

zsh> aleph hello world

Interpreter 49

aleph> println (interp:argv:length) ➞ 2
aleph> println (interp:argv:get 0) ➞ hello

5.5.2 Interpreter version and os

Several symbols can be used to track the interpreter versionand the operating system. The full
version is bound to theinterp:version qualified name. The full version is composed of the
major, minor andpatch number. The operating system name is bound to the qualified name
interp:os-name. The operating system type (likeunix) is bound tointerp:os-type.

println "major version number : " interp:major-version
println "minor version number : " interp:minor-version
println "patch version number : " interp:patch-version
println "interpreter version : " interp:version
println "operating system name : " interp:os-name
println "operating system type : " interp:os-type
println "aleph official url : " interp:aleph-url

5.5.3 File loading

Theinterp:load method loads and execute a file. The interpreter interactivecommand session
is suspended during the execution of the file. In case of erroror if an exception is raised, the file
execution is terminated. The process used to load a file is governed by thefile resolver. Without
extension, a compiled file is searched first and if not found a source file is searched.

5.5.4 Library loading

Theinterp:library method loads and initializes a library. The interpreter maintains a list of
opened library. Multiple execution of this method for the same library does nothing. The method
returns the library object.

interp:library "aleph-sys"
println "random number: " (aleph:sys:random)

50 Advanced Concepts

CHAPTER 6

Threads Operations

This chapter covers the threads facilities builtin in theAleph interpreter. The thread subsystem
allows for the execution of concurrent forms with an automatic synchronization mechanism. De-
signing a good program with concurrent execution is a difficult task. It takes a while to get used with
the various synchronization mechanisms which ensure a safeexecution, that is no race condition or
dead lock. Fortunately, Aleph provides some unique features that should ease such design.

6.1 Normal and Daemon threads

The interpreter supports two types of threads, callednormalanddaemonthreads. A normal thread
is started with the reserved keywordlaunch. A daemon thread is started with the reserved keyword
daemon. The difference between a normal thread and a daemon thread is only in the termination
of the interpreter. An aleph program is completed when all normal threads have terminated. This
means that the master thread (i.e the first thread) is suspended until all normal threads have been
executed. With daemon threads, the master thread terminates even if some daemon threads are still
running.

6.1.1 Starting a normal thread

A normal thread is started with the reserved keywordlaunch. The form to execute in a thread is the
argument. The simplest thread to execute is thenil thread.

launch (nil)

Even thenil thread does nothing in term of computation, it does a lot of things internally by turning
on the shared objects sub-system.

6.1.2 Thread object and result

When a thread terminate, the thread object holds the result of the last executed form. The thread
object is returned by thelaunch or daemoncommand. Thethread-p predicates returnstrue if
the object is a thread descriptor. The thread type can be check with thenormal-p or daemon-p
predicates.

const thr (launch (nil))
println (thread-p thr) ➞ true
println (thr:normal-p) ➞ true

52 Threads Operations

The member dataresult of the thread object holds the result of the thread. Althoughthe result
can be accessed at any time, the returned value will be nil until the thread as completed its execution.

const thr (launch (nil))
println (thr:result) ➞ nilp

Although the Aleph engine will ensure that the result isnil until the thread has completed its
execution, it does not mean that it is a reliable approach to test until the result is notnil. The
engine provides various mechanisms to synchronize a threadand eventually wait for its completion.

6.2 Shared Objects

The whole purpose of using a multi-threaded environment is to provide a concurrent execution with
some shared variables. Although, several threads can execute concurrently without sharing data,
the most common situation is that one or more global variableare accessed (and even changed) by
one or more threads. Various scenarios are possible. For example, a variable is changed by one
thread, the other thread just read its value. Another scenario is one read, multiple write, or even
more complicated, multiple read and multiple write. In any case, the interpreter subsystem must
ensure that each objects are in a good state when such operation do occur.
The Aleph engine provides an automatic synchronization mechanism for global objects, where only
one thread can modify an object, but several thread can read it. This mechanism known asread-write
lockingguarantee that there is only one writer, but eventually multiple reader. When a thread start
to modify an object, no other thread are allowed to read or write this object until the transaction
has been completed. On the opposite, no thread is allowed to change (i.e. write) an object, until all
thread which access (i.e. read) the object value have completed the transaction. Because a context
switch can occur at any time, the object read-write locking will ensure a safe protection during each
concurrent access.

6.2.1 Various shared objects

Shared objects can be very complicated to detect. For example, if a vector is shared by various
threads, the engine will make sure that all vector objects are also shared. A closed variable in a
lambda or gamma expression is another example of potential shared object. Executing such lambda
form in a thread will automatically mark the closed variables as shared objects. Additionally, when
the thread system is started, all object in the global nameset are marked shared.

6.2.2 Shared object predicate

The object predicate methodshared-p returns true if an object is shared. Since all global objects
are marked shared as soon as the thread system is turned on, the following example shows how a nil
thread marks a shared variable.

create simple symbol
const a 1
assert false (a:shared-p)

turn on the thread system
launch (nil)
assert true (a:shared-p)

check another symbol
trans b 1

Synchronization 53

assert true (b:shared-p)

When an object is marked shared, it will remain in this state for rest of the session. Note that when
an object is copied (by copy construction), the shared stateis not copied. The copied object will
become shared depending on its surrounding context. Such context can be a nameset or any other
type of container which is shared or not.

6.2.3 Shared protection access

We illustrate the previous discussion with an interesting example and some variations around it.
Let’s consider a form which increase an integer object and another form which decrease the same
integer object. If the integer is initialized to 0, and the two forms run in two separate threads, we
might expect to see the value bounded by the time allocated for each thread. In other word, this
simple example is a very good illustration of your machine scheduler.

shared variable access
const var 0

const incr nil (while true
(println "increase: " (var:= (+ var 1))))

const decr nil (while true
(println "decrease: " (var:= (- var 1))))

start both threads
launch (decr)
launch (incr)

In the previous example,var is initialized to 0. Theincr thread incrementsvar while thedecr
thread decrementsvar. Depending on the operating system, the result stays bounded within a
certain range (generally -5000 to 5000). The previous example can be changed by using the main
thread or a third thread to print the variable value. The end result is the same, except that there is
more threads competing for the shared variable.

shared variable access
const var 0

incrementer, decrementer and printer
const incr nil (while true (var:= (+ var 1)))
const decr nil (while true (var:= (- var 1)))
const prtv nil (while true (println "value = " var)

start all threads
launch (decr)
launch (incr)
launch (prtv)

6.3 Synchronization

Although, Aleph provides an automatic synchronization mechanism for reading or writing an object,
it is sometimes necessary to control the execution flow. There are basically two techniques to do so.
First, protect a form from being executed by several threads. Second, wait for one or several threads
to complete their task before going to the next execution step.

54 Threads Operations

6.3.1 Form synchronization

The reserved keywordsynccan be used to synchronize a form. When a form, is synchronized, the
Aleph engine guarantees that only one thread will execute this form.

const print-message (code mesg) (
sync {

errorln "error : " code
errorln "message: " mesg

}
)

The previous example create a gamma expression which make sure that both the error code and error
message are printed in one group, when several threads call it.

6.3.2 Thread completion

The other piece of synchronization is the thread completionindicator. The thread descriptor contains
a method calledwait which suspend the calling thread until the thread attached to the descriptor
has been completed. If the thread is already completed, the method returns immediately.

simple flag
const flag false

simple shared tester
const ftest (val) (flag) (assert val (flag:shared-p))

no thread mean not shared
ftest false

in a thread it is shared
const thr (launch (ftest true))
thr:wait
assert true (flag:shared-p)

This example is taken from the test suites. It checks that a closed variable becomes shared when
started in a thread. Note the use of thewait method to make sure the thread has completed before
checking for the shared flag. It is also worth to note thatwait is one of the method which guarantees
that a thread result is valid.
Another use of thewait method can be made with a vector of thread descriptors when one wants
to wait until all of them have completed.

shared vector of threads descriptors
const thr-group (Vector)

wait until all threads in the group are finished
const wait-all nil (for (thr) (thr-group) (thr:wait))

6.3.3 Complete example

We illustrate the previous discussion with a complete example. The idea is to perform a matrix
multiplication. A thread is launched when when multiplyingone line with one column. The result
is stored in the thread descriptor. A vector of thread descriptor is used to store the result.

Synchronization 55

initialize the shared library
interp:library "aleph-sys"

shared vector of threads descriptors
const thr-group (Vector)

this procedure waits until all threads in
the group are finished
const wait-all nil (for (thr)

(thr-group) (thr:wait))

this procedure initialize a matrix with random numbers
the matrix is a square one with its size as an argument
const init-matrix (n) {
trans i (Integer 0)
const m (Vector)
do {

trans v (m:append (Vector))
trans j (Integer)
do {

v:append (aleph:sys:random)
} (< (j:++) n)

} (< (i:++) n)
eval m

}

this procedure multiply one line with one column
const mult-line-column (u v) {
assert (u:length) (v:length)
trans result 0
for (x y) (u v) (result:+= (* x y))
eval result

}

this procedure multiply two vectors assuming one
is a line and one is a column coming from the matrix
const mult-matrix (mx my) {
for (lv) (mx) {

assert true (vector-p lv)
for (cv) (my) {

assert true (vector-p cv)
thr-group:append (launch (mult-line-column lv cv))

}
}

}

check for some arguments
note the use of errorln method
if (== 0 (interp:argv:length)) {
errorln "usage: aleph 0607.als size"
aleph:sys:exit 1

}

56 Threads Operations

get the integer and multiply
const n (Integer (interp:argv:get 0))
mult-matrix (init-matrix n) (init-matrix n)

wait for all threads to complete
wait-all

make sure we have the right number
assert (* n n) (thr-group:length)

6.3.4 Condition variable

A condition variableis another mechanism to synchronize several threads. A condition variable is
modeled with theCondvar object. At construction, the condition variable is initialized tofalse.
A thread calling thewaitmethod will block until the condition becomestrue. Themark method
can be used by a thread to change the state of a condition variable and eventually awake some threads
which are blocked on it. The following example shows how the main thread blocks until another
change the state of the condition.

create a condition variable
const cv (Condvar)

this function runs in a thread - does some computation
and mark the condition variable
const do-something nil {
do some computation
....
mark the condition
cv:mark

}

start some computation in a thread
launch (do-something)

block until the condition is changed
cv:wait-unlock

continue here
...

In this example, the condition variable is created at the beginning. The thread is started and the
main thread blocks until the thread change the state of the condition variable. It is important to
note the use of thewait-unlock method. When the main thread is re-started (after the condition
variable has been marked), the main thread owns the lock associated with the condition variable.
Thewait-unlock method unlocks that lock when the main thread is restarted. Note also that
thewait-unlock method reset the condition variable. if thewait method was used instead of
wait-unlock the lock would still be owned by the main thread. Any attempt by other thread to
call the mark method would result in the calling thread to block until the lock is released.
The Condvar class has several methods which can be used to control the behavior of the condi-
tion variable. Most of them are related to lock control. Thereset method reset the condition
variable. Thelock andunlock control the condition variable locking. Themark, wait and
wait-unlockmethod controls the synchronization among several threads.

CHAPTER 7

Regular Expressions

This chapter covers theAleph regular expressions (regex) syntax and programming use. TheAleph
regexis an original implementation with its own syntax and execution model.

7.1 Regular expression syntax

Aleph implements a regular expression engine via a specialRegexobject. A regular expression can
be built implicitly or explicitly with the use of theRegex object. Theregexsyntax uses the ’[’ and
’]’ characters as block delimiters. When used in a source file, the lexical analyzer automatically
recognizes aregexand built the object accordingly. In other word, theregexsystem is builtin in
the Aleph language. The following example shows two equivalent way todefine the sameregex
expression.

syntax builtin regex
(== [$d+] 2000) ➞ true
explicit builtin regex
(== (Regex "$d+") 2000) ➞ true

In its first form, the ’[’ and ’]’ characters are used as syntaxdelimiters. The lexical analyzer auto-
matically recognizes this token as aregexand built the equivalentRegex object. The second form
is the explicit construction of theRegex object. Note also that the ’[’ and ’]’ characters are also
used asregexblock delimiters.

7.1.1 Regex characters and meta-characters

Any character, except the one used as operators can be used ina regex. The ’$’ character is used
as a meta-character (or control character) to represent a particular set of characters. For example,
[hello world] is a regexwhich match only the"hello world" string. The[$d+] regex
matches one or more digits. The following meta characters are builtin in theregexengine.

• $amatches any letter or digit.

• $b matches any blank characters.

• $d matches any digit.

• $l matches any lower case letter.

• $n matches new line characters.

58 Regular Expressions

• $smatches any letter.

• $u matches any upper case letter.

• $w matches any aleph word constituent.

• $x matches any hexadecimal characters.

The uppercase version is the complement of the corresponding lowercase character set.

• $A matches any character except letter or digit.

• $B matches any character except blanks.

• $D matches any character except digit.

• $L matches any character except lower case letters.

• $N matches any character except new line.

• $Smatches any character except letters.

• $U matches any character except upper case letters.

• $W matches any character except aleph word constituents.

• $X matches any character except hexadecimal characters.

A character which follows a $ character and that is not a meta character is treated as a normal
character. For example$[is the ’[’ character. A quoted string can be used to define character
matching which could otherwise be interpreted as control characters or operator. A quoted string
also interprets standardescapedsequences but not meta characters.

(== [$d+] 2000) ➞ true
(== ["$d+"] 2000) ➞ false

7.1.2 Regex character set

A character set is defined with the ’<’ and ’>’ characters. Any enclosed character defines a character
set. Note that meta characters are also interpreted inside acharacter set. For example,<$d+->

represents any digit or a plus or minus. If the first characteris the ˆ character in the character set, the
character set is complemented with regards to its definition.

