N Programming Language

Library Reference

Volume 2 Revision 0.9.0

This documentation is bound to tdeph programming language license and therefore shall be ceresid
free. This documentation can be redistributed and/or memtjifproviding that the copyright notice is kept
intact. This documentation is distributed in the hope thatili be useful, but without any warranty; without
even the implied warranty of merchantability or fitness f@aaticular purpose. In no event shall the copyright
holder be liable for any direct, indirect, incidental or sia¢ damages arising in any way out of the use of this
documentation or the software it refers to.

(© 1999-2003 Amaury C. Darsch

CONTENTS

Preface

The Aleph programming language
Features

Aleph engine

Flexible Distribution

License

1 Input/Output Services

1.1
1.2

1.3

14

15

1.6

1.7

The aleph-sio library
Input and output stream

1.2.1 Input stream
1.2.2 Output stream
File streams

1.3.1 Stream information
1.3.2 Reading and writing
Input stream status

1.4.1 The valid-p predicate
1.4.2 The eof-p predicate
1.4.3 The read method

1.4.4 Buffer read mode
Multiplexing

151 Selector object

1.5.2 Waiting for change
153 Multiplexing policy
Terminal streams

1.6.1 Using the error terminal
1.6.2 Terminal class
Directory

1.7.1 Reading a directory
1.7.2 Creating and removing directories

2 System calls

21

Interpreter information

Xiii

OO UUVURADNMRMDNWWWWNNRRERRPRR

©

211 Interpreter version
2.1.2 Operating system
2.1.3 Program information
2.2 System calls
2.3 Time and date
231 Date representation

Formatting
3.1 Printtable object
3.1.1 Creating a print table
3.1.2 Adding and printing table elements

Sorting and Searching
4.1 Sorting

Message Digest

5.1 Message digest object
5.1.1 Creating a message digest
5.1.2 Computing a message digest

Network Services
6.1 IP address
6.1.1 Domain name system (DNS)
6.2 The Address class
6.2.1 Name to IP address translation
6.2.2 IP address to name translation
6.3 Transport layers
6.3.1 Service port
6.3.2 Host and peer
6.4 TCP client socket
6.4.1 Day time client
6.4.2 HTTP request example
6.5 UDP client socket
6.5.1 The time client
6.5.2 More on reliability
6.5.3 Error detection
6.6 Socket class
6.6.1 Predicates
6.7 TCP server socket
6.7.1 An echo server
6.7.2 The accept method
6.7.3 Multiple connections
6.8 UDP server socket
6.8.1 The echo server
6.8.2 Datagram object
6.8.3 Input data buffer
6.9 Low level socket methods

CONTENTS

10
10
10
10

13
13
13
14

15
15

17
17
17
17

19
19
19
19
19
20
20
21
21
21
21
22
23
23
23
24
24
25
25
25
26
26
26
27
27
27
28

CONTENTS

6.9.1 A socket client

6.9.2 Other socket methods
6.10 Mail delivery

6.10.1 A simple malil

6.10.2 Recipient address format

6.10.3 Message content

6.10.4 Message delivery

7 Web Services

7.1 URLclass
7.11 Character conversion
7.1.2 Query string

7.2 Generating HTML or XHTML
7.2.1 The page header
7.2.2 The page body
7.2.3 Page generation

7.3 Writing CGI scripts
7.3.1 Getting the query string
7.3.2 Parsing the query string
7.3.3 A complete example

7.4 Cookie
7.4.1 Managing cookies
7.4.2 Adding a cookie

8 Introduction
8.1 Data integration
8.2 Basic concepts
8.2.1 Cell and data
8.2.2 Record
8.2.3 Table
8.2.4 Collection

9 Integration and Importation
9.1 Creting a collection
9.1.1 The periodic table of elements

A Streams
Input
InputFile
InputMapped
InputString
InputTerm
OutputFile
OutputFile
OutputString
OutputTerm
Terminal

28
29
29
29
30
30
30

33
33
33
33
34
34
34
34
35
35
36
36
36
37
37

39
39
39
39
39
39
40

41
41
41

43
45
a7
49
51
53
55
57
59
61
63

vi

Directory
Selector

File System Functions
dir-p

file-p

absolute-path
relative-path

rmfile

rmdir

System Classes
Time

System Calls
exit

sleep

random
get-pid
get-env
get-host-name
get-user-name

Formatting
PrintTable
Digest

Sorting and searching
sort

Networking Classes
Address
Socket
TcpSocket
TcpClient
TcpServer
Datagram
UdpSocket
UdpClient
UdpServer
Multicast
Mail

CONTENTS

65
67

69
69
69
69
69
70
70

71
73

79
79
79
79
79
80
80
80

81
83
87

89
89

91

93

95
101
103
105
107
109
111
113
115
117

CONTENTS

H Networking Functions
get-loopback
get-tcp-service
get-udp-service

I WWW/CGI Classes and Functions
Url
CgiQuery
HtmlPage
XHtmlPage
Cookie

Colophon

Vii

121
121
121
121

123
125
127
129
133
135

141

viii CONTENTS

Preface

This manual is part of thaleph Programming Language Seri@smulti volume set that describes
the programming environment of tideph system. The entire set contains 4 volumes :

Volume 0 - Aleph Installation Guide is the distribution installation manual.

Volume 1 - Aleph Programmer Guide is the first volume of this set. It is both an introduction and
an advanced guide for the the developer.

Volume 2 - Aleph Library Reference is the second volume of this set. It is a complete description
of the Aleph standard library.

Volume 3 - Aleph Cross Debuggeris the third volume of this set. It is a reference manual to de-
velop and debug Aleph programs.

Volume 4 - Aleph C++ API is the fourth volume of this set. It is a reference manual ef @+
Application Programming Interface (API).

The Aleph programming language

Aleph is a multi-threaded functional programming language wighamic symbol bindings that
support the object oriented paradigAleph features a state of the art runtime engine that supports
both 32 and 64 bits platformsAleph comes with a rich set of libraries that are designed to be
platform independentAleph is a free software. A flexible license has been designed fén bo
individuals and corporations. Everybody is encouragedst distribute and/or modify the aleph
engine for any purpose.

Features

TheAleph engine is written in C++ and provides runtime compatibiitgh it. Such compatibility
includes the ability to instantiate C++ classes, use Virugthods and raise or catch exceptions. A
comprehensive API has been designed to ease the intego@fimmeign libraries.

e Builtin objects
More than 50 reserved keywords and predicates. Varioustears like list, vector, hash
table, bitset, and graphs.

e Functional programming
Support forlambda expressiowith explicit closure. Symbol scope limitation wittamma
expressionForm like notation with an easy block declaration.

X PREFACE

e Object oriented
Single inheritance object mechanism with dynamic symbsblgion. Native class deriva-
tion and method override. Static class data member and mietho

e Multi-threaded engine
True multi-threaded engine with automatic object promttnechanism against concurrent
access. Read and write locking system and thread activatiazondition objects.

¢ Original regular expression
Builtin regular expression engine with group matching,otxa partial match and substitu-
tion.

Aleph is a core language and libraries. The libraries are a spseifiof classes and functions which
are structured per application domaiAdeph is delivered with a set of standard libraries.

e aleph-sys
The al eph- sys library is the system calls library. Standard classes amdtfons are
provided to interact with the running machine.

e aleph-sio
The al eph- si o library is the standard input/output All input/output ogeons are per-
formed with this library.

e aleph-net
The al eph-net library is the networking library. The library is based ore titandard
Internet Protocoland provides various classes to manipulates IP addreest di server
sockets.

e aleph-www
Theal eph- wwwlibrary is the World Wide Web library. The library provideanious classes
that ease the development of web applications or CGI scripts

e aleph-txt
Theal eph-t xt library is the text processing library. The library provédearious func-
tions and classes that ease text manipulation. Sorting dataputing message digest and
formatting table is among others, features available & lthrary.

e aleph-odb
Theal eph- odb library is the object database library. The library pro@deveral objects
that can be used to design a database. A client is also pabtadbrectly access the database
contents.

Aleph providesextensions An extension is a library or an application which is not atletd by
default. The user selects during the installation procésstwextension is needed. For example, the
static version of the interpreter is an extension.

Aleph engine

Aleph is an interpreted language. When used interactively, camisare entered on the command
line and executed when a complete and valid syntactic obgeteen constructed. Alternatively,
the interpreter can execute a source fiideph does not have a garbage collectdieph operates
with a lazy, scope based, object destruction mechanismh fime an object is no longer visible,
it is destroyed automatically. At this time, tideph interpreter is unable to reclaim memory with
circular structures. This is a well known problem when usaimgference count mechanism. In the
future, theAleph engine will provide some mechanisms to resolve this problem

PREFACE Xi

Flexible Distribution

Aleph is a free software. A flexible license model encourages iddads or corporations to use,
copy, modify and/or distribute this softwamleph is designed by software professionals. Quality is
one the driving force of the development effort. This is retiel in this distribution by the extensive
documentation. A large test suite is used to assess theygohthe distribution. Right now, the
engine has been successfully tested on most Linux platfdfrae BSD and Solaris.

Xii PREFACE

License

Aleph is a free software. It can be used, modified and distributeanypody for personal or com-
mercial use. The only restriction is altering the copyrigbtice associated with the material. In-
dividual or corporation are permitted to use, include or ifyothe Aleph engine. All material
developed with théleph language belongs to their respective copyright holder.

This program is a free software. it can be redistributed@ndbdified, providing that this copyright
notice is kept intact. This program is distributed in the édipat it will be useful, but without any
warranty; without even the implied warranty of mercharltgbor fitness for a particular purpose.
In no event shall the copyright holder be liable for any direwirect, incidental or special damages
arising in any way out of the use of this software.

Xiv LICENSE

CHAPTER 1
Input/Output Services

This chapter covers the input/output facilities availabléhe Standard Input Outpubr aleph-sio
library. The basic operations are related to file manipotegiand are later extended to any character
input or output streams. Later, various file system callsdascribed. Théleph i/o library has
been designed to be machine independent.

1.1 The aleph-sio library

All Aleph input/output objects are located in tladeph-siolibrary. This library must be loaded
prior any operation. Multiple call to the library initiakition routine are harmless. The interpreter
methodl i br ar y loads a specific library by name. When the library has beesidldathe object
are available in thaleph:sionameset.

interp:library "al eph-sio"

1.2 Input and output stream

Thealeph-siolibrary is based on facilities provided by two base classamely, thd nput stream
and theeQut put stream. Both classes have associated predicates with theingput - p and
out put - p.

1.2.1 Input stream

Thel nput base class has several method for reading and testing foxatbaavailibility. More-
over, the class provides a pushback buffer. Reading cleariaan the form of three method.ead
without argument returns the next available characteradr. With an integer argumentead re-
turns aBuf f er with at most the number of requested characters.ridadl n method returns the
next available line.

1.2.2 Output stream

TheQut put base class provides the base methods to write to an outpabstiThew i t e method
takes literal objects which are automatically convertedtting representation and then written to
the output stream. Note that for the case &ud f er object, it is the buffer itself that take a stream
argument and not the opposite.

2 Input/Output Services

1.3 File streams

Theal eph- si o library provides two classes for file access. Theput Fi | e class open a file
for input. TheQut put Fi | e class opens a file for output. The@put Fi | e class is derived from
thel nput base class. Th®utputFile class is derived from th@ut put class. By default an
output file is created if it does not exist. If the file alreadysg the file is truncated to 0. Another
constructor for the output file gives more control about bekavior. It takes two boolean flags that
defines the truncate and append mode.

load the library

interp:library "al eph-sio"

create an input file by nane

const if (aleph:sio:lnputFile "orig.txt")
create an output file by nane

const of (aleph:sio:QutputFile "copy.txt")

1.3.1 Stream information
Both InputFile andOutputFile supports thget - nanme method which returns the file name.

println (if:get-nane)
println (of:get-nane)

Predicates are also available for these classes. iffha-file-p returns true for an input file ob-
ject.Theoutput-file-p returns true for an output file object.

al eph: sio:input-p i f
al eph: si o: out put-p of
al eph:sio:input-file-p if
al eph: sio:output-file-p of

1.3.2 Reading and writing

Ther ead method reads a character on an input stream. Wittig e method writes one or more
literal arguments on the output stream. Wra t el n method writes one or more literal arguments
followed by a newline character on the output stream. mh®al i ne method write a newline
character on the output stream. Ténaf - p predicate returns true for an input stream, if the stream
is at the end. Theal i d- p predicate returns true if an input stream is in a valid stiféh these
methods, copying a file is a simple operation.

load the library and open the files
interp:library "al eph-sio"

const if (aleph:sio:lnputFile "orig.txt")
const of (aleph:sio:QutputFile "copy.txt")

loop in the input file and wite
while (if:valid-p) (of:wite (if:read))

The use of the eadl n method can be more effective. The example below is a simplerogram
which take the file name an argument.

cat a file on the output termnal
usage: al eph 060l1l.als file

Input stream status 3

get the io library
interp:library "al eph-sio"

cat a file

const cat (nanme) {
const f (al eph:sio:lnputFile nane)
while (f:valid-p) (println (f:readln))
f:close

}

get the file
if (== 0 (interp:argv:length)) {
errorln "usage: aleph 0601l.als file"
A
cat (interp:argv:get 0)
}

1.4 Input stream status

The input stream provides a general mechanism to test addaeaharacters. The base method is
theval i d- p predicate that returrtsr ue if a character can be read from the stream. Itis important
to understand its behavior which depends on the stream type.

1.4.1 The valid-p predicate

Without argument, theal i d- p predicate checks for an available character from the inpeas.
This predicate will block if no character is available. O thther end, for a bounded stream like
an input file, the method will not block at the end of file. Witheointeger argument, theal i d- p
predicate will timeout after the specified time specified iifliseconds. This second behavior is
particularly useful with unbound stream like socket stream

1.4.2 The eof-p predicate

The eof - p predicate does not take argument. The predicate behaeasdik (val i d-p 0).
However, there are more subtle behaviors. For an input fieptedicate will returti r ue if and
only if a character cannot be read. If a character has bedredusack and thend-of-filemarker is
reached, the method will retufral se. For an input terminal, the method retutnsue if the user
and entered thend-of-filecharacter (that is Ctrl-D). Once again, the method reactisé@ontents
of the push-back buffer. For certain input stream, like a BOEket, the method will returnr ue
when no character can be read, that is here, the connectdrelen closed. For an UDP socket, the
method will returrt r ue when all datagram characters have be read.

1.4.3 The read method

Ther ead method is sometimes disturbing. Nevertheless, the methadblocking one and will
return a character when completed. The noticeable exceigtibe returned character whenemd-
of-file marker has been reached. The method return€ttid character. Since a binary file might
contains valid character likétrl-D it is necessary to use thval i d- p or eof - p predicate to check
for a file reading completion. This remark apply also to badhdtreams like a TCP socket. For

4 Input/Output Services

some type of streams like a UDP socket, the method will blobkmvall datagram characters have
been consumed and no more datagram has arrived. With tldsokistream, there is nend-of-file
condition and therefore care should be taken to propergrase stream content. This last remark
is especially true for the eadl n method. The method will return when tlead-of-filemarker is
reached, even if a newline character has not been read. WitHhb&® socket, such behavior will not
happen.

1.4.4 Buffer read mode

Ther ead method with an integer argument, returns a buffer with atlé@e number of characters
specified as an argument. This method is particularly uselfigin the contents has a precise size.
The method returns Buf f er object which can later be used to read, or transform chamacte
Multi-byte conversion to number should use such approabkr €ad method does not necessarily
returns the number of requested characters. Once the Biffgurned, thé engt h method can be
used to check the buffer size. Note also the existence dfthest r i ng method which returns a
string representation of the buffer.

try to read 256 characters
const buf (is:read 256)

get the buffer size
println (buf:length)

get a string representation
println (buf:to-string)

1.5 Multiplexing

I/0 multiplexing is the ability to manipulate several stmresaat the same time and process one at a
time. Although the use of threads reduce the needs for i/tiphesing, there is still situations where
they are needed. In other words, I/O multiplexing is ideadtio theval i d- p predicate, except that

it works with several stream objects.

1.5.1 Selector object

I/0 multiplexing is accomplished with th&electorclass. The constructor takes O or several stream
arguments. The class manages automatically to diffeteniatweerinput stream andOutput
streams. Once the class is constructed, it is possible tthgdirst stream ready for reading or
writing or all of them. We assume in the following examplettha andos are respectively an input
and an output stream.

create a selector
const slt (al eph:sio:Selector is)

at this stage the selector has one stream
the add net hod can add nore streans
slt:add os

Theadd method adds a new stream to the selector. The stream mushbeailnput or Output
stream or an exception is raised. Tilgput - | engt h method returns the number of input streams
in this selector. Theut put - | engt h method returns the number of output streams in this selector
Thei nput - get method returns the selector input stream by index. deput - get method
returns the selector output stream by index.

