
ℵ Programming Language

C++ Programming Interface

Volume 4 Revision 0.9.0

This documentation is bound to the Aleph programming language license and therefore shall be considered
free. This documentation can be redistributed and/or modified, providing that the copyright notice is kept
intact. This documentation is distributed in the hope that it will be useful, but without any warranty; without
even the implied warranty of merchantability or fitness for a particular purpose. In no event shall the copyright
holder be liable for any direct, indirect, incidental or special damages arising in any way out of the use of this
documentation or the software it refers to.

c© 1999-2003 Amaury C. Darsch

CONTENTS

Preface v
The Aleph programming language v
Features v
Aleph engine vi
Flexible Distribution vi

License ix

1 Introduction 1
1.1 The header files 1

1.1.1 The platform headers 1
1.1.2 The standard objets headers 1
1.1.3 The interpreter engine headers 1

1.2 Conventions 2
1.2.1 Header file extension 2
1.2.2 Aleph namespace 2
1.2.3 Makefile 2

1.3 Types, declaration and memory 2
1.3.1 Character and strings 3
1.3.2 Memory allocation 3

2 Eval-Apply and functions 5
2.1 Interpreter eval-apply 5

2.1.1 Various eval-apply 5
2.1.2 The simplest eval-apply 5
2.1.3 Runnable object 6
2.1.4 Evaluation nameset 6
2.1.5 Object eval-apply methods 6

2.2 The add function 6
2.3 Putting all together 7

2.3.1 Shared library entry point 7
2.3.2 Compiling everything 8
2.3.3 Testing the result 8

iv CONTENTS

3 Object Class 11
3.1 Object evaluation 11

3.1.1 Object eval-apply methods 11
3.1.2 Eval default implementation 11
3.1.3 Qualified name evaluation 12
3.1.4 Quark definition 12

3.2 Static construction 12
3.2.1 Argument vector interface 12

3.3 A simple object 13
3.3.1 The default constructor 14
3.3.2 The representation method 15
3.3.3 The static constructor 15
3.3.4 First compilation 15

A Boolean example 17
A.1 Boolean example header 17
A.2 Boolean example implementation 19

B Object class 25

Colophon 29

Preface

This manual is part of the Aleph Programming Language Series, a multi volume set that describes
the programming environment of the Aleph system. The entire set contains 4 volumes :

Volume 0 - Aleph Installation Guide is the distribution installation manual.

Volume 1 - Aleph Programmer Guide is the first volume of this set. It is both an introduction and
an advanced guide for the the developer.

Volume 2 - Aleph Library Reference is the second volume of this set. It is a complete description
of the Aleph standard library.

Volume 3 - Aleph Cross Debugger is the third volume of this set. It is a reference manual to de-
velop and debug Aleph programs.

Volume 4 - Aleph C++ API is the fourth volume of this set. It is a reference manual of the C++
Application Programming Interface (API).

The Aleph programming language

Aleph is a multi-threaded functional programming language with dynamic symbol bindings that
support the object oriented paradigm. Aleph features a state of the art runtime engine that supports
both 32 and 64 bits platforms. Aleph comes with a rich set of libraries that are designed to be
platform independent. Aleph is a free software. A flexible license has been designed for both
individuals and corporations. Everybody is encouraged to use, distribute and/or modify the aleph
engine for any purpose.

Features

The Aleph engine is written in C++ and provides runtime compatibility with it. Such compatibility
includes the ability to instantiate C++ classes, use virtual methods and raise or catch exceptions. A
comprehensive API has been designed to ease the integration of foreign libraries.

• Builtin objects
More than 50 reserved keywords and predicates. Various containers like list, vector, hash
table, bitset, and graphs.

• Functional programming
Support for lambda expression with explicit closure. Symbol scope limitation with gamma
expression. Form like notation with an easy block declaration.

vi PREFACE

• Object oriented
Single inheritance object mechanism with dynamic symbol resolution. Native class deriva-
tion and method override. Static class data member and methods.

• Multi-threaded engine
True multi-threaded engine with automatic object protection mechanism against concurrent
access. Read and write locking system and thread activation via condition objects.

• Original regular expression
Builtin regular expression engine with group matching, exact or partial match and substitu-
tion.

Aleph is a core language and libraries. The libraries are a specific set of classes and functions which
are structured per application domains. Aleph is delivered with a set of standard libraries.

• aleph-sys
The aleph-sys library is the system calls library. Standard classes and functions are
provided to interact with the running machine.

• aleph-sio
The aleph-sio library is the standard input/output All input/output operations are per-
formed with this library.

• aleph-net
The aleph-net library is the networking library. The library is based on the standard
Internet Protocol and provides various classes to manipulates IP address, client or server
sockets.

• aleph-www
The aleph-www library is the World Wide Web library. The library provides various classes
that ease the development of web applications or CGI scripts.

• aleph-txt
The aleph-txt library is the text processing library. The library provides various func-
tions and classes that ease text manipulation. Sorting data, computing message digest and
formatting table is among others, features available in this library.