7.1.3 Regex blocks and operators

The ’[’ and ’]’ characters are theregexsub-expressions delimiters. When used at the top level
of a regexdefinition, they can identify an implicit object. Their use at the top level for explicit
construction is optional. The following example is strictly equivalent.

simple real number check
const real-1 (Regex "$d*.$d+")
another way with [] characters
const real-2 (Regex "[$d*.$d+]")

Sub-expressions can be nested (that’s their role) and combined with operators. There is no limit in
the nesting level.

Regex Object 59

pair of digit testing
(== [dd[dd]+] 2000) ➞ true
(== [dd[dd]+] 20000) ➞ false

The following unary operators can be used with single character, control characters and sub-
expressions.

• * match zero or more times

• + match one or more times

• ? match zero or one time.

• | alternation

Alternation is an operator which work with a secondary expression. Care should be taken when
writing the right sub-expression. For example the following regex[$d|hello] is equivalent to
[[$d|h]ello]. In other word, the minimal first sub-expression is used whencompiling theregex.

7.1.4 Grouping

Groups of sub-expressions are created with the ’(’ and ’)’ characters. When a group is matched,
the resulting sub-string is placed on a stack and can be used later. In this respect, theregexengine
can be used to extract sub-strings. The following example extracts the month, day and year from
a particular date format:[(dd):(dd):(dddd)]. This regexassumes a date in the
formmm:dd:yyyy.

if (== (const re [(dd):(dd)]) "12:31") {
trans hr (re:get 0)
trans mn (re:get 1)

}

Grouping is the mechanism to retrieve sub-strings when a match is successful. If theregexis bind to
a symbol, theget method can be used to get the sub-string by index.

7.2 Regex Object

Although aregexcan be built implicitly, theRegex object can also be used to build a newregex.
The argument is a string which is compiled during the object construction.

7.2.1 Literal object

A Regex object is a literal object. This means that theto-string method is available and that a
call to theprintln special form will work directly.

const re (Regex "$d+")
println re ➞ $d+
println re:to-string ➞ [$d+]

7.2.2 Regex operators

The == and!= operators are the primary operators to perform aregexmatch. The== operator
returns true if theregex matches the string argument from the beginning to the end of string. Such

60 Regular Expressions

operator implies the begin and end of string anchoring. The< operator returns true if theregex
matches the string or a substring or the string argument.

7.2.3 Regex methods

The primaryregexmethod is theget method which returns by index the sub-string when a group
has been matched. Thelength method returns the number of group match.

if (== (const re [(dd):(dd)]) "12:31") {
re:length ➞ 2
re:get 0 ➞ 12
re:get 1 ➞ 31

}

Thematch method returns the first string which is matched by theregex.

const regex [$d+]
regex:match "Happy new year 2003" ➞ 2003

Thereplace method any occurrence of the matching string with the stringargument.

const regex [$d+]
regex:replace "Hello year 2000" "2003" ➞ hello year 2003

7.2.4 Argument conversion

The use of theRegex operators implies that the arguments are evaluated as literal object. For this
reason, an implicit string conversion is made during such operator call. For example, passing the
integer12 or the string"12" is strictly equivalent. Care should be taken when using thisimplicit
conversion with real numbers.

CHAPTER 8

Functional Programming

This chapter covers the interesting aspects ofAleph with respect to thefunctional programming
paradigm. Functional programming is often described as the ability to create functions that creates
functions. As a matter of fact, it is a far bigger subject that finds its root in theLambda Calculus. A
language (likeAleph) that supports the functional programming paradigm is alsosometimes called
ahigh order language.

8.1 Function expression

A lambda expressionor agamma expressioncan be seen like a function object with no name. During
the evaluation process, the expression object is evaluatedas well as the arguments (from left to right)
and a result is produced by applying those arguments to the function object. An expression can be
built dynamically as part of the evaluation process.

aleph >println ((lambda (n) (+n 1)) 1)
2

The difference between alambda expressionand agamma expressionis only in the nameset binding
during the evaluation process. Thelambda expressionnameset is linked with the calling one, while
thegamma expressionnameset is linked with the top level nameset. The use ofgamma expression
is particularly interesting with recursive functions as itcan generate a significant execution speedup.
The previous example will behaves the same with a gamma expression.

aleph >println ((gamma (n) (+n 1)) 1)
2

8.1.1 Self reference

When combining a function expression with recursion, the need for the function to call itself is
becoming a problem since that function expression does not have a name. For this reason,Aleph
provides the reserved keywordself that is a reference to the function expression. We illustrate this
capability with the well-known factorial expression written in pure functional style.

aleph >println ((gamma (n)
(if (<= n 1) 1 (* n (self (- n 1))))) 5)

120

62 Functional Programming

The use of agamma expressionversus alambda expressionis a matter of speed. Since thegamma
expressiondoes not havefree variable, the symbol resolution is not a concern here.

8.1.2 Closed variables

One of theAleph characteristic is the treatment offree variables. A variable is said to be free if it
is not bound in the expression environment or its children atthe time of the symbol resolution. For
example, the expression((lambda (n) (+ n x)) 1) computes the sum of the argumentn
with the free variablex. The evaluation will succeeds if x is defined in one of the parent environment.
Actually this example can also illustrates the difference between alambda expressionand agamma
expression. Let’s consider the following forms.

trans x 1

const do-print nil {
trans x 2
println ((lambda (n) (+ n x)) 1)

}

The function do-print (which is agamma expressionbecause of theconst reserved keyword) will
produce3 since it sums the argumentn bound to 1, with the free variablex which is defined in the
calling environment as2. Now if we rewrite the previous example with agamma expressionthe
result will be one, since the expression parent will be the top level environment that definesx as 1.

trans x 1

const do-print nil {
trans x 2
println ((gamma (n) (+ n x)) 1)

}

With this example, it is easy to see that there is a need to be able to determine a particular symbol
value during the expression construction. Doing so is called closing a variable. Closing a variable
is a mechanism that binds into the expression a particular symbol with a value and such symbol
is called aclosed variable, since its value is closed under the current environment evaluation. For
example, the previous example can be rewritten to close the symbolx.

trans x 1

const do-print nil {
trans x 2
println ((gamma (n) (x) (+ n x)) 1)

}

Note that the list of closed variable immediately follow theargument list. In this particular case, the
functiondo-printwill print 3 sincex has been closed with the value2 has defined in the function
do-print.

8.1.3 Dynamic binding

BecauseAleph has a dynamic binding symbol resolution, it is possible to have under some circum-
stances a free or closed variable. This kind of situation canhappen when a particular symbol is
defined under a condition.

lambda (n) {

Functional objects 63

if (<= n 1) (trans x 1)
println (+ n x)

}

With this example, the symbol x is a free variable if the argumentn is greater than 1. While this
mechanism can be powerful, extreme caution should be made when using such feature. Note also
that many other language do not allow this kind of behavior. That kind of restriction is primarily
driven by the need to have a language withstatic binding. The bad news is that it is impossible to
write a compiler with dynamic symbol binding.

8.2 Functional objects

Everything inAleph is an object. As a consequence, an object can be manipulated,even if it is
lexical element, a symbol or a closure.

8.2.1 Lexical and qualified names

The basic forms elements are the lexical and qualified names.Lexical and qualified names are con-
structed by theAleph reader. Although the evaluation process make that lexical object transparent,
it is possible to manipulate them directly.

aleph >const sym (protect lex)
aleph >println (sym:repr)
Lexical

In this example, theprotect reserved keyword is used to avoid the evaluation of the lexical object
namedlex. Therefore the symbolsym refers to a lexical object. Since a lexical (and a qualified)
object is a also a literal object, theprintln reserved function will work and print the object name.
In fact, a literal object provides theto-string method that returns the string representation of a
literal object.

aleph >const sym (protect lex)
aleph >println (sym:to-string)
lex

8.2.2 Symbol and argument access

Each nameset maintains a table of symbols. A symbol is a binding between a name and an object.
Eventually, the symbol carries theconst flag. During the lexical evaluation process, the lexical
object tries to find an object in the nameset hierarchy. Such object can be either a symbol or an
argument. Again, this process is transparent, but can be controlled manually. Both lexical and
qualified named object have themap method that returns the first object associated in the nameset
hierarchy.

aleph >const obj 0
aleph >const lex (protect obj)
aleph >const sym (lex:map)
aleph >println (sym:repr)
Symbol

A symbol is also a literal object, so theto-string andto-literal methods will return the
symbol name. Symbol methods are provided to access or modifythe symbol values. It is also
possible to change theconst symbol flag with theset-const method.

64 Functional Programming

aleph >println (sym:get-const)
true
aleph >println (sym:get-object)
0
aleph> sym:set-object true
aleph >println (sym:get-object)
true

A symbol name cannot be modified, since the name must be synchronized with the nameset associ-
ation. On the other hand, a symbol can be explicitly constructed. As any object, the= operator can
be used to assign a symbol value. The operator will behaves like theset-object method.

aleph >const sym (Symbol "symbol")
aleph >println sym
symbol
aleph >sym:= 0
aleph >println (eval sym)
0

8.2.3 Closure

As an object, theClosure can be manipulated outside the traditional declarative way. A closure
is a special object that holds an argument list, a set of closed variables and a form to execute. The
mechanic of a closure evaluation has been described earlier. What we are interested here is the
ability to manipulate a closure as an object and eventually modify it. Note that by default a closure is
constructed as a lambda expression. With a boolean argumentset to true the same result is obtained.
With false, a gamma expression is created.

aleph >const f (Closure)
aleph >println (closure-p f)
true

This example creates an empty closure. The default closure is equivalent to thetrans f nil
nil. The same can be obtained with(const f (Closure true)). For a gamma expression,
the following forms are equivalent,const f (Closure false) andconst f nil nil.
Remember that it istrans andconst that differentiate between a lambda and a gamma expression.
Once the closure object is defined, theset-form method can be used to bind a form.

the simple way
trans f nil (println "hello world")
the complex way
const f (Closure)
f:set-form (protect (println "hello world"))

There are numerous situations where it is desirable to mute dynamically a closure expression. The
simplest one is the closure that mute itself based on some context. With the use ofself, a new
form can be set to the one that is executed. Another use is a mechanism calladvice, where some
new computation are inserted prior the closure execution. Note that appending to a closure can lead
to some strange results if the existing closure expression usesreturn special forms. In a multi-
threaded environment, the ability to change a closure expression is particularly handy. For example
a special thread could be used to monitor some context. When aparticular situation develops, that
threads might trigger some closure expression changes. Note that changing a closure expression
does not affect the one that is executed. If such change occurs during a recursive call, that change is
seen only at the next call.

Combinators example 65

8.3 Combinators example

The remaining part of this chapter is an example of functional programming based on combinators
abstraction. A combinator (in theAleph terminology) is a single argument closure withoutfree
variables. At this stage, there is no difference between a lambda expression and a gamma expression.
The difference shows up only in the execution context. The simplest combinator isconst I (x)
(eval x), that is theidentitycombinator.

8.3.1 Curried expression

A multi-argument closure can be converted to a single argument closure by encapsulating the argu-
ments into other closure. For example, the functionf(x, y) = x + y can be computed, either with
const f (x y) (+ x y) or by writing const g (x) (gamma (y) (x) (+ x y)).
In the first form, the expression is called with the arguments, while the second form requires two
calls. No matter how the call is made, the result, remains thesame.

direct call
aleph >println (f 1 2)
3
curried call
aleph >println ((g 1) 2)
3

Clearly, this mechanism can be extended to several arguments. This technique, calledcurrying,
is named after Haskell B. Curry, but was first introduced by Moses Schonfinkel. WithAleph, the
form evaluation is a two step process (eval, apply) than runsfrom left to right. Each arguments are
first evaluated, placed on the eval stack and the function is applied. With the curry approach, the
evaluation is sequential. If the arguments are evaluated tonormal objects (that is objects that do
not have side effects), the result should be the same, but with complexobject (for example a file
descriptor), the result might be different. Nevertheless,we will assume that a regularaleph form
(fxyz) can be curried to produce the same result by writing((fx)y)z).

8.3.2 Base combinators

If we are given a functionf, can we express the same function in the form of nested combinators
C1C2...Cn? The answer to that question is actually quite complex and isone addressed by the
computability theory. Since we don’t want to do the math here, let’s rather focus onsome interesting
examples to illustrate our point. Theidentitycombinator has been show previously. There are two
other interesting combinators called K and S. K is the cancellation combinator, which drops its
second argument and return its first one. An evaluation like(Kxy) is expected to evaluate x and
return it. The curried form will be((Kx)y) which does the same. S is the distribution combinator,
which distributes an argument to two functions. An evaluation like (Sfgx), which is curried like
(((Sf)g)x) will be equivalent to((fx)(gx)). With Aleph, both K and S combinators can be defined
as follow.

const K (x) (gamma (y) (x) (eval x))
const S (f) (gamma (g) (f) (gamma (x) (f g) ((f x) (g x))))

It is amazing to note how these two combinators are powerful.For example, theSKK combinator
sequence is theidentitycombinator. This can be verified with example0803.als. In other words,
we haveSKK = I. Because theidentitycombinator is convenient, we will keep it ’as is’.

8.3.3 Form transformation

66 Functional Programming

Forms can be converted to a combinatoric representation. That transformation process is rather
simple and use only theSKI combinators. To convince ourself, let’s take a simple example like
f(x) = x + x. The form to convert is simply(+xx)

• step 1terms currying
(+ x x) ➞ ((+ x) x)

• step 2S term mapping
((+ x) x) ➞ (S [(+ x)]) [x]

• step 3I term mapping
(S [(+ x)]) [x] ➞ (S [(+ x)]) I

• step 4S term mapping
(S [(+ x)]) I ➞ (S ((S [+]) [x])) I

• step 5I term mapping
(S ((S [+]) [x])) I ➞ (S ((S [+]) I)) I

• step 6K term mapping
(S ((S [+]) I)) I ➞ (S ((S (K +)) I)) I

Note that the step 1 transform the form into a combinatoric representation. At this stage, the notation
for the ’+’ operator is also a transformation from the builtin operator to a curried version of it. If call
c+ the curried ’+’ operator, we have the final implementation.

the S combinator
const S (f) (gamma (g) (f) (gamma (x) (f g) ((f x) (g x))))

the K combinator
const K (x) (gamma (y) (x) (eval x))

the I combinator
const I (x) (eval x)

curried ’+’ operator
const c+ (x) (gamma (y) (x) (+ x y))

testing the reduction (+ x x) => (S ((S (K +)) I)) I)
println "((+ x x) 512) = " (((S ((S (K c+)) I)) I) 512)

The good news about all of this is that the transformation process is rather mechanical. Once a form
has been transformed, it can be represented by a graph which is subject to optimization. Such opti-
mization is called acombinator graph reduction. What it means is that we have here a mechanism
to optimize a form. Moreover, we have also a simple mechanismto perform a form compilation that
could be interpreted with a virtual combinatorial machine.Such compilation process is the subject of
a later discussion... In summary, given a lambda or gamma expression with zero or more argument,
the combinatoric transformation involves several steps.

