
ℵ Programming Language

Installation Guide

Volume 0 Revision 0.9.0



This documentation is bound to the Aleph programming language license and therefore shall be considered
free. This documentation can be redistributed and/or modified, providing that the copyright notice is kept
intact. This documentation is distributed in the hope that it will be useful, but without any warranty; without
even the implied warranty of merchantability or fitness for a particular purpose. In no event shall the copyright
holder be liable for any direct, indirect, incidental or special damages arising in any way out of the use of this
documentation or the software it refers to.

c© 1999-2003 Amaury C. Darsch



CONTENTS

Preface v
The Aleph programming language v
Features v
Aleph engine vi
Flexible Distribution vi

License ix

1 Release Notes 1
1.1 Contents 1

1.1.1 Core language 1
1.1.2 Libraries 1
1.1.3 Documentation 2

1.2 New features 2
1.2.1 Core system 2
1.2.2 Core language 2

2 Installation Procedures 5
2.1 Getting Aleph 5
2.2 Installation 5

2.2.1 Unpacking the distribution 5
2.2.2 Quick command reference 5
2.2.3 Configuration 6
2.2.4 Compiling the distribution 6
2.2.5 Testing the distribution 7
2.2.6 Installing the distribution 7
2.2.7 Cleaning the distribution 7

2.3 Running Aleph 8
2.3.1 Running some examples 8

2.4 Special targets 8
2.5 Extensions 8

2.5.1 Aleph static interpreter (asi) 9
2.6 Documentation 9

2.6.1 Extra files 9



iv CONTENTS

2.6.2 Rebuilding the documentation 9

3 Package Maintainer Notes 11
3.1 The Distribution Tree 11
3.2 Configuration and setup 11

3.2.1 Platform detection 11
3.2.2 Platform defaults 12
3.2.3 C++ source file convention 12
3.2.4 Configuration files 12

3.3 Compilation 12
3.3.1 Compilation results 13

3.4 Building the package 13
3.4.1 Special files 13

3.5 Building the documentation 14
3.6 Other make rules 14

Colophon 15



Preface

This manual is part of the Aleph Programming Language Series, a multi volume set that describes
the programming environment of the Aleph system. The entire set contains 4 volumes :

Volume 0 - Aleph Installation Guide is the distribution installation manual.

Volume 1 - Aleph Programmer Guide is the first volume of this set. It is both an introduction and
an advanced guide for the the developer.

Volume 2 - Aleph Library Reference is the second volume of this set. It is a complete description
of the Aleph standard library.

Volume 3 - Aleph Cross Debugger is the third volume of this set. It is a reference manual to de-
velop and debug Aleph programs.

Volume 4 - Aleph C++ API is the fourth volume of this set. It is a reference manual of the C++
Application Programming Interface (API).

The Aleph programming language

Aleph is a multi-threaded functional programming language with dynamic symbol bindings that
support the object oriented paradigm. Aleph features a state of the art runtime engine that supports
both 32 and 64 bits platforms. Aleph comes with a rich set of libraries that are designed to be
platform independent. Aleph is a free software. A flexible license has been designed for both
individuals and corporations. Everybody is encouraged to use, distribute and/or modify the aleph
engine for any purpose.

Features

The Aleph engine is written in C++ and provides runtime compatibility with it. Such compatibility
includes the ability to instantiate C++ classes, use virtual methods and raise or catch exceptions. A
comprehensive API has been designed to ease the integration of foreign libraries.

• Builtin objects
More than 50 reserved keywords and predicates. Various containers like list, vector, hash
table, bitset, and graphs.

• Functional programming
Support for lambda expression with explicit closure. Symbol scope limitation with gamma
expression. Form like notation with an easy block declaration.



vi PREFACE

• Object oriented
Single inheritance object mechanism with dynamic symbol resolution. Native class deriva-
tion and method override. Static class data member and methods.

• Multi-threaded engine
True multi-threaded engine with automatic object protection mechanism against concurrent
access. Read and write locking system and thread activation via condition objects.

• Original regular expression
Builtin regular expression engine with group matching, exact or partial match and substitu-
tion.

