
ℵ Programming Language

Debugging with Aleph

Volume 3 Revision 0.9.0

This documentation is bound to theAleph programming language license and therefore shall be considered
free. This documentation can be redistributed and/or modified, providing that the copyright notice is kept
intact. This documentation is distributed in the hope that it will be useful, but without any warranty; without
even the implied warranty of merchantability or fitness for aparticular purpose. In no event shall the copyright
holder be liable for any direct, indirect, incidental or special damages arising in any way out of the use of this
documentation or the software it refers to.

c© 1999-2003 Amaury C. Darsch

CONTENTS

Preface v
The Aleph programming language v
Features v
Aleph engine vi
Flexible Distribution vi

License ix

1 Introduction 1
1.1 A sample axd session 1

1.1.1 Starting the debugger 1
1.1.2 Debugger commands 1
1.1.3 Debugging an example 1

2 Using the Debugger 5
2.1 Invocation and termination 5
2.2 Options 5
2.3 Running the program 5

2.3.1 Program loading 6
2.3.2 Starting the program 6
2.3.3 Setting program arguments 6

2.4 Breakpoints operations 6
2.4.1 Breakpoint command 7
2.4.2 Breakpoint viewing 7
2.4.3 Breakpoint resume 7

A Debugger commands 9
break 11
break-info 13
continue 15
exit 17
info 19
list 21

iv CONTENTS

load 23
next 25
quit 27
run 29

Colophon 31

Preface

This manual is part of theAleph Programming Language Series, a multi volume set that describes
the programming environment of theAleph system. The entire set contains 4 volumes :

Volume 0 - Aleph Installation Guide is the distribution installation manual.

Volume 1 - Aleph Programmer Guide is the first volume of this set. It is both an introduction and
an advanced guide for the the developer.

Volume 2 - Aleph Library Reference is the second volume of this set. It is a complete description
of the Aleph standard library.

Volume 3 - Aleph Cross Debugger is the third volume of this set. It is a reference manual to de-
velop and debug Aleph programs.

Volume 4 - Aleph C++ API is the fourth volume of this set. It is a reference manual of the C++
Application Programming Interface (API).

The Aleph programming language

Aleph is a multi-threaded functional programming language with dynamic symbol bindings that
support the object oriented paradigm.Aleph features a state of the art runtime engine that supports
both 32 and 64 bits platforms.Aleph comes with a rich set of libraries that are designed to be
platform independent.Aleph is a free software. A flexible license has been designed for both
individuals and corporations. Everybody is encouraged to use, distribute and/or modify the aleph
engine for any purpose.

Features

TheAleph engine is written in C++ and provides runtime compatibilitywith it. Such compatibility
includes the ability to instantiate C++ classes, use virtual methods and raise or catch exceptions. A
comprehensive API has been designed to ease the integrationof foreign libraries.

• Builtin objects
More than 50 reserved keywords and predicates. Various containers like list, vector, hash
table, bitset, and graphs.

• Functional programming
Support forlambda expressionwith explicit closure. Symbol scope limitation withgamma
expression. Form like notation with an easy block declaration.

vi PREFACE

• Object oriented
Single inheritance object mechanism with dynamic symbol resolution. Native class deriva-
tion and method override. Static class data member and methods.

• Multi-threaded engine
True multi-threaded engine with automatic object protection mechanism against concurrent
access. Read and write locking system and thread activationvia condition objects.

• Original regular expression
Builtin regular expression engine with group matching, exact or partial match and substitu-
tion.

Aleph is a core language and libraries. The libraries are a specificset of classes and functions which
are structured per application domains.Aleph is delivered with a set of standard libraries.

• aleph-sys
The aleph-sys library is the system calls library. Standard classes and functions are
provided to interact with the running machine.

• aleph-sio
Thealeph-sio library is the standard input/output All input/output operations are per-
formed with this library.