• Step 1Form currying
The form is transformed recursively to produce an expression with one argument. The oper-
ators are curried. The special forms are subject to a specialtreatment.

• Step 2SKI transformation
The curried expression is transformed into a combinatoric representation with the SKI com-
binators.

Combinators example 67

8.3.4 Recursive combinator

Combinators offer an elegant way to address recursive form.The idea is to create a combinator that
can restart itself while evaluating some arguments. We illustrate this point with thede factofactorial
function.

factorial - the old fashion way
const fact (n) (if (== n 1) 1 (* n (fact (- n 1))))

The transformation creates a combinatoric representationof the factorial with a closed variable
which is the form to restart.

factorial - as a combinator
const c-fact (f) (gamma (n) (f)

(if (== n 1) 1 (* n ((f f) (- n 1)))))

Thec-fact gamma expression evaluates to a gamma expression. The gammaexpression uses the
closed variablef to restart itself. This is the recursion in its combinatoricform. Note that we need
another combinator to start the first evaluation. Example0805.als demonstrates this example.

the U combinator
const U (f) (f f)
the generated factorial
const fact (U c-fact)

However, we have used a trick here when defining thec-fact gamma expression since the expres-
sion restart itself. What we would like to have is rather:

factorial - non restarting
const c-fact (f) (gamma (n) (f) (if (== n 1) 1 (* n (f (- n 1)))))

What we need now is combinator that tales care of restarting the factorial. This combinator is known
as theY combinatorand is defined as follow:

the Y combinator
const Y (f) ((gamma (g) (f) (f (gamma (x) (g) ((g g) x))))

(gamma (g) (f) (f (gamma (x) (g) ((g g) x)))))
the generated factorial
const fact (Y c-fact)

Example0806.alsdemonstrates what has just been described here. Note that the Y combinator is
complex because it needs , first to restart the function (likethe U combinator does), but also needs
to proceed with the evaluation of the function itself. Adding some information statement is quite
revealing.

factorial - as a combinator
const c-fact (f) {
println "creating factorial gamma expression"
gamma (n) (f) {

println "evaluating the factorial gamma with n = " n
if (== n 1) 1 (* n (f (- n 1)))

}
}

zsh >aleph 0806.als
creating factorial gamma expression

68 Functional Programming

evaluating the factorial gamma with n = 5
creating factorial gamma expression
evaluating the factorial gamma with n = 4
creating factorial gamma expression
evaluating the factorial gamma with n = 3
creating factorial gamma expression
evaluating the factorial gamma with n = 2
creating factorial gamma expression
evaluating the factorial gamma with n = 1
fact 5 = 120

The Y combinator has also the interesting property to act as afixed point combinator. It is amazing
to note that(c-fact (Y c-fact)) is almost equivalent to(Y c-fact) (up to a closure).
That is the propertyY F = F (Y F) holds and YF is a fixed point. Such property is the root of the
recursion. In fact, any combinator likec-fact can be transformed into a recursive function with
the help of the Y combinator. To convince yourself, look at example0807.als which computes
a Fibonacci value with the Y combinator. It is also clear thatthe Y combinator is an elegant way
to perform recursionwithout namelike the reserved keywordself does. Note also that a fixed point
combinator can be characterized (up to a closure) with the SKI combinators byY = ((SI)Y).

8.3.5 Other combinators

There are other combinators. All of them involve some sort ofcomputation analog to the SKI
combinators. For example theB combinatoris the composition combinator((((Bf)g)x) = f(g(x)).
TheC combinatoris an argument swap combinator(((Cf)x)y) = ((fy)x). TheW combinatoris
the argument doubling combinator((Wf)x) = ((fx)x). It can be shown that the base {S K} is the
smallest combinator base. However, other base can be used todo the same job. For example {I B C
W K} is another base. The rule of game is to find the base that please you.

CHAPTER 9

Librarian and Resolver

This chapter covers the use of theaxl librarian utility as well as theLibrarian object. The file path
resolver is also described as a mean to search for a particular file to execute in a program.

9.1 Librarian

A librarian file is a special file that acts as a containers for various files. A librarian file is created
with the axl Aleph Cross Librarianutility. Once a librarian file is created, it can be added to the
interpreter resolver. The file access is later performed automatically by name with the standard
interpreterload method.

9.1.1 Creating a librarian

Theaxl utility is the preferred way to create a librarian. Given a set of files,axl combines them into
a single one.

zsh > axl -h
usage: axl [options] [files]

[-h] print this help message
[-v] print version information
[-c] create a new librarian
[-x] extract from the librarian
[-s] get file names from the librarian
[-t] report librarian contents
[-f] lib set the librarian file name

The-c option creates a new librarian. The librarian file name is specified with the-f option.

zsh > axl -c -f librarian.axl file-1.als file-2.als

The previous command combinesfile-1.als and file-2.als into a single file called
librarian.axl. Note that any file can be included in a librarian.

9.1.2 Using the librarian

Once a librarian is created, the interpreter-i option can be used to specify it. The-i option accepts
either a directory name or a librarian file. Once the librarian has been opened, the interpreterload
method can be used as usual.

70 Librarian and Resolver

zsh > aleph -i librarian.axl
aleph> interp:load "file-1.als"
aleph> interp:load "file-2.als"

The librarian acts like a filearchive. The interpreter file resolver takes care to extract the file from
the librarian when theload method is invoked.

9.1.3 Librarian contents

The axl utility provides the-t and-s options to look at the librarian contents. The-s option
returns all file name in the librarian. The-t option returns a one line description for each file in the
librarian.

zsh > axl -t -f librarian.axl
-------- 1234 file-1.als
-------- 5678 file-2.als

The one line report contains the file flags, the file size and thefile name. The file flags are not used at
this time. One possible use in the future is for example, anauto-loadbit or any other useful things.

9.1.4 Librarian extraction

The -x option permits to extract file from the librarian. Without any file argument, all files are
extracted. With some file arguments, only those specified files are extracted.

zsh > axl -x -f librarian.axl
zsh > axl -x -f librarian.axl file-1.als

9.2 Librarian object

TheLibrarian object can be used within anAleph program as a convenient way to create a collec-
tion of files or to extract some of them.

9.2.1 Output librarian

TheLibrarian object is a standardAleph object. Its predicate islibrarian-p. Without argu-
ment, a librarian is created inoutput mode. With a string argument, the librarian is opened ininput
mode, with the file name argument. Theoutput modeis used to create a new librarian by adding file
into it. Theinput modeis created to read file from the librarian.

create a new librarian
const lbr (Librarian)
add a file into it
lbr:add "file-1.als"
write it
lbr:write "librarian.axl"

Theadd method adds a new file into the librarian. Thewrite method the full librarian as a single
file those name iswrite method argument.

9.2.2 Input librarian

Resolver 71

With an argument, the librarian object is created in input mode. Once created, file can be read or
extracted. Thelength method (which also work with an output librarian) returns the number of
files in the librarian. TheExists-p predicate returns true if the file name argument exists in the
librarian.Theget-names method returns a vector of file names in this librarian. Theextract
method returns aninput streamobject for the specific file name.

open a librarian for reading
const lbr (Librarian "librarian.axl")
get the number of files
println (lbr:length)
extract the first file
const is (lbr:extract "file-1.als")
is is an input stream - dump each line
while (is:valid-p) (println (is:readln))

Most of the time, the librarian object is used to extract file dynamically. Because a librarian is
mappedinto the memory at the right offset, there is no worry to use big librarian, even for a small
file. Note that any type of file can be used, text or binaries.

9.3 Resolver

TheAleph resolver is a special object used by the interpreter to resolve file path based on the search
path. The resolver uses a mixed list of directories and librarian files in its search path. When a file
path needs to be resolved, the search path is scanned until a matched is found. Because the librarian
resolution is integrated inside the resolver, there is no need to worry about file extraction. That
process is done automatically. The resolver can also be usedinside anAleph program to perform
any kind of file path resolution.

9.3.1 Resolver object

The resolver object is created without argument. Theaddmethod adds a directory path or a librarian
file to the resolver. Thevalid method checks for the existence of a file. Thelookup method
returns an input stream object associated with the object.

create a new resolver
const rslv (Resolver)
assert true (resolver-p rslv)

add the local directory on the search path
rslv:add "."

check if file test.als exists
if this is ok - print its contents
if (rslv:valid-p "test.als") {
const is (rslv:lookup "test.als")
while (is:valid-p) (println (is:readln))

}

72 Librarian and Resolver

APPENDIX A

Reserved keywords

This appendix contains a summary of the Aleph reserved keywords with their syntax.

74 Reserved keywords

75

assert [reserved]

Description
Theassertreserved keyword check for equality between two operands. Both objects must be of the
same type. If the equality test fails, the reserved keyword print a message and abort the execution.
By default, the assertion checking is turned off. The interpreter option-f assert enables the
assertion checking. When the interpreter is compiled in debug mode, the assertion checking is
turned on by default.

Syntax

assert form-1 form-2

Example

assert true (== 1 1)
assert 3 (+ 2 1)

76 Reserved keywords

77

block [reserved]

Description
Theblock reserved keyword defines a new nameset for sequential execution of regular form or im-
plicit form. When the block form is evaluated, the block nameset is linked to its parent nameset.
When all forms have been executed, the block nameset is destroyed and he result of the last evalua-
tion in the block is considered to be the result of the block evaluation.

Syntax

block regular form
block block form

Example

trans a 1
block {
assert a 1
trans a (+ 1 1)
assert a 2
assert ..:a 1

}
assert 1 a

78 Reserved keywords

79

class [reserved]

Description
Theclassreserved keyword creates a new class object. Without argument, an instance of that class
is created without data members. With a list of arguments, the instance is created with a set of data
member initialized to nil.

Syntax

class
class data member-list

Example

const Color (class)
trans Color:initialize (red green blue) {
const this:red red
const this:green green
const this:blue blue

}

const red (Color 255 0 0)
const green (Color 0 255 0)
const blue (Color 0 0 255)

80 Reserved keywords

81

const [reserved]

Description
Theconstreserved keyword binds a symbol with an object and marks it asa constant symbol. When
used with three or four argument, a gamma expression is automatically created.constcan also be
used to bind class or instance members.

Syntax

const symbol object
const symbol argument body
const symbol argument closed variables body

Example

const number 123
const max (x y) (if (> x y) x y)

82 Reserved keywords

83

daemon [reserved]

Description
Thedaemonreserved keyword creates a newthread by executing the form argument in a daemon
thread. The created thread is executed by creating a clone ofthe interpreter and starting immediately
the execution of the form with the cloned interpreter. The command returns the thread object in the
calling thread. When the thread terminates, the thread object holds the result of the last executed
form. The main thread does not wait for a daemon thread to terminate.

Syntax

daemon form

Example

daemon (println "hello world")

84 Reserved keywords

85

delay [reserved]

Description
The delay reserved keyword delays the evaluation of the form argumentby creating aPromise
object. The promise evaluate to itself until a call to force the evaluation has been made. When the
promise has been forced, the evaluation result is stored. Further call to force will produce the same
result.

Syntax

delay form

Example

trans y 3
const l ((lambda (x) (+ x y)) 1)
assert 4 (force l)
trans y 0
assert 4 (force l)

86 Reserved keywords

87

do [reserved]

Description
Thedo reserved keyword is used to build loop with forward condition. The first argument is the loop
body and the second argument is the loop condition which mustevaluates to a boolean object.

Syntax

do body condition

Example

const number-of-digits (s) {
const len (s:length)
trans index 0
trans count 0
do {

trans c (s:get index)
if (c:digit-p) (count:++)

} (< (index:++) len)
eval count

}

88 Reserved keywords

89

enum [reserved]

Description
The enum reserved keyword creates an enumeration from a list of literal. The result object is an
Enum object that holds the enumerated items. An item evaluation results with anItem object that
is bound to the enumeration object.

Syntax

enum literal ...

Example

const e (enum E1 E2 E3)

90 Reserved keywords

91

errorln [reserved]

Description
Theerrorln reserved keyword prints on the interpreter error stream a set of arguments. Each argu-
ments have to be a literal which are converted to a string. When all arguments have been printed a
new line character is printed. Theerror reserved keyword behaves likeerrorln excepts that a new
line character is not printed at the end of the arguments.

Syntax

errorln
errorln nil
errorln literal-argument-list

Example

errorln
errorln "hello milenium" ’ ’ 2000

92 Reserved keywords

93

eval [reserved]

Description
Theevalreserved keyword simply evaluates the object argument. Theform is useful when returning
an argument from a lambda or gamma expression using an implicit form.

Syntax

eval object

Example

const ret (x) (eval x)
eval (protect (+ 1 2))

94 Reserved keywords

95

for [reserved]

Description
The for reserved keyword provides a facility to iterate oniterable objects. Cons, List and
Vector are typical iterable objects. For each iterable objects, a symbol is set after each itera-
tion. Each object symbol value can be used for further computation. The iteration stops when one
of the objects iterator is at the end position.