• aleph-odb
The aleph-odb library is the object database library. The library provides several objects
that can be used to design a database. A client is also provided to directly access the database
contents.

Aleph provides extensions. An extension is a library or an application which is not installed by
default. The user selects during the installation process which extension is needed. For example, the
static version of the interpreter is an extension.

Aleph engine

Aleph is an interpreted language. When used interactively, commands are entered on the command
line and executed when a complete and valid syntactic object has been constructed. Alternatively,
the interpreter can execute a source file. Aleph does not have a garbage collector. Aleph operates
with a lazy, scope based, object destruction mechanism. Each time an object is no longer visible,
it is destroyed automatically. At this time, the Aleph interpreter is unable to reclaim memory with
circular structures. This is a well known problem when using a reference count mechanism. In the
future, the Aleph engine will provide some mechanisms to resolve this problem.

PREFACE vii

Flexible Distribution

Aleph is a free software. A flexible license model encourages individuals or corporations to use,
copy, modify and/or distribute this software. Aleph is designed by software professionals. Quality is
one the driving force of the development effort. This is reflected in this distribution by the extensive
documentation. A large test suite is used to assess the quality of the distribution. Right now, the
engine has been successfully tested on most Linux platforms, Free BSD and Solaris.

viii PREFACE

License

Aleph is a free software. It can be used, modified and distributed by anybody for personal or com-
mercial use. The only restriction is altering the copyright notice associated with the material. In-
dividual or corporation are permitted to use, include or modify the Aleph engine. All material
developed with the Aleph language belongs to their respective copyright holder.
This program is a free software. it can be redistributed and/or modified, providing that this copyright
notice is kept intact. This program is distributed in the hope that it will be useful, but without any
warranty; without even the implied warranty of merchantability or fitness for a particular purpose.
In no event shall the copyright holder be liable for any direct, indirect, incidental or special damages
arising in any way out of the use of this software.

x LICENSE

CHAPTER 1

Introduction

This chapter is an introduction to the general organization of the Aleph C++ application program-
ming interface or API. We start by looking at the various levels of the API and then describes the
general presentation of the C++ header files. The reader needs to absorb some materials before bee-
ing able to write its own class. For the impatient, we recommend to read this chapter and the next
one. A simple example is given at the end of chapter 2.

1.1 The header files

All Aleph API files are structured into several directories, each of them dedicated to a specific func-
tions. All directories are generally located below an aleph specific directory or for some distributions
under the standard /usr/include or /usr/local/include directories for a UNIX platform.

• plt
The platform independent header files.

• std
The standard object header files.

• eng
The Aleph engine header files.

Additional directories are included. One for each library and extension.

1.1.1 The platform headers

The plt directory contains the platform independant headers files. The files are low level functions
and should be the last thing to use. Their use will be covered later.

1.1.2 The standard objets headers

The std directory contains the standard object headers files. This directory is the primary source
of files. It contains the most important header, named Object. The Object header is covered in the
next chapter.

1.1.3 The interpreter engine headers

2 Introduction

The eng directory contains the interpreter engine header files. This directory is as important as the
standard object one. It contains the Interp object, which is the interpreter by itself.

1.2 Conventions

The general structure of the Aleph API rely on various conventions and rules. These rules have been
carefully designed to ensure portability accross platforms as well as a smooth support for 32 and 64
bits platforms.

1.2.1 Header file extension

All header files use the hpp extension. These header files only reference aleph functions or classes.
If there is one rule to keep in mind, it is this one. There is no platform header files. This rule
provides the flexibility to design a system which is platform independant. Because of the Makefile
structure, any attempt to use a platform header will cause a compilation error. If one take a look at
the source tree, (s)he will find another header type with extension hxx. This type of header are the
one which contains the platform dependant headers. However, this type of headers is never exported
to the API.

1.2.2 Aleph namespace

All functions and classes belong to the namespace aleph. This namespace should be used only for
software code which is supposed to be part of the Aleph distribution. If you plan to develop your
own piece of code, please use another namespace.

1.2.3 Makefile

There is no particular rules for Makefile, unless the software beeing develop is supposed to be
integrated into the distribution.

1.3 Types, declaration and memory

The basic types used everywhere are defined in the plt/ccnf.hpp header file. This file contains
also some information about your operating system, the processor type and the software revision. It
is strongly suggested to take a look at it. The basic types are defined inside the aleph namespace.

typedef unsigned char t_byte;
typedef unsigned short t_word;
typedef unsigned int t_quad;
typedef unsigned long long t_octa;
typedef long long t_long;
typedef double t_real;

The special type t_size is determined automatically according to the platform. A 32 bits platform
has:

typedef unsigned int t_size;

while a 64 bits platform has:

typedef unsigned long t_size;

Types, declaration and memory 3

It is by far the t_size type which is the most important. This type is automatically determined
by your platform configuration. You should almost never use the int type, except for resource
description. The long type is most of the time appropriate and t_long required when a 64 bits
width needs to be forced. Since most compiler adopt the LP64 model, the long type seems to be a
good choice. Note that this header file is automatically included in the Object file.