Aleph is a core language and libraries. The libraries are a specific set of classes and functions which
are structured per application domains. Aleph is delivered with a set of standard libraries.

• aleph-sys
The aleph-sys library is the system calls library. Standard classes and functions are
provided to interact with the running machine.

• aleph-sio
The aleph-sio library is the standard input/output All input/output operations are per-
formed with this library.

• aleph-net
The aleph-net library is the networking library. The library is based on the standard
Internet Protocol and provides various classes to manipulates IP address, client or server
sockets.

• aleph-www
The aleph-www library is the World Wide Web library. The library provides various classes
that ease the development of web applications or CGI scripts.

• aleph-txt
The aleph-txt library is the text processing library. The library provides various func-
tions and classes that ease text manipulation. Sorting data, computing message digest and
formatting table is among others, features available in this library.

• aleph-odb
The aleph-odb library is the object database library. The library provides several objects
that can be used to design a database. A client is also provided to directly access the database
contents.

Aleph provides extensions. An extension is a library or an application which is not installed by
default. The user selects during the installation process which extension is needed. For example, the
static version of the interpreter is an extension.

Aleph engine

Aleph is an interpreted language. When used interactively, commands are entered on the command
line and executed when a complete and valid syntactic object has been constructed. Alternatively,
the interpreter can execute a source file. Aleph does not have a garbage collector. Aleph operates
with a lazy, scope based, object destruction mechanism. Each time an object is no longer visible,
it is destroyed automatically. At this time, the Aleph interpreter is unable to reclaim memory with
circular structures. This is a well known problem when using a reference count mechanism. In the
future, the Aleph engine will provide some mechanisms to resolve this problem.



PREFACE vii

Flexible Distribution

Aleph is a free software. A flexible license model encourages individuals or corporations to use,
copy, modify and/or distribute this software. Aleph is designed by software professionals. Quality is
one the driving force of the development effort. This is reflected in this distribution by the extensive
documentation. A large test suite is used to assess the quality of the distribution. Right now, the
engine has been successfully tested on most Linux platforms, Free BSD and Solaris.



viii PREFACE



License

Aleph is a free software. It can be used, modified and distributed by anybody for personal or com-
mercial use. The only restriction is altering the copyright notice associated with the material. In-
dividual or corporation are permitted to use, include or modify the Aleph engine. All material
developed with the Aleph language belongs to their respective copyright holder.
This program is a free software. it can be redistributed and/or modified, providing that this copyright
notice is kept intact. This program is distributed in the hope that it will be useful, but without any
warranty; without even the implied warranty of merchantability or fitness for a particular purpose.
In no event shall the copyright holder be liable for any direct, indirect, incidental or special damages
arising in any way out of the use of this software.



x LICENSE



CHAPTER 1

Release Notes

Welcome to Aleph. This manual contains the release notes and the installation guide. The latest
distribution is available at www.aleph-lang.org or by FTP at ftp.aleph-lang.org.

1.1 Contents

This is the release 0.9.0 of the Aleph Programming Language. This release contains the aleph core
language, its associated libraries and the documentation. Examples and utilities are also included in
this distribution. The Aleph core language is released as a source file. In order to use Aleph , you
will have to compile the distribution and install it. More information about this operation is given in
chapter 2.

1.1.1 Core language

The Aleph core language comes with an interpreter and a set of predefined keywords, functions
and base objects. For a short introduction on the language itself, please refer to the preface of this
document or the tutorial in the volume 1 of this documentation set.

1.1.2 Libraries

Aleph is released with several libraries. A library is a specialized collection of classes and functions.
A library is a shared object which is loaded on demand. The complete library description is given in
the Volume 2 - Library Reference Manual. Some libraries have a also a manual of their own.

• aleph-sio
The standard input/output library. This library contains the classes and functions related to
input/output operations. Files and directory classes are part of this library.

• aleph-sys
The system calls library. This library contains various system calls and classes.

• aleph-net
The network library. This library contains all classes which can be used to build server or
client applications. The library is largely based on the TCP/IP socket model.

