
ℵ Programming Language

Library Reference

Volume 2 Revision 0.9.0

This documentation is bound to the Aleph programming language license and therefore shall be considered
free. This documentation can be redistributed and/or modified, providing that the copyright notice is kept
intact. This documentation is distributed in the hope that it will be useful, but without any warranty; without
even the implied warranty of merchantability or fitness for a particular purpose. In no event shall the copyright
holder be liable for any direct, indirect, incidental or special damages arising in any way out of the use of this
documentation or the software it refers to.

c© 1999-2003 Amaury C. Darsch

CONTENTS

Preface ix
The Aleph programming language ix
Features ix
Aleph engine x
Flexible Distribution x

License xiii

1 Input/Output Services 1
1.1 The aleph-sio library 1
1.2 Input and output stream 1

1.2.1 Input stream 1
1.2.2 Output stream 1

1.3 File streams 1
1.3.1 Stream information 2
1.3.2 Reading and writing 2

1.4 Input stream status 3
1.4.1 The valid-p predicate 3
1.4.2 The eof-p predicate 3
1.4.3 The read method 3
1.4.4 Buffer read mode 4

1.5 Multiplexing 4
1.5.1 Selector object 4
1.5.2 Waiting for change 4
1.5.3 Multiplexing policy 5

1.6 Terminal streams 5
1.6.1 Using the error terminal 5
1.6.2 Terminal class 6

1.7 Directory 6
1.7.1 Reading a directory 6
1.7.2 Creating and removing directories 6

2 System calls 9
2.1 Interpreter information 9

iv CONTENTS

2.1.1 Interpreter version 9
2.1.2 Operating system 9
2.1.3 Program information 10

2.2 System calls 10
2.3 Time and date 10

2.3.1 Date representation 10

3 Formatting 13
3.1 Print table object 13

3.1.1 Creating a print table 13
3.1.2 Adding and printing table elements 14

4 Sorting and Searching 15
4.1 Sorting 15

5 Message Digest 17
5.1 Message digest object 17

5.1.1 Creating a message digest 17
5.1.2 Computing a message digest 17

6 Network Services 19
6.1 IP address 19

6.1.1 Domain name system (DNS) 19
6.2 The Address class 19

6.2.1 Name to IP address translation 19
6.2.2 IP address to name translation 20

6.3 Transport layers 20
6.3.1 Service port 21
6.3.2 Host and peer 21

6.4 TCP client socket 21
6.4.1 Day time client 21
6.4.2 HTTP request example 22

6.5 UDP client socket 23
6.5.1 The time client 23
6.5.2 More on reliability 23
6.5.3 Error detection 24

6.6 Socket class 24
6.6.1 Predicates 25

6.7 TCP server socket 25
6.7.1 An echo server 25
6.7.2 The accept method 26
6.7.3 Multiple connections 26

6.8 UDP server socket 26
6.8.1 The echo server 27
6.8.2 Datagram object 27
6.8.3 Input data buffer 27

6.9 Low level socket methods 28

CONTENTS v

6.9.1 A socket client 28
6.9.2 Other socket methods 29

6.10 Mail delivery 29
6.10.1 A simple mail 29
6.10.2 Recipient address format 30
6.10.3 Message content 30
6.10.4 Message delivery 30

7 Web Services 33
7.1 URL class 33

7.1.1 Character conversion 33
7.1.2 Query string 33

7.2 Generating HTML or XHTML 34
7.2.1 The page header 34
7.2.2 The page body 34
7.2.3 Page generation 34

7.3 Writing CGI scripts 35
7.3.1 Getting the query string 35
7.3.2 Parsing the query string 36
7.3.3 A complete example 36

7.4 Cookie 36
7.4.1 Managing cookies 37
7.4.2 Adding a cookie 37

8 Introduction 39
8.1 Data integration 39
8.2 Basic concepts 39

8.2.1 Cell and data 39
8.2.2 Record 39
8.2.3 Table 39
8.2.4 Collection 40

9 Integration and Importation 41
9.1 Creting a collection 41

9.1.1 The periodic table of elements 41

A Streams 43
Input 45
InputFile 47
InputMapped 49
InputString 51
InputTerm 53
OutputFile 55
OutputFile 57
OutputString 59
OutputTerm 61
Terminal 63

vi CONTENTS

Directory 65
Selector 67

B File System Functions 69
dir-p 69
file-p 69
absolute-path 69
relative-path 69
rmfile 70
rmdir 70

C System Classes 71
Time 73

D System Calls 79
exit 79
sleep 79
random 79
get-pid 79
get-env 80
get-host-name 80
get-user-name 80

E Formatting 81
PrintTable 83
Digest 87

F Sorting and searching 89
sort 89

G Networking Classes 91
Address 93
Socket 95
TcpSocket 101
TcpClient 103
TcpServer 105
Datagram 107
UdpSocket 109
UdpClient 111
UdpServer 113
Multicast 115
Mail 117

CONTENTS vii

H Networking Functions 121
get-loopback 121
get-tcp-service 121
get-udp-service 121

I WWW/CGI Classes and Functions 123
Url 125
CgiQuery 127
HtmlPage 129
XHtmlPage 133
Cookie 135

Colophon 141

viii CONTENTS

Preface

This manual is part of the Aleph Programming Language Series, a multi volume set that describes
the programming environment of the Aleph system. The entire set contains 4 volumes :

Volume 0 - Aleph Installation Guide is the distribution installation manual.

Volume 1 - Aleph Programmer Guide is the first volume of this set. It is both an introduction and
an advanced guide for the the developer.