1.3.1 Character and strings

The char type is the prefered type for a character. The implementation uses the const char*
for the c-strings. The standard object library provides a String class that take care of string manipu-
lation. On the other hand, the basic c-string declaration is inevitable when dealing with literal string.
The t_byte type is appropriate for unsigned character.

1.3.2 Memory allocation

We will talk a lot about memory allocation later. At this stage, note that new and delete are the
best way to operate. You should almost never use the low level memory allocation since it might
conflict with the memory tracer and worse with the shared libaries memory cleanup subsystem.
Obviously, call to malloc and free are prohibited. In fact, these functions are not exported by the
API. If an object is generated by a function or method and need to be destroyed, a call to delete
is the way to go, nothing else will work. As a matter of facts, the object destruction is a more
complex subject, which is detailed in chapter 3.

4 Introduction

CHAPTER 2

Eval-Apply and functions

The eval-apply mechanism is the central runtime operation of the Aleph engine. Depending on the
nature of the form to evaluate, one strategy or another is used to perform the eval-apply process. It
is interesting to note that a complete program execution is merely an eval-apply loop.

2.1 Interpreter eval-apply

The Aleph interpreter rely on a mechanism called an eval-apply loop. For each form being evaluated,
the first object evaluation method is called. The returned object is eventually used to apply one or
several evaluated arguments. We describe in detail how this mechanism works with various example.

2.1.1 Various eval-apply

There are several kinds of eval-apply strategy that are used depending on the nature of the form.

• add + 1 2
This is the simplest form to evaluate. The form consist of a list of objects. The first object is
evaluated and the rest is transmitted to the evaluated object during the apply phase. Our first
example will cover this type of form.

• Boolean true
This form is an object construction form. Its evaluation is slightly different to the previous
one. This type of form is covered in the next chapter.

• aleph:sys:sleep 1000
This form is similar to the first one, except that it uses a qualified name instead of the a lexical
name.

• str:split ":"
This form is a method call with argument. It’s evaluation is described in the next chapter.

• println "hello world"
This form is a special form. Its evaluation is described in a specific chapter. Forms that uses
a reserved keyword are generally special forms. Note that the reserved keywords const and
trans are special, for a special form.

• + 1 2
This form is a generic operating form. Its evaluation is described in a specific chapter.

6 Eval-Apply and functions

2.1.2 The simplest eval-apply

The simplest example to consider is the introductory form add 1 2. This form consists of three
objects. The first one is a lexical object, the second and third are literals. When the form is evaluated
several steps are performed. The form is represented by three cons cells. The car contains the lexical
object. The cdr points to another cons cell, those car is an Integer object. The cdr of the second
cons cell points to the third argument, those car is also an Integer object. The last cdr is nil (null
pointer) to indicate the end of the form. This form is automatically built by the Aleph reader. During
the evaluation process, several operations take place, as described below.

• Evaluates the first object in the form. The object is a lexical object represented by add.
Such evaluation is done with the interpreter by calling the object virtual method eval. In that
particular case, the lexical evaluates to a function object.

• Apply the first evaluated object with the rest of the form. For that particular example, the first
object has been evaluated as a function object. The virtual apply method is called with the
cdr of the form. The apply method returns the result of such application. In that particular
case, the add function method returns an Integer object, those value is 3.

• What happen inside the apply method is implementation dependent. However, for that par-
ticular example, the add method evaluates each argument object, check that they are valid
integers, compute the sum, and returns a newly created integer object with the result.

This simple example illustrates the fundamental mechanics of the Aleph engine. Note that the
process we have described here is simply the evaluation process of a cons cell. We will come back
later on this.

2.1.3 Runnable object

The aleph interpreter is a runnable object. A runnable object is a special object that carry several
methods. Our first example do not need it, but the object is part of the API. A typical use of the
runnable object is within the println builtin function (special form). Such function get the stan-
dard output stream from the runnable object. The runnable object is defined in the standard library
as Runnable.

2.1.4 Evaluation nameset

An eval-apply process is done within an evaluation nameset. The evaluation nameset is the point at
which a symbol or an argument is evaluated. The first example does use the evaluation nameset to
resolve the symbol add. The nameset object is defined in the standard library as Nameset.

2.1.5 Object eval-apply methods

The Object class contains several overloaded eval and apply methods. We are here only concerned
with the simple one.

2.2 The add function

The C++ implementation of the add function declaration is given below. The first argument is the
runnable object. The second argument is the evaluation nameset object. The third argument is the
argument list. At this stage of the call, the symbol add has been evaluated (we will how later), and
the function is called with the last two arguments as a result of an apply call.

Putting all together 7

Object* example_add (Runnable* robj, Nameset* nset, Cons* args) {
// evaluate the arguments in a vector
Vector* argv = Vector::eval (nset, args);
// compute the result
long result = argv->getint (0) + argv->getint (1);
// generate result
return new Integer (result);

}

As it can be noticed, this implementation is quite simple and will work. Unfortunately, it will also
leak, since the argument vector is not destroyed. Note also that an exception might also happen. A
perfect implementation should enclose the computation in a try-catch block and destroy the argument
vector. The complete implementation, ready to compile, is given below, with the appropriate include
file and namespace. This example is available in the exp/api directory as Add.cpp.