• aleph-net
The aleph-net library is the networking library. The library is based on the standard
Internet Protocoland provides various classes to manipulates IP address, client or server
sockets.

• aleph-www
Thealeph-www library is the World Wide Web library. The library provides various classes
that ease the development of web applications or CGI scripts.

• aleph-txt
Thealeph-txt library is the text processing library. The library provides various func-
tions and classes that ease text manipulation. Sorting data, computing message digest and
formatting table is among others, features available in this library.

• aleph-odb
Thealeph-odb library is the object database library. The library provides several objects
that can be used to design a database. A client is also provided to directly access the database
contents.

Aleph providesextensions. An extension is a library or an application which is not installed by
default. The user selects during the installation process which extension is needed. For example, the
static version of the interpreter is an extension.

Aleph engine

Aleph is an interpreted language. When used interactively, commands are entered on the command
line and executed when a complete and valid syntactic objecthas been constructed. Alternatively,
the interpreter can execute a source file.Aleph does not have a garbage collector.Aleph operates
with a lazy, scope based, object destruction mechanism. Each time an object is no longer visible,
it is destroyed automatically. At this time, theAleph interpreter is unable to reclaim memory with
circular structures. This is a well known problem when usinga reference count mechanism. In the
future, theAleph engine will provide some mechanisms to resolve this problem.

PREFACE vii

Flexible Distribution

Aleph is a free software. A flexible license model encourages individuals or corporations to use,
copy, modify and/or distribute this software.Aleph is designed by software professionals. Quality is
one the driving force of the development effort. This is reflected in this distribution by the extensive
documentation. A large test suite is used to assess the quality of the distribution. Right now, the
engine has been successfully tested on most Linux platforms, Free BSD and Solaris.

viii PREFACE

License

Aleph is a free software. It can be used, modified and distributed byanybody for personal or com-
mercial use. The only restriction is altering the copyrightnotice associated with the material. In-
dividual or corporation are permitted to use, include or modify the Aleph engine. All material
developed with theAleph language belongs to their respective copyright holder.
This program is a free software. it can be redistributed and/or modified, providing that this copyright
notice is kept intact. This program is distributed in the hope that it will be useful, but without any
warranty; without even the implied warranty of merchantability or fitness for a particular purpose.
In no event shall the copyright holder be liable for any direct, indirect, incidental or special damages
arising in any way out of the use of this software.

x LICENSE

CHAPTER 1

Introduction

This chapter is short introduction to theAleph cross debugger or axd. TheAleph debugger is a
special interpreter that is designed to help the developer to trace anAleph program. The debugger
is designed to operate in a stand-alone mode or withEmacs. If you plan to use the debugger with
Emacs, you will have to install agud-mode for Aleph.

1.1 A sample axd session

TheAleph Cross Debugger or axd is a special interpreter that gives the developer the opportunity to
trace anAleph program and examine the object contents during the execution. Operations normally
available in a debugger are available withaxd. Such operations include breakpoints, stepping, stack
tracing, and many others. Becauseaxd is built on top of theAleph interpreter, all standard operations
are supported by the debugger.

1.1.1 Starting the debugger

The debugger is started with the commandaxd. Within Emacs, the commandMeta-x axd will
do the same. When the debugger is started, anaxd prompt is displayed. At this stage, there is no
difference with the standardAleph interpreter, except that a newnamesetcalledaxd is defined with
all debugger commands. Theaxd:quit or axd:quit command will terminate theaxd session.

zsh >axd
(axd)axd:quit
zsh >

1.1.2 Debugger commands

All debugger commands are located in theaxd nameset. For example, the command to set a break-
point isaxd:break. Since typing such command can be annoying, it is possible torebind them
at your convenience. For example, the formconst b axd:break will define the symbolb as
the breakpoint command, but care should be taken with this approach if your program uses the same
symbol.