Volume 2 - Aleph Library Reference is the second volume of this set. It is a complete description
of the Aleph standard library.

Volume 3 - Aleph Cross Debugger is the third volume of this set. It is a reference manual to de-
velop and debug Aleph programs.

Volume 4 - Aleph C++ API is the fourth volume of this set. It is a reference manual of the C++
Application Programming Interface (API).

The Aleph programming language

Aleph is a multi-threaded functional programming language with dynamic symbol bindings that
support the object oriented paradigm. Aleph features a state of the art runtime engine that supports
both 32 and 64 bits platforms. Aleph comes with a rich set of libraries that are designed to be
platform independent. Aleph is a free software. A flexible license has been designed for both
individuals and corporations. Everybody is encouraged to use, distribute and/or modify the aleph
engine for any purpose.

Features

The Aleph engine is written in C++ and provides runtime compatibility with it. Such compatibility
includes the ability to instantiate C++ classes, use virtual methods and raise or catch exceptions. A
comprehensive API has been designed to ease the integration of foreign libraries.

• Builtin objects
More than 50 reserved keywords and predicates. Various containers like list, vector, hash
table, bitset, and graphs.

• Functional programming
Support for lambda expression with explicit closure. Symbol scope limitation with gamma
expression. Form like notation with an easy block declaration.

x PREFACE

• Object oriented
Single inheritance object mechanism with dynamic symbol resolution. Native class deriva-
tion and method override. Static class data member and methods.

• Multi-threaded engine
True multi-threaded engine with automatic object protection mechanism against concurrent
access. Read and write locking system and thread activation via condition objects.

• Original regular expression
Builtin regular expression engine with group matching, exact or partial match and substitu-
tion.

Aleph is a core language and libraries. The libraries are a specific set of classes and functions which
are structured per application domains. Aleph is delivered with a set of standard libraries.

• aleph-sys
The aleph-sys library is the system calls library. Standard classes and functions are
provided to interact with the running machine.

• aleph-sio
The aleph-sio library is the standard input/output All input/output operations are per-
formed with this library.

• aleph-net
The aleph-net library is the networking library. The library is based on the standard
Internet Protocol and provides various classes to manipulates IP address, client or server
sockets.

• aleph-www
The aleph-www library is the World Wide Web library. The library provides various classes
that ease the development of web applications or CGI scripts.

• aleph-txt
The aleph-txt library is the text processing library. The library provides various func-
tions and classes that ease text manipulation. Sorting data, computing message digest and
formatting table is among others, features available in this library.

• aleph-odb
The aleph-odb library is the object database library. The library provides several objects
that can be used to design a database. A client is also provided to directly access the database
contents.

Aleph provides extensions. An extension is a library or an application which is not installed by
default. The user selects during the installation process which extension is needed. For example, the
static version of the interpreter is an extension.

Aleph engine

Aleph is an interpreted language. When used interactively, commands are entered on the command
line and executed when a complete and valid syntactic object has been constructed. Alternatively,
the interpreter can execute a source file. Aleph does not have a garbage collector. Aleph operates
with a lazy, scope based, object destruction mechanism. Each time an object is no longer visible,
it is destroyed automatically. At this time, the Aleph interpreter is unable to reclaim memory with
circular structures. This is a well known problem when using a reference count mechanism. In the
future, the Aleph engine will provide some mechanisms to resolve this problem.

PREFACE xi

Flexible Distribution

Aleph is a free software. A flexible license model encourages individuals or corporations to use,
copy, modify and/or distribute this software. Aleph is designed by software professionals. Quality is
one the driving force of the development effort. This is reflected in this distribution by the extensive
documentation. A large test suite is used to assess the quality of the distribution. Right now, the
engine has been successfully tested on most Linux platforms, Free BSD and Solaris.

xii PREFACE

License

Aleph is a free software. It can be used, modified and distributed by anybody for personal or com-
mercial use. The only restriction is altering the copyright notice associated with the material. In-
dividual or corporation are permitted to use, include or modify the Aleph engine. All material
developed with the Aleph language belongs to their respective copyright holder.
This program is a free software. it can be redistributed and/or modified, providing that this copyright
notice is kept intact. This program is distributed in the hope that it will be useful, but without any
warranty; without even the implied warranty of merchantability or fitness for a particular purpose.
In no event shall the copyright holder be liable for any direct, indirect, incidental or special damages
arising in any way out of the use of this software.

xiv LICENSE

CHAPTER 1

Input/Output Services

This chapter covers the input/output facilities available in the Standard Input Output or aleph-sio
library. The basic operations are related to file manipulations and are later extended to any character
input or output streams. Later, various file system calls are described. The Aleph i/o library has
been designed to be machine independent.

1.1 The aleph-sio library

All Aleph input/output objects are located in the aleph-sio library. This library must be loaded
prior any operation. Multiple call to the library initialization routine are harmless. The interpreter
method library loads a specific library by name. When the library has been loaded, the object
are available in the aleph:sio nameset.

interp:library "aleph-sio"

1.2 Input and output stream

The aleph-sio library is based on facilities provided by two base classes, namely, the Input stream
and thee Output stream. Both classes have associated predicates with the name input-p and
output-p.

1.2.1 Input stream

The Input base class has several method for reading and testing for character availibility. More-
over, the class provides a pushback buffer. Reading character is in the form of three method. read
without argument returns the next available character or eof. With an integer argument, read re-
turns a Buffer with at most the number of requested characters. The readln method returns the
next available line.