#include "Vector.hpp"
#include "Integer.hpp"

namespace example {
// use the aleph namespace
using namespace aleph;

// add function implementation
Object* example_add (Runnable* robj, Nameset* nset, Cons* args) {

// evaluate the arguments in a vector
Vector* argv = Vector::eval (robj, nset, args);
try {

// compute the result
long result = argv->getint (0) + argv->getint (1);
// clean the vector
delete argv;
// generate result
return new Integer (result);

} catch (...) {
delete argv;
throw;

}
}

}

2.3 Putting all together

Once the add function has been implemented, it must be registered within the interpreter. There
are various ways to do so. The description below uses the standard Aleph mechanism with shared
libraries. Once the library will be built, it is going to be possible to test the function.

2.3.1 Shared library entry point

The first thing to do, in order to create a shared library, is to define a unique entry point that is
called when the library is loaded. This entry point takes care of registering the library symbols.
The Aleph convention uses names in the form of dli_namespace_library. The plus (+) and and
minus (-) characters are automatically re-mapped to underscore character. For example, the library

8 Eval-Apply and functions

aleph-sys has the entry point dli_aleph_sys. Our example uses the namespace example, so
a valid entry point would be dli_example or preferably dli_example_api. The entry point
must be mapped as a "C" name to avoid name mangling. It is also part of the Aleph methodology to
break the call in two pieces. One is the "C" entry point and the other is the "C++" entry point.

#include "Libapi.hpp"
#include "Apicalls.hpp"
#include "Function.hpp"

namespace example {
// use the aleph namespace
using namespace aleph;

// initialize the api library
Object* init_example_api (Interp* interp, Vector* argv) {

// make sure we are not called from something crazy
if (interp == nilp) return nilp;

// create the api nameset
Nameset* api = interp->mknset ("api", interp->getgset ());

// bind the add function
api->symcst ("add", new Function (api_add));

// not used but needed
return nilp;

}
}

extern "C" {
aleph::Object* dli_example_api (aleph::Interp* interp,
aleph::Vector* argv) {
return example::init_example_api (interp, argv);

}
}

2.3.2 Compiling everything

The compilation is quite simple. The library generation is a little more tricky. The previous
example is demonstrated with GCC and assume that the Aleph include file are located in the
/usr/local/include/aleph directory.

zsh > g++ -I. -I/usr/local/include/aleph -g
-fPIC -D_REENTRANT -c *.cpp

zsh > g++ -shared -o libexample-api.so *.o
-L/usr/local/lib -laleph-eng

These commands should work fine. However, depending on your system, some adjustments might
be needed. You should look at the Aleph compilation process to get a better idea of what is going
on. Some system might require all libraries. More compiler flags can be used, and should be used.

2.3.3 Testing the result

Putting all together 9

With the library ready to use, it is possible to run an Aleph session and see what is happening.

zsh> aleph
aleph> interp:library "example-api"
aleph> println (add 1 2)
3
aleph> C-d
zsh >

This is it. If it does not work, you should check the LD_LIBRARY_PATH environment variable. In
last resort, the directory exp/api contains a Makefile designed to work correctly, but it won’t
install the library.

10 Eval-Apply and functions

CHAPTER 3

Object Class

The Object class is the pillar of the Aleph engine. The class defines the base methods that are used
during the eval-apply process. The class provides also the methods to control the object locking as
well as the object reference count.

3.1 Object evaluation

The simplest object evaluation is the one that takes an object and returns an object. Most of the time
this evaluation is reflexive. That is the calling object is returned. In this case, the object is said to be
self evaluated.

3.1.1 Object eval-apply methods

The Object class contains several overloaded eval and apply methods. The simplest one requires
only a runnable and nameset objects.

class Object {
... many declarations

/// evaluate an object in the current nameset
/// @param robj the current runnable
/// @param nset the current nameset
virtual Object* eval (class Runnable* robj, class Nameset* nset);

/// apply an object with a set of arguments
/// @param robj the current runnable
/// @param nset the current nameset
/// @param args the arguments to apply
virtual Object* apply (class Runnable* robj, class Nameset* nset,

class Cons* args);
}

3.1.2 Eval default implementation

The default implementation for the eval method is to return the calling object (aka this). As men-
tioned earlier, such behavior is called self evaluation. Most of the objects evaluates to themselves.
This include all literal objects such like Integer or String.

12 Object Class

// evaluate an object in the current nameset
Object* Object::eval (Runnable* robj, Nameset* nset) {

return this;
}

}

It is remarkable to notice how such simple implementation can be so powerful.

3.1.3 Qualified name evaluation

The evaluation of a qualified name is a repetitive process that goes for each lexical element of that
name. For example, the qualified name hello:world is evaluated first by evaluating hello
which in turn evaluates world. Since, the evaluation by name is too costly in terms of stringg
comparision, the qualified name evaluation is done by a quark mechanism.