1.1.3 Debugging an example

2 Introduction

The first example that demonstrates the use ofaxd is located in the directoryexp/als, that is part
of this distribution. The platform information example0501.als will be used for illustration. A
simpleAleph session and the original source code is given below.

zsh >aleph 0501.als
amaury> aleph 0501.als
major version number : 0
minor version number : 9
patch version number : 0
interpreter version : 0-9-0
program name : aleph
operating system name : linux
operating system type : unix
aleph official url : http://www.aleph-lang.org

zsh >less 0501.als
many comments before
println "major version number : " interp:major-version
println "minor version number : " interp:minor-version
println "patch version number : " interp:patch-version
println "interpreter version : " interp:version
println "program name : " interp:program-name
println "operating system name : " interp:os-name
println "operating system type : " interp:os-type
println "aleph official url : " interp:aleph-url

The debugger is started with the file to debug. Theinfo command can be used to print some infor-
mation.

zsh > axd 0501.als
(axd) axd:info
debugger version : 0-9-0
os name : linux
os type : unix
initial file : 0501.als
form file name : 0501.als
form line number : 17
verbose mode : true
max line display : 10
defined breakpoints : 0
(axd)

Along with the version, initial file name and other information, is theform file nameandform line
numberthat indicates where the debugger is position. Another way to get this information is with
thelist command that display the file at its current break position.

(axd) axd:list
17 println "major version number : " interp:major-version
18 println "minor version number : " interp:minor-version
19 println "patch version number : " interp:patch-version
20 println "interpreter version : " interp:version
21 println "program name : " interp:program-name
22 println "operating system name : " interp:os-name
23 println "operating system type : " interp:os-type
24 println "aleph official url : " interp:aleph-url

A sample axd session 3

25
26
(axd)

With this in place it is possible to run the program. Therun command will do the job, but will
not give you the opportunity to do something since there is nobreakpoint installed. So, installing
a breakpoint is simply achieved by giving the file name and line number. To make life easier, the
break command takes also 0 or argument. Without argument, a breakpoint is set at the current
position. With one integer argument, a breakpoint is set at the specified line in the current file. If the
verbose mode is active (which is the default), a message is printed to indicate the breakpoint index.

(axd) axd:break 19
setting breakpoint 0 in file 0501.als at line 19
(axd)axd:run
major version number : 0
minor version number : 9
breakpoint 0 in file 0501.als at line 19
(axd)

The run command starts the program and immediately stops at the breakpoint. Note that the de-
bugger prints a message to indicate the cause of such break. After this, stepping is achieved with
thenext command. Resuming the execution is done with thecontinue command. Theexit or quit
command terminates the session.

(axd)axd:next
patch version number : 0
(axd)axd:next
interpreter version : 0-9-0
(axd)axd:continue
program name : axd
operating system name : linux
operating system type : unix
aleph official url : http://www.aleph-lang.org
(axd)axd:quit
zsh >

4 Introduction

CHAPTER 2

Using the Debugger

This chapter describes in detail the usage of theAleph Cross Debugger or Axd. The debugger
is a special application that is built on top of theAleph interpreter. For this reason, the debugger
provides the full execution environment with special commands bound into a dedicated nameset.

2.1 Invocation and termination

Axd is started by typing the commandaxd. Once started, the debugger reads the commands from
the terminal. Since the debugger is built on top of theAleph interpreter, any command is in fact a
special form that is executed by the interpreter. The natural way to invoke the debugger is to pass
the primary file to debug with eventually some arguments.

zsh> axd PROGRAM [arguments]

When the debugger is started, a prompt ’(axd)’ indicates that the session is running. The debugger
session is terminated with the commandsexit or quit.

zsh> axd PROGRAM
(axd) axd:quit
zsh>

2.2 Options

The available options can be seen with the ’-h’ option and thecurrent version with the ’-v’ option.
This mode of operations is similar to the one found with theAleph interpreter.

zsh> axd -h
usage: axd [options] [file] [arguments]

[-h] print this help message
[-v] print version information
[-i] path add a path to the resolver
[-f assert] enable assertion checking
[-f emacs] enable emacs mode

zsh>

6 Using the Debugger

2.3 Running the program

When a program is run withAxd, a primary file must be used to indicate where to start the program.
The file name can be given either as anAxd command argument or with theaxd:load command.
The first available form in the primary file is used as the program starting point.