1.2.2 Output stream

The Output base class provides the base methods to write to an output stream. The writemethod
takes literal objects which are automatically converted to string representation and then written to
the output stream. Note that for the case of a Buffer object, it is the buffer itself that take a stream
argument and not the opposite.

2 Input/Output Services

1.3 File streams

The aleph-sio library provides two classes for file access. The InputFile class open a file
for input. The OutputFile class opens a file for output. The InputFile class is derived from
the Input base class. The OutputFile class is derived from the Output class. By default an
output file is created if it does not exist. If the file already exist, the file is truncated to 0. Another
constructor for the output file gives more control about this behavior. It takes two boolean flags that
defines the truncate and append mode.

load the library
interp:library "aleph-sio"
create an input file by name
const if (aleph:sio:InputFile "orig.txt")
create an output file by name
const of (aleph:sio:OutputFile "copy.txt")

1.3.1 Stream information

Both InputFile and OutputFile supports the get-name method which returns the file name.

println (if:get-name)
println (of:get-name)

Predicates are also available for these classes. The input-file-p returns true for an input file ob-
ject.The output-file-p returns true for an output file object.

aleph:sio:input-p if
aleph:sio:output-p of
aleph:sio:input-file-p if
aleph:sio:output-file-p of

1.3.2 Reading and writing

The read method reads a character on an input stream. The write method writes one or more
literal arguments on the output stream. The writeln method writes one or more literal arguments
followed by a newline character on the output stream. The newline method write a newline
character on the output stream. The eof-p predicate returns true for an input stream, if the stream
is at the end. The valid-p predicate returns true if an input stream is in a valid state. With these
methods, copying a file is a simple operation.

load the library and open the files
interp:library "aleph-sio"
const if (aleph:sio:InputFile "orig.txt")
const of (aleph:sio:OutputFile "copy.txt")

loop in the input file and write
while (if:valid-p) (of:write (if:read))

The use of the readln method can be more effective. The example below is a simple cat program
which take the file name an argument.

cat a file on the output terminal
usage: aleph 0601.als file

Input stream status 3

get the io library
interp:library "aleph-sio"

cat a file
const cat (name) {
const f (aleph:sio:InputFile name)
while (f:valid-p) (println (f:readln))
f:close

}

get the file
if (== 0 (interp:argv:length)) {
errorln "usage: aleph 0601.als file"

} {
cat (interp:argv:get 0)

}

1.4 Input stream status

The input stream provides a general mechanism to test and read for characters. The base method is
the valid-p predicate that returns true if a character can be read from the stream. It is important
to understand its behavior which depends on the stream type.

1.4.1 The valid-p predicate

Without argument, the valid-p predicate checks for an available character from the input stream.
This predicate will block if no character is available. On the other end, for a bounded stream like
an input file, the method will not block at the end of file. With one integer argument, the valid-p
predicate will timeout after the specified time specified in milliseconds. This second behavior is
particularly useful with unbound stream like socket stream.

1.4.2 The eof-p predicate

The eof-p predicate does not take argument. The predicate behaves like not (valid-p 0).
However, there are more subtle behaviors. For an input file, the predicate will return true if and
only if a character cannot be read. If a character has been pushed back and the end-of-file marker is
reached, the method will return false. For an input terminal, the method returns true if the user
and entered the end-of-file character (that is Ctrl-D). Once again, the method reacts to the contents
of the push-back buffer. For certain input stream, like a TCP socket, the method will return true
when no character can be read, that is here, the connection has been closed. For an UDP socket, the
method will return true when all datagram characters have be read.

1.4.3 The read method

The read method is sometimes disturbing. Nevertheless, the method is a blocking one and will
return a character when completed. The noticeable exception is the returned character when an end-
of-file marker has been reached. The method returns the Ctrl-D character. Since a binary file might
contains valid character like Ctrl-D it is necessary to use the valid-p or eof-p predicate to check
for a file reading completion. This remark apply also to bounded streams like a TCP socket. For

4 Input/Output Services

some type of streams like a UDP socket, the method will block when all datagram characters have
been consumed and no more datagram has arrived. With this kind of stream, there is no end-of-file
condition and therefore care should be taken to properly assert the stream content. This last remark
is especially true for the readln method. The method will return when the end-of-file marker is
reached, even if a newline character has not been read. With an UDP socket, such behavior will not
happen.

1.4.4 Buffer read mode

The read method with an integer argument, returns a buffer with at least the number of characters
specified as an argument. This method is particularly useful when the contents has a precise size.
The method returns a Buffer object which can later be used to read, or transform characters.
Multi-byte conversion to number should use such approach. The read method does not necessarily
returns the number of requested characters. Once the buffer is returned, the length method can be
used to check the buffer size. Note also the existence of the to-string method which returns a
string representation of the buffer.

try to read 256 characters
const buf (is:read 256)
get the buffer size
println (buf:length)
get a string representation
println (buf:to-string)

1.5 Multiplexing

I/O multiplexing is the ability to manipulate several streams at the same time and process one at a
time. Although the use of threads reduce the needs for i/o multiplexing, there is still situations where
they are needed. In other words, I/O multiplexing is identical to the valid-p predicate, except that
it works with several stream objects.