Terminal streams 5

1.5.2 Waiting for change

Thewai t andwai t - al | methods can be used to detect a status change in the seléfitioout
argument both methods will block indefinitely until one simechange. With one integer argument,
both method blocks until one stream change or the integenaegt timeout expires. The timeout is
expressed in milliseconds. Note that O indicates an imnbedgurn. Thevai t method returns the
first stream which is ready either for reading or writing degieg whether it is an input or output
stream. Thewai t - al | method returns a vector with all streams that have changgédstiatus. The
wai t method returnsi | if the no stream have changed. Similarly, thed t - al | method returns
an empty vector.

wait for a status change

const is (slt:wait)

is is ready for reading - nake sure it is an input one
if (aleph:sio:input-p is) (is:read)

A call to thewai t method will always returns the first input stream (if any).

1.5.3 Multiplexing policy

When used with several input streams in a multi-threadetksgrihe selector behavior can becomes
quite complicated. Eithenai t andwai t - al | methods check first the input streams push-back
buffer. If one or several buffer is (are) not empty, the mdtheiurns with these streams. During this
operation, the input streams are locked, so no other thraaguesh-back a character. The selector
then checks for status change and unlock the streams. Naitth#houtput streams are not locked.
Note also that a thread which rely on the input stream push-beethod to release a selector will
resultin a dead lock.

1.6 Terminal streams

Terminal streams are another kind of streams availablearstandard input/output library. The
InputTerm , OutputTerm andErrorTerm classes are low level classes used to read or write from
or to the standard streams. The basic methods to read or avdtéhe same as the file streams.
Reading from the input terminal is not a good idea, since thesadoes not provide any formating
capability. One may prefer to use tiherminal class. The use of the outputterminal or error terminal
streams is convenient when the interpreter standard strbawe been changed but one still need to
print to the terminal.

1.6.1 Using the error terminal

TheErrorTerm class is the most frequently used class for printing dathestandard error stream.
Aleph provides the reserved keywoedor or errorln to write on the interpreter error stream. If
the interpreter error stream has been changed, the use &ftvderm will provide the facility
required to print directly on the terminal. Tkk@t program can be rewritten to do exactly this.

cat afile on the error term nal

get the io library
interp:library "al eph-sio"

cat afile
const cat (name es) {

6 Input/Output Services

const f (al eph:sio:lnputFile nane)
while (f:valid-p) (es:witeln (f:readln))
f:close

1.6.2 Terminal class

TheTerminal class combines an input stream and an output stream with koenediting capabili-
ties. When the class is created, the constructed attemgeteat if the input and output streams are
bounded to a terminal (i.e tty). If the line editing capakgk can be loaded (i.e non canonical mode),
the terminal is initialized for line editing. Arrows, baglace, delete and other control sequences are
available when using theeadl i ne method. The standard methods likead orr eadl n do not

use the line editing features. When using a terminal, thenptacan be set to whatever the user
wishes with the methodset - pri mary orset - secondary. A secondary prompt is displayed
when ther eadl i ne method is called with the boolean argument false.

const term (Term nal)
termset-primary "deno:"

const line (termreadline) O deno:
errorln line

1.7 Directory

TheDirectory class provides a facility to manipulate directories. A diogy object is created either
by name or without argument by considering the current wayldirectory. Once the directory
object is created, it is possible to retrieve its contentsaie new directory or remove empty one.

1.7.1 Reading a directory

A Directory object is created either by name or without argument. Witlargument, the current
directory is opened. This is the best method comparéd ta When the current directory is opened,
its full name is computed internally and can be retrievedhheget - nane method.

print the current directory
const pwd (al eph:sio:Directory)
println (pwd: get - nane)

Once the directory object is opened, it is possible to listcibntents. Theget -1 i st method
returns the full contents of the directory object. Tdet - f i | es method returns a list of files in
this directory. Theget - subdi r s method returns a list of sub directories in this directory.

print alist of files
const pwd (al eph:sio:Directory)
const |sf (d:get-files)
for (name) (Isf) (println nane)

1.7.2 Creating and removing directories

Thenkdi r andr ndi r methods can be used to create or remove a directory. Bothoaethke
a string argument and construct a full path name from thecttirg name and the argument. This

Directory 7

approach has the advantage of being file system indepentieht directory already exists, the
nmkdi r methods succeeds. Thedi r method requires the directory to be empty.

const tnp (aleph:sio:Directory (al eph:sio:absolute-path "tnmp"))
const exp (tnp:nkdir "exanples")

const |sf (exp:get-files)

println (Isf:length) O O

tnp: ridir " exanpl es”

The functiomabsol ut e- pat h constructs an absolute path name from the argument liglative
path needs to be constructed, the functieh at i ve- pat h might be used instead.

Input/Output Services

CHAPTER 2
System calls

This chapter covers the system facilities available inalleph-syslibrary. The basic operations that
are embedded in the interpreter gives system informaticomglex information, like the system
time are provided via specific classes.

2.1 Interpreter information

TheAleph interpreter provides a set reserved names that are retetieel $ystem platform. Example
0501. al s demonstrates the available information.

zsh > al eph 0501. al s

maj or version nunber 0

m nor version nunber 9

pat ch versi on nunber 0

i nterpreter version : 0-9-0

pr ogr am nane : al eph

operating systemnane : |inux

operating systemtype : unix

al eph official url : http://ww. al eph-1ang. org

2.1.1 Interpreter version

The interpreter version is identified by 3 numbers caffegjor, minor andpatchnumbers. A change
in the major number represents a major change inAleph language. The minor number indi-
cates a major change in the interface or libraries. A changhe patch number indicates bug
fixes. All values are accessed via the interpreter itsel& g or - ver si on, m nor - ver si on,
pat ch- ver si on symbols are bound to these values.

println "major version nunber
println "mnor version nunber
println "patch version nunber

i nterp: maj or-version
i nterp: mnor-version
i nterp: patch-version

2.1.2 Operating system

The operating system is uniquely identified by its name. Tierating system type (or category)
uniquely identifies the operating system flavor. At this tirmely UNIX like system are supported.
The operating system name can be eithienux, f r eebsd orsol ari s.

10 System calls

println "operating system name
println "operating systemtype

i nterp: os-nane
i nterp:os-type

2.1.3 Program information

Program information are carried by two symbols that idesgithe program name and the official
Aleph URL. While the first might be useful, the second one is mostigdiby demo programs.

println "program nane
println "aleph official url

i nterp: program nane
i nterp:al eph-url

2.2 System calls

The aleph-syslibrary provides various system calls that cannot be diassinto any particular
category.

Table 1 Aleph system call functions

| Function | Description
exit exit unconditionally with an exit code
sleep pause for a certain time
random return a random integer number
get-pid get the process identifier
get-env get an environment variable
get-host-name return the host name
get-user-name return the user name

2.3 Time and date

The Time class is special class that represent the system date irr idcal format. Numerous
methods are provided to access a particular field, like owmyte, day in month, week etc. Without
argument the time instance is constructed with the curgestém time. An integer argument can be
used to force a particular time.

2.3.1 Date representation

Once a time instance is constructed, various formats mettaad returns the date, time or both. The
format-dateandformat-timereturns a formatted string for the local date and time. Uiteeformat-
dateandutc-format-timedo the same in UTC.

al eph >interp:library "al eph-sys"”
al eph >const tine (al eph:sys: Tine)
al eph >println (tine:fornat-date)
6/ 5/ 2003
al eph >println (tine:format-tine)
22:11: 30

Another form of date representation is the one specified bg BE2. That format contains both the
time and date. Note that the date is formatted in UTC (imprigpalled GMT).

Time and date 11

al eph >interp:library "al eph-sys"”

al eph >const tine (al eph:sys: Tine)
al eph >println (tine:utc-format-rfc)
Wed, 06 Jun 2003 05:11:30 GMVI

Other methods are available to query the date and time irftom These are described in the
reference manual.

12

System calls

CHAPTER 3
Formatting

This chapter is dedicated to tideph text and data formatting, a subpart of ttext processing
library. The first part of this chapter covers tent table object.

3.1 Print table object

ThePri nt Tabl e class is a formating class for tables. The table is congdumith the number
of columns (default to 1) and eventually the number of rowsc&the table is created, element are
added to the table with thedd method. Specific table element can be set withghé method.
The class provide &or mat method those default is to print the table on the interprstzndard
output. With an output stream argument or a buffer, the tabfermatted to these objects. The
table formating includes an optional column width, a filliolgaracter and a filling direction flag.
By default, the column width is 0. This means that the colunigittnis computed as the maximum
length of all column elements. If the column width is set witset - col unm- si ze method, the
string element might be truncated to the left or right (defyeg on the filling flag) to fit the column
width.

3.1.1 Creating a print table

The table is created with 0, one or two arguments. Withouirment, the table has one column. The
first argument is the number of columns. The optional secogdnaent is the desired number of
rows.

a one columm table

const thl-1 (al eph: txt: PrintTabl e)

a five colums table

const thl-5 (al eph: txt: PrintTabl e 5)

a five colums x 3 rows table

const tbl-5x3 (aleph:txt:PrintTable 5 3)

Once the table is created, the column size can be set. Fopdxaifithe previous 5 columns table
must have the first column with 10 characters,sle¢ - col utm- si ze method can be used to do
so. Additionnaly, theset - col unm- di r ect i on can also be used to indicate a right filling. By
default, filling characters are placed on the left of thengtrtherefore producing a right alignment.

reset colum O to a size 10
tbl-5:set-col um-size 0 10
set left alignment, aka right filling

14 Formatting

tbl -5:set-colum-direction 0O true

3.1.2 Adding and printing table elements

Theadd method is used to add literals to the table. Without argupeenéw row is created and the
row index is returned. With one or several literal, a new rewreated and the arguments inserted
into the table. The number of arguments must match the nuofbeslumns. The next example
shows a simple flight time table (my preferred destinations)

|l oad the text processing library
interp:library "al eph-txt"

create a new print table with 3 col ums
const tbl (aleph:txt:PrintTable 3)

add the rows

tbl:add "Planet" "D aneter" "Rotation tine"
tbl:add "Mercury" 4840 "1407: 36"

tbl : add "Venus" 12400 "5819: 51"
tbl:add "Earth" 12756 "23: 56"

tbl:add " Mars" 6800 "24: 37"

tbl:add "Jupiter" 142800 "9: 50"

tbl:add "Saturn" 120800 "10: 14"

t bl :add " Uranus" 47600 "10: 49"

tbl:add "Neptune" 44600 "15: 40"

tbl :add " Pl ut o" 5850 "153: 17"

set the table format
tbl:set-colum-size 0 10
tbl:set-colum-size 1 10
tbl:set-columm-direction 2 true

print the table
tbl: fornmat

Thef or mat method prints the formatted table. Without argument, therpreter standard output
is used.

zsh> al eph txt-0001. al s

Pl anet D aneter Rotation tine
Mer cury 4840 1407: 36
Venus 12400 5819: 51
Earth 12756 23: 56
Mar s 6800 24: 37
Jupi ter 142800 9: 50
Sat urn 120800 10: 14
Ur anus 47600 10: 49
Nept une 44600 15: 40
Pl uto 5850 153: 17

Note how the columns are formatted. Column 2 has the flag deti¢owhile the others have the
default flag set to false.

CHAPTER 4
Sorting and Searching

This chapter is dedicated to tideph sorting and searching engine, a subpart oftéx¢ processing
library. All objects and functions are part of thé eph: t xt nameset.

4.1 Sorting

Thesort function operates with a vector object and sorts the elesiardgscending order. Any kind
of objects can be sorted as long as they support a comparisthoth The elements are sorted in
placed by using gui ck sort algorithm.

create an unsorted vector

const v-i (Vector 753 418009 2 6)
sort the vector in place

al eph: txt:sort v-i

print the vector

for (e) (v) (println e)

16

Sorting and Searching

CHAPTER 5
Message Digest

This chapter is dedicated to tAdeph message digest computation, a subpart otékeprocessing
library. The first part of this chapter covers thegestobject.

5.1 Message digest object

TheDi gest class is a message digest computation class. By defauljEftealgorithm as defined
by RFC 1321 is bound to the class. The message digest clagitesramessage digeftom an
input string or a buffer. The message digest is returned &g s

5.1.1 Creating a message digest

By default a message digest is created with support for thé EiQorithm. No argument is passed
to the constructor.

get a default digest (MD5)
const nd (al eph:txt: Digest)

5.1.2 Computing a message digest

Theconput e compute a message digest from an input string or a bufferekample, the string
"hello world" returns the message digé&tEB63BBBE01EEED093CB22BB8F5ACDC3"

const digest (nd:compute "hello world")

18

Message Digest

CHAPTER 6
Network Services

This chapter is dedicated to tideph networking services. It assumes that the reader has a basic
knowledge of thénternet Protocol or (IP) The Aleph implementation provides, in a single library
calledal eph- net, all classes and functions needed to perform IP operatineste server or
clients programs. This library is also designed to supp@vt6 with certain platforms (Currently
Linux 2.2, FreeBsd 4.x and Solaris 5.8).

6.1 |IP address

The IP based communication uses a standard address toneder@articular peer. With IP version
4 1Pv4, the standard dot notation is with 4 bytes. With IP versid®®6, the standard semicolon
notation is with 16 bytes. The curreAteph implementation supports both versions. Even if your
platform supports IPv6, it does not mean that it is enablezl hould consult yogystem admin-
istration guide to do so. Generally, this involves setting tret ¢/ host s file and activating the

i net 6 optioninthe/ et c/ resol v. conf.

127.0.0.1 O ipvd | ocal host
0:0:0:0:0:0:0:1 O ipv6e | ocal host

IP address architecture and behavior are described inugdiacuments as listed in the bibliography.

6.1.1 Domain name system (DNS)

The translation between a host name and an IP address ismeddy aresolverwhich uses the
Domain Name System or (DN$)ccess to the DNS is automatic with tiéeph implementation.
Depending on the machine resolver configuration, a padiaddmain name translation might result
in an IPv4 or IPv6 address. As of today, the user might expgeget only IPv4 address (UNIX
system requires theesol v. conf file to have the net 6 option active to get an IPv6 address.
Using this option can trigger some unexpected behavior).

The mapping between an IP address and a host name returrsstiogsdedanonical naméor that

IP address. This is the reverse of the preceding operation.

6.2 The Address class

Theal eph: net : Addr ess class allows manipulation of IP address. The construckesta string
as its arguments. The argument string can be either an IRs&ldr a host name (qualified or not).
When the address is constructed with a host name, the IPssdarsolution is done immediately.

20 Network Services

6.2.1 Name to IP address translation

The most common operation is to translate a host name to itivagnt IP address. Once the
Addr ess object is constructed, thget - i p- addr ess method returns a string representation
of the internal IP address. The following example prints ifAeaddress of the localhost, that is
127. 0. 0. 1 with IPv4.

|l oad network library
interp:library "al eph-net"

get the | ocal host address
const addr (al eph:net: Address "l ocal host™")

print the ip address
println (addr:get-ip-address)

As another example, thal eph: sys: get - host - name function returns the host name of the
running machine. The previous example can be used to qudiy address.

6.2.2 |P address to name translation

The reverse operation of name translation maps an IP addoesscanonical name The
get - canoni cal - nanme method of theAddr ess class returns such name. ExamBle01. al s

is a demonstration program which prints the address olligenae, the IP address and the canonical
name. Fell free to use it with your favorite site to check thaiealence between the original name
and the canonical name.

print the ip address information of the arguments
usage: al eph 3101.als [hosts ...]

get the network library
interp:library "al eph-net"

print the ip address
const ip-address-info (host) {

try {
const addr (al eph: net: Address host)
println "host nane : " (addr: get-nane)
println " ip address : " (addr:get-ip-address)
println " canonical nane : " (addr:get-canonical -nane)
} (errorln "error: " what:reason)

}

get the hosts
for (s) (interp:argv) (ip-address-info s)

zsh> al eph 3101. al s | ocal host www. al eph-1 ang. org

host nane . local host
i p address : 127.0.0.1
canoni cal nane : |ocal host

host nane . www. al eph-1ang. org
i p address . 216.15.47.53

canoni cal nane : ww. al eph-1ang. org

TCP client socket 21

6.3 Transport layers

The two transport layer protocols supported by lifiiernet protocolis the TCP, a full-duplex ori-
ented protocol, antdDP, a datagram protocol. TCP is a reliable protocol while UDIRas By
reliable, we mean that the protocol provides automaticedisne mechanisms for error recovery,
message delivery, acknowledgment of reception, etc...ubkeof TCP vs. UDP is dictated mostly
by the reliability concerns, while UDP reduces the traffiogestion.

6.3.1 Service port

In the client-server model, a connection is establishediéen two hosts. The connections is made
via the IP addressand the port number For a given service, a port identifies that service at a
particular address. This means that multiple services xisha& the same address. More precisely,
the transport layer protocol is also used to distinguishrtiqudar service.