Syntax

for symbol-list iterable-object-list body

Example

compute the scalar product of two vectors
const scalar-product (u v) {
trans result 0
for (x y) (u v) (result:+= (* x y))
eval result

}

96 Reserved keywords

97

force [reserved]

Description
The force reserved keyword forces the evaluation of its argument. If the argument evaluates to a
promise object, the promise evaluation is forced. If the argument isnot a promise,force behaves
like eval. When a promise has been forced, further call to force will not change the evaluation result.

Syntax

force object

Example

trans y 3
const l ((lambda (x) (+ x y)) 1)
assert 4 (force l)
trans y 0
assert 4 (force l)

98 Reserved keywords

99

if [reserved]

Description
The if reserved keyword executes a form based on the evaluation of aboolean expression. In its
first representation,if executes a form if the condition is evaluated totrue. An alternate form can
be specified and is executed if the boolean expression evaluates tofalse. It is an error to use a
conditional form which does not evaluate to a boolean object.

Syntax

if cond true-form
if cond true-form else-form

Example

const max (x y) (if (> x y) x y)

100 Reserved keywords

101

lambda [reserved]

Description
The lambda reserved keyword creates a newclosure object with eventually a set of arguments
and a set of closed variables. In its first form, the closure isdeclared with a set of arguments ornil
to indicate no argument. In its second form, the closure is declared with a set of arguments and a set
of closed variables. The closed variables are evaluated at the construction of the closure and become
part of the closure object. When the closure is called, a new nameset is created and linked with the
parent nameset. The set of calling arguments are bounded in that nameset with the formal argument
list to become the actual arguments. The set of closed variables is linked at runtime to the closure
nameset. A lambda or gamma expression can have its argument declared asconstargument.

Syntax

lambda nil body
lambda argument-list body
lambda argument-list closed-variables-list body

Example

const no-args (lambda nil (+ 1 1))
const add (lambda ((const x) (const y)) (+ x y))
const closed (lambda (x) (y) (+ x y))

102 Reserved keywords

103

launch [reserved]

Description
The launch reserved keyword creates a newthread by executing the form argument in a normal
thread. The created thread is added in the normal thread listby creating a clone of the interpreter and
starting immediately the execution of the form with the cloned interpreter. The command returns the
thread object in the calling thread. When the thread terminates, the thread object holds the result of
the last executed form. The main thread is suspended until all normal threads have completed their
execution.

Syntax

launch form

Example

launch (println "hello world")

104 Reserved keywords

105

loop [reserved]

Description
The loop reserved keyword executes a loop based on an initial condition, an exit condition and a
step form. The initial condition is only executed one time. The exit condition is tested at each loop
iteration. Theloop reserved keyword creates its own nameset since the initial condition generally
binds symbol locally for the loop.

Syntax

loop init-form exit-form step form

Example

loop (trans i 0) (< i 10) (i:++) (println i)

106 Reserved keywords

107

nameset [reserved]

Description
Thenamesetreserved keyword creates a new nameset. With no argument, a new nameset is created
and no parent is binded to this nameset. With one argument, the argument must evaluate to a nameset
and that nameset is used as the parent one. If a nameset has to be created with the global nameset as
the parent, the symbol... can be used to reference the top level nameset. The symbol . references
the current nameset. The symbol.. references the parent nameset of the current nameset.

Syntax

nameset
nameset parent-nameset

Example

const local-nameset-not-bound (nameset)
const local-nameset-bounded (nameset ...)
const ...:global-nameset (nameset)

108 Reserved keywords

109

println [reserved]

Description
The println reserved keyword prints on the interpreter output stream a set of arguments. Each
arguments have to be a literal which is converted to a string.When all arguments have been printed
a new line character is printed. Theprint reserved keyword behaves likeprintln excepts that a new
line character is not printed at the end of the arguments.

Syntax

println
println nil
println literal-argument-list

Example

println
println "hello milenium" ’ ’ 2000

110 Reserved keywords

111

protect [reserved]

Description
Theprotect reserved keyword take a single argument and returns it without evaluation. Protect is
mainly use to get a symbol or form object.

Syntax

protect object

Example

const cons (protect (+ 1 2))

112 Reserved keywords

113

return [reserved]

Description
The return reserved keyword causes the current expression to stop its evaluation and returns the
argument or nil.return is primarily used in lambda or gamma expressions. If used in atop level
block, the block execution is stopped and the control is transfered to the top level.

Syntax

return object

Example

return (+ 1 2)

114 Reserved keywords

115

sync [reserved]

Description
Thesyncreserved keyword is a form synchronizer. Within a multi-threaded environment, the Aleph
engine guarantees that only one thread will execute the form. The other threads are suspended until
the form has been completed.

Syntax

sync form

Example

const print-message (code mesg) (
sync {

errorln "error : " code
errorln "message: " mesg

}
)

116 Reserved keywords

117

switch [reserved]

Description
The switch reserved keyword is a form selector. The first argument is theobject to switch. The
second argument is a list of forms with an object matcher and an execution form. Theelse reserved
keyword can be used as default matcher.

Syntax

switch selector list-of-condition

Example

const get-primary-color (color value) (
switch color (

("red" (return (value:substr 0 2))
("green" (return (value:substr 2 4))
("blue" (return (value:substr 4 6))

)
)

118 Reserved keywords

119

throw [reserved]

Description
The throw reserved keyword throws an exception. Without argument, anexception of typeuser-
exceptionis thrown. with one argument, theexception idis set. With two arguments, theexception id
andexception reasonare set. With three arguments,exception id, exception reasonand theexception
objectare set.

Syntax

throw
throw exception id
throw exception id exception reason
throw exception id exception reason exception object

Example

throw
throw "type-error"
throw "type-error" "invalid argument"

120 Reserved keywords

121

trans [reserved]

Description
The trans reserved keyword creates or sets a symbol with an object.trans searches in the current
nameset only. If a symbol is found, it is set with the object. If the symbol is not found, it is created
in the current nameset.trans can also be used withqualifiednames. With 3 or 4 arguments,trans
creates automatically a lambda expression.

Syntax

trans symbol object
trans symbol argument body
trans symbol argument closed variables body

Example

trans a 1
trans fact (n) (if (< n 1) 1 (* n (fact (- n 1))))

122 Reserved keywords

123

try [reserved]

Description
The try reserved keyword catch an exception in the current execution nameset. The first argument
is a form to execute. The optional second argument is theexception handlerto be called in case of
exception. If there is no exception handler, all exceptionsare caught. The result of execution is either
the result of the form execution, or the exception object in case of exception, or nil if the exception
is a native one. If there is an exception handler, the handleris executed with a new nameset and the
special symbolwhat is bound to the exception. If the exception is nil, the symbolwhatis undefined.

Syntax

try form
try form exception-handler

Example

try (+ 1 2) ➞ 3
try (throw) ➞ nil
try (throw "hello") ➞ nil
try (throw "hello" "world") ➞ nil
try (throw "hello" "world" "folks") ➞ "folks"

124 Reserved keywords

125

while [reserved]

Description
Thewhile reserved keyword is used to build loop with forward condition. The first argument is the
loop condition and the second argument is the loop body.

Syntax

while cond body

Example

const gcd (u v) {
while (!= v 0) {

trans r (u:mod v)
u:= v
v:= r

}
eval u

}

126 Reserved keywords

APPENDIX B

Literal Objects

This chapter is a reference of the Aleph reserved objects with their respective builtin methods. The
Aleph reserved objects are those objects defined in the global interpreter nameset and bind as re-
served names.

Table 6Aleph reserved objects

Object Description

Item enumeration item
Real double floating point number
Regex regular expression object
String string reserved object
Boolean boolean reserved object
Integer 64 bits signed integer
Relatif infinite precision signed integer
Character 8 bits iso-8859-1 character

For each reserved object, Aleph provides apredicatewhich can be used to test for the object type.
The base type for each reserved object is theLiteral type. The predicateliteral-p always
returnstrue for these objects. The table below is a resume of the reservedpredicates.

Table 7Aleph reserved object predicates

Object Predicate

Item item-p
Real real-p
Regex regex-p
String string-p
Boolean boolean-p
Integer integer-p
Relatif relatif-p
Literal literal-p
Character character-p

All literal have a string representation. Theto-string method is always available for these re-
served objects. A literal object has a default constructor.Generally, it can also be constructed by a
same type object or by a string object.

128 Literal Objects

129

Literal [reserved]

Description
The Literal object is a base object for all literal object. The sole purpose of a literal object is to
provide to methods namedto-string andto-literal that return a string representation of
the literal object.

Derivation summary

Derived from Description

Serial the base serial object

Methods Summary

Method Description

to-string returns a string representation
to-literal returns a literal representation

Literal:to-string

■ return: String

■ arguments: none

The to-string method returns a string representation of the literal. The string is expected to
represent at best the literal.

Literal:to-literal

■ return: String

■ arguments: none

The to-literal method returns a string representation of the literal. The string differs from the
to-string method in the sense that the string is a literal representation. For example the literal
representation of a string is thequotedstring.

130 Literal Objects

131

Item [reserved]

Description
The Item reserved object is an enumeration item. The item is bound to an enumeration object. An
item object is created during the evaluation of an enumeration object. An enumeration item cannot
be constructed directly.

Derivation summary

Derived from Description

Literal the base literal object

Operators Summary

Operator Description

== return true if both items are equal
!= return true if both items are not equal

Methods Summary

Method Description

get-enum return the bound enumeration

Item:get-enum

■ return: Enum

■ arguments: none

The get-enum method returns the enumeration object bound to the item. Theitem must be a
dynamic item or an exception is thrown.

132 Literal Objects

133

Boolean [reserved]

Description
TheBooleanreserved object implements the behavior of a native booleantype. Two builtin symbols,
namelytrue andfalse are used to represent the value of a boolean instance. The Boolean type is
primarily used for test expression.

Derivation summary

Derived from Description

Literal the base literal object

Constructors Summary

Constructor Description

Boolean default boolean to false
BooleanBoolean boolean from boolean value
BooleanString boolean from string value

Operators Summary

Operator Description

== return true if both boolean are equal
!= return true if both boolean are not equal

134 Literal Objects

135

Integer [reserved]

Description
TheInteger reserved object implements the behavior of a native 64 bits signed integer type. Standard
decimal notation is used to construct integer object from a literal. The integer object can also be
constructed from a string. Standard operators are providedfor this class.

Derivation summary

Derived from Description

Literal the base literal object

Constructors Summary

Constructor Description

Integer default integer to 0
IntegerReal integer from real value
IntegerString integer from string value
IntegerInteger integer from integer value
IntegerCharacter integer from character value

Operators Summary

Methods Summary

Integer:or

■ return: Integer

■ arguments: Integer

The or method returns the binary or between the integer and the integer argument.

Integer:abs

■ return: Integer

■ arguments: none

The abs method returns the absolute value of the calling integer instance.

136 Literal Objects

Operator Description

== return true if integer or real are equal
!= return true if integer or real are not equal
+ return the sum with an integer or real
- return the negation or substraction with an integer or real

return the multiplication with an integer or real
/ return the inverse or division with an integer or real
< return true if less than an integer or real
<= return true if less equal than an integer or real
> return true if greater than an integer or real
>= return true if greater equal than an integer or real
++ return this integer incremented by one
– return this integer decremented by one
+= return this integer summed with the argument
-= return this integer substracted with the argument
= return this integer multiplied with the argument
/= return this integer divided with the argument

Method Description

or binary or with the argument
abs return the absolute value
not return the binary negation
shl shift left by a certain amount
shr shift right by a certain amount
and binary and with the argument
xor binary xor with the argument
mod return the modulo with the argument
odd-p return true with an odd number
even-p return true with an even number
zero-p return true if the integer is null

Integer:not

■ return: Integer

■ arguments: none

The not method returns the binary negation of the calling integer instance.

Integer:shl

■ return: Integer

■ arguments: Integer

The shl method returns a new integer corresponding to the calling integer instance shifted left by
the integer argument.

Integer:shr

■ return: Integer

■ arguments: Integer

137

The shr method returns a new integer corresponding to the calling integer instance shifted right
by the integer argument.

Integer:and

■ return: Integer

■ arguments: Integer

The and method returns a new integer corresponding to the binary andbetween the calling integer
instance and the integer argument.

Integer:xor

■ return: Integer

■ arguments: Integer

The xor method returns a new integer corresponding to the binary xorbetween the calling integer
instance and the integer argument.

Integer:mod

■ return: Integer

■ arguments: Integer

The mod method returns the modulo between the integer instance and the integer argument. A
type-error exception is raised if the argument is not an argument.

Integer:odd-p

■ return: Boolean

■ arguments: none

The odd-p method returnstrue if the integer instance is odd, false otherwise.

Integer:even-p

■ return: Boolean

■ arguments: none

The even-p method returnstrue if the integer instance is even, false otherwise.

Integer:zero-p

■ return: Boolean

■ arguments: none

The zero-p method returnstrue if the integer instance is null, false otherwise.

138 Literal Objects

139

Relatif [reserved]

Description
TheRelatif reserved object implements the behavior of an unlimited signed integer type. Standard
decimal notation followed by the ’r’ or ’R’ character is usedto construct relatif object from a literal.
The relatif object can also be constructed from a string. This class is similar to theInteger class.

Derivation summary

Derived from Description

Literal the base literal object

Constructors Summary

Constructor Description

Relatif default relatif to 0
Relatif Real relatif from real value
Relatif String relatif from string value
Relatif Integer relatif from integer value
Relatif Relatif relatif from relatif value
Relatif Character relatif from character value

Operators Summary

Methods Summary

Relatif:or

■ return: Relatif

■ arguments: Relatif

The or method returns the binary or between the relatif and the relatif argument.