1.5.1 Selector object

I/O multiplexing is accomplished with the Selector class. The constructor takes 0 or several stream
arguments. The class manages automatically to differentiate between Input stream and Output
streams. Once the class is constructed, it is possible to get the first stream ready for reading or
writing or all of them. We assume in the following example that is and os are respectively an input
and an output stream.

create a selector
const slt (aleph:sio:Selector is)

at this stage the selector has one stream
the add method can add more streams
slt:add os

The add method adds a new stream to the selector. The stream must be either an Input or Output
stream or an exception is raised. The input-length method returns the number of input streams
in this selector. The output-lengthmethod returns the number of output streams in this selector.
The input-get method returns the selector input stream by index. The output-get method
returns the selector output stream by index.

Terminal streams 5

1.5.2 Waiting for change

The wait and wait-all methods can be used to detect a status change in the selector. Without
argument both methods will block indefinitely until one stream change. With one integer argument,
both method blocks until one stream change or the integer argument timeout expires. The timeout is
expressed in milliseconds. Note that 0 indicates an immediate return. The wait method returns the
first stream which is ready either for reading or writing depending whether it is an input or output
stream. The wait-allmethod returns a vector with all streams that have changed their status. The
wait method returns nil if the no stream have changed. Similarly, the wait-allmethod returns
an empty vector.

wait for a status change
const is (slt:wait)
is is ready for reading - make sure it is an input one
if (aleph:sio:input-p is) (is:read)

A call to the wait method will always returns the first input stream (if any).

1.5.3 Multiplexing policy

When used with several input streams in a multi-threaded context, the selector behavior can becomes
quite complicated. Either wait and wait-all methods check first the input streams push-back
buffer. If one or several buffer is (are) not empty, the method returns with these streams. During this
operation, the input streams are locked, so no other thread can push-back a character. The selector
then checks for status change and unlock the streams. Note that the output streams are not locked.
Note also that a thread which rely on the input stream push-back method to release a selector will
result in a dead lock.

1.6 Terminal streams

Terminal streams are another kind of streams available in the standard input/output library. The
InputTerm, OutputTerm and ErrorTerm classes are low level classes used to read or write from
or to the standard streams. The basic methods to read or write are the same as the file streams.
Reading from the input terminal is not a good idea, since the class does not provide any formating
capability. One may prefer to use the Terminal class. The use of the output terminal or error terminal
streams is convenient when the interpreter standard streams have been changed but one still need to
print to the terminal.

1.6.1 Using the error terminal

The ErrorTerm class is the most frequently used class for printing data on the standard error stream.
Aleph provides the reserved keyword error or errorln to write on the interpreter error stream. If
the interpreter error stream has been changed, the use of the ErrorTerm will provide the facility
required to print directly on the terminal. The cat program can be rewritten to do exactly this.

cat a file on the error terminal

get the io library
interp:library "aleph-sio"

cat a file
const cat (name es) {

6 Input/Output Services

const f (aleph:sio:InputFile name)
while (f:valid-p) (es:writeln (f:readln))
f:close

}

1.6.2 Terminal class

The Terminal class combines an input stream and an output stream with some line editing capabili-
ties. When the class is created, the constructed attempts to detect if the input and output streams are
bounded to a terminal (i.e tty). If the line editing capabilities can be loaded (i.e non canonical mode),
the terminal is initialized for line editing. Arrows, backspace, delete and other control sequences are
available when using the readline method. The standard methods like read or readln do not
use the line editing features. When using a terminal, the prompt can be set to whatever the user
wishes with the methods set-primary or set-secondary. A secondary prompt is displayed
when the readline method is called with the boolean argument false.

const term (Terminal)
term:set-primary "demo:"
const line (term:readline) ➞ demo:
errorln line

1.7 Directory

The Directory class provides a facility to manipulate directories. A directory object is created either
by name or without argument by considering the current working directory. Once the directory
object is created, it is possible to retrieve its contents, create new directory or remove empty one.

1.7.1 Reading a directory

A Directory object is created either by name or without argument. With no argument, the current
directory is opened. This is the best method compared to ".". When the current directory is opened,
its full name is computed internally and can be retrieved with the get-name method.

print the current directory
const pwd (aleph:sio:Directory)
println (pwd:get-name)

Once the directory object is opened, it is possible to list its contents. The get-list method
returns the full contents of the directory object. The get-files method returns a list of files in
this directory. The get-subdirs method returns a list of sub directories in this directory.

print a list of files
const pwd (aleph:sio:Directory)
const lsf (d:get-files)
for (name) (lsf) (println name)

1.7.2 Creating and removing directories

The mkdir and rmdir methods can be used to create or remove a directory. Both methods take
a string argument and construct a full path name from the directory name and the argument. This

Directory 7

approach has the advantage of being file system independent. If the directory already exists, the
mkdir methods succeeds. The rmdir method requires the directory to be empty.

const tmp (aleph:sio:Directory (aleph:sio:absolute-path "tmp"))
const exp (tmp:mkdir "examples")
const lsf (exp:get-files)
println (lsf:length) ➞ 0
tmp:rmdir "examples"

The function absolute-path constructs an absolute path name from the argument list. If relative
path needs to be constructed, the function relative-path might be used instead.

8 Input/Output Services

CHAPTER 2

System calls

This chapter covers the system facilities available in the aleph-sys library. The basic operations that
are embedded in the interpreter gives system information. Complex information, like the system
time are provided via specific classes.