2.3.1 Program loading

Theaxd:load command loads the primary file and mark the first available form as the starting
form for the program execution. The command takes a file name as its first argument. TheAleph
resolver rule apply for the file name resolution.

• If the string name has the ’.als’ extension, the string is considered to be the file name.

• If the string name has the ’.axc’ extension or no extension, the string is used to search a file
that has a ’.als’ extension or that belongs to a librarian.

Note that these operations are also dependent on the ’-i’ option that adds a path or a librarian to the
search-path.

2.3.2 Starting the program

The axd:run command starts the program at the first available form in the primary file. The
program is executed until a breakpoint or any other halting condition is reached. Generally, when
the program execution is suspended, an entry into the debugger is done and the prompt is shown at
the command line.

(axd)axd:run

Theaxd:run is the primary command to execute before the program can be debugged. Eventually,
a file name can be used as the primary file to execute.

(axd)axd:run "test.als"

2.3.3 Setting program arguments

Since the debugger is built on top of theAleph interpreter, it is possible to set directly the argument
vector. The argument vector is bound to the interpreter withthe qualified nameinterp:argv.
The standard vector can be used to manipulate the argument vector.

(axd)interp:argv:reset
(axd)interp:argv:append "hello"

In this example, the interpreter argument vector is reset and then a single argument string is added
to the vector. If one wants to see the interpreter argument vector, a simple procedure can be used as
shown below.

const argc (interp:argv:length)
loop (trans i 0) (< i argc) (i:++) {
trans arg (interp:argv:get i)
println "argv[" i "] = " arg

}

Breakpoints operations 7

2.4 Breakpoints operations

Breakpoints are set with theaxd:break command. If a breakpoint is reached during the program
execution, the program is suspended and the debugger session is resumed with a command prompt.
At the command prompt, the full interpreter is available. Itpermits to examine symbols.

2.4.1 Breakpoint command

Theaxd:break command sets a breakpoint in a file at a specified line number. If the file is not
specified, the primary file is used instead. If the line numberis not specified, the first available form
in the current file is used.

(axd) axd:break "demo.als" 12
Setting breakpoint 0 in file demo.als at line 12

In this example, a breakpoint is set in the file "demo.als" at the line number 12. The file name does
not have to be the primary file. If another file name is specified, the file is loaded, instrumented and
the breakpoint is set.

2.4.2 Breakpoint viewing

Theaxd:break-info command reports some information about the current breakpoint setting.

(axd) axd:break "demo.als" 12
(axd) axd:break "test.als" 18
(axd) axd:break-info
Breakpoint 0 in file demo.als at line 12
Breakpoint 1 in file test.als at line 18

2.4.3 Breakpoint resume

Theaxd:continue command resumes the program execution after a breakpoint. The program
execution continues until another breaking condition is reached or the program terminates.

(axd) axd:run
Breakpoint 0 in file demo.als at line 12
(axd) axd:continue

In this example, the program is run and stopped at breakpoint0. Theaxd:continue command
resumes the program execution.

8 Using the Debugger

APPENDIX A

Debugger commands

This appendix contains theAleph cross debugger command reference. TheAleph cross debugger
is started with theaxd command. All commands are bound to theaxd nameset.

Table 1 Debugger commands

Command Description

run run the debugger session
load load the initial file
next execute next form
info report debugging information
exit terminate the debugger session
quit terminate the debugger session
list display form listing at current line
break set a breakpoint
continue continue execution after a breakpoint
break-info report breakpoint information

10 Debugger commands

11

break [axd]

Description
Thebreak command sets a breakpoint. Without argument a breakpoint isset in the current file at
the current line. With a line number, the breakpoint is set inthe current file. With two arguments,
the first one is used as the file name and the second one is used asthe line number.