• aleph-www
The web library. This library contains the functions and classes that can be used to develop
web applications or CGI scripts.



2 Release Notes

• aleph-txt
The text processing library. This library contains the functions and classes that can be used
to manipulates text file or text stream. A typical functions is the message digest (MD5).

• aleph-odb
The object database library. This library contains the functions and classes that can be used
to build a database.

1.1.3 Documentation

The Aleph documentation is organized in various volumes. Each volume is distributed as a
Postscript or PDF file. The complete documentation set is also available by FTP or via the Web
site.

• Volume 0: Installation guide
This volume is the distribution installation guide. It also contains useful notes for the package
maintainer as well as some extra notes about the distribution.

• Volume 1: Programmer’s guide
This volume is a tutorial and a reference manual of the language. The first chapter contains
a quick tour of the language features.

• Volume 2: Library reference
This volume is the library reference manual. It contains a complete descriptions of the classes
and functions.

• Volume 3: Debugging with Aleph
This volume is the Aleph cross debugger reference manual. It contains also a tutorial in order
to start to use the debugger.

• Volume 4: C++ API
This volume is the C++ Application Programming Interface (API) manual. A description of
the C++ class organization as well as a tutorial is available in this manual.

1.2 New features

This section describes quickly the latest changes that have been made in this release.

1.2.1 Core system

• Debugger axd
Aleph is now released with a debugger. The debugger is called axd and acts as a super
interpreter with special functions. Breakpoints and other gizmos are available. Note also the
existence of a Emacs gud mode.

• Database aod
Aleph is now released with a object database client. The client provides commands that ease
the development of database contents.

1.2.2 Core language



New features 3

• String comparators
The four comparison operators have been added to the String object. With this extension,
the sort method can be used with strings.

• Variadic arguments
The args reserved keyword can be used as the last formal argument in a closure declaration.
During a function call, all extra arguments are stored in a list referenced by args.

• Enumeration object
Object that requires static constant are now using the Enum object. Such object cannot be
constructed directly but is rather returned by builtin object. Additionally, a new reserved
keyword enum creates dynamic enumeration. During evaluation, an Item object that is
bound to the enumeration is created.



4 Release Notes



CHAPTER 2

Installation Procedures

This chapter describes the installation procedures for the Aleph programming language distribu-
tion. Aleph is distributed as a source code only. This chapter explains how to set and compile this
distribution.

2.1 Getting Aleph

Aleph is available either by FTP or from the Aleph Web site. The standard address is aleph-lang.org.
Aleph has been built with the following platforms.

Platform Description

Linux Linux x86, alpha, m68k, Sparc, PowerPC, Arm and Mips
FreeBsd FreeBsd x86 4.x (reported to work with 5.0)
Solaris Solaris 2.5.1, 2.7 and 2.8

Additionnaly, Aleph is part of the Debian distribution and the FreeBsd port collection.

2.2 Installation

Aleph is written in C++. You will need a modern compiler with support for exception and rtti. Aleph
has been successfully built with the GNU gcc 2 or gcc 3. No other compiler have been tested
yet. You will need also GNU Make. With Free BSD the command is called gmake. Note that the
Makefile hierarchy is designed to operate safely with the -j GNU Make option.

2.2.1 Unpacking the distribution

The distribution is available as a compressed tar file. Note that the documentation is distributed in a
separate tar file. The following command unpacks the distribution.

zsh> gzip -d aleph-src-[version].tar.gz
zsh> tar xf aleph-src-[version].tar

The version field is the current aleph distribution version.