2.1 Interpreter information

The Aleph interpreter provides a set reserved names that are related to the system platform. Example
0501.als demonstrates the available information.

zsh > aleph 0501.als
major version number : 0
minor version number : 9
patch version number : 0
interpreter version : 0-9-0
program name : aleph
operating system name : linux
operating system type : unix
aleph official url : http://www.aleph-lang.org

2.1.1 Interpreter version

The interpreter version is identified by 3 numbers called major, minor and patch numbers. A change
in the major number represents a major change in the Aleph language. The minor number indi-
cates a major change in the interface or libraries. A change in the patch number indicates bug
fixes. All values are accessed via the interpreter itself. The major-version, minor-version,
patch-version symbols are bound to these values.

println "major version number : " interp:major-version
println "minor version number : " interp:minor-version
println "patch version number : " interp:patch-version

2.1.2 Operating system

The operating system is uniquely identified by its name. The operating system type (or category)
uniquely identifies the operating system flavor. At this time, only UNIX like system are supported.
The operating system name can be either linux, freebsd or solaris.

10 System calls

println "operating system name : " interp:os-name
println "operating system type : " interp:os-type

2.1.3 Program information

Program information are carried by two symbols that identifies the program name and the official
Aleph URL. While the first might be useful, the second one is mostly used by demo programs.

println "program name : " interp:program-name
println "aleph official url : " interp:aleph-url

2.2 System calls

The aleph-sys library provides various system calls that cannot be classified into any particular
category.

Table 1 Aleph system call functions

Function Description

exit exit unconditionally with an exit code
sleep pause for a certain time
random return a random integer number
get-pid get the process identifier
get-env get an environment variable
get-host-name return the host name
get-user-name return the user name

2.3 Time and date

The Time class is special class that represent the system date in utc or local format. Numerous
methods are provided to access a particular field, like hour, minute, day in month, week etc. Without
argument the time instance is constructed with the current system time. An integer argument can be
used to force a particular time.

2.3.1 Date representation

Once a time instance is constructed, various formats methods can returns the date, time or both. The
format-date and format-time returns a formatted string for the local date and time. The utc-format-
date and utc-format-time do the same in UTC.

aleph >interp:library "aleph-sys"
aleph >const time (aleph:sys:Time)
aleph >println (time:format-date)
6/5/2003
aleph >println (time:format-time)
22:11:30

Another form of date representation is the one specified by RFC 822. That format contains both the
time and date. Note that the date is formatted in UTC (improperly called GMT).

Time and date 11

aleph >interp:library "aleph-sys"
aleph >const time (aleph:sys:Time)
aleph >println (time:utc-format-rfc)
Wed, 06 Jun 2003 05:11:30 GMT

Other methods are available to query the date and time information. These are described in the
reference manual.

12 System calls

CHAPTER 3

Formatting

This chapter is dedicated to the Aleph text and data formatting, a subpart of the text processing
library. The first part of this chapter covers the print table object.

3.1 Print table object

The PrintTable class is a formating class for tables. The table is constructed with the number
of columns (default to 1) and eventually the number of rows. Once the table is created, element are
added to the table with the add method. Specific table element can be set with the set method.
The class provide a format method those default is to print the table on the interpreter standard
output. With an output stream argument or a buffer, the table is formatted to these objects. The
table formating includes an optional column width, a filling character and a filling direction flag.
By default, the column width is 0. This means that the column width is computed as the maximum
length of all column elements. If the column width is set with the set-column-sizemethod, the
string element might be truncated to the left or right (depending on the filling flag) to fit the column
width.

3.1.1 Creating a print table

The table is created with 0, one or two arguments. Without argument, the table has one column. The
first argument is the number of columns. The optional second argument is the desired number of
rows.

a one column table
const tbl-1 (aleph:txt:PrintTable)
a five columns table
const tbl-5 (aleph:txt:PrintTable 5)
a five columns x 3 rows table
const tbl-5x3 (aleph:txt:PrintTable 5 3)

Once the table is created, the column size can be set. For example, if the previous 5 columns table
must have the first column with 10 characters, the set-column-size method can be used to do
so. Additionnaly, the set-column-direction can also be used to indicate a right filling. By
default, filling characters are placed on the left of the string, therefore producing a right alignment.

reset column 0 to a size 10
tbl-5:set-column-size 0 10
set left alignment, aka right filling

14 Formatting

tbl-5:set-column-direction 0 true

3.1.2 Adding and printing table elements

The add method is used to add literals to the table. Without argument, a new row is created and the
row index is returned. With one or several literal, a new row is created and the arguments inserted
into the table. The number of arguments must match the number of columns. The next example
shows a simple flight time table (my preferred destinations).

load the text processing library
interp:library "aleph-txt"

create a new print table with 3 columns
const tbl (aleph:txt:PrintTable 3)

add the rows
tbl:add "Planet" "Diameter" "Rotation time"
tbl:add "Mercury" 4840 "1407:36"
tbl:add "Venus" 12400 "5819:51"
tbl:add "Earth" 12756 "23:56"
tbl:add "Mars" 6800 "24:37"
tbl:add "Jupiter" 142800 "9:50"
tbl:add "Saturn" 120800 "10:14"
tbl:add "Uranus" 47600 "10:49"
tbl:add "Neptune" 44600 "15:40"
tbl:add "Pluto" 5850 "153:17"

set the table format
tbl:set-column-size 0 10
tbl:set-column-size 1 10
tbl:set-column-direction 2 true

print the table
tbl:format

The format method prints the formatted table. Without argument, the interpreter standard output
is used.

zsh> aleph txt-0001.als
Planet Diameter Rotation time
Mercury 4840 1407:36
Venus 12400 5819:51
Earth 12756 23:56
Mars 6800 24:37
Jupiter 142800 9:50
Saturn 120800 10:14
Uranus 47600 10:49
Neptune 44600 15:40
Pluto 5850 153:17

Note how the columns are formatted. Column 2 has the flag set to true while the others have the
default flag set to false.