Example

(axd) axd:break "demo.als" 12
(axd) axd:break 25

The first example sets a breakpoint in the filedemo.als at line 12. The second example sets a
breakpoint in the current file at line 25. Without argument, the command sets the breakpoint at the
current line. The current line can be seen with theinfo command.

12 Debugger commands

13

break-info [axd]

Description
Thebreak-info command reports some information about the current breakpoints.

Example

(axd) axd:break "demo.als" 12
(axd) axd:break "test.als" 18
(axd) axd:break-info
Breakpoint 0 in file demo.als at line 12
Breakpoint 1 in file test.als at line 18

In this example, two breakpoints are set. One in file ’demo.als’ at line 12 and one in file ’test.als’ at
line 18. Thebreak-info command reports the current breakpoint settings.

14 Debugger commands

15

continue [axd]

Description
Thecontinue command resumes the program execution after a breakpoint. The program execu-
tion continues until a breakpoint or another terminating condition is reached.

(axd) axd:run
Breakpoint 0 in file demo.als at line 12
(axd) axd:continue

In this example, the program is run and stopped at breakpoint0. Theaxd:continue command
resumes the program execution.

16 Debugger commands

17

exit [axd]

Description
Theexit command terminates a debugger session. This command is similar to thequit com-
mand.

18 Debugger commands

19

info [axd]

Description
Theinfo command reports some debugger information. Such information includes the debugger
version, the operating system, the primary input file, the primary input file source and more.

Example

(axd) axd:info
debugger version : 0-9-0
os name : linux
os type : unix
initial file : 0501
form file name : 0501.als
form line number : 17
verbose mode : true
max line display : 10
defined breakpoints : 0

20 Debugger commands

21

list [axd]

Description
Thelist command display the form listing starting at the current session line number. The current
form line number can also be seen with theinfo command. The number of line is a debugger
parameter. The first line to display can also be set as the firstparameter. A file name can also be set.

Example

(axd) axd:list
(axd) axd:list 20
(axd) axd:list "file.als" 20

The first example shows the listing at the current debugger line. The second example starts the listing
at line 20. The third example starts at line 20 with file "file.als".

22 Debugger commands

23

load [axd]

Description
Theload command sets theinitial or defaultfile to be used with therun command.

Example

(axd) axd:load "demo.als"

In this example, the file ’demo.als’ is set as the primary file.Using theinfo command will report
at which line, the first available form has been found.

24 Debugger commands

25

next [axd]

Description
Thenext command executes the next line in the source file. Thenext command does not take
argument.

Example

(axd) axd:next

26 Debugger commands

27

quit [axd]

Description
Thequit command terminates a debugger session. This command is similar to theexit com-
mand.

28 Debugger commands

29

run [axd]

Description
Therun command executes the default file in the slave interpreter. Without argument, theinitial or
defaultfile is executed. Theload command can be used to set theinitial or default file. With one
argument, the file name argument is used as theinitial or defaultfile.

Example

(axd) axd:run
(axd) axd:run "demo.als"

The first example runs the initial file. The second example sets the initial file asdemo.als and run
it.

30 Debugger commands

INDEX

32 INDEX

break
commmand reference, 11

break-info
commmand reference, 13

continue
commmand reference, 15

exit
commmand reference, 17

index
breakpoint, 3

info
commmand reference, 19

list
commmand reference, 21

load
commmand reference, 23

next
commmand reference, 25

quit
commmand reference, 27

run
commmand reference, 29

Colophon

This manual was written for the LATEXdocumentation preparation system. A custom document class
was designed by the author. The document style has been simplified as to produce a high quality
technical manual. Title, chapter and section names have been produced with an Helvetica font. The
document has been produced with a 10 points Times font. Both fonts are assumed to be in the public
domain. The documentation is available in both A4 and letterformat.