TheAleph network library provides a simple mechanism to retrievepibe number, given its name
and protocol. The functioget -t cp- ser vi ce andget - udp- ser vi ce returns the port num-
ber for a given service by name. For example,dlag't i ne server is located at port number 13.

assert 13 (al eph: net:get-tcp-service "daytine")
assert 13 (al eph: net: get-udp-service "dayti me")

6.3.2 Host and peer

With the client server model, the only information neededdentify a particular client or server
is the address and the port number. When a client connectsdovar, it specify the port number
the server is operating. The client uses a random port nufobéself. When a server is created,
the port number is used to bind the server to that particudar. pf the port is already in use, that
binding will fail. From a reporting point of view, a conneati is therefore identified by the running
host address and port, and the peer address and port. Fent ttie peer is the server. For a server,
the peer is the client.

6.4 TCP client socket

TheTcpd i ent class creates an TCP client object by address and port. Tessican be either
a string or arAddr ess object. During the object construction, the connectiorsialglished with
the server. Once the connection is established, the clantise the ead andwr i t e method to
communicate with the server. THepC i ent class is derived from th8ocket class which is
derived from thd nput andCQut put classes.

6.4.1 Day time client

The simplest example is a client socket which communicattfsthe daytimeserver. The server is
normally running on all machines and is located at port 13.

get the network library
interp:library "al eph-net"

get the daytinme server port
const port (al eph:net:get-tcp-service "daytinme")

22 Network Services

create a tcp client socket
const s (al eph:net: Tcpdient "local host" port)

read the data - the server close the connection
while (s:valid-p) (println (s:readln))

Example3201. al s in the example directory prints the day time of the local wa#out argument
or the day time of the argument. Feel free to use it witkv. al eph- 1 ang. or g. If the server you
are trying to contact does not have a day time server, an égoepill be raised and the program
terminates.

zsh> al eph 3201. al s www. al eph-1ang. org

6.4.2 HTTP request example

Another example which illustrates the use of e i ent object is a simple client which down-
load a web page. At this stage we are not concern withURle but rather the mechanics involved.
The request is made by opening a TCP client socket on porh@HT TP server port) and sending
a request by writing some HTTP commands. When the commamneddeen sent, the data sent by
the server are read and printed on the standard output. Natehis example is not concerned by
error detection.

fetch an html page by host and page
usage: al eph 3203.als [host] [page]

get the network library
interp:library "al eph-net"
interp:library "al eph-sys"

connect to the http server and issue a request
const send-http-request (host page) {
create a client sock on port 80
const s (al eph: net: Tcpd i ent host 80)
const saddr (s:get-socket-address)

format the request

s:witeln "GET " page " HITP/1.1"

s:witeln "Host: " (saddr:get-canonical - nane)
s:witeln "Connection: close"

s:witeln "User-Agent: aleph tcp client exanple"”
s:new ine

wite the result
while (s:valid-p) (println (s:readln))

}

get the argunent

if (!= (interp:argv:length) 2) (aleph:sys:exit 1)
const host (interp:argv:get 0)

const page (interp:argv:get 1)

send request
send- htt p-request host page

UDP client socket 23

6.5 UDP client socket

UDP client socket is similar to TCP client socket. Howeveredo the unreliable nature of UDP,
UDP clients are somehow more difficult to manage. Since tisate flow control, it becomes more
difficult to assess whether or not a datagram has reacheeistindtion. The same apply for a server,
where a reply datagram might be lost. TheépC i ent class is the class which creates a UDP
client object. Its usage is similar to tHepd i ent .

6.5.1 The time client

The UDP time server normally runs on port 37 is the best plaemable it. A UDP client is created
with theUdpd i ent class. Once the object is created, the client sends an eratzgrdm to the
server. The server send a reply datagram with 4 bytes, inanktiyte order, corresponding to the
date as of January 1st 1900. ExampRO4. al s prints date information after contacting the local
host time server or the host specified as the first argument.

print the tine with a udp client socket

get the libraries
interp:library "al eph-net"
interp:library "al eph-sys"

get the daytinme server port
const port (al eph: net:get-udp-service "tinme")

create a client socket and read the data
const print-tine (host) {

create a udp client socket

const s (al eph: net: UdpCd ient host port)

send an enpty datagram

s:write

read the 4 bytes data and adjust to epoch

const buf (s:read 4)

const val (- (buf:get-quad) 2208988800)

format the date

const time (al eph:sys: Tinme val)

println (time:format-date) ' ' (tine:format-tine)

}

check for one argunent or use | ocal host
const host (if (== (interp:argv:length) 0)

"l ocal host" (interp:argv:get 0))
print-time host

This example calls for several comments. First tiré t e method without argument sends an
empty datagram. It is the datagram which trigger the seiMeer ead method reads 4 bytes from
the reply datagram and places them iBuf f er object. Since the bytes are in network byte order,
the conversion into an integer value is done with ¢feg - quad method. Finally, in order to use
the Ti me class those epoch is January 1st 1970, the con2@®8988800 is subtracted from
the result. Remember that the time server sends the datéeiremee to January 1st 1900. More
information about the time server can be foundRiRC738

6.5.2 More on reliability

24 Network Services

The previous example has some inherent problems due to teéalility of UDP. If the first data-
gram is lost, the ead method will block indefinitely. Another scenario which ceagher ead
method to block is the loss of the server reply datagram. Potblem can generally be fixed by
checking the socket with a timeout using thal i d- p method. With one argument, the method
timeout and return false. In this case, a new datagram caeroits the server. Examp05. al s
illustrates this point. We print below the extract of code.

create a client socket and read the data
const print-tinme (host) {
create a udp client socket
const s (al eph: net: Udpdient host port)
send an enpty datagramuntil the socket is valid
s:wite
retransnmit datagram each second
while (not (s:valid-p 1000)) (s:wite)
read the 4 bytes data and adjust to epoch
const buf (s:read 4)
const val (- (buf:get-quad) 2208988800)
format the date
const time (al eph:sys: Tinme val)
println (time:format-date) ' ' (time:format-tine)

}

Note that this solution is a naive one. In the case of multif@itagrams, a sequence number must
be placed because there is no clue about the lost datagrampkesule of thumb is to use TCP as
soon as reliability is a concern, but this choice might notasy.

6.5.3 Error detection

Since UDP is not reliable, there is no simple solution to deten a datagram has been lost. Even
worse, if the server is not running, it is not easy to deteat the client datagram has been lost. In
such situation, the client might indefinitely send datagrveithout getting an answer. One solution
to this problem is again to count the number of datagramamestnit and eventually give up after a
certain time.

6.6 Socket class

TheSocket class is the base class for both epCl i ent andUdpC i ent . The class provides
methods to query the socket port and address as well as thepeeand address. Note at this
point that the UDP socket is a connected socket. Therefoesetmethods will work fine. The
get - socket - addr ess andget - socket - port returns respectively the address and port of
the connected socket. Tiget - peer - addr ess andget - peer - por t returns respectively the
address and port of the connected socket's peer. ExaB®flé. al s illustrates the use of these
methods.

create a client socket and read the data
const print-socket-info (host) {
create a tcp client socket
const s (al eph: net: Tcpdient host port)
print socket address and port
const saddr (s:get-socket-address)
const sport (s:get-socket-port)
println "socket ip address . " (saddr:get-ip-address)

TCP server socket 25

println "socket canonical name :
println "socket port :
print peer address and port
const paddr (s:get-peer-address)
const pport (s:get-peer-port)
println "peer ip address (paddr: get-i p-address)
println "peer canonical name (paddr: get - canoni cal - nane)
println "peer port . " pport

(saddr: get - canoni cal - nane)
sport

6.6.1 Predicates

TheSocket class is associated with tis@cket - p predicate. The respective client objects have
thet cp-cl i ent - p predicate andidp- cl i ent - p predicate.

6.7 TCP server socket

The TcpSer ver class creates an TCP server object. There are several uctoss for the TCP
server. In its simplest form, without port, a TCP server isated on the ocal host with an
ephemeral port number (i.e port 0 during the call). With & pamber, the TCP server is created on
thel ocal host . For a multi-homed host, the address to use to run the seamdyespecified as the
first argument. The address can be either a string éwar ess object. In both cases, the port is
specified as the second argument. Finally, a third argunadietthebacklogcan be specified to set
the number of acceptable incoming connection. Thatis thermam number of pending connection
while processing a connection. The following example sheavious ways to create a TCP server.

trans s (al eph:net: TcpServer)

trans s (al eph:net: TcpServer 8000)

trans s (al eph:net: TcpServer 8000 5)

trans s (al eph:net: TcpServer "l ocal host” 8000)

trans s (al eph:net: TcpServer "l ocal host" 8000 5)

trans s (al eph:net: TcpServer (Address "l ocal host") 8000)
trans s (al eph:net: TcpServer (Address "l ocal host") 8000 5)

6.7.1 An echo server

A simpleecho servecan be built and tested with the standtalhetapplication. We wish to echo all
line we type within theelnetclient. The server is bound on the port 8000 (Note that poot D024
are privileged ports and can only be used'lmot). Example3301. al s is the server example.

get the network library
interp:library "al eph-net"

create a tcp server on port 8000
const srv (al eph: net: TcpServer 8000)

wait for a connection
const s (srv:accept)

echo the line until the end

26 Network Services

while (s:valid-p) (s:witeln (s:readln))
Thetelnetsession is then quite simple. The linel | o wor | d is echoed by the server.

zsh> tel net |ocal host 8000
Trying 127.0.0.1..
Connected to | ocal host.
Escape character is '"]’.
hello world

~C

zsh>

6.7.2 The accept method

The previous example illustrates the mechanics of a seWéen the server is created, the server

is ready to accept connection. Thecept method blocks until a client connect with the server.

When the connection is established, #exept method returns a socket object which can be used
to read and write data.

6.7.3 Multiple connections

One problem with the previous example is that the serverpsanly one connection. In order to
accept multiple connection, ttec cept method must be placed in a loop, and the server operation
in athread (There are some situations where a new procebspeignore appropriate than a thread).
Example3302. al s illustrates such point.

get the network library
interp:library "al eph-net"

this function echo a line fromthe client
const echo-server (s) {

while (s:valid-p) (s:witeln (s:readln))
}

create a tcp server on port 8000
const srv (al eph: net: TcpServer 8000)

wait for a connection
while true {

trans s (srv:accept)

l aunch (echo-server s)

6.8 UDP server socket

TheUdpSer ver class is similar to th&cpSer ver object, except that there is no backlog param-
eters. In its simplest form, the UDP server is created orl theal host with an ephemeral port
(i.e port 0). With a port number, the server is created on theal host . For a multi-homed host,
the address used to run the server can be specified as thegustent. The address can be either a
string or anAddr ess object. In both cases, the port is specified as the secondhargu

UDP server socket 27

trans s (al eph: net: UdpServer)

trans s (al eph: net: UdpServer 8000)

trans s (al eph:net: UdpServer "l ocal host" 8000)

trans s (al eph:net: UdpServer (Address "l ocal host") 8000)

6.8.1 The echo server

The echo servecan be revisited to work with udp datagram. The only diffeeeis the use of the
accept method. For a UDP server, the method retuidieé agr amobject which can be used to
read and write data.

get the network library
interp:library "al eph-net"

create a udp server on port 8000
const srv (al eph: net: UdpServer 8000)

wait for a connection
while true {
trans dg (srv:accept)
dg:witeln (dg:readln)
}

6.8.2 Datagram object

With a UDP server, thaccept method returns Batagram objectBecause a UDP is connection-
less, the server has no idea from whom the datagram is comnitiigthat one has been received.
When a datagram arrives, tl@at agr amobject is constructed with the peer address being the
source address. Standard i/o methods can be used to reaiconinen a write method is used, the
data are sent back to the peer in a form of another datagram.

wait for a datagram
trans dg (s:accept)

assert datagramtype
assert true (datagram p dg)

get contents length
println "datagram buffer size :

(dg: get - buf fer-1 engt h)

read a line fromthis datagram
trans |ine (dg:readln)

send it back to the sender
s:witeln |line

The following table summarize the datagram methods.

6.8.3 Input data buffer

For a datagram, and generally speaking, for a UDP sockeahmlk operations are buffered. This
means that when a datagram is received aitmeptmethod places all data in an input buffer. This

28 Network Services

| Method | Description
read read one character
readsize read n characters and return a buffer
readin read a line
write send an empty datagram
write Literal write one or more literal objects
writeln same a write plus a newline character
newline write a newline character
valid-p return true if some data are available
eof-p return true if no data is available
get-buffer-length return the input buffer length
pushback pushback one character or a string

means that a read operation does not necessarily flush thie Wwhffer but rather consumes only
the requested character. For example, if one datagraminsritee stringhello world A call to

r eadl n will return the entire string. A call to read will return onthe character 'h’. Subse-
quent call will return the next available characters. A ¢&# r ead 5 will return a buffer with

5 characters (i.e the strirttel | 0). Subsequent call will return the remaining string. In aage;
the get - buf f er -1 engt h will return the number of available characters in the buffarcall
toval i d- p will returnt r ue if there are some characters in the buffer or if a new datadrasn
arrived.

Care should be taken with theead method. For example if there is only 4 characters in the in-
put buffer and a call to read for 10 characters is made, thaaodewill block until a new datagram

is received which can fill the remaining 6 characters. Sutttason can be avoided by using the
get - buf f er -1 engt h and theval i d- p methods. Remember also that a timeout can be speci-
fied with theval i d- p method.

6.9 Low level socket methods

Some folks always prefer to do everything by themselves.tidbthe time for good reasons. If this
is your case, you might have to use the low level socket methiodtead of using a client or server
class, theAleph implementation let’s you createTeecpSocketor UdpSocket Once this done, the
bi nd, connect and other methods can be used to create the desired comrmectio

6.9.1 A socket client

A simple TCP socket client is created with tliepSocketclass. Then theonnect method is
called to establish the connection.

create an address and a tcp socket

const addr (al eph:net: Address "l ocal host™")
const sid (al eph:net: TcpSocket)

connect the socket

si d: connect 13 addr

Once the socket is connected, normal read and write opesaten be performed. After the socket
is created, it is possible to set some options. A typical siNG DELAY which disable the Naggle
algorithm.

create an address and a tcp socket
const addr (al eph:net: Address "l ocal host™")

Mail delivery 29

const sid (al eph:net: TcpSocket)
di sabl e the naggl e al gorithm
si d: set-option sid: NO DELAY true
connect the socket

si d: connect 13 addr

6.9.2 Other socket methods

Other socket methods are available. Thend andl i st en methods can be used to create a server.
The table below is a resume of the socket methods.

| Method | Description
bind bind this socket
connect connect this socket
ipv6-p check for ipv6 socket
read returns the next available character
readin returns the next available line
write write a character or a string
writeln write a string followed by a newline
newline write a new line character
close close this socket
valid-p returns true if a character is available
eof-p returns true if the socket has been closed
pushback pushback a character or a string
shutdown shutdown a connection
get-buffer-length return the read buffer length
get-socket-address return the socket address
get-socket-port return the socket port
get-peer-address return the peer address
get-peer-port return the peer port
set-option set a socket option

6.10 Mail delivery

TheMai | class is a mail delivery object which manages to contact aA Mail Transport Agenin
order to deliver a message to one or several recipients. Byitighe object contacts the local MTA,
but this behavior can be changed with #et - nt a- addr ess method. The class implements the
recipient address syntax as specified by RFC822.

6.10.1 A simple mail

At construction, the instance is empty. Only the recipiefttrass needs to be specified. Bend
method send the message by contacting the MTA. If an errarrecan exception is raised.

get the network library
interp:library "al eph-net"

create an enpty nail
const mail (al eph:met: Mil)

30 Network Services

add the recipient address
mail:to "nme@lomai n. org"

send t he nessage
mai | : send

An empty message is sent tne@domain.org By default, the subject is initialized tbno
subj ect".

6.10.2 Recipient address format

RFC822 defines the recipient address format. The simplestsoa local user or a qualified name
with a domain. TheMail object takes care of detecting the presence okttend> characters. If
a string precedes the address, the enclosed address isousmtmunicate with the MTA, but the
original one is placed in the header. The following examiilistrates various address format.

mail:to "me"

mail:to "<nme>"

mail:to "me@lomain. org"

mail:to "<ne@omai n. or g>"

mai | :to "user <me@onain.org>, other <other @omain. or g>"

Thet o method adds an address to the direct recipient list. Sewaliaio this method or several
address in one call can be made. In the case of multiple asielré@s one call, a coma’,’ is used as
the address separator. The method adds one or several addresses to the recipientsisbpihlis
listis also added in the header. Tinec method adds one or several addresses to the reclgiadt
copy list. This list is not included in the header.