2.2.2 Quick command reference



6 Installation Procedures

Here are the commands you should execute. If you are not sure of what is done, read the sec-
tion below. If you are using a platform with gcc and want the distribution to be installed in the
/usr/local directory, you can simply enter the make world command. If you want more tun-
ing for the configuration, please continue to read this section. Below is a quick command reference
to better control the build process.

zsh> ./cnf/bin/aleph-setup -o --prefix=/usr/local/aleph
zsh> make [-j]
zsh> make test
zsh> make install
zsh> make clean

or with FreeBSD

zsh> ./cnf/bin/aleph-setup -o --prefix=/usr/local/aleph
zsh> gmake [-j]
zsh> gmake test
zsh> gmake install
zsh> gmake clean

2.2.3 Configuration

The utility aleph-setup can be invoked to setup a particular configuration. You should have your
compiler on your search path. Normally, the command below is enough.

zsh> ./cnf/bin/aleph-setup -o --prefix=/usr/local/aleph

This command checks that your platform can be detected and configure the platform. The -o option
configure the compilation in optimized mode. Use the -g options to compile in debug mode. The
-prefix option specify the installation directory. Note that the compilation process is done in the
distribution tree. The -v option is the verbose option. Other options are available for fine tuning.

zsh> ./cnf/bin/aleph-setup -h
usage: aleph-setup [options]

-h print this help message
-v be verbose
-g set debug mode
-o set optimized mode
-s compile and link statically
--help print this help message
--prefix set target directory to install
--compiler set default compiler
--proctype set processor architecture
--soname use soname during linking
--static compile and link statically

The compiler option can be used to force a particular compiler configuration file. The proctype
option can be used to force a particular processor architecture. More on this one later. The -s or
-static option can be used to build a static executable. Normally, you should not use this option
since it restrict the use of extension modules. The soname option controls whether or not you
want the dynamic libraries built with a version number and their soname changed accordingly.
This options is detected automatically for a particular platform and should be used only by package
maintainer.



Installation 7

2.2.4 Compiling the distribution

The compilation process is straightforward. Just enter the command:

zsh> make [-j]

This will build the complete distribution locally. If you have an error, at this stage, it is best to report
it at bugs@aleph-lang.org.

2.2.5 Testing the distribution

The distribution contains all test suites. The test suites are compiled and executed with the following
command.

zsh> make [-j] test

2.2.6 Installing the distribution

Once the system has been built and tested, it can be installed. By default, the installation goes
into the /usr/local directory. This can be overwritten with the -prefix option during the
configuration process.

zsh> make install

There are several variables that controls the behavior of the install rule.

• PREFIX (default /usr/local)
This variable defines the root destination directory. This variable is set during the configura-
tion stage, but can be overwritten.

• BINDIR (default prefix/bin)
This variable defines the binary destination directory.

• LIBDIR (default prefix/lib)
This variable defines the library destination directory.

• HDRDIR (default prefix/include/aleph)
This variable defines the include destination directory.

• MANDIR (default prefix/man)
This variable defines the man page destination directory.

• ETCDIR (default prefix/etc/aleph)
This variable defines the extra destination directory.

Each variable can be changed during the installation process. This is done with the install rule.

make install BINDIR=/usr/bin LIBDIR=/usr/lib

2.2.7 Cleaning the distribution

The distribution can be cleaned with the clean rule.

zsh> make clean



8 Installation Procedures

This rule does not clean the configuration. For a complete cleaning the distclean rule is more
appropriate.

zsh> make distclean

2.3 Running Aleph

The command aleph invokes the interpreter. You must have the LD_LIBRARY_PATH environment
variable properly configured with the directory containing the aleph shared libraries. If you have
installed all libraries in a standard UNIX location like /usr/local/lib, you should not have to
set the variable.

2.3.1 Running some examples

The directory exp contains various examples which can be run. Each example is labeled according
to their use in the volume 1 of the documentation set. Example 0101.als prints the message
hello world. Example 0501.als prints various information about the system configuration, the
interpreter revision, etc.

zsh> aleph 0101.als
hello world

zsh> aleph 0501.als
major version number : 0
minor version number : 9
patch version number : 0
interpreter version : 0.9.0
operating system name : linux
operating system type : unix
aleph official url : http://www.aleph-lang.org

2.4 Special targets

The distribution can be configured to operate on a specific machine target. For example, a typical
Linux-PC box will be compiled with the default compiler target, which is the 386 processor. You can
force the compilation to be optimized for a particular processor. This is done with the -proctype
option of the aleph-setup utility. Currently the distribution supports the 586 and 686 for the
Intel architecture. The ultra architecture is valid for the Sparc architecture.

zsh> cnf/bin/aleph-setup -o --prefix=/usr/local --proctype=586

This command will configure the distribution to be compiled specifically for the Pentium archi-
tecture.

zsh> cnf/bin/aleph-setup -o --prefix=/usr/local --proctype=ultra

This command will configure the distribution to be compiled specifically for the UltraSparc
architecture.