Relatif:abs

■ return: Relatif

■ arguments: none

140 Literal Objects

Operator Description

== return true if relatif or integer equal
!= return true if relatif or integer are not equal
+ return the sum with an relatif or integer
- return the negation or substraction with an relatif or inte-

ger
return the multiplication with an relatif or integer

/ return the inverse or division with an relatif or integer
< return true if less than an relatif or integer
<= return true if less equal than an relatif or integer
> return true if greater than an relatif or integer
>= return true if greater equal than an relatif or integer
++ return this relatif incremented by one
– return this relatif decremented by one
+= return this relatif summed with the argument
-= return this relatif substracted with the argument
= return this relatif multiplied with the argument
/= return this relatif divided with the argument

Method Description

or binary or with the argument
abs return the absolute value
not return the binary negation
shl shift left by a certain amount
shr shift right by a certain amount
and binary and with the argument
xor binary xor with the argument
mod return the modulo with the argument
odd-p return true with an odd number
even-p return true with an even number
zero-p return true if the relatif is null

The abs method returns the absolute value of the calling relatif instance.

Relatif:not

■ return: Relatif

■ arguments: none

The not method returns the binary negation of the calling relatif instance.

Relatif:shl

■ return: Relatif

■ arguments: Relatif

The shl method returns a new relatif corresponding to the calling relatif instance shifted left by
the relatif argument.

Relatif:shr

■ return: Relatif

141

■ arguments: Relatif

The shr method returns a new relatif corresponding to the calling relatif instance shifted right by
the relatif argument.

Relatif:and

■ return: Relatif

■ arguments: Relatif

The and method returns a new relatif corresponding to the binary andbetween the calling relatif
instance and the relatif argument.

Relatif:xor

■ return: Relatif

■ arguments: Relatif

The xor method returns a new relatif corresponding to the binary xorbetween the calling relatif
instance and the relatif argument.

Relatif:mod

■ return: Relatif

■ arguments: Integer

The mod method returns the modulo between the relatif instance and the relatif argument. A
type-error exception is raised if the argument is not an argument.

Relatif:odd-p

■ return: Boolean

■ arguments: none

The odd-p method returnstrue if the relatif instance is odd, false otherwise.

Relatif:even-p

■ return: Boolean

■ arguments: none

The even-p method returnstrue if the relatif instance is even, false otherwise.

Relatif:zero-p

■ return: Boolean

■ arguments: none

The zero-p method returnstrue if the relatif instance is null, false otherwise.

142 Literal Objects

143

Real [reserved]

Description
TheReal reserved object implements the behavior of a double floatingpoint number type. Standard
decimal dot notation or scientific notation is used to construct real object from a literal. The real
object can also be constructed from an integer, a character or a string.

Derivation summary

Derived from Description

Literal the base literal object

Constructors Summary

Constructor Description

Real default real 0.0
RealReal real from real value
RealInteger real from integer value
RealString real from string value
RealCharacter real from character value

Operators Summary

Methods Summary

Real:nan-p

■ return: Boolean

■ arguments: none

The nan-p method returnstrue is the calling real number instance is not-a-number (nan).

Real:ceiling

■ return: Real

■ arguments: none

The ceiling method returns the ceiling of the calling real number instance.

144 Literal Objects

Operator Description

== return true if integer or real are equal
?= return true if integer or real are equal at the precision
!= return true if integer or real are not equal
+ return the sum with an integer or real
- return the negation or substraction with an integer or real

return the multiplication with an integer or real
/ return the inverse or division with an integer or real
< return true if less than an integer or real
<= return true if less equal than an integer or real
> return true if greater than an integer or real
>= return true if greater equal than an integer or real
++ return this real incremented by one
– return this real decremented by one
+= return this real summed with the argument
-= return this real substracted with the argument
= return this real multiplied with the argument
/= return this real divided with the argument

Real:floor

■ return: Real

■ arguments: none

The floor method returns the floor of the calling real number instance.

Real:abs

■ return: Real

■ arguments: none

The abs method returns the absolute value of the calling real numberinstance.

Real:sqrt

■ return: Real

■ arguments: none

The sqrt method returns the square root of the calling real number instance.

Real:log

■ return: Real

■ arguments: none

The log method returns the natural logarithm of the calling real number instance.

Real:exp

■ return: Real

■ arguments: none

145

Method Description

abs return the absolute value
sqrt return the square root
log return the natural logarithm
exp return the exponential
sin return the sine
cos return the cosine
tan return the tangent
asin return the arc sine
acos return the arc cosine
atan return the arc tangent
sinh return the hyperbolic sine
cosh return the hyperbolic cosine
tanh return the hyperbolic tangent
nan-p return true if nan
floor return the floor
asinh return the hyperbolic arc sine
acosh return the hyperbolic arc cosine
atanh return the hyperbolic arc tangent
zero-p return true if null
format return a formatted string
ceiling return the ceiling

The exp method returns the exponential of the calling real number instance.

Real:sin

■ return: Real

■ arguments: none

The sin method returns the sine of the calling floating point instance. The angle is expressed in
radian.

Real:cos

■ return: Real

■ arguments: none

The cos method returns the cosine of the calling floating point instance. The angle is expressed
in radian.

Real:tan

■ return: Real

■ arguments: none

The tan method returns the tangent of the calling floating point instance. The angle is expressed
in radian.

Real:asin

■ return: Real

146 Literal Objects

■ arguments: none

The asin method returns the arc sine of the calling floating point instance. The result is in radian.

Real:acos

■ return: Real

■ arguments: none

The acos method returns the arc cosine of the calling floating point instance. The result is in
radian.

Real:atan

■ return: Real

■ arguments: none

The atan method returns the arc tangent of the calling floating point instance. The result is in
radian.

Real:sinh

■ return: Real

■ arguments: none

The sinh method returns the hyperbolic sine of the calling real number instance.

Real:cosh

■ return: Real

■ arguments: none

The cosh method returns the hyperbolic cosine of the calling real number instance.

Real:tanh

■ return: Real

■ arguments: none

The atan method returns the hyperbolic tangent of the calling real number instance.

Real:asinh

■ return: Real

■ arguments: none

The asinh method returns the hyperbolic arc sine of the calling real number instance.

Real:acosh

■ return: Real

■ arguments: none

147

The acosh method returns the hyperbolic arc cosine of the calling realnumber instance.

Real:atanh

■ return: Real

■ arguments: none

The atanh method returns the hyperbolic arc tangent of the calling real number instance.

Real:zero-p

■ return: Boolean

■ arguments: none

The zero-p method returns true if the calling real instance is null, false otherwise.

Real:format

■ return: String

■ arguments: Integer

The format method format the calling real instance withn digits after the decimal point. The
number of digits is the format argument.

148 Literal Objects

149

Character [reserved]

Description
The Character reserved object implements the behavior of an 8 bit character type. A character
can be constructed from a literal quoted notation or with a string. Various methods are provided to
compare or convert characters.

Derivation summary

Derived from Description

Literal the base literal object

Constructors Summary

Constructor Description

Character default null character
CharacterCharacter character from character value
CharacterInteger character from integer value
CharacterString character from string value

Operators Summary

Operator Description

== return true if character are equal
!= return true if character are not equal
< return true if less than a character
<= return true if less equal than a character
> return true if greater than a character
>= return true if greater equal than a character
++ return this character incremented by one
– return this character decremented by one
+= return this character summed with the argument
-= return this character substracted with the argument

Methods Summary

Character:incr

150 Literal Objects

Method Description

alpha-p return true if the character is alphabetic
digit-p return true if the character is a digit
blank-p return true if the character is a blank or tab
eol-p return true if the character is an end of line
eof-p return true if the character is an end of file
nil-p return true if the character is nil
to-integer return an integer representation

■ return: Character

■ arguments: none

The incr method increments the current character value by one.

Character:decr

■ return: Character

■ arguments: none

The decr method decrements the current character value by one.

Character:alpha-p

■ return: Boolean

■ arguments: none

The alpha-p method returnstrue if character is an alphabetic character,false otherwise.

Character:digit-p

■ return: Boolean

■ arguments: none

The digit-p method returnstrue if character is a digit character,false otherwise.

Character:blank-p

■ return: Boolean

■ arguments: none

The blank-p method returnstrue if character is a blank or tab character,false otherwise.

Character:eol-p

■ return: Boolean

■ arguments: none

The eol-p method returnstrue if character is an end of line character,false otherwise.

Character:eof-p

151

■ return: Boolean

■ arguments: none

The eof-p method returnstrue if character is an end of file character,false otherwise.

Character:nil-p

■ return: Boolean

■ arguments: none

The nil-p method returnstrue if character is the nil character,false otherwise.

152 Literal Objects

153

String [reserved]

Description
TheString reserved object implements the behavior of an internal character array. The double quote
notation is the literal notation for a string. A string can also be constructed from the standard Aleph
objects. Strings can be compared, transformed or extractedwith the help of the methods listed below.

Derivation summary

Derived from Description

Literal the base literal object

Constructor Summary

Constructor Description

String default null string
StringString string from string value
StringReal string from real value
StringInteger string from integer value
StringBoolean string from boolean value

Operators Summary

Operator Description

== return true if string are equal
!= return true if string are not equal
< return true if the string is less than the other
<= return true if the string is less or equal than the other
> return true if the string is greater than the other
>= return true if the string is greater or equal than the other
+ return the sum with a literal
+= return this string summed with a literal

Methods Summary

String:length

154 Literal Objects

Method Description

length return the length of this string
strip-left remove leading blanks and tabs
strip-right remove trailing blanks and tabs
strip remove leading and trailing blanks
split split a string into a vector
extract extract strings from a string
to-upper convert to upper case
to-lower convert to lower case
get return a character by index
sub-left return a left sub string
sub-right return a right sub string
fill-left return a string filled on the left
fill-right return a string filled on the right
substr return a sub string by index

■ return: Integer

■ arguments: none

The length method returns the length of the string.

String:strip-left

■ return: String

■ arguments: none

The strip-left method removes the leading blanks and tabs and returns a new string.

String:strip-right

■ return: String

■ arguments: none

The strip-right method removes the trailing blanks and tabs and returns a newstring.

String:strip

■ return: String

■ arguments: none

The strip method removes the leading, trailing blanks and tabs and returns a new string.

String:split

■ return: Vector

■ arguments: none|String

The split method split the string into one or more string according to break sequence. If no
argument is passed to the call, the break sequence is assumedto be a blank, tab and eol characters.

String:extract

155

■ return: Vector

■ arguments: Character

The extract method extracts one or more string which are enclosed by a control character
passed as an argument. The method returns a vector of strings.

String:to-upper

■ return: String

■ arguments: none

The to-upper converts all string characters to upper case and returns a new string.

String:to-lower

■ return: String

■ arguments: none

The to-lower method converts all string characters to lower case and returns a new string.

String:get

■ return: Character

■ arguments: Integer

The get method returns a the string character at the position given by the argument. If the index
is invalid, an exception is raised.

String:sub-left

■ return: String

■ arguments: Integer

The sub-left method returns the left sub string of the calling string up-to the argument index.
If the index is out of range, the string is returned.

String:sub-right

■ return: String

■ arguments: Integer

The sub-right method returns the right sub string of the calling string starting at the argument
index. If the index is out of range, the string is returned.

String:fill-left

■ return: String

■ arguments: Character Integer

The fill-left method returns a string filled on the left with the character argument. The second
argument is the desired length of the resulting string. If the calling is too long, the string is returned.

156 Literal Objects

String:fill-right

■ return: String

■ arguments: Character Integer

The fill-left method returns a string filled on the right with the characterargument. The
second argument is the desired length of the resulting string. If the calling is too long, the string is
returned.

String:substr

■ return: String

■ arguments: Integer Integer

The substr method returns a string starting at the first argument index and ending at the second
argument index. If the indexes are out of range, an exceptionis raised.

157

regex [reserved]

Description
TheRegex object is a special object which is automatically instantiated by the interpreter when
using the delimiter character[and]. Theregexsyntax involves the use of standard characters, meta
characters and control characters. Additionnaly, a stringcan be use to specify a series of characters.
In its first form, the ’[’ and ’]’ characters are used as syntaxdelimiters. The lexical analyzer auto-
matically recognizes this token as aregexand built the equivalentRegex object. The second form
is the explicit construction of theRegex object. Note also that the ’[’ and ’]’ characters are also
used asregexblock delimiters.
Any character, except the one used as operators can be used ina regex. The ’$’ character is used
as a meta-character (or control character) to represent a particular set of characters. For example,
[hello world] is a regexwhich match only the"hello world" string. The[$d+] regex
matches one or more digits. The following control characters are builtin in theregexengine.

• $amatches any letter or digit.

• $b matches any blank characters.

• $d matches any digit.

• $l matches any lower case letter.

• $n matches new line characters.

• $smatches any letter.

• $u matches any upper case letter.

• $w matches any aleph word constituent.

• $x matches any hexadecimal characters.

The uppercase version is the complement of the corresponding lowercase character set. A character
which follows a $ character and that is not a meta character istreated as a normal character. For
example$[is the ’[’ character. A quoted string can be used to define character matching which
could otherwise be interpreted as control characters or operator. A quoted string also interprets
standardescapedsequences but not meta characters.

• $A matches any character except letter or digit.

• $B matches any character except blanks.

• $D matches any character except digit.

• $L matches any character except lower case letters.

• $N matches any character except new line.

• $Smatches any character except letters.

• $U matches any character except upper case letters.

• $W matches any character except aleph word constituents.

• $X matches any character except hexadecimal characters.

158 Literal Objects

A character set is defined with the ’<’ and ’>’ characters. Any enclosed character defines a character
set. Note that meta characters are also interpreted inside acharacter set. For example,<$d+->
represents any digit or a plus or minus. If the first characteris the ˆ character in the character set, the
character set is complemented with regards to its definition.
The following unary operators can be used with single character, control characters and sub-
expressions.

• * match zero or more times

• + match one or more times

• ? match zero or one time.

• | alternation

Alternation is an operator which work with a secondary expression. Care should be taken when writ-
ing the right sub-expression. Groups of sub-expressions are created with the ’(’ and ’)’ characters.
When a group is matched, the resulting sub-string is placed on stack and can be later used. In this
respect, theregexengine can be used to extract sub-strings.