CHAPTER 4

Sorting and Searching

This chapter is dedicated to the Aleph sorting and searching engine, a subpart of the text processing
library. All objects and functions are part of the aleph:txt nameset.

4.1 Sorting

The sort function operates with a vector object and sorts the elements in ascending order. Any kind
of objects can be sorted as long as they support a comparison method. The elements are sorted in
placed by using a quick sort algorithm.

create an unsorted vector
const v-i (Vector 7 5 3 4 1 8 0 9 2 6)
sort the vector in place
aleph:txt:sort v-i
print the vector
for (e) (v) (println e)

16 Sorting and Searching

CHAPTER 5

Message Digest

This chapter is dedicated to the Aleph message digest computation, a subpart of the text processing
library. The first part of this chapter covers the Digest object.

5.1 Message digest object

The Digest class is a message digest computation class. By default, the MD5 algorithm as defined
by RFC 1321 is bound to the class. The message digest class computes a message digest from an
input string or a buffer. The message digest is returned as a string.

5.1.1 Creating a message digest

By default a message digest is created with support for the MD5 algorithm. No argument is passed
to the constructor.

get a default digest (MD5)
const md (aleph:txt:Digest)

5.1.2 Computing a message digest

The compute compute a message digest from an input string or a buffer. For example, the string
"hello world" returns the message digest "5EB63BBBE01EEED093CB22BB8F5ACDC3"

const digest (md:compute "hello world")

18 Message Digest

CHAPTER 6

Network Services

This chapter is dedicated to the Aleph networking services. It assumes that the reader has a basic
knowledge of the Internet Protocol or (IP). The Aleph implementation provides, in a single library
called aleph-net, all classes and functions needed to perform IP operations, create server or
clients programs. This library is also designed to support IPV6 with certain platforms (Currently
Linux 2.2, FreeBsd 4.x and Solaris 5.8).

6.1 IP address

The IP based communication uses a standard address to reference a particular peer. With IP version
4 IPv4, the standard dot notation is with 4 bytes. With IP version 6 IPv6, the standard semicolon
notation is with 16 bytes. The current Aleph implementation supports both versions. Even if your
platform supports IPv6, it does not mean that it is enabled. You should consult you system admin-
istration guide to do so. Generally, this involves setting the /etc/hosts file and activating the
inet6 option in the /etc/resolv.conf.

127.0.0.1 ➞ ipv4 localhost
0:0:0:0:0:0:0:1 ➞ ipv6 localhost

IP address architecture and behavior are described in various documents as listed in the bibliography.

6.1.1 Domain name system (DNS)

The translation between a host name and an IP address is performed by a resolver which uses the
Domain Name System or (DNS). Access to the DNS is automatic with the Aleph implementation.
Depending on the machine resolver configuration, a particular domain name translation might result
in an IPv4 or IPv6 address. As of today, the user might expect to get only IPv4 address (UNIX
system requires the resolv.conf file to have the inet6 option active to get an IPv6 address.
Using this option can trigger some unexpected behavior).
The mapping between an IP address and a host name returns the associated canonical name for that
IP address. This is the reverse of the preceding operation.

6.2 The Address class

The aleph:net:Address class allows manipulation of IP address. The constructor takes a string
as its arguments. The argument string can be either an IP address or a host name (qualified or not).
When the address is constructed with a host name, the IP address resolution is done immediately.

20 Network Services

6.2.1 Name to IP address translation

The most common operation is to translate a host name to its equivalent IP address. Once the
Address object is constructed, the get-ip-address method returns a string representation
of the internal IP address. The following example prints the IP address of the localhost, that is
127.0.0.1 with IPv4.

load network library
interp:library "aleph-net"

get the localhost address
const addr (aleph:net:Address "localhost")

print the ip address
println (addr:get-ip-address)

As another example, the aleph:sys:get-host-name function returns the host name of the
running machine. The previous example can be used to query its IP address.

6.2.2 IP address to name translation

The reverse operation of name translation maps an IP address to a canonical name. The
get-canonical-namemethod of the Address class returns such name. Example 3101.als
is a demonstration program which prints the address original name, the IP address and the canonical
name. Fell free to use it with your favorite site to check the equivalence between the original name
and the canonical name.

print the ip address information of the arguments
usage: aleph 3101.als [hosts ...]

get the network library
interp:library "aleph-net"

print the ip address
const ip-address-info (host) {
try {

const addr (aleph:net:Address host)
println "host name : " (addr:get-name)
println " ip address : " (addr:get-ip-address)
println " canonical name : " (addr:get-canonical-name)

} (errorln "error: " what:reason)
}

get the hosts
for (s) (interp:argv) (ip-address-info s)

zsh> aleph 3101.als localhost www.aleph-lang.org
host name : localhost
ip address : 127.0.0.1
canonical name : localhost

host name : www.aleph-lang.org
ip address : 216.15.47.53
canonical name : www.aleph-lang.org

TCP client socket 21

6.3 Transport layers

The two transport layer protocols supported by the Internet protocol is the TCP, a full-duplex ori-
ented protocol, and UDP, a datagram protocol. TCP is a reliable protocol while UDP is not. By
reliable, we mean that the protocol provides automatically some mechanisms for error recovery,
message delivery, acknowledgment of reception, etc... The use of TCP vs. UDP is dictated mostly
by the reliability concerns, while UDP reduces the traffic congestion.