2.5 Extensions



Documentation 9

Extensions are specific libraries or executables which are not build automatically during the build
process. The user is responsible to decide which extension is needed for the system All extensions
are located under the src/ext directory. Simply going into the appropriate directory and running
the make command will build the extension.

2.5.1 Aleph static interpreter (asi)

The asi extension creates a static interpreter with all libraries automatically included in the final
executable. The extension is simply build with the following command. Note that this extension
overwrite the previous executable in the bld/bin directory. The following command build the
asi extension.

zsh> make -C src/ext/asi

2.6 Documentation

The documentation is available as a tar file in both postscript or pdf files. To unpack the documen-
tation use the following commands.

zsh> gzip -d aleph-doc-[version].tar.gz
zsh> tar xf aleph-doc-[version].tar

The documentation is delivered as a set of manuals in Postscript or PDF format. It is your responsi-
bility to install the documentation in a specific location of your choice.

2.6.1 Extra files

Aleph comes with some extra files. The most important is the aleph-mode for Emacs. The
original source file written in Emacs Lisp is available in the etc directory of the distribution.
You should install this file according to your current Emacs installation.

2.6.2 Rebuilding the documentation

If you have LATEXavailable, the documentation can be rebuild with the following rules. Note that the
documentation is produced in two formats (ISO A4 and US letter).

• doc
This rule rebuilds the full documentation set and place it into the bld directory. Both
Postscript and PDF manuals are generated.

• epsman
The rule rebuilds only the Postscript manuals and place them in the bld directory.

• pdfman
The rule rebuilds both Postscript and PDF manuals and place them in the bld directory.

Once the documentation is rebuild, it can be installed in a location of your choice.



10 Installation Procedures



CHAPTER 3

Package Maintainer Notes

This chapter contains additional notes for the package maintainer. They are also useful for anybody
who is in charge of integrating the Aleph distribution in a build process. The chapter describes the
distribution tree with more details.

3.1 The Distribution Tree

The distribution tree is composed of various directories. Each of them has a Makefile which can
be called locally or from the top level.

• cnf
This directory contains the configuration distribution and various utilities. Normally you
should not touch it, unless you are using a compiler different than gcc.

• src
This directory contains the complete source tree. The source code is written in C++. Nor-
mally this directory is left untouched. If there are good reasons to modify it, please let us
know.

• tex
This directory contains the complete documentation latex source tree. It should be left un-
touched.

• etc
This directory contains various files associated with the distribution. You might want to copy
some of them.

• exp
This directory contains various examples. They are included for illustration purpose.

3.2 Configuration and setup

The configuration process involves the use of the cnf/bin/aleph-setup utility. This utility
is used to configure the distribution. Package maintainers are encouraged to use it with specific
options.

3.2.1 Platform detection



12 Package Maintainer Notes

The utility cnf/bin/aleph-guess is used during the configuration process to detect a sup-
ported platform. This utility is a script and can be run in stand-alone mode. Various options can be
used to tune the type of information requested.

zsh> ./cnf/bin/aleph-guess -h
usage: aleph-guess [options]

-h print this help message
-n print the platform name
-v print the platform version
-M print the platform major number
-m print the platform minor number
-p print the processor name
-t print the processor type

Without option, the utility prints a platform and processor description string.

zsh> ./cnf/bin/aleph-guess
linux-2.2-ia-generic

3.2.2 Platform defaults

The directory cnf/def contains a platform specific default file. The file determines what is the
default compiler and linking mode. This file is used by the aleph-setup utility. For example, the
aleph-linux.def file contains:

compiler: gcc
lkmode: soname

Such options instructs the configuration utility, that the default compiler is gcc and the linking mode
should use the soname option. These default values can be overwritten with the equivalent option of
the aleph-setup utility. Note that the compiler version is automatically detected by the system.
The utility aleph-vcomp will return the appropriate compiler version running on your system.