Derivation summary

Derived from Description

Literal the base literal object

Constructors Summary

Constructor Description

Regex default regex object
RegexString regex with string specification

Operators Summary

Operator Description

== return true if the string is matched
!= return true if the string does not match
< return true if the string partially match

Methods Summary

Regex:length

■ return: Integer

159

Method Description

get returns a group sub-string by index
length returns the length of the group vector
match returns the first matching string
replace replace all matching strings with the argument

■ arguments: none

The length method returns the length of the group vector when aregexmatch has been success-
ful.

Regex:get

■ return: String

■ arguments: Integer

The get method returns by index the group sub-string when aregexmatch has been successful.

Regex:match

■ return: String

■ arguments: String

The match method returns the first matching string of the argument string.

Regex:replace

■ return: String

■ arguments: String String

The replace method returns a string constructed by replacing all matching sub-string (from the
first argument) with the second argument string.

160 Literal Objects

APPENDIX C

Container Objects

This chapter is a reference of the Aleph reserved container objects with their respective builtin meth-
ods. Some of these container objects areiterableobjects.

Table 8Aleph container objects

Object Description
Cons cons cell and single linked list
Enum enumeration object
List double linked list
Node graph node object
Edge graph edge object
Graph general graph
Queue queue object
Vector array index vector
Bitset bit set object
Buffer buffer object

Table 9Aleph iterable containers

Object Description
Cons cons cell and single linked list
List double linked list
Vector array index vector

For each container object, Aleph provides apredicatewhich can be used to test for the object type.
When an object is iterable, an iterator constructor constructor is provided. Theiterable-ppredicate
returns true if the container is an iterable object. Theget-iterator method can be used to
construct an object iterator. For a given iterator, the predicatesend-p andvalid-p can be used to
check for the end or a valid iterator position. Thenextmethod move the iterator to its next position.
Theprevmethod move the iterator (if possible) to its previous position. Theget-objectmethod
returns the object at the current iterator position.

162 Container Objects

Table 10Aleph container object predicates

Object Predicate
Cons cons-p
Enum enum-p
List list-p
Node node-p
Edge edge-p
Graph graph-p
Queue queue-p
Vector vector-p
Bitset bitset-p
Buffer buffer-p

163

Cons [reserved]

Description
A Cons instance or simply acons cellis a simple element used to build linked list. The cons cell
holds an object and a pointer to the next cons cell. The cons cell object is calledcar and the next
cons cell is called thecdr. Historically, car meansCurrent Address Registerandcdr means
Current Data Register. We retain in Aleph this notation for the sake of tradition.

Constructors Summary

Constructor Description
Cons default cons cell with nil car
Consobject-list linked cons cell with arguments

Methods Summary

Method Description
get-car returns the car of the cons cell
get-cdr returns the cdr of the cons cell
get-cadr returns the car of the cdr or nil
get-caddr returns the car of the cdr of the cdr or nil
get-cadddr returns the car of the cdr of the cdr of the cdr or nil
length returns the length of the cons cell
nil-p returns true if the car is nil
block-p returns true if the cons cell is a block
get-iterator returns a forward iterator
set-car set the car of the cons cell
set-cdr set the cdr of the cons cell
append appends an object at the end of the cons cell
link appends an object or set the car if nil
get returns an object at a certain position

Cons:get-car

■ return: Object

■ arguments: none

The get-car method returns the car of the calling cons cell.

Cons:get-cdr

■ return: Cons

164 Container Objects

■ arguments: none

The get-cdr method returns the cdr of the calling cons cell.

Cons:get-cadr

■ return: Object

■ arguments: none

The get-cadr method returns the car of the cdr of the calling cons cell or nil if the cdr is nil.

Cons:get-caddr

■ return: Object

■ arguments: none

The get-caddr method returns the car of the cdr of the cdr of the calling conscell or nil if the
cdr is nil.

Cons:get-cadddr

■ return: Object

■ arguments: none

The get-cadddr method returns the car of the cdr of the cdr of the cdr of the calling cons cell
or nil if the cdr is nil.

Cons:length

■ return: Integer

■ arguments: none

The length method returns the length of the cons cell. The minimum length returned is always
1.

Cons:nil-p

■ return: Boolean

■ arguments: none

The nil-p predicate returnstrue if the car of the calling cons cell is nil,false otherwise.

Cons:block-p

■ return: Boolean

■ arguments: none

The block-p predicate returnstrue if the cons cell is of type block,false otherwise.

Cons:get-iterator

■ return: Iterator

165

■ arguments: none

The get-iterator returns a forward iterator for this cons cell. No backward methods are
supported for this object.

Cons:set-car

■ return: Object

■ arguments: Object

The set-car set the car of the calling cons cell. The object argument is returned by the method.

Cons:set-cdr

■ return: Cons

■ arguments: Cons

The set-cdr set the cdr of the calling cons cell. The cons cell argument isreturned by the
method.

Cons:append

■ return: Object

■ arguments: Object

The append method appends an object at the end of the cons cell chain by creating a new cons
cell and linking it with the last cdr. The object argument is returned by this method.

Cons:link

■ return: Object

■ arguments: Object

The append method is similar toappend except that a new cons cell is not created if the car is
nil. Instead the car is set with the calling object. The object argument is returned by this method.

Cons:get

■ return: Object

■ arguments: Integer

The get method returns the car of the cons cell chain at a certain position specified by the integer
index argument.

166 Container Objects

167

Enum [reserved]

Description
TheEnum builtin object is an enumeration object. The enumeration isconstructed with the reserved
keywordenum and a list of literals or by string name with a constructor.

Constructors Summary

Constructor Description
Enum empty enumeration
Enumstring-literals... enumeration with literal items

Methods Summary

Method Description
add add a new item by name

Enum:add

■ return: none

■ arguments: String

The add method adds a new item to the enumeration by name. This methodreturns nil.

168 Container Objects

169

List [reserved]

Description
The List builtin object provides the facility of a double-link list.The List object is another
example ofiterableobject. TheList object provides support for forward and backward iteration.

Constructors Summary

Constructor Description
List empty double linked list
List object-list double linked list with arguments

Methods Summary

Method Description
length returns the length of the cons cell
get-iterator returns a forward iterator
append appends an object at the end of the cons cell
insert inserts an object or set the car if nil
get returns an object at a certain position

List:length

■ return: Integer

■ arguments: none

The length method returns the length of the list. The minimum length is 0for an empty list.

List:get-iterator

■ return: Iterator

■ arguments: none

The get-iterator returns a forward/backward iterator for this list.

List:append

■ return: Object

■ arguments: Object

The append method appends an object at the end of the list. The object argument is returned by
this method.

170 Container Objects

List:insert

■ return: Object

■ arguments: Object

The insert method inserts an object at the beginning of the list. The object argument is returned
by this method.

List:get

■ return: Object

■ arguments: Integer

The get method returns the object in the list at a certain position specified by the integer index
argument.

171

Vector [reserved]

Description
TheVector builtin object provides the facility of an index array of objects. TheVector object is
another example ofiterableobject. TheVector object provides support for forward and backward
iteration.

Constructors Summary

Constructor Description
Vector empty vector
Vectorobject-list vector with arguments

Methods Summary

Method Description
get returns an object at a certain position
set set an object at a certain position
find find an object in this vector
reset reset the vector
length returns the length of the vector
append appends an object at the end of the vector
exists return true if the object argument exists
remove remove an object from this vector
get-iterator returns a forward iterator

Vector:get

■ return: Object

■ arguments: Integer

The get method returns the object in the vector at a certain positionspecified by the integer index
argument.

Vector:set

■ return: Object

■ arguments: Integer Object

The set method set a vector position with an object. The first argument is the vector index. The
second argument is the object to set. The method returns the object to set.

172 Container Objects

Vector:find

■ return: Integer

■ arguments: Object

The find method try to find an object in the vector. If the object is found, the vector index is
returned as an Integer object, else nilp is returned.

Vector:reset

■ return: none

■ arguments: none

The reset method reset the vector. When the method is complete, the vector is empty.

Vector:length

■ return: Integer

■ arguments: none

The length method returns the length of the vector. The minimum length is 0 for an empty
vector.

Vector:append

■ return: Object

■ arguments: Object

The append method appends an object at the end of the vector. The object argument is returned
by this method.

Vector:exists

■ return: Boolean

■ arguments: Object

The exists method returns true if the object argument exists in the vector. This method is useful
to make sure that only one occurrence of an object is added to avector.

Vector:remove

■ return: none

■ arguments: Object

The remove method removes an o bject from the vector.

Vector:get-iterator

■ return: Iterator

■ arguments: none

The get-iterator returns a forward/backward iterator for this vector.

173

Node [reserved]

Description
TheNode builtin object is part of the graph facility of the Aleph standard objects. A node (or vertex)
is a graph components which is linked with edges (object Edge). A node can hold a client object.
Once a node has been constructed, it is possible to link it with edges and add it to a graph.

Constructors Summary

Constructor Description
Node default node
Nodeobject node with client object

Methods Summary

Method Description
get-client returns the node client object
set-client set the node client object
degree returns the node degree
input-degree returns the node input degree
output-degree returns the node input degree
add-input-edge link this node with an input edge
add-output-edge link this node with an output edge
get-input-edge link this node with an input edge
get-output-edge link this node with an output edge

Node:get-client

■ return: Object

■ arguments: none

The get-client method returns the node client object. If the client object is not set, nil is
returned.

Node:set-client

■ return: Object

■ arguments: Object

The set-client method sets the node client object. The object is returned bythis method.

Node:degree

174 Container Objects

■ return: Integer

■ arguments: none

The degree method returns the node degree, that is the sum of the input degree and the output
degree.

Node:input-degree

■ return: Integer

■ arguments: none

The input-degree method returns the node input degree, that is the number of input edges to
this node.

Node:output-degree

■ return: Integer

■ arguments: none

The output-degree method returns the node output degree, that is the number of output edges
for this node.

Node:add-input-edge

■ return: Edge

■ arguments: Edge

The add-input-edge method adds the edge object argument to the node input edge list. This
method also sets the edge target node and increase the node input degree. The edge argument is
returned by this method.

Node:add-output-edge

■ return: Edge

■ arguments: Edge

The add-output-edge method adds the edge object argument to the node output edge list.
This method also sets the edge source node and increase the node output degree. The edge argument
is returned by this method.

Node:get-input-edge

■ return: Edge

■ arguments: Integer

The get-input-edge method returns the node input edge by index. If the index is negative or
bigger that the node input degree, an exception is raised.

Node:get-output-edge

■ return: Edge

■ arguments: Integer

The get-output-edge method returns the node output edge by index. If the index is negative
or bigger that the node output degree, an exception is raised.

175

Edge [reserved]

Description
TheEdge builtin object is part of the graph facility of the Aleph standard objects. An edge is a
graph component which connects two nodes called respectively the source and target nodes. An
edge can be constructed alone, with two edges or with a clientobject. The edge can also be added
later to the graph.

Constructors Summary

Constructor Description
Edge default edge
Edgeobject edge with client object
Edgenode node edge with source and target nodes

Methods Summary

Method Description
get-source returns the edge source node
get-target returns the edge target node
get-client returns the node client object
set-source set the edge source node
set-target set the edge target node
set-client set the node client object

Edge:get-source

■ return: Node

■ arguments: none

The get-source method returns the edge source node. If the client object is not set, nil is
returned.

Edge:get-target

■ return: Node

■ arguments: none

The get-target method returns the edge target node. If the client object is not set, nil is
returned.

Edge:get-client

176 Container Objects

■ return: Object

■ arguments: none

The get-client method returns the node client object. If the client object is not set, nil is
returned.

Edge:set-source

■ return: Node

■ arguments: Node

The set-source method sets the edge source node. The node is returned by thismethod.

Edge:set-target

■ return: Node

■ arguments: Node

The set-target method sets the edge target node. The node is returned by thismethod.

Edge:set-client

■ return: Object

■ arguments: Object

The set-client method sets the node client object. The object is returned bythis method.

177

Graph [reserved]

Description
TheGraph builtin object is a general graph class that manages a set of nodes and edges. The graph
is built by adding node and edges to the graph. Additional edges can be added by connecting nodes.

Constructors Summary

Constructor Description
Graph default graph

Methods Summary

Method Description
add add a node or edge
exists checks if a node or edge exists
get-edge return an edge by index
get-node return a node by index
number-of-nodes return the number of nodes
number-of-edges return the number of edges

Graph:add

■ return: Object

■ arguments: Node | Edge

The add method adds a node or an edge to the graph. When adding an edge,the methods check
that the source and target nodes are also part of the graph.

Graph:exists

■ return: Boolean

■ arguments: Node | Edge

The exists method returns true if the node or edge argument exists in thegraph.

Graph:get-edge

■ return: Edge

■ arguments: Integer

The get-edge method returns an edge by index. If the index is out of range, an exception is
raised.

178 Container Objects

Graph:get-node

■ return: Node

■ arguments: Integer

The get-node method returns a node by index. If the index is out of range, anexception is
raised.

Graph:number-of-nodes

■ return: Integer

■ arguments: none

The number-of-nodes methods returns the number of nodes in the graph.

Graph:number-of-edges

■ return: Integer

■ arguments: none

The number-of-edges methods returns the number of edges in the graph.

179

Queue [reserved]

Description
TheQueue builtin object is a container used to queue and dequeue objects. The order of entry in
the queue defines the order of exit from the queue. The queue isconstructed either empty or with a
set of objects.

Constructors Summary

Constructor Description
Queue default queue
Queueobjects... queue with objects

Methods Summary

Method Description
flush flush the queue
enqueue enqueue an object
dequeue dequeue an object
length returns the numbers of queued objects
empty-p returns true if the queue is empty

Queue:enqueue

■ return: Object

■ arguments: Object

The enqueue adds an object in the queue and returns the queued object.

Queue:dequeue

■ return: Object

■ arguments: none

The dequeue dequeue an object in the order it was queued.

Queue:length

■ return: Object

■ arguments: none

The length returns the number of queued objects.

180 Container Objects

Queue:empty-p

■ return: Object

■ arguments: none

The empty-p method returns true if the queue is empty.