6.3.1 Service port

In the client-server model, a connection is established between two hosts. The connections is made
via the IP address and the port number. For a given service, a port identifies that service at a
particular address. This means that multiple services can exist at the same address. More precisely,
the transport layer protocol is also used to distinguish a particular service.
The Aleph network library provides a simple mechanism to retrieve the port number, given its name
and protocol. The function get-tcp-service and get-udp-service returns the port num-
ber for a given service by name. For example, the daytime server is located at port number 13.

assert 13 (aleph:net:get-tcp-service "daytime")
assert 13 (aleph:net:get-udp-service "daytime")

6.3.2 Host and peer

With the client server model, the only information needed to identify a particular client or server
is the address and the port number. When a client connects to a server, it specify the port number
the server is operating. The client uses a random port number for itself. When a server is created,
the port number is used to bind the server to that particular port. If the port is already in use, that
binding will fail. From a reporting point of view, a connection is therefore identified by the running
host address and port, and the peer address and port. For a client, the peer is the server. For a server,
the peer is the client.

6.4 TCP client socket

The TcpClient class creates an TCP client object by address and port. The address can be either
a string or an Address object. During the object construction, the connection is established with
the server. Once the connection is established, the client can use the read and write method to
communicate with the server. The TcpClient class is derived from the Socket class which is
derived from the Input and Output classes.

6.4.1 Day time client

The simplest example is a client socket which communicates with the daytime server. The server is
normally running on all machines and is located at port 13.

get the network library
interp:library "aleph-net"

get the daytime server port
const port (aleph:net:get-tcp-service "daytime")

22 Network Services

create a tcp client socket
const s (aleph:net:TcpClient "localhost" port)

read the data - the server close the connection
while (s:valid-p) (println (s:readln))

Example 3201.als in the example directory prints the day time of the local host without argument
or the day time of the argument. Feel free to use it with www.aleph-lang.org. If the server you
are trying to contact does not have a day time server, an exception will be raised and the program
terminates.

zsh> aleph 3201.als www.aleph-lang.org

6.4.2 HTTP request example

Another example which illustrates the use of the TcpClient object is a simple client which down-
load a web page. At this stage we are not concern with the URL but rather the mechanics involved.
The request is made by opening a TCP client socket on port 80 (the HTTP server port) and sending
a request by writing some HTTP commands. When the commands have been sent, the data sent by
the server are read and printed on the standard output. Note that this example is not concerned by
error detection.

fetch an html page by host and page
usage: aleph 3203.als [host] [page]

get the network library
interp:library "aleph-net"
interp:library "aleph-sys"

connect to the http server and issue a request
const send-http-request (host page) {
create a client sock on port 80
const s (aleph:net:TcpClient host 80)
const saddr (s:get-socket-address)

format the request
s:writeln "GET " page " HTTP/1.1"
s:writeln "Host: " (saddr:get-canonical-name)
s:writeln "Connection: close"
s:writeln "User-Agent: aleph tcp client example"
s:newline

write the result
while (s:valid-p) (println (s:readln))

}

get the argument
if (!= (interp:argv:length) 2) (aleph:sys:exit 1)
const host (interp:argv:get 0)
const page (interp:argv:get 1)

send request
send-http-request host page

UDP client socket 23

6.5 UDP client socket

UDP client socket is similar to TCP client socket. However, due to the unreliable nature of UDP,
UDP clients are somehow more difficult to manage. Since there is no flow control, it becomes more
difficult to assess whether or not a datagram has reached its destination. The same apply for a server,
where a reply datagram might be lost. The UdpClient class is the class which creates a UDP
client object. Its usage is similar to the TcpClient.

6.5.1 The time client

The UDP time server normally runs on port 37 is the best place to enable it. A UDP client is created
with the UdpClient class. Once the object is created, the client sends an empty datagram to the
server. The server send a reply datagram with 4 bytes, in network byte order, corresponding to the
date as of January 1st 1900. Example 3204.als prints date information after contacting the local
host time server or the host specified as the first argument.

print the time with a udp client socket

get the libraries
interp:library "aleph-net"
interp:library "aleph-sys"

get the daytime server port
const port (aleph:net:get-udp-service "time")

create a client socket and read the data
const print-time (host) {
create a udp client socket
const s (aleph:net:UdpClient host port)
send an empty datagram
s:write
read the 4 bytes data and adjust to epoch
const buf (s:read 4)
const val (- (buf:get-quad) 2208988800)
format the date
const time (aleph:sys:Time val)
println (time:format-date) ’ ’ (time:format-time)

}

check for one argument or use localhost
const host (if (== (interp:argv:length) 0)

"localhost" (interp:argv:get 0))
print-time host

This example calls for several comments. First the write method without argument sends an
empty datagram. It is the datagram which trigger the server. The read method reads 4 bytes from
the reply datagram and places them in a Buffer object. Since the bytes are in network byte order,
the conversion into an integer value is done with the get-quad method. Finally, in order to use
the Time class those epoch is January 1st 1970, the constant 2208988800 is subtracted from
the result. Remember that the time server sends the date in reference to January 1st 1900. More
information about the time server can be found in RFC738.