3.2.3 C++ source file convention

Aleph has two types of C++ file. The first type has the extension .cxx and the second type has
the extension .cpp. The .cxx (and the associated .hxx) files are only used to indicate a system
dependency. These files are found only in the src/plt/lib directory. The .cxx extension
indicates that the file might use system specific include files. The .cpp (and the associated .hpp)
files are the normal C++ source files. The .cpp extension is used to indicate that these files will not
use a system specific file. By default this rule is enforced in the compiler file by specifying some
compiler flags which do not authorize such access.

3.2.4 Configuration files

The configurations files are located in the ./cnf/mak directory. Normally they should be left un-
touched. The most important one is the aleph-rule.makfile that defines most of the compilation
and linking rules. Additionnaly, during the setup operation, the aleph-setup utility creates two
files in the ./bld/cnf directory. The ./bld is the build directory. The file aleph-plat.mak
is the platform configuration file and the aleph-comp is a link to the appropriate compiler config-
uration file.



Building the package 13

3.3 Compilation

Normally, the compilation process is immediate. Just invoking the command make will do the
job. However, some package maintainer have the desire to overwrite some flags. Some options are
provided to help you in this task.

• EXTCPPFLAGS
This flag can be used to add some compilation flags for all .cpp files.

• EXTCXXFLAGS
This flag can be used to add some compilation flags for all .cxx files.

• EXTCCDEFINE
This flag can be used to add some compilation definitions for all source files.

• EXTINCLUDES
This flag can be used to add some compilation paths for the cxx files.

.
For example, it is common to have some maintainer to compile with both the debug and optimize
flags. This can be done with the following command (assuming an optimized configuration):

make EXTCPPFLAGS=-g EXTCXXFLAGS=-g

3.3.1 Compilation results

All include files, compiled libraries and executables are placed in the bld directory. This directory
contains the bld/bin for binaries, bld/lib for libraries and bld/hdr for the header files.

3.4 Building the package

The package can be built by accessing the bld directory or by invoking the install rule. The
second method is not recommended for package construction, since it might trigger some file instal-
lation without your control.

3.4.1 Special files

The etc directory contains some special files that might be used for the package construction. Here
is a sample list of them.

• license.txt
This file is the license file.

• what-short.txt
This file is a short description of what is Aleph.

• what-long.txt
This file is a longer description of what is Aleph.

• aleph.man
This file is the Aleph man page.

• aleph-mode.el
This file is the Aleph Emacs mode.



14 Package Maintainer Notes

• aleph-gud.el
This file is the Aleph debugger Emacs gud mode.

3.5 Building the documentation

The documentation is available as Postscript or PDF files. The documentation can be rebuild as-
suming LATEXis available on the system. The doc rule rebuilds all documentation files and place
them in the bld directory. Note that the documentation is also available as a precompiled tar file.

3.6 Other make rules

The top level Makefile contains other rules that might be useful.

• debug
This rule invokes the default configuration in debug mode.

• optimized
This rule invokes the default configuration in optimized mode.

• build
This rule invokes the default configuration in debug mode and compile the whole distribution.
The default install directory is /usr/local.

• world
This rule invokes the default configuration in optimized mode and compile the whole distri-
bution. The default install directory is /usr/local.

• test
This rule runs all test suites.

• doc
This rule builds the documentation

• distri
This rule builds the distribution

• install
This rule install the distribution

• clean
This rule cleans the distribution but keep the configuration.

• distclean
This rule cleans the distribution including the configuration.



Colophon

This manual was written for the LATEXdocumentation preparation system. A custom document class
was designed by the author. The document style has been simplified as to produce a high quality
technical manual. Title, chapter and section names have been produced with an Helvetica font. The
document has been produced with a 10 points Times font. Both fonts are assumed to be in the public
domain. The documentation is available in both A4 and letter format.