Queue:flush

■ return: none

■ arguments: none

The flush method flushes the queue so that it is empty.

181

Bitset [reserved]

Description
TheBitset builtin object is a container for multi bit storage. The sizeof the bitset is determined
at construction. With the use of an index, a particular bit can be set, cleared and tested.

Constructors Summary

Constructor Description
Bitset default bitset
Bitsetsize bitset with size

Methods Summary

Method Description
get get a bit by index
set set a bit by index
mark mark a bit by index
clear clear a bit by index
length returns the bitset length

Bitset:get

■ return: Boolean

■ arguments: Integer

The get method returns the bit value by the index argument.

Bitset:set

■ return: none

■ arguments: Integer Boolean

The set method set the bit value by the index argument with the boolean second argument.

Bitset:mark

■ return: none

■ arguments: Integer

The mark method marks a bit by the index argument.

182 Container Objects

Bitset:clear

■ return: none

■ arguments: Integer

The clear method clears a bit by the index argument.

Bitset:length

■ return: Integer

■ arguments: none

The length method returns the length of the bitset.

183

Buffer [reserved]

Description
TheBuffer builtin object is a character buffer that is widely used withi/o operations. The buffer
can be constructed with or without literal arguments. The standard methods to add or pushback
characters are available. One attractive method is the write method which can write a complete
buffer to an output stream specified as an argument.

Constructors Summary

Constructor Description
Buffer default buffer
Buffer [literal] buffer with literals

Methods Summary

Method Description
add add a literal or buffer
get get a character
read read a character
reset reset this buffer
length return the buffer length
write write the buffer to an output stream
to-string return a string representation
get-word get a word from a network byte order
get-quad get a quad from a network byte order
get-octa get a octa from a network byte order

Buffer:add

■ return: none

■ arguments: Literal|Buffer

The add method add a literal object or a buffer to the buffer. The literal object is automatically
converted to a sequence of characters. For a buffer, the entire content is copied into the buffer.

Buffer:get

■ return: Character

■ arguments: none

The get method returns the next available character in the buffer but do not remove it.

184 Container Objects

Buffer:read

■ return: Character

■ arguments: none

The read method returns the next available character and remove it from the buffer.

Buffer:reset

■ return: none

■ arguments: none

The reset method reset the entire buffer and destroy its contents.

Buffer:length

■ return: Integer

■ arguments: none

The length method returns the length of the buffer.

Buffer:write

■ return: none

■ arguments: Output

The write method writes the buffer contents to the output stream argument.

Buffer:to-string

■ return: String

■ arguments: none

The to-string method returns a string representation of the buffer.

Buffer:pushback

■ return: none

■ arguments: Literal

The add method push back a literal object in the buffer. The literal object is automatically
converted to a sequence of characters.

Buffer:get-word

■ return: Integer

■ arguments: none

The get-word method reads a word from the buffer and convert it to an integer. The word is
assumed to be in network byte order and is converted to the host format before becoming an integer.

Buffer:get-quad

185

■ return: Integer

■ arguments: none

The get-quad method reads a quad from the buffer and convert it to an integer. The quad is
assumed to be in network byte order and is converted to the host format before becoming an integer.

Buffer:get-octa

■ return: Integer

■ arguments: none

The get-quad method reads an octa from the buffer and convert it to an integer. The octa is
assumed to be in network byte order and is converted to the host format before becoming an integer.

186 Container Objects

APPENDIX D

Special Objects

This chapter is a reference of the Aleph reserved special objects with their respective builtin methods.
Special objects are those objects which interact with the interpreter.

Table 11Aleph special objects

Object Description
Object base object
Interp current interpreter
Thread thread descriptor object
Condvar condition variable object
Symbol symbol name object
Closure closure object
Lexical lexical name object
Resolver file path resolver object
Qualified qualified name object
Librarian librarian collector object

For each special objects (exceptObject) , Aleph provides apredicatewhich can be used to test for
the object type.

Table 12Aleph special object predicates

Object Predicate
Interp interp-p
Thread thread-p
Condvar condvar-p
Closure closure-p
Lexical lexical-p
Symbol symbol-p
Resolver resolver-p
Qualified qualified-p
Librarian librarian-p

188 Special Objects

189

Object [reserved]

Description
The base objectObject provides several methods which are common to all objects.

Methods Summary

Method Description
repr object representation string
rdlock object read lock
wrlock object write lock
unlock object unlock
shared-p shared object predicate

Object:repr

■ return: String

■ arguments: none

The repr method returns the object name in the form of a string. The result string is called the
representationstring.

Object:rdlock

■ return: none

■ arguments: none

The rdlock method try to acquire the object in read-lock mode. If the object is currently locked
in write mode by another thread, the calling thread is suspended until the lock is released.

Object:wrlock

■ return: none

■ arguments: none

The wrlock method try to acquire the object in write-lock mode. If the object is currently locked
by another thread, the calling thread is suspended until thelock is released.

Object:unlock

■ return: none

■ arguments: none

The unlock method try to unlock an object. An object will be unlocked if and only if the calling
thread is the one who acquired the lock.

190 Special Objects

Object:shared-p

■ return: Boolean

■ arguments: none

The shared-p method returnstrue if the object is shared.

191

Interp [reserved]

Description
The interpreter object is automatically bounded for each executing. There is no constructor for this
object. The current interpreter is bounded to theinterp reserved symbol.

Data member Summary

Member Description
argv interpreter argument vector
os-name operating system name
os-type operating system type
version full aleph version
program-name interpreter program name
major-version aleph major version number
minor-version aleph minor version number
patch-version aleph patch version number
aleph-url aleph official url name

Methods Summary

Method Description
load load a file
clone clone the interpreter
library open a shared library
set-real-precision set real precision
get-real-precision get real precision

Interp:load

■ return: Boolean

■ arguments: String

The loop method opens a file those name is the method argument and execute each form in the
file by doing a read-eval loop. When all forms have been executed, the file is closed and the method
returntrue. In case of exception, the file is closed and the method returnsfalse.

Interp:clone

■ return: Interp

■ arguments: none

The clone method returns a clone of the calling interpreter.

192 Special Objects

Interp:library

■ return: Library

■ arguments: String

The library method opens a shared library and a returns a shared library object.

Interp:launch

■ return: Thread

■ arguments: form

The launch method executes the form argument in a normal thread. The normal thread is created
by cloning the current interpreter.

Interp:daemon

■ return: Thread

■ arguments: form

The daemon method executes the form argument in a daemon thread. The normal thread is created
by cloning the current interpreter.

Interp:set-real-precision

■ return: none

■ arguments: Real

The set-real-precision method sets the interpreter real precision. Thereal-precisionis
used by the?= operator to compare real values.

Interp:get-real-precision

■ return: Real

■ arguments: none

The get-real-precision method returns the interpreter real precision. Thereal-precisionis
used by the?= operator to compare real values.

193

Thread [reserved]

Description
TheThread object is a special object which acts as a thread descriptor.Such object is created with
thelaunch ordaemon reserved keywords. Note that the thread object does not havea constructor.

Data member Summary

Member Description
result thread completion result

Methods Summary

Method Description
wait wait for a thread to complete
normal-p normal thread predicate
daemon-p daemon thread predicate

Thread:wait

■ return: none

■ arguments: none

The wait method suspends the calling thread until the thread argument as completed. Thewait
method is the primary mechanism to detect a thread completion.

Thread:normal-p

■ return: Boolean

■ arguments: none

The normal-p method returnstrue if the thread argument is a normal thread.

Thread:daemon-p

■ return: Boolean

■ arguments: none

The daemon-p method returnstrue if the thread argument is a normal thread.

194 Special Objects

195

Condvar [reserved]

Description
The condition variableCondvar object is a special object which provides a mean of synchroniza-
tion between one and several threads. The condition is said to be false unless it have been marked.
When a condition is marked, all threads waiting for that condition to become true are notified and
one thread is run with that condition.

Methods Summary

Method Description
lock lock the condition variable mutex
mark mark the condition variable and notify
wait wait for a marking
reset reset the condition variable
unlock unlock the condition variable mutex
wait-unlock wait for a marking, then reset and unlock

Condvar:lock

■ return: none

■ arguments: none

The lock method locks the condition variable mutex. If the mutex is already locked, the calling
thread is suspended until the lock is released. the method returns, the resumed thread owns the
condition variable lock. It is the thread responsibility toreset the condition variable and unlock it.

Condvar:mark

■ return: none

■ arguments: none

The mark method mark the condition variable and notify all pending threads of such change. The
mark method is the basic notification mechanism.

Condvar:wait

■ return: none

■ arguments: none

The wait method wait for a condition variable to be marked. When such condition occurs, the
suspended thread is run. When the method returns, the resumed thread owns the condition variable
lock. It is the thread responsibility to reset the conditionvariable and unlock it.

Condvar:reset

196 Special Objects

■ return: none

■ arguments: none

The reset method acquire the condition variable mutex, reset the mark, and unlock it. If the lock
has been taken, the calling thread is suspended.

Condvar:unlock

■ return: none

■ arguments: none

The unlock method unlock the condition variable mutex. This method should be used after a
call tolock or wait.

Condvar:wait-unlock

■ return: none

■ arguments: none

The wait-unlock method wait until a condition variable is marked. When such condition
occurs, the suspended thread is run. Before the method returns, the condition variable is reset and
the mutex unlocked. With two threads to synchronize, this isthe preferred method compared to
wait.

197

Lexical [reserved]

Description
TheLexical object is a special object built by theAleph reader. A lexical name is also a literal
object. Although the best way to create a lexical name is witha form, the lexical object can also
be constructed with a string name. A lexical name can be mapped to a symbol by using themap
method.

Derivation summary

Derived from Description
Literal the literal object class

Constructors Summary

Constructor Description
Lexical create a nil lexical
Lexicalname create a lexical by name

Methods Summary

Method Description
map get the object mapped by the lexical

Lexical:map

■ return: Object

■ arguments: none

The map method returns the object that is mapped by the lexical name.Most of the time, a symbol
object is returned since it is the kind of object stored in a nameset. Eventually the mapping might
returns an argument object if used inside a closure.

198 Special Objects

199

Qualified [reserved]

Description
TheQualified object is a special object built by theAleph reader. A qualified object is similar to
a lexical object. It is also a literal object. Like a lexical name, a qualified name can be created with
a form or by direct construction with a name. Like a lexical name, themap method can be used to
retrieve the symbol associated with that name.

Derivation summary

Derived from Description
Literal the literal object class

Constructors Summary

Constructor Description
Qualified create a nil qualified
Qualifiedname create a qualified by name

Methods Summary

Method Description
map get the object mapped by the qualified

Qualified:map

■ return: Object

■ arguments: none

The map method returns the object that is mapped by the qualified name. Most of the time, a
symbol object is returned since it is the kind of object stored in a nameset. Eventually the mapping
might returns an argument object if used inside a closure.

200 Special Objects

201

Symbol [reserved]

Description
TheSymbol object is a special object used by nameset to map a name with anobject. Generally
a symbol is obtained by mapping a lexical or qualified name. Asan object, the symbol holds a
name, an object and aconstflag. The symbol name cannot be changed since it might introduce
inconsistencies in the containing nameset. On the other hand, theconstflag and the object can be
changed. A symbol is a literal object. A symbol that is not binded to a nameset can be constructed
dynamically. Such symbol is said to benot interned.

Derivation summary

Derived from Description
Literal the literal object class

Constructors Summary

Constructor Description
Symbolname create a symbol by name
Symbolname object create a symbol by name and object

Methods Summary

Method Description
get-const get the symbol const flag
set-const set the symbol const flag
get-object get the symbol object
set-object set the symbol object

Symbol:get-const

■ return: Boolean

■ arguments: none

The get-const method returns the symbol const flag. If the flag is true, the symbol object
cannot be changed unless that flags is reset with theset-const method.

Symbol:set-const

202 Special Objects

■ return: none

■ arguments: Boolean

The set-const method set the symbol const flag. This method is useful to marka symbol as
const or to make a const symbol mutable.

Symbol:get-object

■ return: Object

■ arguments: none

The get-object method returns the symbol object.

Symbol:set-object

■ return: none

■ arguments: Object

The set-object method set the symbol object.

203

Closure [reserved]

Description
TheClosure object is a special object that represents a lambda or gamma expression. A closure
is represented by a set of arguments, a set of closed variables and a form to execute. A boolean flag
determines the type of closure. The closure predicatelambda-p returnstrue if the closure is a
lambda expression. Closed variables can be defines and evaluated with the use of the qualified name
mechanism. Closure mutation is achieved with theadd-argument andset-form method. An
empty closure can be defined at construction as well.

Derivation summary

Derived from Description
Object the base object class

Constructors Summary

Constructor Description
Closure create a default closure
Closuretype create a lambda expression if true

Methods Summary

Method Description
lambda-p return true for a lambda closure
get-form get the closure form
set-form set the closure form
add-argument add an argument to the closure

Closure:lambda-p

■ return: Boolean

■ arguments: none

The lambda-p predicate returns true if the closure is a lambda expression. The predicate returns
false for a gamma expression.

Closure:get-form

■ return: Object

204 Special Objects

■ arguments: none

The get-form method returns the closure form object.

Closure:set-form

■ return: none

■ arguments: Object

The set-form method sets the closure form object.

Closure:add-argument

■ return: none

■ arguments: String|Lexical|form

The add-argument method adds an argument to the closure. The argument object can be either
a string, a lexical object of a simple form that defines aconstlexical name.

205

Librarian [reserved]

Description
The Librarian object is a special object that read or write a librarian. Without argument, a
librarian is created for writing purpose. With one file name argument, the librarian is created for
reading.

Derivation summary

Derived from Description
Object the base object class

Constructors Summary

Constructor Description
Librarian create a librarian for writing
Librarianname create a librarian for reading

Methods Summary

Method Description
add add a new file to the librarian
write write a librarian
length return the librarian length
extract extract a file from the librarian
exists-p check if a file exists in the librarian
get-names returns a vector of file in the librarian

Librarian:add

■ return: none

■ arguments: String

The add method adds a file into the librarian. The librarian must havebeen opened in write mode.