3.1.4 Quark definition

A quark is unique integer representation for a given string. The term quark comes from the X
Window System which has a similar mechanism. For a given string, a quark is constructed with the
static string method intern.

static const long QUARK_TOSTRING = String::intern ("to-string");

When a qualified name is constructed by the lexical analyzer, an equivalent quark representation is
computed automatically. This process makes now the qualified name evaluation a straight-forward
recursive system that involves just integer comparision.

3.2 Static construction

In order for the interpreter to construct a new object, the class has to provide a static method that
returns such object based on an argument vector.

/// generate a new boolean
/// @param argv the argument vector
static Object* mknew (Vector* argv);

The vector argument contains evaluated object. It is up to the implementation to call the appropriate
constructor, depending on the arguments type and values.

3.2.1 Argument vector interface

The Vector class provides several method that ease the transformation between object and native
types.

• length
returns the numbre of elements in this vector

• getint
returns a native integer by index

• getbool
returns a native boolean by index

A simple object 13

• getreal
returns a native real (double) by index

• getchar
returns a native character by index

• getstring
returns a string object by index

As an example, we reproduce here the implementation of the BitSet class.

Object* BitSet::mknew (Vector* argv) {
long argc = (argv == nilp) ? 0 : argv->length ();
if (argc == 0) return new BitSet;
if (argc == 1) {

long size = argv->getint (0);
return new BitSet (size);

}
throw Exception ("argument-error", "too many argument for bitset");

}

This implementation provides two ways to create a bitSet object. Without argument, the argument
vector length is null and the method return a new object by calling the default constructor. With one
argument, a new bit set is created with a specific size. The other cases throw an exception. Note that
an exception can be raised by the getint method if the object argument cannot be mapped to an
integer value.
Another way to access the argument object is by performing directly dynamic casting. We left the
code fragment below of the Character class as an excercise.

Object* Character::mknew (Vector* argv) {
if ((argv == nilp) || (argv->length () == 0)) return new Character;
if (argv->length () != 1)

throw Exception ("argument-error",
"too many argument with character constructor");

// try to map the character argument
Object* obj = argv->get (0);
if (obj == nilp) return new Character;

// try an integer object
Integer* ival = dynamic_cast <Integer*> (obj);
if (ival != nilp) return new Character (ival->tointeger ());

// try a character object
Character* cval = dynamic_cast <Character*> (obj);
if (cval != nilp) return new Character (*cval);

// try a string object
String* sval = dynamic_cast <String*> (obj);
if (sval != nilp) return new Character (*sval);

// illegal object
throw Exception ("type-error", "illegal object with character"

obj->repr ());
}

14 Object Class

3.3 A simple object

Writing a new C++ object that is usable by the Aleph engine is quite simple. The following example
implements the behavior of a boolean. The class is called Boolean and is available in the stan-
dard library. We implement here a simple version without qualified name support, but this minimal
example will compile and can be constructed in the interpreter.

#ifndef EXAMPLE_BOOLEAN_HPP
#define EXAMPLE_BOOLEAN_HPP

#ifndef ALEPH_OBJECT_HPP
#include "Object.hpp"
#endif

namespace example {
// use the aleph namespace
using namespace aleph;

/// The example::Boolean class
class Boolean : public Object {
private:

/// the native boolean
bool d_value;

public:
/// create a new default boolean
Boolean (void);

/// create a boolean by value
Boolean (const bool value);

/// @return the class name
String repr (void) const;

/// create a new boolean
static Object* mknew (Vector* argv);

}
}
#endif

This is the minimal declaration that is needed to compile the boolean example. Note that the default
constructor is not really needed, but it is given here for illustration purpose.

3.3.1 The default constructor

The default constructor is not really needed here, but it is generally wise to provide a default imple-
mentation. Remember that a default constructor is one of the six default implementation provided
by the compiler for a given class. It is a good practice to have basic things under control.

namespace example {
// create a default boolean
Boolean::Boolean (void) {

d_value = false;
}

A simple object 15

// create a boolean by value
Boolean::Boolean (const bool value) {

d_value = value;
}

}

3.3.2 The representation method

The repr method is one of the mandatory method for an object derivation since it is defined as virtual
pure in the Object base class. The method returns a string representation of that class, that is here
the string "Boolean".

namespace example {
// return the class name
String Boolean::repr (void) const {

return "Boolean";
}

}

3.3.3 The static constructor

The implementation for the static constructor is trivial. We accept only 0 or one argument and create
a new boolean object.

namespace example {
// create a boolean in a generic way
static Object* Boolean::mknew (Vector* argv) {

long argc = (argv == nilp) ? 0 : argv->length ();
if (argc == 0) return new Boolean;
if (argc == 1) {

long value = argv->getbool (0);
return new Boolean (value);

}
throw Exception ("argument-error", "too many argument for boolean");

}
}

3.3.4 First compilation

If we assume that the standard Aleph headers are located under the /usr/local/include/aleph/std,
we can compile the previous example, assuming we are using gcc.

zsh > gcc -D_REENTRANT -I. -I/usr/local/include/aleph/std
-I/usr/local/include/aleph/std -o Boolean.o -c Boolean.cpp

The flags for compiling in debug mode, all warnings, no standard include files, etc. can be used as
well. We will see in the next chapter how to use the standard Aleph makefile to develop a complete
library. If you plan to use your own build system, a complete list of directives and recommendation
is given in the next chapter as well. If you plan to contribute to the Aleph distribution, ther are more
constraints attached to the build process which are described in a specific Contributing to Aleph
chapter.