6.10.3 Message content

The message is built by specifying the subject and fillingtiessage buffer. Threubj ect method
take a string argument to be used as the message subjecadthendaddl n methods add one
or several literals to the message buffer. Hugll n method adds a new-line character at the end.
Because literals are usd with this method, multiple argumean be used as well as native repre-
sentation. This method behaves like tira t e method of an output stream.

set nessage subj ect

mai | : subject "a sinple nmail denp”

add a line in the nessage buffer

mai | : add "This line is a text added to the nmessage"
mail:addln "a sinple nunber: " 123 "is automatically converted"

6.10.4 Message delivery

The send method contacts the MTA and request a message delivery. Hg&@&803. al s illus-
trates a complete use of tivail class.

send an email to yourself

get the libraries
interp:library "al eph-sys"
interp:library "al eph-net"

Mail delivery

get your user nane
const user-nane (al eph: sys: get-user-nane)

prepare the mail
const mail (al eph:net:Mil)

mail:to user - nane

mai | : subj ect "hello from al eph exanpl e"

mai | : addl n "This is a generated nessage fromthe Al eph"
mai | : addl n "mai | object - Enjoy the ride"

mai | : addl n "The Al eph teant

send the muil
mai | : send

31

32

Network Services

CHAPTER 7
Web Services

This chapter covers thleph Web services. Web services are designed to ha®@lescripts. Since

a CGl script works with the standard input and output streherg is no particular device operations
described in this chapter. We assume that the reader ascakmasvledge of CGI operations. All
objects described in this chapter belongs toeleph-www library. Thealeph:www nameset is used
bind this library.

7.1 URL class

TheURL class is a special class that parddéraform Resource Locator or URdtring and provides
methods to access individual component of that URL. The UBRkedt is constructed with the string
to parse.

const url (al eph:www Ul "http://ww. al eph-1ang. org")

An URL can be broken into several components calledsitteemethe host optionally theport,
the path, optionally thequeryand thefragment The URL class provide a method to retrieve each
component of the parsed URL.

const url (aleph:www Ul "http://ww. al eph-1ang. org")
println (url:get-schene) O http

println (url:get-host) O www. al eph-1ang. org
println (url:get-port) 0 80

println (url:get-path) a /

Note that in the previous example, the port and path are restifigd. If the scheme ikt t p, th
default values of 80 and '/’ are returned.

7.1.1 Character conversion

The URL class performs automatically the character coiweris the input URL. For example,
the '+’ character is replaced by a blank. The '%’ charactdofeed by two hexadecimal values is

replaced by the corresponding ASCII character. Note thatdbnversion does now apply to the
query string.

7.1.2 Query string

34 Web Services

Theget - quer y method returns the query string of the URL. The query striags after the '?’
character. The query string is a series of key-pair valuparsg¢ed by the &’ character.

const url (al eph: www Url
"http://ww. al eph-1ang. org?nanme=hel | o&val ue=wor| d")
println (url:get-query) O name=hell o&val ue=world

The Web service library also provides a query string classhvbarse a query string.

7.2 Generating HTML or XHTML

The HtmlPage class is the primary interface to generefeML code. The class operates by filling
the header and the body of the page with HTML statements.r8awethods are provided to ease
the task of the page generation. The HTML version is assumbddtrict 4.01 Since HTML 4.01

is designed to work witlstyle sheetthe user must be prepared to handle this when generating its
own HTML page. A derived class nanx¢itmlPage can be used to produce XHTML 1.0 page. The
interface is the same as thkmIPage class.

7.2.1 The page header

TheHtmlIPage or XHtmIPage constructor takes no argument. The basic method used toaugt s
thing in the header is thadd- head method which take one or several literal arguments. The
add-tit| e method adds a title to the header. Tddd- st yl e adds the style sheet definition to
the header. Thadd- aut hor add the author’s name to the page header. Finallyatee net a
method adds enetastatement to the header in the form of name and content.

create a new htm page

const page (al eph: ww: Ht m Page)

add the title

page: add-title "An HTM. page exanpl e"
add the aut hor

page: add- aut hor "The doc aut hor"

add the style sheet

page: add-style "style.css"

7.2.2 The page body

The only method provided to access the page body isttee body method. The method takes
one or several literal arguments. These arguments are a$éldhie page body.

add a sinple nessage to the page
page: add- body "<p class="title">Hello World"

7.2.3 Page generation

Thewr i t e- page method write the complete HTML page. Thei t e- head only writes the
header and ther i t e- body only writes the page body. Thget - buf f er method returns the
page in a buffer object. A special method called t e- cgi can be used inside a CGI script to
write the HTML page. The following example is a resume of thevjpus examples.

get the library

Writing CGI scripts 35

interp:library "al eph-www'

create a new htm page

const page (al eph: ww Ht ml Page)

add the title

page: add-title "An HTM. page exanpl e"
add the author

page: add- aut hor "The doc aut hor"

add the style sheet

page: add-style "/style.css"

add a sinple nessage to the page
page: add- body "<p class="title">Hello World"
wite the page

page: wri t e- page

This example will produce the following HTML code.

<! DOCTYPE HTM. PUBLIC "-//WBC// DTD HTM. 4. 01//EN'>

<htm >

<head>

<meta http-equi v="Cont ent - Type"
content="text/htm ; charset=i so-8859-1">

<title>An HTM. page exanple</title>

<neta name="aut hor" content="The doc author">

<link href=/style.css rel ="styl esheet"
type="text/css">

</ head>

<body>

<p class="title">Hello World

</ body>

</htm >

7.3 Writing CGI scripts

With an HTML page generator and a query string parakaph is armed to handl€ommon Gate-
way Interfaceor CGI scripts. The rule of the game are quite simple. Evémgthely on the request
method and the protocol in use. We illustrate this by firsking at thequery stringretrieval, then

parsing it, and finally generating the HTML result or an estatus.

7.3.1 Getting the query string

If the request method i€ET, then the query string is available in the environment \deia
QUERY_STRI NG If the request method BOST, the query string is available in the input stream.
The length of the query string is given by tBONTENT _LENGTH environment variable. The fol-
lowing example illustrates the extraction of the queryngtri

initialize the query result

const query (al eph:sys:get-env "QUERY_STRI NG')
get the request nethod

const rgm (al eph: sys: get-env "REQUEST_METHOD')
check for a post request

if (== rgm"PCST") {

create a buffer fromthe content I ength

36 Web Services

const len (Integer (al eph:sys:get-env "CONTENT_LENGTH"))
get the standard input stream and read content

const is (interp:get-input-streanm

const buf (is:read |en)

set the query string

query: = (buf:to-string)

7.3.2 Parsing the query string

The CgiQuery class is designed to parse a CGI query string. Once the steadeen parsed, it
is possible to perform a query by key. The class takes caremferting all special characters as
described in the URL class. The class is constructed witlqtigey string as an argument.

const query (al eph: ww: Cgi Query "nanme=hel | o&val ue=wor | d")
query: |l ength o 2

query:get "name" O hello

query:get "value" O world

Armed with thel engt h andget methods, one can enjoy to write nice CGI script. Note that the
class provides numerous methods to query for the existedre&ey, get a key or a value by index
and many more. All of them are described in the volumkiBrary reference manual

7.3.3 A complete example

We illustrate our discussion with a simple CGI script whiatinfs the value of an environment
variable. We assume that the request methdgss. We assume as well that an HTML page uses
a simpleinput form to query the name the environment variable to query. Keyewill be denoted
nane to refer to the user input.

get the libraries
interp:library "al eph-sys"
interp:library "al eph-www'

extract the query string
const query (al eph: ww: Cgi Query
(al eph: sys: get-env "QUERY_STRI NG'))
get the environnent val ue
const nanme (query:get "nane")
const val ue (al eph: sys: get-env nane)

print the result enbedded in a sinple html page
const page (al eph: wwv Ht ml Page)

page: set-title "Environment variable query result”
page: add- body "<p>Query result for: "
page: wri t e-cgi

nane = val ue

This is it. That’s all what is needed. The i t e- cgi method take care of responding to the HTTP
server by specifying the status and the result content k&t (ext / ht mi).

7.4 Cookie

Cookie 37

TheCookieobjectis a special object that can be used during a CGI sedsipost data to the HTTP
client. The idea behindookiesis to be able to maintain some state, during the user seskion o
some time. A cookie is aame/valugoair and eventually an expiration time. By default, tieph
cookie object are defined for one HTTP client session, battiehavior can be changed.

7.4.1 Managing cookies

A cookie is created with aame/valugair and eventually an expiration time. Such expiratioretim
is called themaximum-ageand is automatically formatted by the object. With two argumts a
session cookie is created. With a third argument as an intdgeconstructor set the maximum age
in second since in reference to the current time.

create a cookie w th nane/val ue
const cooki e (al eph: wwv Cookie "cartid" "12345678")

The cookie method support the RFC 2109 which is actually lebst by RFC 2965. However, both
RFC are not widely supported, so the original cookie definithas been implemented by default.
This means that most of the available method have no effeoist df the time, the methods used
areset - max- age andset - pat h. A set - domai n method is also available but its use is not
recommended since most the HTTP client have a security mesthavhere only cookies originating
from the same domain are accepted.

Theset - max- age method sets the cookie life time in seconds, in referendedatirrent time. A
negative value is always reset to -1 and defined a sessionecanR value tells the HTTP client to
remove the cookie. Theet - pat h method defines the path for which this cookie apply.

7.4.2 Adding a cookie

Once the cookie is defined, teet - cooki e method of theHtmIPage object can be used to install
the cookie. Combined with ther i t e- cgi method, the complete page can be send to the HTTP
client. For illustration, we provide the code of takeph web sitehat demonstrates the usage of a
cookie.

get the aleph libraries
interp:library "al eph-sys"
interp:library "al eph-www'

load the html utils
interp:load "htm -util.als"

get the query string
const query (get-query)
const cnane (query:get "nane")
const value (query:get "val ue")
const maxtm (query: get "maxtm')

prepare the htm page
const page (al eph: ww Ht il Page)

check if we add the cookie
try {
if (!'= (maxtmlength) 0) {
const tnval (Integer nmaxtn)
const cooki e (al eph: ww: Cooki e cnanme val ue tnval)

38 Web Services

HA

const cooki e (al eph: wwv Cooki e cname val ue)
}
add the cookie to the page
page: add- cooki e cooki e

}

add a sinple nessage

add- page-title page "Al eph Cookie Tester"

set sonme news

page: add- body "<p cl ass=t ext >"

page: add- body "Thank you for using the cookie tester."
page: add- body "You can check the cookie setting by using the"
page: add- body "browser deno"
page: add- body "The cookie is stored in the HTTP_COXI E"
page: add- body "variable. You can also go back to the"

page: add- body " exanpl e</ a> page. "
page: add- body "

"

page: add- body "<di v cl ass=exanpl e><pre>"

page: add- body " Cookie nane : " cnane

page: add- body " Cookie value : " val ue

page: add- body "</ pre></div>"

add the footer

page: add- body "<p>"

add- page- f oot er page

wite the html page
page: wri t e-cgi

CHAPTER 8
Introduction

TheAleph Object databaseor AOD system is an environment that integrates data in such way tha
they can be further processed. TA@D system is divided in two parts. One is the programming en-
vironment calledDDB. The other one is an interface that uses@i#B programming environment.
ODB is built on top of theAleph Programming Language AOD is built on top ofODB. AOD

can also be seen as a command environment that permits taiatinthe database.

8.1 Data integration

The sole purpose of performirttata integrationis to collect various data and store them in such a
way that they can be accessed later. Unlike stanBatdbase environmenfOD does not place
restrictions on the data organization. Although, the cphoé tables is still present, there is no
requirement concerning the number of columns, columns sam&milar thingsAOD operate®n
demandto integrate data.

8.2 Basic concepts

The AOD system integrates data in a hierarchical fashion. The blas&celement is calledcell. A
set of cell is aecord A set of records is table A set of tables and recordsdsllection

8.2.1 Cell and data

A cell is a data container. There is only one data element per celentdally a name can be
associated with a cell. The cell data can be any kind of lger&uch literals are integer, real,
boolean, character or strings.

8.2.2 Record

A record is a vector of cells. A record can be created by adding celnoply by adding data. If the
record has a predefined size, the cell or data can be set b¥irigd@e position).

8.2.3 Table

A table is a vector of records. A table can be created by adding re@irdilarly, if the table has
a predefined size, record cell or data can be added by indeXintgble can be aslo seen as a 2

40 Introduction

dimensional array of cells.

8.2.4 Collection

A collectionis a set of tables and/or records. A collection of table ptyma structure data in the
form of sheets. Since cell, record and table can have a narsepassible to create link between
various elements, thus creating a collection of structatea.d

CHAPTER 9
Integration and Importation

The process of importing data requires first to createlkectable environmenwWhen starting from
the beginning, the best way is to create a ri@gllection with theopen command, create one or
several tables with ther eat e command and finally import data with theport command. The
save command write a binary representation of the collectionfitea

9.1 Creting a collection

Creating a neveollectionis a single operation with thepen command. The command take a single
string argument as the collection name.

(aod) aod: open "el ements"”

This command creates a néollection object nameckl enent s. Once created, the collection
becomes the default one for the session. The next step ig#éteca table that will be used during
the importation process.

(aod) aod:create "data"

A new table namedat a is created and becoming the default one. Once the tableaseckedata
can be added to it; either by importation or by direct intégra

9.1.1 The periodic table of elements

The Periodic table of elements a simple example that illustrates the importation precebhe
original file is located into thexp/ el emdirectory. Theel enent s. t bl file is a simple file that
associates thatomic numbewith an element name, it chemical symbol and other parameter
extract of the file is shown below.

- elenments.tbl -
- the periodic table of elenents -

1 " Hydr ogen” "H 1.00797 -252.7 -259.2 0.071
2 “Hel i unt "He" 4.0026 -268.9 -269.7 O0.126

42 Integration and Importation

3 "Lithiunt "Li" 6.939 1330 180.5 0.53
4 "Beryl liunt "Be" 9.0122 2770 1277 1.85
5 " Bor on" " B" 10. 811 ni | 2030 2.34

There are 112 rows in this table. Not all rows have data. Aipddr cell, with no data is marked
with the special symbatil. Strings are enclosed with double quotes. Integer and reatders
differentiate themselves automatically. A line with noaletignored. A comment starts with the '#’
character. The importation process is very simple.

(aod) aod: open "el enent s"
(aod) aod:create "data"

(aod) aod:inport "elenents.thl"
(aod) aod: save "el enent s. odb"

After the i nport command, thesave command write the collection in a file called
el ements. orb. Such file can be later used with tlopen command. The command file
i mport. al s is anODB script that does the same thing. Note that the script is ats@laph
file.

APPENDIX A

Streams

This chapter is a reference of the Aleph input/output steearhe classes described here are part of
thealeph-siolibrary. The library must be loaded prior any use of thesefioms. Once the library
is loaded, all functions are located in thieph:sionameset.

Table 2 Aleph standard input/output streams

| Object | Description
Input input stream base class
Output output stream base class
Terminal input/output terminal stream
Selector i/o multiplexing selector
Directory directory information
InputFile input file stream
InputTerm input terminal stream
InputString input string stream
InputMapped input mapped stream
ErrorTerm error terminal stream
OutputFile output file stream
OutputTerm output terminal stream
OutputString output string stream

For each stream object, a predicate is provided.

44

Streams

Table 3 Aleph stream object predicates

| Object | Predicate
input stream input-p
output stream output-p
Terminal terminal-p
Directory directory-p
InputFile input-file-p
InputTerm input-term-p
InputString input-string-p
InputMapped input-mapped-p
OutputFile output-file-p
OutputTerm output-term-p
OutputString output-string-p
Selector selector-p

45

Input [aleph:sio]

Description
Thel nput class is a base class for tAéeph standard input/output library. The class is automati-
cally constructed by a derived class and provide the commethadls for all input streams.

Methods Summary

| Method | Description
read returns the next available character
readin returns the next available line
valid-p returns true if a character is available
eof-p returns true if the file is at its end
pushback pushback a character or a string
get-buffer-length return the length of the pushback buffer
Input:read
m return: Char act er
m arguments: none

The read method returns the next character available from the infgwam. If the stream has
been closed or consumed, thef character is returned.

Input:read
m return: Buf f er
® arguments: I nt eger

The read method returns a buffer object with at most the number ofattars specified as an
argument. The buffer engt h method should be used to check how many characters have been
placed in the buffer.

Input:readin
m return: String
® arguments: none

The r eadl n method returns the next line available from the input strefithe stream has been
closed or consumed, tleof character is returned.

Input:valid-p
m return: Bool ean

m arguments: none| | nt eger

46 Streams

The val i d- p method returnsr ue if the input stream is in a valid state. By valid state, we mean
that the input stream can return a character with a call toghd method. With one argument, the
method timeout after the specified time in milliseconds.h# timeout is null, the method returns
immediately. With -1, the method blocks indefinitely if ncachcter is available.

Input:eof-p
m return: Bool ean
E arguments: none

The eof - p method returnsr ue if the input stream has been closed or consumed.
Input:pushback

m return: none

m arguments: Character| String
The pushback method pushback a character or a string in the input streaimsegjuent calls to

read will return the last pushed characters. Pushing agsgiaquivalent to push each characters of
the string.