Librarian:write

■ return: none

■ arguments: String

206 Special Objects

The write method writes a librarian to a file those name is the argument.

Librarian:length

■ return: Integer

■ arguments: none

The length method returns the number of file in the librarian. This method work, no matter how
the librarian has been opened.

Librarian:exists-p

■ return: Boolean

■ arguments: String

The exists-p predicate returns true if the file argument exists in the librarian.

Librarian:extract

■ return: InputMapped

■ arguments: String

The extract method returns an input stream mapped to the file name argument.

207

Resolver [reserved]

Description
TheResolver object is a special object that gives the ability to open a filebased on a file path
resolver. The resolver maintains a list of valid path and returns an input stream for a file on demand.

Derivation summary

Derived from Description
Object the base object class

Constructors Summary

Constructor Description
Resolver create a default resolver

Methods Summary

Method Description
add add a new path to the resolver
lookup find a file by resolving its name
valid-p check for a valid file

Resolver:add

■ return: none

■ arguments: String

The add method adds a path into the resolver. The path can points either to a directory or a
librarian.

Resolver:lookup

■ return: Input

■ arguments: String

The lookup method resolves the file name argument and returns an input stream for that file.

Resolver:valid-p

208 Special Objects

■ return: Boolean

■ arguments: String

The valid-p predicate returns true if the file name argument can be resolved. If the file name
can be resolved, thelookup method can be called to get an input stream.

BIBLIOGRAPHY

[1] Revised Report on the Algorithmic Language Scheme. Technical report, November 1991.

[2] C++ Language Reference Manual, 1996.

[3] Guy L. Steele Jr.Common Lisp, The Language. 1990.

[4] Donald E. Knuth.The Art of Computer Programming, Volume 1. 1997.

[5] Donald E. Knuth.The Art of Computer Programming, Volume 2. 1997.

[6] Donald E. Knuth.The Art of Computer Programming, Volume 3. 1997.

[7] George Springer and Daniel P. Friedman.Scheme and the Art of Programming. 1997.

[8] Bjarne Stroustrup.The C++ Programming Language. 2000.

210 BIBLIOGRAPHY

INDEX

212 INDEX

<

Character operator, 28
Integer operator, 22
Real operator, 25

<=
Character operator, 28
Integer operator, 22
Real operator, 25

>

Character operator, 28
Integer operator, 22
Real operator, 25

>=
Character operator, 28
Integer operator, 22
Real operator, 25

*
Integer operator, 22
Real operator, 24

+
Character operator, 28
Integer operator, 22
Real operator, 24

-
Character operator, 28
Integer operator, 22
Real operator, 24

/
Integer operator, 22
Real operator, 24

==
Character operator, 28
Integer operator, 22
Real operator, 25

fact
factorial example, 5

load, 3

abs
Integer method, 135
Real method, 144
Relatif method, 139

acos
Real method, 146

acosh
Real method, 146

add
Buffer method, 183
Enum method, 167
Graph method, 177
Librarian method, 205
Resolver method, 207

add-argument
Closure method, 204

add-input-edge
Node method, 174

add-output-edge
Node method, 174

advice
closure expression, 64

aleph
interpreter, 1

alpha-p
Character method, 150

and
Integer method, 137
Relatif method, 141

append
Cons method, 165
List method, 169
Vector method, 172

args
expression argument, 9
multiple arguments binding, 7

argument
on command line, 2
with lambda expression, 9

asin
Real method, 145

asinh
Real method, 146

assert
general syntax, 12
reserved keywords, 75

atan
Real method, 146

atanh
Real method, 147

axc
aleph cross compiler, 1

Bitset
constructors summary, 181
methods summary, 181
object reference, 181

blank-p
Character method, 150

block
reserved keywords, 77

block-p
Cons method, 164

Boolean
constructor summary, 133
derivation summary, 133
object reference, 133
operators summary, 133

Buffer
constructors summary, 183

INDEX 213

methods summary, 183
object reference, 183

ceiling
Real method, 143

Character
constructors summary, 149
derivation summary, 149
method<, 28
method<=, 28
method>, 28
method>=, 28
method +, 28
method ++, 28
method +=, 28
method -, 28
method –, 28
method -=, 28
method =, 28
method ==, 28
methods summary, 149
object reference, 149
operators summary, 149
standard constructors, 27

class
reserved keywords, 79

clear
Bitset method, 181

clone
Interp method, 191

Closure
constructors summary, 203
creating, 64
derivation summary, 203
methods summary, 203
object reference, 203

comments, 4
Condvar

methods summary, 195
object reference, 195

Cons
constructors summary, 163
methods summary, 163
object reference, 163

cons
object methods, 31

const
general syntax, 9
lambda expression, 9
reserved keywords, 81

cos
Real method, 145

cosh
Real method, 146

daemon
Interp method, 192
reserved keywords, 83

daemon thread, 51
daemon-p

Thread method, 193
decr

Character method, 150
degree

Node method, 173
delay

reserved keywords, 85
dequeue

Queue method, 179
digit-p

Character method, 150
do

general syntax, 10
reserved keywords, 87

Edge
constructors summary, 175
object reference, 175

empty-p
Queue method, 180

enqueue
Queue method, 179

Enum
constructors summary, 167
methods summary, 167
object reference, 167

enum
reserved keywords, 89

eof-p
Character method, 150

eol-p
Character method, 150

errorln
reserved keywords, 91

eval
general syntax, 12
reserved keywords, 93

evaluation, 4
even-p

Integer method, 137
Relatif method, 141

exception, 16
handler, 45
throwing, 45

exists
Graph method, 177
Vector method, 172

exists-p
Librarian method, 206

214 INDEX

exp
Real method, 144

extract
Librarian method, 206
String method, 154

fill-left, 30
String method, 155

fill-right, 30
String method, 155

find
Vector method, 171

floor
Real method, 144

flush
Queue method, 180

for
reserved keywords, 16, 95

force
reserved keywords, 97

form
block notation, 5
general syntax, 4

format
Real method, 147

function
declaration, 5

gamma expression
general syntax, 6

get
Bitset method, 181
Buffer method, 183
Cons method, 165
List method, 170
Regex method, 159
String method, 155
Vector method, 171

get-cadddr
Cons method, 164

get-caddr
Cons method, 164

get-cadr
Cons method, 164

get-car, 31
Cons method, 163

get-cdr, 31
Cons method, 163

get-client
Edge method, 175
Node method, 173

get-const
Symbol method, 201

get-edge

Graph method, 177
get-enum

Item method, 131
get-form

Closure method, 203
get-input-edge

Node method, 174
get-iterator

Cons method, 164
List method, 169
Vector method, 172

get-node
Graph method, 178

get-object
Symbol method, 202

get-octa
Buffer method, 185

get-output-edge
Node method, 174

get-quad
Buffer method, 184

get-real-precision
Interp method, 192

get-source
Edge method, 175

get-target
Edge method, 175

get-word
Buffer method, 184

Graph
constructors summary, 177
methods summary, 177
object reference, 177

hashid, 30
hello world, 1

if
general syntax, 10
reserved keywords, 99

incr
Character method, 149

input-degree
Node method, 174

insert
List method, 170

Integer
abs, 23
constructors summary, 135
derivation summary, 135
even-p, 23
literal format, 21
method *, 22
method *=, 22

INDEX 215

method +, 22
method ++, 22
method +=, 22
method -, 22
method –, 22
method -=, 22
method /, 22
method /=, 22
methods summary, 135
mod, 23
object reference, 135
odd-p, 23
operators summary, 135
to-string, 23

Interp
member summary, 191
methods summary, 191
object reference, 191

interpreter
arguments, 48
command line arguments, 2
get-real-precision, 27
interactive key binding, 2
loading a source file, 3
set-real-precision, 27
version and os, 49

Item
derivation summary, 131
methods summary, 131
object reference, 131
operators summary, 131

lambda
reserved keywords, 101

lambda expression
and argument, 9
functional closure, 6

lambda-p
Closure method, 203

launch
Interp method, 192
reserved keywords, 103

length
Bitset method, 182
Buffer method, 184
Cons method, 164
Librarian method, 206
List method, 169
Queue method, 179
Regex method, 158
String method, 153
Vector method, 172

Lexical
constructors summary, 197

derivation summary, 197
methods summary, 197
object reference, 197

lexical
character set, 27

Librarian
constructors summary, 205
derivation summary, 205
methods summary, 205
object reference, 205

library
Interp method, 192

link
Cons method, 165
cons method, 33

List
constructors summary, 169
methods summary, 169
object reference, 169

Literal
derivation summary, 129
methods summary, 129
object reference, 129

load
Interp method, 191

lock
Condvar method, 195

log
Real method, 144

lookup
Resolver method, 207

loop
general syntax, 11
reserved keywords, 105

map, 33
Lexical method, 197
Qualified method, 199

mark
Bitset method, 181
Condvar method, 195

match
Regex method, 159

mod
Integer method, 137
Relatif method, 141

muting
closure expression, 64

nameset, 8
and symbol, 8
reserved keywords, 107

nan-p
Real method, 143

216 INDEX

nil-p
Character method, 151
Cons method, 164

Node
constructors summary, 173
methods summary, 173, 175
object reference, 173

normal thread, 51
normal-p

Thread method, 193
not

Integer method, 136
Relatif method, 140

number-of-edges
Graph method, 178

number-of-nodes
Graph method, 178

Object
methods summary, 189
object reference, 189

object
builtin, 3

odd-p
Integer method, 137
Relatif method, 141

or
Integer method, 135
Relatif method, 139

output-degree
Node method, 174

predicate, 13
functional programming, 13
symbolic programming, 13

println
reserved keywords, 109

protect
general syntax, 12
reserved keywords, 111

pushback
Buffer method, 184

Qualified
constructors summary, 199
derivation summary, 199
methods summary, 199
object reference, 199

Queue
constructors summary, 179
methods summary, 179
object reference, 179

rdlock

Object method, 189
read

Buffer method, 184
Real

abs, 26
acos, 26
acosh, 26
asin, 26
asinh, 26
atan, 26
atanh, 26
ceiling, 26
constructor, 24
constructors summary, 143
cos, 26
cosh, 26
derivation summary, 143
floor, 26
literal format, 24
log, 26
method<, 25
method<=, 25
method>, 25
method>=, 25
method *, 24
method *=, 24
method +, 24
method ++, 24
method +=, 24
method -, 24
method –, 24
method -=, 24
method /, 24
method /=, 24
method =, 25
method ==, 25
methods summary, 143
object reference, 143
operators summary, 143
precision and accuracy, 27
sin, 26
sinh, 26
sqrt, 26
tan, 26
tanh, 26

recursion
U combinator, 67
Y combinator, 67

Regex
constructor summary, 158
derivation summary, 158
methods summary, 158
operators summary, 158

INDEX 217

regex
object reference, 157

Relatif
constructors summary, 139
derivation summary, 139
methods summary, 139
object reference, 139
operators summary, 139

remove
Vector method, 172

replace
Regex method, 159

repr
Object method, 189

reserved keyword
if, 10

reserved keywords
assert, 12
const, 9
do, 10
eval, 12
loop, 11
protect, 12
return, 11
switch, 11
throw, 45
try, 45
while, 10

reset
Buffer method, 184
Condvar method, 195
Vector method, 172

Resolver
constructors summary, 207
derivation summary, 207
methods summary, 207
object reference, 207

return
general syntax, 11
reserved keywords, 113

set
Bitset method, 181
Vector method, 171

set-car, 31
Cons method, 165

set-cdr, 31
Cons method, 165

set-client
Edge method, 176
Node method, 173

set-const
Symbol method, 201

set-form

Closure method, 204
closure method, 64

set-object
Symbol method, 64, 202

set-real-precision
Interp method, 192

set-source
Edge method, 176

set-target
Edge method, 176

shared-p
Object method, 190

shl
Integer method, 136
Relatif method, 140

shr
Integer method, 136
Relatif method, 140

sin
Real method, 145

sinh
Real method, 146

split
String method, 154

sqrt
Real method, 144

String
constructors summary, 153
derivation summary, 153
methods summary, 153
object reference, 153
operators summary, 153
standard constructors, 29

strip
String method, 154

strip-left
String method, 154

strip-right
String method, 154

sub-left
String method, 155

sub-right
String method, 155

substr
String method, 156

switch
general syntax, 11
reserved keywords, 117

Symbol
constructors summary, 201
derivation summary, 201
methods summary, 201
object reference, 201

218 INDEX

symbol
and nameset, 8

sync
reserved keywords, 115

tan
Real method, 145

tanh
Real method, 146

Thread
member summary, 193
methods summary, 193
object reference, 193

thread
normal and daemon, 51

throw
reserved keywords, 45, 119

to-literal
Literal method, 129

to-lower
String method, 155

to-string
Buffer method, 184
Literal method, 129

to-upper
String method, 155

trans
lambda expression, 9
reserved keywords, 121
symbol binding, 9

try
reserved keywords, 45, 123

unlock
Condvar method, 196
Object method, 189

valid-p
Resolver method, 207

Vector
constructors summary, 171
methods summary, 171
object reference, 171

wait
Condvar method, 195
Thread method, 193

wait-unlock
Condvar method, 196

while
general syntax, 10
reserved keywords, 125

write
Buffer method, 184

Librarian method, 205
wrlock

Object method, 189

xor
Integer method, 137
Relatif method, 141

Y
fixed point combinator, 68

zero-p
Integer method, 137
Real method, 147
Relatif method, 141

Colophon

This manual was written for the LATEXdocumentation preparation system. A custom document class
was designed by the author. The document style has been simplified as to produce a high quality
technical manual. Title, chapter and section names have been produced with an Helvetica font. The
document has been produced with a 10 points Times font. Both fonts are assumed to be in the public
domain. The documentation is available in both A4 and letterformat.