16 Object Class

APPENDIX A

Boolean example

A.1 Boolean example header

#ifndef ALEPH_BOOLEAN_HPP
#define ALEPH_BOOLEAN_HPP

#ifndef ALEPH_LITERAL_HPP
#include "Literal.hpp"
#endif

#ifndef ALEPH_SERIAL_HPP
#include "Serial.hpp"
#endif

namespace aleph {

class Boolean : public Literal, public Serial {
private:

/// the native boolean representation
bool d_value;

public:
/// create a new default boolean - by default it is false
Boolean (void);

/// create a new boolean from a native boolean
/// @param value the value to create
Boolean (const bool value);

/// create a new boolean from a string
/// @param value the value to convert
Boolean (const String& value);

/// copy constructor for this boolean
/// @param that the boolean class to copy
Boolean (const Boolean& that);

18 Boolean example

/// @return the class name
String repr (void) const;

/// @return a literal representation of this boolean
String toliteral (void) const;

/// @return a string representation of this boolean
String tostring (void) const;

/// @return a clone of this boolean
Object* clone (void) const;

/// @return the boolean serial code
t_byte serialid (void) const;

/// serialize this boolean to an output stream
/// @param os the output stream to write
void wrstream (class Output& os) const;

/// deserialize a boolean from an input stream
/// @param is the input steam to read in
void rdstream (class Input& is);

/// @return the boolean value of this boolean
bool toboolean (void) const;

/// assign a boolean with a native value
/// @param value the value to assign
Boolean& operator = (const bool value);

/// assign a boolean with a boolean
/// @param value the value to assign
Boolean& operator = (const Boolean& value);

/// compare this boolean with a native value
/// @param value the value to compare
/// @return true if they are equals
bool operator == (const bool value) const;

/// compare this boolean with a native value
/// @param value the value to compare
/// @return true if they are not equals
bool operator != (const bool value) const;

/// compare two booleans
/// @param value the value to compare
/// @return true if they are equals
bool operator == (const Boolean& value) const;

/// compare two boolean
/// @param value the value to compare
/// @return true if they are not equals
bool operator != (const Boolean& value) const;

Boolean example implementation 19

/// evaluate an object to a boolean value
/// @param robj the current runnable
/// @param nset the current nameset
/// @param object the object to evaluate
static bool evalto (Runnable* robj, Nameset* nset, Object* object);

/// generate a new boolean
/// @param argv the argument vector
static Object* mknew (Vector* argv);

/// operate this boolean with another object
/// @param robj the current runnable
/// @param type the operator type
/// @param object the operand object
Object* oper (Runnable* robj, t_oper type, Object* object);

/// set an object to this boolean
/// @param robj the current runnable
/// @param nset the current nameset
/// @param object the object to set
Object* vdef (Runnable* robj, Nameset* nset, Object* object);

/// apply this boolean with a set of arguments and a quark
/// @param robj the current runnable
/// @param nset the current nameset
/// @param quark the quark to apply these arguments
/// @param argv the arguments to apply
Object* apply (Runnable* robj, Nameset* nset, const long quark,

Vector* argv);
};

}
#endif

A.2 Boolean example implementation

#include "Input.hpp"
#include "Vector.hpp"
#include "Boolean.hpp"
#include "Exception.hpp"

namespace aleph {

// the boolean supported quarks
static const long QUARK_EQL = String::intern ("==");
static const long QUARK_NEQ = String::intern ("!=");
static const long QUARK_TOSTRING = String::intern ("to-string");

// create a new boolean - the initial value is false

Boolean::Boolean (void) {
d_value = false;

20 Boolean example

}

// create a boolean from a native value

Boolean::Boolean (const bool value) {
d_value = value;

}

// create a boolean from a string

Boolean::Boolean (const String& value) {
if (value == "false")

d_value = false;
else if (value == "true")

d_value = true;
else

throw Exception ("literal-error","illegal boolean value",value);
}

// copy constructor for this boolean

Boolean::Boolean (const Boolean& that) {
d_value = that.d_value;

}

// return the class name

String Boolean::repr (void) const {
return "Boolean";

}

// return a literal representation of this boolean

String Boolean::toliteral (void) const {
return tostring ();

}

// return a string representation of this boolean

String Boolean::tostring (void) const {
return d_value ? "true" : "false";

}

// return a clone of this boolean

Object* Boolean::clone (void) const {
return new Boolean (*this);

}

// return the boolean serial code

t_byte Boolean::serialid (void) const {
return SERIAL_BOOL_ID;