Input:get-buffer-length

m return: I nt eger

® arguments: none

The get - buf f er -1 engt h method returns the length of the pushback buffer.

a7

InputFile [aleph:sio]

Description

Thel nput Fi | e class provide the facility for an input file stream. An inpue finstance is cre-
ated with a file name. If the file does not exist or cannot be egdean exception is raised. The
I nput Fi | e class is derived from thienput class.

Constructors Summary

| Constructor | Description |
| InputFilefile-name | create an input file by name |

Derivation summary

| Derived from | Description |
Input the input stream class
he i I

Methods Summary

| Method | Description
Iseek set the file at a certain position
close close this input file
length return the length of the input file
get-name returns the input file name

InputFile:get-name
m return: String
m arguments: none

The get - nanme method returns the input file name.

InputFile:close
m return: Bool ean
® arguments: none

The cl ose method close the input file and retutnisue on succesd, al se otherwise. In case
of success, multiple calls retutmr ue.

48 Streams

InputFile:lseek

m return: none

B arguments: I nt eger

The | seek set the input file position to the integer argument. Note thatpushback buffer is
reset after this call.

InputFile:length

m return: I nt eger

B arguments: none

The | engt h method returns the length of the input file. The length is egped in characters.

49

InputMapped [aleph:sio]

Description

Thel nput Mapped class provide the facility for an input file stream with offaed size. The class
is similar to thel nput Fi | e class except that the constructor can also accepts anirmttget and
size argument. If the file offset or size are out of range, thescbehaves like an input file. If the
file does not exist or cannot be opened, an exception is raided nput Mapped class is derived
from thel nput class.

Constructors Summary

| Constructor Description

InputMappedile-name create a mapped input file
InputMappedile-name offset size | create a mapped input file

Derivation summary

Derived from Description
Input the input stream class

Methods Summary

| Method | Description
Iseek set the mapped file at a certain position
length return the length of the mapped file
get-name returns the mapped file name
get-offset returns the mapped file offset

InputMapped:Iseek
m return: none
m arguments: I nt eger

The | seek set the input mapped file position to the integer argumentte Ntwat the pushback
buffer is reset after this call.

InputMapped:length

m return: I nt eger

50 Streams

® arguments: none

The | engt h method returns the length of the input mapped file. The lemg#xpressed in
characters.

InputMapped:get-name

m return: String

® arguments: none

The get - nane method returns the input mapped file name.

InputMapped:get-offset

m return: I nt eger

® arguments: none

The get - nane method returns the input mapped file offset.

51

InputString [aleph:sio]

Description

Thel nput St ri ng class provide the facility for an input string stream. Thasslis initialized or
set with a string and then behaves like a steram. This clagsysusefull to handle generaic stream
method without knowing what kind of sream is behind it.

Constructors Summary

| Constructor | Description
InputString create an empty input string
InputStringvalue create an input string by value

Derivation summary

| Derived from | Description |
| Input | the input stream class |

Methods Summary

| Method | Description
set set the input string value
get get a character from the stream

InputString:get
® return: Char act er
E arguments: none

The get method returns the next available character from the inpe&s but do not remove it.

InputString:set
m return: none
m arguments: String

The set method sets the input string by first resetting the pushbaffietband then initializing
the input string with the argument value.

52

Streams

53

InputTerm [aleph:sio]

Description

Thel nput Ter mclass provide the facility for an input terminal stream. Timgut terminal reads
character from the standard input stream. No line editiedifiais provided with this class This is
a low level class, and normally, tAierminal class should be used instead.

Constructors Summary

| Constructor | Description |
| InputTerm | create an input terminal |

Derivation summary

| Derived from | Description |
Input the input stream class
he i I

Methods Summary

| Method | Description
set-eof-ignore set the ctrl-d ignore flag
set-eof-character set the ctrl-d character

InputTerm:set-eof-ignore

m return: none

m arguments: Bool ean
The set - eof -i gnore method set the input terminatrl-d ignore flag. When the flag is on,
any character that match a ctrl-d is changed to the remagmedater and returned by a read. This
method is usefull to prevent a reader to exit whendtned character is generated.
InputTerm:set-eof-character

m return: none

m arguments: Char act er

The set - eof - char act er method set the input terminetirl-d remapping character. By default
the character is set to themd-of-linecharacter. This method should be used in conjunction with th
set - eof - i gnor e method.

54

Streams

55

OutputFile [aleph:sio]

Description
TheCQut put class is a base class for thAteph standard input/output library. The class is automat-
ically constructed by a derived class and provide the commethods for all output streams.

Methods Summary

| Method | Description
write write literals
writeln write literals followed by a newline
errorin write literals followed by a newline
newline write a new line character
Output:write
m return; none
m arguments: [Literal...]

The wri t e method write one or more literal arguments on the outpuastrel his method returns
nil;
Output:writeln

m return: none

m arguments: [Literal...]

The wri tel n method write one or more literal argument to the output straad finish with a
newline. This method return nil.

Output:errorin
m return: none
m arguments: [Literal...]

The errorl n method write one or more literal argument to the associateplud error stream
and finish with a newline. Most of the time, the output stream arror steram are the same except
for an outut terminal.

Output:newline
m return: none
® arguments: none

The newl i ne method writes a new line character to the output stream. Tétbad returns nil.

56

Streams

57

OutputFile [aleph:sio]

Description

The Qut put Fi | e class provide the facility for an output file stream. An outfile instance is
created with a file name. If the file does not exist, it is créaté the file cannot be created, an
exception is raised. Once the file is created, it is posstblerite literals. The class is derived from
theQut put class. By default an output file is created if it does not eXidghe file already exist, the
file is truncated to 0. Another constructor for the outputdides more control about this behavior.
It takes two boolean flags that defines the truncate and appedd. The - f | ag is the truncate
flag. Thea- f | ag is the append flag.

Constructors Summary

| Constructor | Description

OutputFilefile-name create an output file by name
OutputFilefile-name t-flag a-flag | create an output file by name and flag

Derivation summary

| Derived from | Description |
| Output | the output stream class |

Methods Summary

| Method | Description
get-name returns the output file name
close close this output file

OutputFile:close
m return: Bool ean
m arguments: none

The cl ose method closes the output file and returmsie on succesd,al se otherwise. In case
of success, multiple calls retutmr ue.

OutputFile:get-name

m return: String

58 Streams

® arguments: none

The get - nane method returns the output file name.

59

OutputString [aleph:sio]

Description

The Qut put St ri ng class provide the facility for an output string stream. Thass is initially
empty and acts as a buffer which accumulate the write methahcters. Theo- st ri ng method
can be used to retreive the buffer content.

Constructors Summary

| Constructor | Description
OutputString create an empty output string
OutputStringvalue create an output string with a value

Derivation summary

| Derived from | Description |
| Output | the output stream class |

Methods Summary

| Method | Description
flush flush the output string
to-string return the string buffer

OutputString:flush

m return: none

m arguments: none
The f |1 ush method flushes the output string steram by resettng theyditifier.
OutputString:to-string

m return: String

m arguments: none

The t o- st ri ng method returns a string representation of the output shirifgr.

60

Streams

61

OutputTerm [aleph:sio]

Description

TheQut put Ter mclass provide the facility for an output terminal. The outfgrminal is defined
as the standard output stream. If the standard error streansrio be used, th&rorTerm class is
more appropriate. The class is derived from @ put class.

Constructors Summary

Constructor Description
ErrorTerm create an error terminal
OutputTerm create an output terminal

Derivation summary

| Derived from | Description |
| Output | the output stream class |

62

Streams

63

Terminal [aleph:sio]

Description
TheTer mi nal class provide the facility for an input/output terminal kvitne editing capability.
The class combines theputTerm andOutputTerm methods.

Constructors Summary

| Constructor | Description |
| Terminal | create a new terminal |

Derivation summary

| Derived from | Description
InputTerm the input terminal class
OutputTerm the output terminal class

Methods Summary

| Method | Description
set-primary set the primary prompt
set-secondary set the secondary prompt
get-primary get the primary prompt
get-secondary get the secondary prompt

Terminal:set-primary
m return: none

m arguments: String

The set - pri mary method sets the terminal primary prompt which is used whendfadl i ne
method is called.

Terminal:set-secondary
m return: none

m arguments: String

64 Streams

The set-secondary method sets the terminal secondary prompt which is used whesn
readl i ne method is called.

Terminal:get-primary

m return: String

® arguments: none

The get - pri mary method returns the terminal primary prompt.

Terminal:get-secondary

m return: String

® arguments: none

The get - secondary method returns the terminal secondary prompt.

65

Directory [aleph:siO]

Description

TheDi r ect or y class provides some facilities to access a directory. Bsudgfa directory object
is constructed to represent the current directory. Withangement, the object is constructed from
the directory name. Once the object is constructed, it isiptesto retrieve its content.

Constructors Summary

| Constructor | Description
Directory open the current directory
Directorydirectory-name open a directory by name

Methods Summary

| Method | Description

mkdir create a directory

rmdir remove a directory

rmfile remove a file

get-name return the directory name

get-list return a list of the directory contents

get-files return a list of files in this directory

get-subdirs return a list of sub directories
Directory:mkdir

m return: Directory

m arguments: String

The nkdi r method creates a new directory in the current one. The fuifl gaconstructed by
taking the directory name and adding the argument. Oncatbetary is created, the method returns
a directory object of the newly constructed directory. Ageption is thrown if the directory cannot
be created.

Directory:rmdir
m return: none
B arguments: String

The rmdir method removes an empty directory. The full path is constdiby taking the
directory name and adding the argument. An exception iswhibthe directory cannot be removed.

66 Streams

Directory:rmfile

m return: none

m arguments: String

Thernfil e method removes afile in the current directory. The full patbanstructed by taking
the directory name and adding the argument. An exceptidrésvn if the file cannot be removed.

Directory:get-name

m return: String

® arguments: none

The get-nane method returns the directory name. If the default direcieag created, the
method returns the full directory path.

Directory:get-list
m return: Li st
® arguments: none

The get -1i st method returns the directory contents. The method retuliss af strings. The
list contains all valid names at the time of the call, inchglthe current directory and the parent
directory.

Directory:get-files
m return: Li st
® arguments: none

The get-fil es method returns the directory contents. The method retutiss af strings of
files. The list contains all valid names at the time of the.call

Directory:get-subdirs
m return: Li st
® arguments: none

The get-subdi rs method returns the sub directories. The method returns aflsrings of
subdirectories. The list contains all valid names at the tifithe call, including the current directory
and the parent directory.

67

Selector [aleph:sio]

Description

The Sel ect or class provides some facilities to perform 1/O multiplexiniche constructor takes
0 or several stream arguments.The class manages autdiyatiddifferentiate betweemput and
Output streams. Once the class is constructed, it is possible tihgéitst stream ready for reading
or writing or all of them. It is also possible to add more stesaadter construction with thadd
method. When used with several input streams in a multiaihed context, the selector behavior
can becomes quite complicated. Eithwai t andwai t - al | methods check first the input streams
push-back buffer. If one or several buffer is (are) not emibty method returns with these streams.
During this operation, the input streams are locked, so herahread can push-back a character.
The selector then checks for status change and unlock #ensér Note that the output streams are
not locked. Note also that a thread which rely on the inpwastr push-back method to release a
selector will result in a dead lock.

Constructors Summary

| Constructor | Description
Selector create an empty selector
SelectoffInput|Output] create a selector with streams
Methods Summary
| Method | Description
add add a new stream to the selector
wait wait for one stream to change status
wait-all wait for some stream to change status
input-get return an input stream by index
output-get return an output stream by index
input-length return the number of input streams
output-length return the number of output streams
Selector:add
m return: nil
m arguments: | nput | Qut put

The add method adds an input or output stream to the selector.

Selector:wait

m return: oj ect

68 Streams

m arguments: none| | nt eger

The wait method waits for a status change in the selector and retbenfirst stream that has
change status. With one argument, the selector time-oert tfe specified time in milliseconds.
Note that at the time of the return, several streams may Haaeged status.

Selector:wait-all

m return: Vect or

m arguments: none| | nt eger

The wai t method waits for a status change in the selector and retlrstseams that has change
status in a vector object. With one argument, the seleatwe-thut after the specified time in mil-
liseconds. If the selector has timed-out, the vector is gmpt

Selector:input-get

m return: I nput

m arguments: I nt eger

The i nput - get method returns the input streams in the selector by indekelfndex is out of
bound, an exception is raised.

Selector:output-get

m return: Cut put

m arguments: I nt eger

The out put - get method returns the output streams in the selector by indéxe index is out
of bound, an exception is raised.

Selector:input-length

m return: I nt eger

® arguments: none

The i nput - | engt h method returns the number of input streams in the selector.

Selector:output-length

m return: I nt eger

B arguments: none

The out put - | engt h method returns the number of output streams in the selector.

APPENDIX B
File System Functions

This chapter is a reference of the Aleph file system functidihe functions described here are part
of thealeph-siolibrary. The library must be loaded prior any use of thesefioms. Once the library
is loaded, all functions are located in thieph:sionameset.

Table 4 Aleph file system functions

| Object | Description
dir-p check for a directory
file-p checks for a regular file
rmdir remove one or several directories
rmfile remove one or several files
absolute-path create an absolute path name
relative-path create a relative path name
aleph:sio:dir-p
m return: Bool ean
m arguments: String

The di r- p function returns true if the argument name is a directory edalse otherwise.
aleph:sio:file-p

m return: Bool ean

m arguments: String

The fil e-p function returns true if the argument name is a regular fila@dalse otherwise.

aleph:sio:absolute-path
m return: String
m arguments: [String ...]

The absol ut e- pat h function returns an absolute path name from an argumentWhout
argument, the command returns the root directory name. d¥i¢hor several argument, the absolute
path is computed from the root directory.

70 File System Functions

aleph:sio:relative-path
m return: String
m arguments: [String ...]

The rel ati ve-path function returns a relative path name from an argument Wigith one
argument, the function returns it. With two or more argursettie relative path is computed by
joining each argument with the previous one.

aleph:sio:rmfile
m return: none
m arguments: [String ...]

The rnfil e function removes one or several files specified as the argismiémne file fails to
be removed, an exception is raised.

aleph:sio:rmdir
m return: none
m arguments: [String ...]

The rndi r function removes one or several directories specified aarthements. If one directory
fails to be removed, an exception is raised.

APPENDIX C
System Classes

This chapter is a reference of the Aleph system classes. [kses described here are part of the
aleph-syslibrary. The library must be loaded prior any use of thesssda. Once the library is
loaded, all classes are located in #ieph:sysnameset.

Table 5 Aleph system classes
| Object | Description |
| Time | time and date class |

For each system class, a predicate is provided.

Table 6 Aleph system class predicates
| Object | Predicate |
| Time | time-p |

72

System Classes

Time [aleph:sys]

73

Description

TheTi me class is the system access to the date and time. When andestéiinat class is created,
the creation time is recorded in the instance. The recoilidealis theepochtime corresponding to

the UTC time of January 1, 1970. The resolution is in secoMdsious methods are provided to
extract the date and time. The time can either be the local¢inthe UTC time. With one argument,

the object is initialized to the date specified as an integguraent in reference to trepoch

Constructors Summary

| Constructor | Description
Time create a new time class
Timetval create a new time class by value

Methods Summary

| Method | Description
add add a time in second to the current time
get-time returns the time in seconds since the epoch
get-year returns the local year
get-hours returns the local number of hours
get-seconds returns the local number of seconds
get-minutes returns the local number of minutes

get-day-of-week
get-day-of-year
get-day-of-month
get-month-of-year
get-utc-year
get-utc-hours
get-utc-seconds
get-utc-minutes
get-utc-day-of-week
get-utc-day-of-year
get-utc-day-of-month
get-utc-month-of-year
format-date
format-time
utc-format-date
utc-format-time
utc-format-rfc
utc-format-cookie

returns the local day in the week
returns the local day in the year
returns the local day in the month
returns the local month in the year
returns the utc year

returns the utc number of hours
returns the utc number of seconds
returns the utc number of minutes
returns the utc day in the week
returns the utc day in the year
returns the utc day in the month
returns the utc month in the year
format local date

format local time

format utc date

format utc time

format utc time as RFC 822
format utc time for cookie expire

74 System Classes

Time:add
m return: none
B arguments: I nt eger

The add method adds the time argument in second to the current titue.vd he new date is
recomputed after it. This method is useful to compute a timtaé future, in reference to the current
time.

Time:get-time
m return: I nt eger
®m arguments: none

The get-tinme method returns the number of seconds elapsed since the.epbehepoch is
January 1, 1970.

Time:get-seconds

m return: I nt eger

B arguments: none

The get - seconds method returns the number of seconds after the minute folottad time,
corrected for daylight saving time. The returned valueésringe 0 to 61, eventually accounting for
the leap second.

Time:get-minutes
m return: I nt eger
m arguments: none

The get-m nutes method returns the number of minutes after the hour for tieallome,
corrected for daylight saving time. The returned value é&srdmge 0 to 59.

Time:get-hours

m return: I nt eger

B arguments: none

The get - hour s method returns the number of hours since midnight for thalltime, corrected
for daylight saving time. The returned value is the range 230

Time:get-month

m return: I nt eger

® arguments: none

The get - nont h method returns the month in the year for the local time, ateafor daylight
saving time. The returned value is the range 0 to 11.

Time:get-year

m return: I nt eger

75

® arguments: none

The get - year method returns the year for the local time, corrected folighysaving time. The
returned value is an absolute year value (year 2000 is 2000).

Time:get-day-of-month
m return: I nt eger
®m arguments: none

The get - day- of - nbnt h method returns the day in the month for the local time, caeckéor
daylight saving time. The returned value is the range 1 to 31.

Time:get-day-of-week
m return: I nt eger
n arguments: none

The get - day- of - week method returns the day in the week for the local time, coekfbdr
daylight saving time. The returned value is the range O toréfierence to Sunday.

Time:get-day-of-year
m return: I nt eger
m arguments: none

The get - day- of - year method returns the day in the year for the local time, coecbébr
daylight saving time. The returned value is the range 0 toiB8&ference to January 1.

Time:get-utc-seconds

m return: I nt eger

® arguments: none

The get - ut c- seconds method returns the number of seconds after the minute foUtre
time. The returned value is the range 0 to 61, eventuallywauiag for the leap second.

Time:get-utc-minutes
m return: I nt eger
m arguments: none

The get - ut c- mi nut es method returns the number of minutes after the hour for th€ tifie.
The returned value is the range 0 to 59.

Time:get-utc-hours
m return: I nt eger
® arguments: none

The get - ut c- hours method returns the number of hours since midnight for the Wire.
The returned value is the range 0 to 23.

76 System Classes

Time:get-utc-month

m return: I nt eger

B arguments: none

The get - ut c-nmont h method returns the month in the year for the UTC time. Thernetd
value is the range O to 11.

Time:get-utc-year
m return: I nt eger
® arguments: none

The get - ut c- year method returns the year for the UTC time, The returned valaa iabsolute
year value (year 2000 is 2000).

Time:get-utc-day-of-month
m return: I nt eger
] arguments: none

The get - ut c- day- of - nont h method returns the day in the month for the UTC time. The
returned value is the range 1 to 31.

Time:get-utc-day-of-week
m return: I nt eger
] arguments: none

The get - ut c-day- of -week method returns the day in the week for the UTC time. The
returned value is the range 0 to 6 in reference to Sunday.

Time:get-utc-day-of-year
m return: I nt eger
m arguments: none

The get - ut c- day- of - year method returnsthe day in the year for the UTC time. The reidirn
value is the range 0 to 365 in reference to January 1.

Time:format-date

m return: String

m arguments: none
The f or mat - dat e method returns a formatted string of the local date.
Time:format-time

m return: String

® arguments: none

77

The format -t i ne method returns a formatted string of the local time.

Time:utc-format-date

m return: String

® arguments: none

The ut c- f or mat - dat e method returns a formatted string of the utc date.

Time:utc-format-time

m return: String

® arguments: none

The utc-format-ti ne method returns a formatted string of the utc time.

Time:utc-format-rfc

m return: String

B arguments: none

The utc-format-rfc method returns a formatted string of the utc date and tim@esified
by RFC 822.

Time:utc-format-cookie

m return: String

® arguments: none

The ut c-f or mat - cooki e method returns a formatted string of the utc date and tintalsiei
to be used as a cookie expiration time. Of course, the cobkiis not the same as the RFC 822.

78

System Classes

APPENDIX D
System Calls

This chapter is a reference of the Aleph system calls. Thetims described here are part of the
aleph-syslibrary. The library must be loaded prior any use of thesefioms. Once the library is
loaded, all functions are located in takeph:sysnameset.

Table 7 Aleph system call functions

| Function | Description
exit exit unconditionally with an exit code
sleep pause for a certain time
random return a random integer number
get-pid get the process identifier
get-env get an environment variable
get-host-name return the host name
get-user-name return the user name

aleph:sys:exit

m return: none

m arguments: | nt eger
The exi t function exit unconditionally with the exit code as the argnt.
aleph:sys:sleep

m return: none

m arguments: | nt eger

The sl eep function pause the specific thread for a certain time. The @ngument is expressed
in milliseconds. This function returns nil.

aleph:sys:random
m return: I nt eger
B arguments: none

The random function returns a random integer number. The functiond@gmted by a mutex. A
calling thread will block until the other one has completeel tall.

80 System Calls

aleph:sys:get-pid

m return: I nt eger

m arguments: none
The get - pi d function returns the process identifier (pid). The returvedde is a positive integer.
aleph:sys:get-env

m return: String

m arguments: String

The get - env function returns the environment variable associated thighstring argument. If
the environment does not exist an exception is raised.

aleph:sys:get-host-name
m return: String
® arguments: none

The get - host - name function returns the host name. The host name can be eitherpdes
name or a canonical name with its domain, depending on thersysonfiguration.

aleph:sys:get-user-name
m return: String
n arguments: none

The get - user - name function returns the current user name.

APPENDIX E
Formatting

This appendix is a reference of the Aleph text processinmgiib All classes described here are part
of thealeph-txt library. The library must be loaded prior any use of thesess#a. Once the library
is loaded, all classes are located in #heph:txt nameset.

Table 8 Aleph text processing classes

| Object | Description
PrintTable table formatting object
Digest message digest computation

For each class, a predicate is provided.

Table 9 Aleph text processing predicates

Object Predicate
PrintTable print-table-p
Digest digest-p

82

Formatting

83

PrintTable [aleph:txt]

Description

ThePri nt Tabl e class is a formating class for tables. The table is congdumith the number
of columns (default to 1) and eventually the number of rowsc&the table is created, element are
added to the table with thedd method. Specific table element can be set withghé method.
The class provide &or mat method those default is to print the table on the interprstzndard
output. With an output stream argument or a buffer, the t&bfermatted to these objects. The
table formating includes an optional column width, a filliolgaracter and a filling direction flag.
By default, the column width is 0. This means that the colunmitivis computed as the maximum
length of all column elements. If the column width is set witeset - col unm- si ze method, the
string element might be truncated to the left or right (defyeg on the filling flag) to fit the column
width.

Derivation summary

| Derived from | Description |

| Object | the base object class |

Constructors Summary

| Constructor | Description
PrintTable create a one column table
PrintTablecols create a multi-column table
PrintTablecols rows create a multi-column table with rows

Methods Summary
PrintTable:add

m return: none| | nt eger

m arguments: none|[Literal...]

The add method serves several purposes. Without argument, a nevisradded and the row
index is returned. The row index can be lated used withsthe method to set a particular table
element. With one or several literal arguments (those fengist match the number of columns), a
new row is created and those arguments added to the tableatlfater case, the method returns the
nil object.

PrintTable:get

84 Formatting

| Method | Description
add add a new column and eventually element
get get a table element by row and column
set set a table element by row and column
format format the table to a stream or buffer
get-rows return the number of rows
get-columns return the number of columns
set-column-size set a column desired size
get-column-size get a column desired size
set-column-fill set a column fill character
get-column-fill get a column fill character
set-column-direction set a column fill direction flag
get-column-direction get a column fill direction flag
m return: String
® arguments: I nt eger Integer

The get method returns a particular table element by row and colurhe. first argument is the
table row index and the second is the table column index.

PrintTable:set

m return: none

m arguments: I nteger Integer Literal

The set method sets a particular table element by row and column. fif$teargument is the
table row index and the second is the table column index. d$teargument is a literal object that is
converted to a string prior its insertion.

PrintTable:format

m return: none

m arguments: none| Qut put | Buf f er

The f or mat method writes the formated table to an output stream or &buffithout argument,
the default interpreter output stream is used.

PrintTable:get-rows

m return: I nt eger

m arguments: none
The get -rows method returns the number of rows in the table.
PrintTable:get-columns

m return: I nt eger

® arguments: none

The get - col utms method returns the number of columns in the table.

85

PrintTable:set-column-size

m return: none

® arguments: I nt eger I nteger

The set - col um-si ze method sets the desired width for a particular column. Tlst &ir-
gument is the column index and the second argument is thencoluidth.If O is given, the column
width is computed as the maximum of the column elements.

PrintTable:get-column-size

m return: I nt eger

m arguments: I nt eger

The get - col unm- si ze method returns the desired width for a particular column.

PrintTable:set-column-fill

m return: none
m arguments: I nt eger Character
The set-colum-fill method sets the filling character for a particular column.e Tihst

argument is the column index and the second argument is aatkato use when filling a particular
column element. The default filling character is the blankralter.

PrintTable:get-column-fill

m return: Char act er
® arguments: I nt eger
The get - col um-fill method returns the filling character for a particular column

PrintTable:set-column-direction

m return: none

® arguments: I nt eger Bool ean

The set - col utm-di r ecti on method sets the direction flag for a particular column. The fir
argument is the column index and the second argument is adooh false value indicates a filling
by the left while a true value indicates a filling by the riglihe column filling character is used for
this operation.

PrintTable:get-column-direction

m return: Bool ean

B arguments: I nt eger

The get - col utm-di r ecti on method returns the direction flag for a particular column.

86

Formatting

87

Digest [aleph:txt]

Description

TheDi gest class is a message digest computation class. By defaul]Eftealgorithm as defined
by RFC 1321 is bound to the class. The message digest clagaitssramessage digesomr an
input string or a buffer. The message digest is returned &&g s

Derivation summary

| Derived from | Description |
| Object | the base object class |

Constructors Summary

| Constructor | Description |
| Digest | create a default message digest |

Methods Summary

| Method | Description |
| compute | compute the message digest |

Digest:compute

m return: String

m arguments: String| Buffer

The conput e method computes a message digest from the input string anploet buffer. The
method returns the message digest as a string.

88

Formatting

APPENDIX F
Sorting and searching

This chapter is a reference of tiideph sorting and searching functions. The functions described
here are part of thaleph-txt library. The library must be loaded prior any use of thesefioms.
Once the library is loaded, all functions are located inaleph:txt nameset.

Table 10Sorting and searching functions
| Object | Description |
| sort | sort a vector |

aleph:txt:sort
m return: none

® arguments: Vect or

The sort function sorts in ascending the vector. The vector is sartgdiace.

90

Sorting and searching

APPENDIX G
Networking Classes

This appendix is a reference of the Aleph networking sesriédl classes described here are part of
thealeph-netlibrary. The library must be loaded prior any use of thesses#a. Once the library is
loaded, all classes are located in #ieph:netnameset.

Table 11 Aleph network system classes

| Object | Description
Mail message delivery class
Socket base socket class
Address ip address manipulation class
Datagram udp datagram class
TcpSocket base tcp socket
TcpClient tcp client socket class
TcpServer tcp server socket class
UdpSocket base udp socket
UdpClient udp client socket class
UdpServer udp server socket class
Multicast multicast socket class

For each class, a predicate is provided.

Table 12 Aleph network class predicates

| Object | Predicate
Mail mail-p
Socket socket-p
Address address-p
Datagram datagram-p
TcpSocket tcp-socket-p
TcpServer tcp-server-p
TcpClient tcp-client-p
UdpSocket udp-socket-p
UdpServer udp-server-p
UdpClient udp-client-p
Multicast multicast-p

92

Networking Classes

93

Address [aleph:net]

Description

TheAddr ess class is the Internet address manipulation class. The cdasie used to perform the
conversion between a host name and an IP address. The @ppadio possible. Finally, the class
supports both IPv4 and IPv6 address formats.

Constructors Summary

| Constructor | Description |
| Address name create a address class |

Methods Summary

| Method | Description
get-name returns the original address name
get-ip-address returns the ip address as a string
get-ip-vector returns the ip address as a vector
get-canonical-name returns the address canonical name

Address:get-name
m return: String
B arguments: none

The get - nane method returns the original name used during the objectnari®n.

Address:get-ip-address
m return: String
] arguments: none

The get-i p-address method returns a string representation of the IP address. sfring
representation follows the IPv4 or IPv6 preferred formapehding on the internal representation.

Address:get-ip-vector
m return: Vect or
m arguments: none

The get -i p- vect or method returns a vector representation of the IP addressvddtor result
follows the IPv4 or IPv6 preferred format, depending on titerinal representation.

94 Networking Classes

Address:get-canonical-name
m return: String
B arguments: none

The get - canoni cal - nane method returns a fully qualified name of the address. Thdthegu
name is obtained by performing a reverse lookup. Note thantime can be different from the
original name.

Socket [aleph:net]

95

Description

The Socket class is a base class for tAdeph network services. The class is automatically con-

structed by a derived class and provide some common method# §ocket objects.

Derivation summary

| Derived from

Description

Input
output

the input stream class
the output stream class

Constants Summary

| Constant | Description
REUSE-ADDRESS enable address reuse
BROADCAST enable broadcast packet
DONT-ROUTE bypass routing table lookup
KEEP-ALIVE test for connection alive
LINGER linger on close
RCV-SIZE receive buffer size
SND-SIZE send buffer size
HOP-LIMIT the the maximum hop limit
MULTICAST-LOOPBACK enable the multicast loopback
MULTICAST-HOP-LIMIT multicast hop limit option
MAX-SEGMENT-SIZE max TCP segment size
NO-DELAY disable the naggle algorithm

Methods Summary

Socket:REUSE-ADDRESS

The REUSE- ADDRESS constant is used by theet - opt i on method to enable socket address
reuse. This option changes the rules that validates theeasldised by bind. It is not recommended
to use that option as it decreases TCP reliability.

Socket:BROADCAST

The BROADCAST constant is used by theet - opt i on method to enable broadcast of packets.

This options only works with IPV4 address. The argument is@ldan flag only.

Socket:DONT-ROUTE

96 Networking Classes

| Method | Description
bind bind this socket
connect connect this socket
ipv6-p check for ipv6 socket
read returns the next available character
readin returns the next available line
write write a character or a string
writeln write a string followed by a newline
newline write a new line character
close close this socket
valid-p returns true if a character is available
eof-p returns true if the socket has been closed
pushback pushback a character or a string
shutdown shutdown a connection
get-buffer-length return the read buffer length
get-socket-address return the socket address
get-socket-port return the socket port
get-peer-address return the peer address
get-peer-port return the peer port
set-option set a socket option

The DONT- ROUTE constant is used by theet - opt i on method to control if a packet is to be
sent via the routing table. This option is rarely used withph. The argument is a boolean flag
only.

Socket:KEEP-ALIVE
The KEEP- ALI VE constant is used by theet - opt i on method to check periodically if the
connection is still alive. This option is rarely used wAkeph. The argument is a boolean flag only.

Socket:LINGER

The LI NGER constant is used by theet - opt i on method to turn on or off the lingering on
close. If the first argument tsr ue, the second argument is the linger time.

Socket:RCV-SIZE
The RCV- SI ZE constant is used by theet - opt i on method to set the receive buffer size.

Socket:SND-SIZE
The SND- S| ZE constant is used by theet - opt i on method to set the send buffer size.

Socket:HOP-LIMIT
The HOP- LI M T constant is used by theet - opt i on method to set packet hop limit.

Socket:MULTICAST-LOOPBACK
The MULTI CAST- LOOPBACK constant is used by theet - opt i on method to control whether
or not multicast packets are copied to the loopback. Themaegis a boolean flag only.

Socket:MULTICAST-HOP-LIMIT
The MULTI CAST-HOP-LI M T constant is used by theet - opti on method to set the hop
limit for multicast packets.

Socket:MAX-SEGMENT-SIZE

97

The MAX- SEGVENT- SI ZE constant is used by theet - opt i on method to set the TCP maxi-
mum segment size.

Socket:NO-DELAY
The NO- DELAY constant is used by theet - opt i on method to enable or disable the Naggle
algorithm.

Socket:bind
H return: none
m arguments: I nt eger

The bi nd method binds this socket to the port specified as the argument

Socket:bind
m return: none
m arguments: I nt eger Address

The bi nd method binds this socket to the port specified as the firstraggtiand the address
specified as the second argument.

Socket:connect

m return: none

m arguments: I nt eger Address

The connect method connects this socket to the port specified as the fgstrent and the
address specified as the second argument. A connected $ociseful with udp client that talks
only with one fixed server.

Socket:shutdown

m return: Bool ean

m arguments: Bool ean

The shut down method shutdowns one side of the connection. If the modenaeguis false,
further receive is disallowed. If the mode argument is tfugher send is disallowed. The method
returns true on success, false otherwise.

Socket:ipv6-p

m return: Bool ean

m arguments: none
The i pv6- p predicate returns true if the socket address is an IPV6 adgdiase otherwise.
Socket:read

® return: Char act er

® arguments: none

98 Networking Classes

The read method returns the next character available from the sodkéhe socket has been
closed, theeof character is returned.

Socket:read
m return: Buf f er

m arguments: I nt eger

The read method with an integer argument returns a buffer of charadtg reading the socket.
The number of read characters might be less than requessedhdl engt h method to check for
the returned buffer size.

Socket:readln

m return: String

B arguments: none

The r eadl n method returns the next line available from the socket.dfscket has been closed,
theeof character is returned.