Boolean example implementation 21

}

// serialize this boolean

void Boolean::wrstream (Output& os) const {
rdlock ();
char c = d_value ? 0x01 : nilc;
os.write (c);
unlock ();

}

// deserialize this boolean

void Boolean::rdstream (Input& is) {
wrlock ();
char c = is.read ();
d_value = (c == nilc) ? false : true;
unlock ();

}

// return this boolean value

bool Boolean::toboolean (void) const {
rdlock ();
bool result = d_value;
unlock ();
return result;

}

// assign a boolean with a native value

Boolean& Boolean::operator = (const bool value) {
d_value = value;
return *this;

}

// assign a boolean with a boolean

Boolean& Boolean::operator = (const Boolean& value) {
d_value = value.d_value;
return *this;

}

// compare a boolean with a native value

bool Boolean::operator == (const bool value) const {
return (d_value == value);

}

// compare two boolean

bool Boolean::operator == (const Boolean& value) const {
return (d_value == value.d_value);

22 Boolean example

}

// compare a boolean with a native value

bool Boolean::operator != (const bool value) const {
return (d_value != value);

}

// compare two boolean

bool Boolean::operator != (const Boolean& value) const {
return (d_value != value.d_value);

}

// evaluate an object to a boolean value

bool Boolean::evalto (Runnable* robj, Nameset* nset, Object* object) {
Object* obj = (object == nilp) ? nilp : object->eval (robj, nset);
Boolean* val = dynamic_cast <Boolean*> (obj);
if (val == nilp) throw Exception ("type-error", "nil object to evaluate");
return val->toboolean ();

}

// create a new boolean in a generic way

Object* Boolean::mknew (Vector* argv) {
if ((argv == nilp) || (argv->length () == 0)) return new Boolean;
if (argv->length () != 1)

throw Exception ("argument-error",
"too many argument with boolean constructor");

// try to map the boolean argument
Object* obj = argv->get (0);
if (obj == nilp) return new Boolean;

// try a boolean object
Boolean* bval = dynamic_cast <Boolean*> (obj);
if (bval != nilp) return new Boolean (*bval);

// try a string object
String* sval = dynamic_cast <String*> (obj);
if (sval != nilp) return new Boolean (*sval);

// illegal object
throw Exception ("type-error", "illegal object with boolean constructor",
obj->repr ());

}

// operate this boolean with another object

Object* Boolean::oper (Runnable* robj, t_oper type, Object* object) {
Boolean* bobj = dynamic_cast <Boolean*> (object);
switch (type) {
case Object::EQL:

Boolean example implementation 23

if (bobj != nilp) return new Boolean (d_value == bobj->d_value);
break;

case Object::NEQ:
if (bobj != nilp) return new Boolean (d_value != bobj->d_value);
break;

default:
throw Exception ("operator-error", "unsupported boolean operator");

}
throw Exception ("type-error", "invalid operand with boolean",
Object::repr (object));

}

// set an object to this boolean

Object* Boolean::vdef (Runnable* robj, Nameset* nset, Object* object) {
Boolean* bobj = dynamic_cast <Boolean*> (object);
if (bobj != nilp) {

d_value = bobj->d_value;
return this;

}
throw Exception ("type-error", "invalid object with boolean vdef",
Object::repr (object));

}

// apply this boolean with a set of arguments and a quark

Object* Boolean::apply (Runnable* robj, Nameset* nset, const long quark,
Vector* argv) {

// get the number of arguments
long argc = (argv == nilp) ? 0 : argv->length ();

// dispatch 0 argument
if (argc == 0) {

if (quark == QUARK_TOSTRING) return new String (toliteral ());
}

// dispatch one argument
if (argc == 1) {

if (quark == QUARK_EQL) return oper (robj, Object::EQL, argv->get (0));
if (quark == QUARK_NEQ) return oper (robj, Object::NEQ, argv->get (0));

}

// call the object method
return Object::apply (robj, nset, quark, argv);

}
}

24 Boolean example

APPENDIX B

Object class

#ifndef ALEPH_OBJECT_HPP
#define ALEPH_OBJECT_HPP

#ifndef ALEPH_CCNF_HPP
#include "ccnf.hpp"
#endif

namespace aleph {

/// The Object class is the foundation of the standard object library .
/// The object class defines only a reference count field which is used
/// to control the life of a particular object. When an object is created,
/// the reference count is set to 0. Such object is said to be transient.
/// The "iref" static method increment the reference count. The "dref"
/// method decrement and eventually destroy the object. The "cref" method
/// eventually destroy an object if its reference count is nulll. The object
/// class is an abstract class. For each derived object, the repr method
/// is defined to return the class name. Additionally, the object class
/// defines a set of methods which are used by the runnable to virtually
/// modify or evaluate an object. There are two sets of methods. The first
/// set operates directly on the object. The second set operates by name
/// on the object. Working by name is equivalent to access a member of a
/// a particular object. The "cdef" method create or set a constant object
/// to the calling object. The "vdef" method create or set an object to the
/// calling object. The "eval" method evaluates an object in the current
/// runnable nameset. The "apply" method evaluates a set of arguments
/// and apply them to the calling object. It is somehow equivalent to a
/// function call. When called by name, it is equivalent to a method call.
/// @author amaury darsch

class Object {
public:

enum t_oper {ADD, SUB, MUL, DIV, MINUS, EQL, NEQ, GEQ, LEQ, GTH, LTH};

private:
/// object reference count
long d_rcount;