Socket:write
H return: none

m arguments: [Literal...]

The wri t e method write one or more literal arguments on the sockes frtathod returns nil;

Socket:writeln
m return: none
B arguments: Li teral

The wri t el n method write one or more literal argument to the socket arnstfiwith a newline.
This method return nil.

Socket:newline
H return: none

m arguments: none
The newl i ne method writes a new line character to the socket. The me#tods nil.
Socket:close

m return: Bool ean

® arguments: none

The cl ose method close the socket and retutmaue on succesd, al se otherwise. In case of
success, multiple calls retutm ue.

Socket:valid-p

® return: Bool ean

99

m arguments: [I nteger]

The val i d-p method returnsr ue if the socket is in a valid state. By valid state, we mean that
the socket can read a character. With one argument, the chiétheout after the specified time.

Socket:eof-p
® return: Bool ean
E arguments: none

The eof - p method returns r ue no more characters can be read from this socket or the socket
has been closed.

Socket:pushback
m return: none
m arguments: Character| String

The pushback method pushback a character or a string in the input streaivsegjuent calls to
read will return the last pushed characters. Pushing agssiaquivalent to push each characters of
the string.

Socket:get-socket-address
m return: Addr ess
® arguments: none

The get - socket - addr ess method returns an address object of the socket. The retobject
can be later used to query the canonical name and the ip addres

Socket:get-socket-port

m return: I nt eger

® arguments: none

The get - socket - addr ess method returns the port number of the socket.

Socket:get-peer-address
m return: Addr ess

® arguments: none

The get - peer - addr ess method returns an address object of the socket'’s peer. Tinmeel
object can be later used to query the canonical name and tugliss.

Socket:get-peer-port

m return: I nt eger

® arguments: none

The get - socket - addr ess method returns the port number of the socket's peer.

Socket:set-option

100 Networking Classes

m return: Bool ean

m arguments: constant [Bool ean|Integer] [Integer]

The set - opti on method set a socket option. The first argument is the optisettoThe second
argument is a boolean value which turn on or off the optione ®ptional third argument is an
integer needed for some options.

101

TcpSocket [aleph:net]

Description

The TcpSocket class is a base class for all tcp socket objects. The classriged from the
Socket class and provides some specific tcp methods. T€pSocketis created, the user is re-
sponsible to connect it to the proper address and port.

Constructors Summary

| Constructor | Description |
| TcpSocket | create a new tcp socket |

Derivation summary

| Derived from | Description |
| Socket | the socket class |

Methods Summary

| Method | Description
accept accept a connection
listen listen for connection

TcpSocket:accept

m return: TcpSocket

m arguments: none
The accept method waits for incoming connection and returnéttpSocketobject initialized
with the connected peer. The result socket can be used torpeifo operations. This method is
used by tcp server.
TcpSocket:listen

m return: Bool ean

m arguments: none| | nt eger

The | i sten method initialize a socket to accept incoming connectiorith@t argument, the
default number of incoming connectionis 5. The integer argnt can be used to specify the number
of incoming connection that socket is willing to queue. Tiisthod is used by tcp server.

102 Networking Classes

103

TcpClient [aleph:net]

Description

TheTcpd i ent class creates a tcp client by host and port. The host arguraerte either a name
or an address object. The port argument is the server poottiact. TheTcpClient class is derived
from theTcpSocketclass. This class has no specific methods

Constructors Summary

| Constructor | Description |
| TcpClienthost port | create a tcp client by host and port |

Derivation summary

| Derived from | Description |
| TcpSocket | the TCP socket class |

104 Networking Classes

105

TcpServer [aleph:net]

Description

TheTcpSer ver class creates a tcp server by port. An optional host arguoaerive either a name
or an address object. The port argument is the server poitb hheTcpServer class is derived
from theTcpSocketclass. This class has no specific methods. With one arguthergerver bind
the port argument on the local host. The backlog can be spea8 the last argument. The host
name can also be specified as the first argument, the port asdsacgument and eventually the
backlog. Note that the host can be either a string or an asldigsct.

Constructors Summary

| Constructor | Description
TcpServer create a tcp server
TcpServeport create a tcp server by port
TcpServeport backlog create a tcp server by port
TcpServehost port create a tcp server by host
TcpServehost port backlog create a tcp server by host
Derivation summary
| Derived from | Description |

| TcpSocket | the TCP socket class |

106 Networking Classes

107

Datagram [aleph:net]

Description

TheDat agr amclass is a socket class used by udp socket. A datagram igectest by thdJdp-
Socketaccept method. The purpose of a datagram is to store the peer infanrmso one can
reply to the sender. The datagram also stores in a bufferdteesgnt by the peer. This class does
not have any constructor nor any specific method.

Derivation summary

| Derived from | Description |
| Socket | the socket class |

108 Networking Classes

109

UdpSocket [aleph:net]

Description
The UdpSocket class is a base class for all udp socket objects. The clasarieed from the
Socket class and provides some specific udp methods.

Constructors Summary

| Constructor | Description |
| UdpSocket | create a new udp socket |

Derivation summary

| Derived from | Description |
| Socket | the socket class |

Methods Summary

| Method | Description |
| accept | accept a datagram |
UdpSocket:accept

m return: Dat agr am

m arguments: none

The accept method waits for an incoming datagram and returr@agagram object. The
datagram is initialized with the peer address and port akase¢he incoming data.

110 Networking Classes

111

UdpClient [aleph:net]

Description

TheUdpd i ent class creates a udp client by host and port. The host arguraeribe either a
name or an address object. The port argument is the servietopgmntact. TheJdpClient class is
derived from theddpSocketclass. This class has no specific methods

Constructors Summary

| Constructor | Description |
| UdpClienthost port | create a udp client by host and port |

Derivation summary

| Derived from | Description |
| UdpSocket | the UDP socket class |

112 Networking Classes

113

UdpServer [aleph:net]

Description

TheUdpSer ver class creates a udp server by port. An optional host arguraertie either a name
or an address object. The port argument is the server poitb hheUdpServer class is derived
from theUdpSocketclass. This class has no specific methods. With one arguthergerver bind
the port argument on the local host. The host name can alspdu#fied as the first argument, the
port as second argument. Note that the host can be eithéng stran address object.

Constructors Summary

| Constructor | Description
UdpServer create a udp server
UdpServeport create a udp server by port
UdpServehost port create a udp server by host

Derivation summary

| Derived from | Description |
| UdpSocket | the UDP socket class |

114 Networking Classes

115

Multicast [aleph:net]

Description

TheMul ti cast class creates a udp multicast socket by port. An optionaldmgsiment can be
either a name or an address object. The port argument is ther ggort to bind. TheéMulticast

class is derived from thedpSocketclass. This class has no specific methods. With one argument,
the server bind the port argument on the local host. The harstencan also be specified as the
first argument, the port as second argument. Note that thechonde either a string or an address
object. This class is similar to thédpServer class, except that the socket join the multicast group
at construction and leave it at destruction.

Constructors Summary

| Constructor | Description
Multicasthost create a multicast socket by host
Multicastaddr create a multicast socket by address
Multicasthost port create a multicast socket by host and port
Multicastaddr port create a multicast socket by address and port
Derivation summary
| Derived from | Description |

| UdpSocket

the UDP socket class |

116 Networking Classes

Mail [aleph:net]

117

Description

TheMai | class is a mail delivery object which manages to contact aA Mil Transport Agenin
order to deliver a message to one or several recipients. Byligthe object contacts the local MTA,
but this behavior can be changed with 8t - nt a- addr ess method. The class implements the
recipient address syntax as specified by RFC822. At coriginjthe instance is empty. Only the
recipient address needs to be specified. §éned method send the message by contacting the MTA.
If an error occurs, an exception is raised.

Constructors Summary

| Constructor

Description

| Mail

create an empty message

Methods Summary

| Method | Description
to add a new recipient in the to list
cc add a new recipient in the cc list
bcc add a new recipient in the bcc list
add add literals to the message buffer
addin add literals followed by a newline
send send the message by contacting the MTA
subject set the message subject
get-mta-address get the mta IP address
set-mta-address set the mta IP address
get-mta-port get the mta IP port number
set-mta-port set the mta IP port number

Mail:to
m return:
B arguments:

The to

none

String

method adds one or several address todéstinationlist. The address format must

conform to RFC822. Multiple address are coma separatedipNutall to this method is possible.

Mail:cc
m return:

m arguments:

none

String

118 Networking Classes

The cc method adds one or several address tacthgylist. The address format must conform to
RFC822. Multiple address are coma separated. Multipleealis method is possible.

Mail:bcc
m return: none
m arguments: String

The bcc method adds one or several address toltimed copylist. The address format must
conform to RFC822. Multiple address are coma separatedtipNutall to this method is possible.
Theblind copylist is not included in the message header.

Mail:add
m return; none
B arguments: String ...

The add method adds one or several literals to the message buffexistihe normal way to fill a
message buffer by string line.

Mail:addin
m return: none
m arguments: String ...

The addl n method adds one or several literals to the message bufferewdime character is
added at the end of the line. This is a similar way to fill a mgedauffer by string line.

Mail:send
H return: none
| | arguments: none

The send method request a message delivery by contacting the MTAe@r&e MTA has been
contacted, the message header and the message body isredn$he MTA is responsible to deliver
the message to the appropriate recipients.

Mail:subject
m return: none
m arguments: String

The subj ect method sets the message subject string line.

Mail:set-mta-address
m return: none
m arguments: String

The set - nt a- addr ess method sets the MTA IP address that the class needs to cémtatil
request. The address can be an fully qualified host name & aarhber.

Mail:get-mta-address

119

m return: String

m arguments: none
The get - nt a- addr ess method returns the current MTA IP address for this mail abjec
Mail:set-mta-port

m return: none

® arguments: I nt eger
The set-nta-port method set the current MTA IP port number for this mail ohjé&btth the

MTA IP address, the MTA to contact for mail request is unigud#fined. The default port value is
25.

Mail:get-mta-port
m return: I nt eger
®m arguments: none

The get - nt a- port method returns the current MTA IP port number for this majesh The
default port value is 25.

120 Networking Classes

APPENDIX H
Networking Functions

This chapter is a reference of the Aleph networking funaiohe functions described here are
part of thealeph-netlibrary. The library must be loaded prior any use of thesefiams. Once the
library is loaded, all functions are located in thieph:netnameset.

Table 13Aleph network call functions

| Function | Description
get-loopback return the loopback name
get-tcp-service return the tcp service name by id
get-udp-service return the udp service name by id

aleph:net:get-loopback

m return: String

® arguments: none

The get - | oopback function returns the name of the machine loopback. On a UNkfesn,
that name i$ ocal host .

aleph:net:get-tcp-service
m return: String
m arguments: I nt eger

The get -t cp-servi ce function returns the name of the tcp service given its poniner. For
example, the tcp service at port 13 is theytimeserver.

aleph:net:get-udp-service
m return: String
m arguments: I nt eger

The get - udp- servi ce function returns the name of the udp service given its pamtimer. For
example, the udp service at port 19 is thergenserver.

122 Networking Functions

APPENDIX |
WWW/CGI Classes and Functions

This appendix is a reference of tideph web services. The classes described here are part of the
aleph-www library. The library must be loaded prior any use of thesesda. Once the library is
loaded, all classes are located in tleph:www namesets.

Table 14 Aleph web classes

| Object | Description
url url class
Cookie http cookie class
CgiQuery cgi query class
HtmlPage html page class
XHtmlIPage xhtml page class

For each class, a predicate is provided.

Table 15Aleph web class predicates

| Object | Predicate
Url url-p
Cookie cookie-p
CgiQuery cgi-query-p
HtmlPage html-page-p

124 WWW/CGI Classes and Functions

125

Url [aleph:www]

Description

TheUr | class is thdUni ver sal Resource Locat or manipulation class. The class can be
used to either parseW@RL or build one by pieces. The class do automatically the essageence
conversion.

Derivation summary

| Derived from | Description |
| Object | the base object class |

Constructors Summary

| Constructor | Description
Url create an empty url
Url name create a URL by name

Methods Summary

| Method | Description
parse parse a string
get-scheme returns the url scheme
get-host returns the url host
get-port returns the url port
get-path returns the url path
get-query returns the url query
get-fragment returns the url fragment
Url:parse
m return: none
m arguments: String

The par se method reset the URL object, parse the string argument didefilURL object with
the result.

Url:get-scheme

126 WWW/CGI Classes and Functions

m return: String

® arguments: none

The get - schene method returns the scheme of the pars#L object. The default scheme is
ht t p if not specified at object construction.

Url:get-host
m return: String
m arguments: none

The get - host method returns the host of the parsed url.

Url:get-port
m return: I nt eger
m arguments: none

The get - port method returns the host of the parsed url. The default p&a i$ not specified.
With some scheme, the port value do not make sense.

Url:get-path
m return: String
m arguments: none

The get - pat h method returns the path of the parsed url. The default pattifisot specified.
Url:get-query

m return: String

m arguments: none

The get - query method returns the complete query string of the patset.

Url:get-fragment

m return: String

® arguments: none

The get - f ragnent method returns the complete query string of the pat#et.

127

CgiQuery [aleph:www]

Description
The Cgi Query class is a special object that parse a CGI query string andda® methods to
access form values by key. The class takes care of convénénescaped characters.

Derivation summary

| Derived from | Description |
| Object | the base object class |

Constructors Summary

| Constructor | Description
CgiQuery create an empty query
CgiQueryquery create a query by value

Methods Summary

| Method | Description
get get a value by key
parse parse the query string
exists-p check if a key exist
length return the number of keys
lookup return the key index by name
get-name get the key name by index
get-value get a key value by index
get-query return the query string
CgiQuery:get
m return: String
m arguments: String

The get method returns the value associated with the key specifigddgrgument. If the key
does not exist, the empty string is returned.

CgiQuery:parse

128 WWW/CGI Classes and Functions

m return: none

m arguments: String

The par se method reset the query object, parse the string argumeriilkthé query object with
the result.

CgiQuery:length

m return: I nt eger

m arguments: none
The | engt h method returns the number of keys available in the querycbbje
CgiQuery:exists-p

m return: Bool ean

m arguments: String
The exi st s- p predicate returns true if the key argument exists in thigyabject.
CgiQuery:lookup

m return: I nt eger

m arguments: String

The | ookup method returns index of the key argument in the query objéthe key does not
exist, -1 is returned.

CgiQuery:get-name
m return: String
m arguments: I nt eger

The get - name method returns the name of the key specified by the index agtim

CgiQuery:get-value
m return: String
m arguments: I nt eger

The get - val ue method returns the value associated with the key specifigdoijndex argu-
ment.

CgiQuery:get-query
m return: String

® arguments: none

The get - query method returns the original query string used during theipgr

129

HtmIPage [aleph:www]

Description

The HtmIPage class is the primary interface to generefEML code. The class operates by filling
the header and the body of the page with HTML statements.r&8awethods are provided to ease
the task of the page generation. The HTML version is assumbdstrict 4.01 Since HTML 4.01

is designed to work witlstyle sheetthe user must be prepared to handle this when generating its
own HTML page. TheHtmlPage constructor takes no argument. The basic method used to add
something in the header is theld- head method which take one or several literal arguments. The
add-tit| e method adds a title to the header. Tddd- st yl e adds the style sheet definition to
the header. Thadd- aut hor add the author's name to the page header. Finallyatiee net a
method adds anetastatement to the header in the form of name and content. a@lide body
method adds any literal object into the body buffer.

Derivation summary

| Derived from | Description |
| Object | the base object class |

Constructors Summary

| Constructor | Description |
| HtmIPage | create an empty html page |

Methods Summary
HtmlPage:add-http

m return: none
m arguments: [Literal...]

The add- htt p method adds one or more literal objects into the http buffbis methods can be
used to add specific http attributes.

HtmlPage:add-head

m return: none

m arguments: [Literal...]

The add- head method adds one or more literal objects into the head buffer.

130 WWW/CGI Classes and Functions

| Method | Description
add-http add http content in the http buffer
add-head add literals in the head buffer
add-body add literals in the body buffer
add-meta add a meta in the head buffer
add-title add a title in the head buffer
add-style add a style sheet in the head buffer
add-author add the author in the head buffer
add-cookie add a cookie in the http buffer
get-buffer get the full page in a buffer
write-cgi write the page with cgi header
write-http write the page http buffer
write-head write the page head buffer
write-body write the page head buffer
write-page write the page
HtmlPage:add-body
m return: none
m arguments: [Literal...]

The add- head method adds one or more literal objects into the body buffer.

HtmlPage:add-meta
m return: none
m arguments: String String

The add- net a adds a meta mark-up in the head buffer. The first argumentik-o@aname and
the second argument is the mark-up value.

HtmlPage:add-title
m return: none
m arguments: String

The add-titl e adds atitle mark-up in the head buffer. The title is the gtargument.

HtmlPage:add-author
m return; none
m arguments: String

The add- aut hor adds an author mark-up in the head buffer. The author is tigstrgument.

HtmlPage:add-style
m return: none
B arguments: String

The add- st yl e adds a style sheet name in the head buffer. Several stylessteaebe specified.
The style sheet path is specified as a string argument.

131

HtmlPage:add-cookie

m return: none

m arguments: Cooki e

The add- cooki e adds a cookie content in the http buffer. The cookie objettisslated into a
string http content value and added into the http buffer.

HtmlPage:get-buffer

m return: Buf f er

B arguments: none

The get - buf fer method returns the full content of the html page into a budfgject. This
method is useful for one who want to query the page length laad write it on an output stream.
Remember that the buffer class as a write method to do so.

HtmlPage:write-http

m return: none

® arguments: Cut put

The write-http method writes the http buffer into the output stream spetdiethe argument.

HtmlPage:write-head
m return: none
® arguments: Cut put

Thewr it e- head method writes the head buffer into the output stream spdafidhe argument.

HtmlPage:write-body

m return: none

® arguments: Cut put
Thewr it e- body method writes the body buffer into the output stream spetisethe argument.
HtmlIPage:write-page

m return: none

® arguments: Cut put
Thewr it e- page method writes the whole page into the output stream specifigkde argument.
HtmlPage:write-cgi

m return: none

® arguments: Cut put

Thewrite-cgi method writes first a CGl server reply in the form of contepetand status and
then the whole page into the output stream specified as thienamt.

132 WWW/CGI Classes and Functions

133

XHtmIPage [aleph:www]

Description
TheXHtmlIPage class is specialized class that produgeT ML code. The class is derived from the
HtmlPage class and inherits all methods.

Derivation summary

| Derived from | Description |
| HtmIPage | the HTML page class |

Constructors Summary

| Constructor | Description |
| XHtmlPage | create an empty xhtml page |

Methods Summary

| Method | Description
get-language get the xml language
set-language set the xml language

XHtmlPage:set-language
m return: none

m arguments: String

The set - | anguage method set the xml language tag in the html document. By ttetha xml
language is set to "en".

XHtmlPage:get-language

m return: String

® arguments: none

The get - | anguage method returns the xml language tag in the html document.eBgudt, the
xml language is set to "en".

134 WWW/CGI Classes and Functions

135

Cookie [aleph:www]

Description

TheCookieclass is a special class designed to handle cookie settthgnwai CGI script. A cookie is
name/value pair that is set by the server and stored by thePHli€nt. Further connection with the
client will result with the cookie value transmitted by tHent to the server. A cookie has various
parameters that controls its existence and behavior. Ttst important one theookie maximum
agethat is defined in second. A null value tells the client to discthe cookie. A cookie without
maximum age is valid only during the HTTP client session. Alde can be added to the HTML
page with theset - cooki e method. A cookie can be constructed with a name/value pair. A
optional third argument is the maximum age.

Derivation summary

Derived from Description
Object the base object class

Constructors Summary

| Constructor | Description
Cookiename value create a new cookie with name and value
Cookiename value age create a new cookie with name, value and age

Methods Summary

Cookie:get-name

m return: String

m arguments: none
The get - nane method returns the cookie name. This is the name store onTh@HKlient.
Cookie:set-name

m return: none

m arguments: String

The set - nane method sets the cookie name. This is the name store on the Hler®.

Cookie:get-value

136 WWWI/CGI Classes and Functions
| Method | Description
get-name return the cookie name
set-name set the cookie name
get-value return the cookie value
set-value set the cookie value
get-max-age return the cookie maximum age
set-max-age set the cookie maximum age
get-path return the cookie path
set-path set the cookie path
get-domain return the cookie domain
set-domain set the cookie domain
get-comment return the cookie comment
set-comment set the cookie comment
get-secure return the cookie secure flag
set-secure set the cookie secure flag
to-string return an HTTP cookie string value
m return: String
m arguments: none

The get - val ue method returns the cookie value. This is the value storedherHT TP client
bounded by the cookie name.

Cookie:set-value
m return: none
m arguments: String

The set - val ue method sets the cookie value. This is the value store on tHéPH€lient bounded
by the cookie name.
Cookie:get-maximum-age

m return: I nt eger
®m arguments: none

The get - maxi num age method returns the cookie maximum age. The default valuk ihat
is, no maximum age is set and the cookie is valid only for th& R €lient session.
Cookie:set-maximum-age

m return: none
B arguments: I nt eger

The set - maxi mum age method sets the cookie maximum age. A negative value is teskt
A 0 value tells the HTTP client to discard the cookie. A pesitvalue tells the HTTP client to store
the cookie for the remaining seconds.

Cookie:get-path

m return: String

137

® arguments: none

The get - pat h method returns the cookie path value. The path determirrestich HTTP
request the cookie is valid.

Cookie:set-path

m return: none

m arguments: String

The set - pat h method sets the cookie path value. The path determines fichw#TTP request
the cookie is valid.

Cookie:get-domain
m return: String

® arguments: none

The get - domai n method returns the cookie domain value.

Cookie:set-path
m return: none

B arguments: String

The set-domai n method sets the cookie domain value. It is string recomneétaese the
originator domain name since many HTTP client can rejeckigothose domain name does not
match the originator name.

Cookie:get-comment

m return: String

® arguments: none

The get - comment method returns the cookie comment value.

Cookie:set-comment

m return: none

m arguments: String
The set - comment method sets the cookie comment value.
Cookie:get-secure

m return: String

B arguments: none

The get - secur e method returns the cookie secure flag.

Cookie:set-comment

m return: none

138 WWW/CGI Classes and Functions

m arguments: String

The set-secure method sets the cookie secure flag. When a cookie is sectirsdomly
returned by the HTTP client if a connection has been seciuedge HTTPS).

Cookie:to-string
m return: String
n arguments: none

Thet o- stri ng method returns a string formatted as an HTSeR - cooki e request. Normally
this method should not be called since HtenlPageadd- cooki e method takes care of such thing.

BIBLIOGRAPHY

[1] RFC 738 - Time servef977.
[2] RFC 791 - DARPA Internet Program Protocol Specificatit®81.
[3] Revised Report on the Algorithmic Language Scheme. feethreport, November 1991.
[4] C++ Language Reference Manydl996.
[5] RFC 2101 - IPV4 Address Behaviour Toda997.
[6] RFC 2373 - IP Version 6 Addressing Architectut®98.
[7] Guy L. Steele JrCommon Lisp, The Languag&990.
[8] Donald E. Knuth.The Art of Computer Programming, Volume1997.
[9] Donald E. Knuth.The Art of Computer Programming, Volume1997.
[10] Donald E. Knuth.The Art of Computer Programming, VolumeI®97.
[11] George Springer and Daniel P. Friedm&theme and the Art of Programmint997.
[12] W. Richard StevensTCP/IP lllustrated Volume.11994.
[13] W. Richard StevensUNIX Network Programming - Interprocess Communicati®f98.
[14] W. Richard StevendUNIX Network Programming - Socket ARI998.

[15] Bjarne StroustrupThe C++ Programming Language2000.

140 BIBLIOGRAPHY

INDEX

142

absolute-path

aleph:sio function, 69
accept

TcpSocket method, 101

UdpSocket method, 109
add

Mail method, 118

PrintTable method, 83

Selector method, 67

Time method, 74
add-author

HtmlPage method, 130
add-body

HtmlPage method, 130
add-cookie

HtmlPage method, 131
add-head

HtmlPage method, 129
add-http

HtmlPage method, 129
add-meta

HtmlPage method, 130
add-style

HtmlPage method, 130
add-title

HtmlPage method, 130
addin

Mail method, 118
Address

aleph:net:Address class, 19

constructors summary, 93

get-canonical-name method, 20

get-ip-address method, 20

methods summary, 93

object reference, 93
aleph:sys:get-host-name, 20
AOD

Aleph Object Database, 39

structured elements, 39

bcc

Mail method, 118
bind

Socket method, 97
BROADCAST

Socket constant, 95

cc

Mail method, 117
cell

definition, 39
CGlI

Web service, 33

CgiQuery

INDEX

constructors summary, 127
derivation summary, 127
methods summary, 127
object reference, 127
close
InputFile method, 47
OutputFile method, 57
Socket method, 98
collection
definition, 40
command
create, 41
import, 41
open, 41
save, 41
compute
Digest method, 87
connect
Socket method, 97
Cookie
constructors summary, 135
derivation summary, 135
methods summary, 135
object reference, 135
create
command usage, 41

data
with cell, 39
Datagram
derivation summary, 107
object reference, 107
Digest
constructors summary, 87
derivation summary, 87
methods summary, 87
object reference, 87
dir-p
aleph:sio function, 69
Directory, 6
constructors summary, 65
methods summary, 65
object reference, 65
DNS, 19
DONT-ROUTE
Socket constant, 95

eof-p
Input method, 46
Socket method, 99
errorin
Output method, 55
ErrorTerm, 5
exists-p

INDEX

CgiQuery method, 128
exit
aleph:sys function, 79

file-p

aleph:sio function, 69
flush

OutputString method, 59
format

PrintTable method, 84
format-date

Time method, 76
format-time

Time method, 76

get

CgiQuery method, 127

InputString method, 51

PrintTable method, 83
get-buffer

HtmlPage method, 131
get-buffer-length

Input method, 46
get-canonical-name

Address method, 94
get-column-direction

PrintTable method, 85
get-column-fill

PrintTable method, 85
get-column-size

PrintTable method, 85
get-columns

PrintTable method, 84
get-comment

Cookie method, 137
get-day-of-month

Time method, 75
get-day-of-week

Time method, 75
get-day-of-year

Time method, 75
get-domain

Cookie method, 137
get-env

aleph:sys function, 80
get-files

Directory method, 66
get-fragment

Url method, 126
get-host

Url method, 126
get-host-name

aleph:sys function, 80
get-hours

143

Time method, 74
get-ip-address

Address method, 93
get-ip-vector

Address method, 93
get-language

XHtmlIPage method, 133
get-list

Directory method, 66
get-loopback

aleph:net function, 121
get-maximum-age

Cookie method, 136
get-minutes

Time method, 74
get-month

Time method, 74
get-mta-address

Mail method, 118
get-mta-port

Mail method, 119
get-name

Address method, 93

CgiQuery method, 128

Cookie method, 135

Directory method, 66

InputFile method, 47

InputMapped method, 50

OutputFile method, 57
get-offset

InputMapped method, 50
get-path

Cookie method, 136

Url method, 126
get-peer-address, 24

Socket method, 99
get-peer-port, 24

Socket method, 99
get-pid

aleph:sys function, 80
get-port

Url method, 126
get-primary

Terminal method, 64
get-query

CgiQuery method, 128

Url method, 126
get-rows

PrintTable method, 84
get-scheme

Url method, 125
get-secondary

Terminal method, 64

144

get-seconds

Time method, 74
get-secure

Cookie method, 137
get-socket-address, 24

Socket method, 99
get-socket-port, 24

Socket method, 99
get-subdirs

Directory method, 66
get-tcp-service, 21

aleph:net function, 121
get-time

Time method, 74
get-udp-service, 21

aleph:net function, 121
get-user-name

aleph:sys function, 80
get-utc-day-of-month

Time method, 76
get-utc-day-of-week

Time method, 76
get-utc-day-of-year

Time method, 76
get-utc-hours

Time method, 75
get-utc-minutes

Time method, 75
get-utc-month

Time method, 75
get-utc-seconds

Time method, 75
get-utc-year

Time method, 76
get-value

CgiQuery method, 128

Cookie method, 135
get-year

Time method, 74

HOP-LIMIT
Socket constant, 96
HtmlPage
constructors summary, 129
derivation summary, 129
methods summary, 129
object reference, 129

import

command usage, 42
Input

object reference, 45
input-get

Selector method, 68

INDEX

input-length
Selector method, 68
InputFile
constructors summary, 47
derivation summary, 47
methods summary, 45, 47
object reference, 47
InputMapped
constructors summary, 49
derivation summary, 49
methods summary, 49
object reference, 49
InputString
constructors summary, 51
derivation summary, 51
methods summary, 51
object reference, 51
InputTerm, 5
constructors summary, 53
derivation summary, 53
methods summary, 53
object reference, 53
interpreter
system information, 9
IP address, 19
IPv4
address example, 19
IPv6
address example, 19
ipv6-p
Socket method, 97

KEEP-ALIVE
Socket constant, 96

length

CgiQuery method, 128

InputFile method, 48

InputMapped method, 49
LINGER

Socket constant, 96
listen

TcpSocket method, 101
lookup

CgiQuery method, 128
Iseek

InputFile method, 48

InputMapped method, 49

Mail
constructors summary, 117
methods summary, 117
object reference, 117
MAX-SEGMENT-SIZE

INDEX

Socket constant, 96
mkdir

Directory method, 65
Multicast

constructors summary, 115

derivation summary, 115

object reference, 115
MULTICAST-HOP-LIMIT

Socket constant, 96
MULTICAST-LOOPBACK

Socket constant, 96

newline
Output method, 55
Socket method, 98
NO-DELAY
Socket constant, 97

oDB

Object database library, 39
open

command usage, 41
output-get

Selector method, 68
output-length

Selector method, 68
OutputFile

constructors summary, 57

derivation summary, 57, 59

methods summary, 55, 57

object reference, 55, 57
OutputString

constructors summary, 59

methods summary, 59

object reference, 59
OutputTerm, 5

constructors summary, 61

derivation summary, 61

object reference, 61

parse
CgiQuery method, 127
Url method, 125
peer
address and port, 21
PrintTable
constructors summary, 83
derivation summary, 83
methods summary, 83
object reference, 83
pushback
Input method, 46
Socket method, 99

random

145

aleph:sys function, 79
RCV-SIZE

Socket constant, 96
read

Input method, 45

Socket method, 97, 98
readin

Input method, 45

Socket method, 98
record

definition, 39
relative-path

aleph:sio function, 70
REUSE-ADDRESS

Socket constant, 95
RFC 738, 23
rmdir

aleph:sio function, 70

Directory method, 65
rmfile

aleph:sio function, 70

Directory method, 65

save

command usage, 42
Selector

constructors summary, 67

methods summary, 67

object reference, 67
send

Mail method, 118
set

InputString method, 51

PrintTable method, 84
set-column-direction

PrintTable method, 85
set-column-fill

PrintTable method, 85
set-column-size

PrintTable method, 84
set-comment

Cookie method, 137
set-eof-character

InputTerm method, 53
set-eof-ignore

InputTerm method, 53
set-language

XHtmlIPage method, 133
set-maximum-age

Cookie method, 136
set-mta-address

Mail method, 118
set-mta-port

Mail method, 119

146

set-name

Cookie method, 135
set-option

Socket method, 99
set-path

Cookie method, 137
set-primary

Terminal method, 63
set-secondary

Terminal method, 63
set-value

Cookie method, 136
shutdown

Socket method, 97
sleep

aleph:sys function, 79
SND-SIZE

Socket constant, 96
Socket

constant summary, 95

derivation summary, 95

methods summary, 95

object reference, 95
socket-p, 25
sort

aleph:txt function, 89
subject

Mail method, 118

table
definition, 40
tcp-client-p, 25
TcpClient
constructors summary, 103
derivation summary, 103
object reference, 103
TcpServer
constructors summary, 105
derivation summary, 105
object reference, 105
TcpSocket
constructors summary, 101
derivation summary, 101
methods summary, 101
object reference, 101
Terminal, 5
constructors summary, 63
derivation summary, 63
methods summary, 63
object reference, 63
Time
constructors summary, 73
methods summary, 73
object reference, 73

to
Mail method, 117
to-string
Cookie method, 138
OutputString method, 59

udp-client-p, 25
UdpClient
constructors summary, 111
derivation summary, 111
object reference, 111
UdpServer
constructors summary, 113
derivation summary, 113
object reference, 113
UdpSocket
constructors summary, 109
derivation summary, 109
methods summary, 109
object reference, 109
URL
class description, 33
url
constructors summary, 125
derivation summary, 125
methods summary, 125
object reference, 125
utc-format-cookie
Time method, 77
utc-format-date
Time method, 77
utc-format-rfc
Time method, 77
utc-format-time
Time method, 77

valid-p
Input method, 45
Socket method, 98

wait

Selector method, 67
wait-all

Selector method, 68
write

Output method, 55

Socket method, 98
write-body

HtmlPage method, 131
write-cgi

HtmlPage method, 131
write-head

HtmlPage method, 131
write-http

INDEX 147

HtmlPage method, 131
write-page

HtmlPage method, 131
writeln

Output method, 55

Socket method, 98

XHtmlIPage
constructors summary, 133
derivation summary, 133
methods summary, 133
object reference, 133

148 INDEX

Colophon

This manual was written for théTipXdocumentation preparation system. A custom document clas
was designed by the author. The document style has beenifshals to produce a high quality
technical manual. Title, chapter and section names havepreeluced with an Helvetica font. The
document has been produced with a 10 points Times font. Baoitis fire assumed to be in the public
domain. The documentation is available in both A4 and Idttanat.