26 Object class

protected:
/// the shared object structure
struct s_shared* p_shared;

public:
/// create a new object
Object (void);

/// destroy this object.
virtual ~Object (void);

/// @return the class name
virtual class String repr (void) const =0;

/// @return an object class name or nil
static const class String repr (Object* object);

/// @return a clone of this object
virtual Object* clone (void) const;

/// make this object shared
virtual void mksho (void);

/// get a read lock for this object
virtual void rdlock (void) const;

/// get a write lock for this object
virtual void wrlock (void) const;

/// unlock this object
virtual void unlock (void) const;

/// @return true if the object is shared
bool issho (void)

return (p_shared != nilp);

/// clear and lock the finalizer
static void clrfnl (void);

/// increment the object reference count
/// @param object the object to process
static Object* iref (Object* object);

/// decrement the reference count and destroy the object if null
/// @param object the object to process
static void dref (Object* object);

/// clean this object if the reference count is null
/// @param object the object to process
static void cref (Object* object);

/// decrement the object reference count but do not detroy if null

27

/// @param object the object to process
static void tref (Object* object);

/// return true if the object has a reference count of 0 or 1
/// @param object the object to process
static bool uref (Object* object);

/// operate this object with another one
/// @param robj the current runnable
/// @param type the operator type
/// @param object the operand object
virtual Object* oper (class Runnable* robj, t_oper type, Object* object);

/// set an object as a const object
/// @param robj the current runnable
/// @param nset the current nameset
/// @param object the object to set
virtual Object* cdef (class Runnable* robj, class Nameset* nset,

Object* object);

/// set an object as a const object by quark
/// @param robj the current runnable
/// @param nset the current nameset
/// @param quark the quark to define as const
/// @param object the object to set
virtual Object* cdef (class Runnable* robj, class Nameset* nset,

const long quark, Object* object);

/// set an object to this object
/// @param robj the current runnable
/// @param nset the current nameset
/// @param object the object to set
virtual Object* vdef (class Runnable* robj, class Nameset* nset,

Object* object);

/// set an object to this object by quark
/// @param robj the current runnable
/// @param nset the current nameset
/// @param quark the quark to set this object
/// @param object the object to set
virtual Object* vdef (class Runnable* robj, class Nameset* nset,

const long quark, Object* object);

/// evaluate an object in the current nameset
/// @param robj the current runnable
/// @param nset the current nameset
virtual Object* eval (class Runnable* robj, class Nameset* nset);

/// evaluate an object in the current nameset by quark
/// @param robj the current runnable
/// @param nset the current nameset
/// @param quark the quark to evaluate in this object
virtual Object* eval (class Runnable* robj, class Nameset* nset,

28 Object class

const long quark);

/// apply an object with a set of arguments
/// @param robj the current runnable
/// @param nset the current nameset
/// @param args the arguments to apply
virtual Object* apply (class Runnable* robj, class Nameset* nset,

class Cons* args);

/// apply an object by quark with a set of arguments
/// @param robj the current runnable
/// @param nset the current nameset
/// @param quark the quark to apply this arguments
/// @param args the arguments to apply
virtual Object* apply (class Runnable* robj, class Nameset* nset,

const long quark, class Cons* args);

/// apply an object by object with a set of arguments
/// @param robj the current runnable
/// @param nset the current nameset
/// @param object the object to apply this arguments
/// @param args the arguments to apply
virtual Object* apply (class Runnable* robj, class Nameset* nset,

Object* object, class Cons* args);

/// apply an object with a vector of arguments by quark
/// @param robj the current runnable
/// @param nset the current nameset
/// @param quark the quark to apply these arguments
/// @param argv the vector arguments to apply
virtual Object* apply (class Runnable* robj, class Nameset* nset,

const long quark, class Vector* argv);

public:
// the memory allocation
void* operator new (const t_size size);
void* operator new [] (const t_size size);
void operator delete (void* handle);
void operator delete [] (void* handle);

};
}

#endif

INDEX

30 INDEX

apply
object call, 6

argv
constuctor arguments, 12

Boolean
simple example, 14

eval
default implementation, 11
lexical evaluation, 6

eval-apply, 11

mknew
static constructor, 12

qualified
evalution, 12

quark
definition, 12

Colophon

This manual was written for the LATEXdocumentation preparation system. A custom document class
was designed by the author. The document style has been simplified as to produce a high quality
technical manual. Title, chapter and section names have been produced with an Helvetica font. The
document has been produced with a 10 points Times font. Both fonts are assumed to be in the public
domain. The documentation is available in both A4 and letter format.