6.5.2 More on reliability

24 Network Services

The previous example has some inherent problems due to the unreliability of UDP. If the first data-
gram is lost, the read method will block indefinitely. Another scenario which causes the read
method to block is the loss of the server reply datagram. Both problem can generally be fixed by
checking the socket with a timeout using the valid-p method. With one argument, the method
timeout and return false. In this case, a new datagram can be send to the server. Example 3205.als
illustrates this point. We print below the extract of code.

create a client socket and read the data
const print-time (host) {
create a udp client socket
const s (aleph:net:UdpClient host port)
send an empty datagram until the socket is valid
s:write
retransmit datagram each second
while (not (s:valid-p 1000)) (s:write)
read the 4 bytes data and adjust to epoch
const buf (s:read 4)
const val (- (buf:get-quad) 2208988800)
format the date
const time (aleph:sys:Time val)
println (time:format-date) ’ ’ (time:format-time)

}

Note that this solution is a naive one. In the case of multiple datagrams, a sequence number must
be placed because there is no clue about the lost datagram. A simple rule of thumb is to use TCP as
soon as reliability is a concern, but this choice might not so easy.

6.5.3 Error detection

Since UDP is not reliable, there is no simple solution to detect when a datagram has been lost. Even
worse, if the server is not running, it is not easy to detect that the client datagram has been lost. In
such situation, the client might indefinitely send datagram without getting an answer. One solution
to this problem is again to count the number of datagram re-transmit and eventually give up after a
certain time.

6.6 Socket class

The Socket class is the base class for both the TcpClient and UdpClient. The class provides
methods to query the socket port and address as well as the peer port and address. Note at this
point that the UDP socket is a connected socket. Therefore, these methods will work fine. The
get-socket-address and get-socket-port returns respectively the address and port of
the connected socket. The get-peer-address and get-peer-port returns respectively the
address and port of the connected socket’s peer. Example 3206.als illustrates the use of these
methods.

create a client socket and read the data
const print-socket-info (host) {
create a tcp client socket
const s (aleph:net:TcpClient host port)
print socket address and port
const saddr (s:get-socket-address)
const sport (s:get-socket-port)
println "socket ip address : " (saddr:get-ip-address)

TCP server socket 25

println "socket canonical name : " (saddr:get-canonical-name)
println "socket port : " sport
print peer address and port
const paddr (s:get-peer-address)
const pport (s:get-peer-port)
println "peer ip address : " (paddr:get-ip-address)
println "peer canonical name : " (paddr:get-canonical-name)
println "peer port : " pport

}

6.6.1 Predicates

The Socket class is associated with the socket-p predicate. The respective client objects have
the tcp-client-p predicate and udp-client-p predicate.

6.7 TCP server socket

The TcpServer class creates an TCP server object. There are several constructors for the TCP
server. In its simplest form, without port, a TCP server is created on the localhost with an
ephemeral port number (i.e port 0 during the call). With a port number, the TCP server is created on
the localhost. For a multi-homed host, the address to use to run the server can be specified as the
first argument. The address can be either a string or an Address object. In both cases, the port is
specified as the second argument. Finally, a third argument called the backlog can be specified to set
the number of acceptable incoming connection. That is the maximum number of pending connection
while processing a connection. The following example shows various ways to create a TCP server.

trans s (aleph:net:TcpServer)
trans s (aleph:net:TcpServer 8000)
trans s (aleph:net:TcpServer 8000 5)
trans s (aleph:net:TcpServer "localhost" 8000)
trans s (aleph:net:TcpServer "localhost" 8000 5)
trans s (aleph:net:TcpServer (Address "localhost") 8000)
trans s (aleph:net:TcpServer (Address "localhost") 8000 5)

6.7.1 An echo server

A simple echo server can be built and tested with the standard telnet application. We wish to echo all
line we type within the telnet client. The server is bound on the port 8000 (Note that port 0 to 1024
are privileged ports and can only be used by root). Example 3301.als is the server example.

get the network library
interp:library "aleph-net"

create a tcp server on port 8000
const srv (aleph:net:TcpServer 8000)

wait for a connection
const s (srv:accept)

echo the line until the end

26 Network Services

while (s:valid-p) (s:writeln (s:readln))

The telnet session is then quite simple. The line hello world is echoed by the server.

zsh> telnet localhost 8000
Trying 127.0.0.1...
Connected to localhost.
Escape character is ’^]’.
hello world
^C
zsh>

6.7.2 The accept method

The previous example illustrates the mechanics of a server. When the server is created, the server
is ready to accept connection. The accept method blocks until a client connect with the server.
When the connection is established, the accept method returns a socket object which can be used
to read and write data.

6.7.3 Multiple connections

One problem with the previous example is that the server accepts only one connection. In order to
accept multiple connection, the accept method must be placed in a loop, and the server operation
in a thread (There are some situations where a new process might be more appropriate than a thread).
Example 3302.als illustrates such point.

get the network library
interp:library "aleph-net"

this function echo a line from the client
const echo-server (s) {
while (s:valid-p) (s:writeln (s:readln))

}

create a tcp server on port 8000
const srv (aleph:net:TcpServer 8000)

wait for a connection
while true {
trans s (srv:accept)
launch (echo-server s)

}

6.8 UDP server socket

The UdpServer class is similar to the TcpServer object, except that there is no backlog param-
eters. In its simplest form, the UDP server is created on the localhost with an ephemeral port
(i.e port 0). With a port number, the server is created on the localhost. For a multi-homed host,
the address used to run the server can be specified as the first argument. The address can be either a
string or an Address object. In both cases, the port is specified as the second argument.

UDP server socket 27

trans s (aleph:net:UdpServer)
trans s (aleph:net:UdpServer 8000)
trans s (aleph:net:UdpServer "localhost" 8000)
trans s (aleph:net:UdpServer (Address "localhost") 8000)

6.8.1 The echo server

The echo server can be revisited to work with udp datagram. The only difference is the use of the
accept method. For a UDP server, the method return a datagram object which can be used to
read and write data.

get the network library
interp:library "aleph-net"

create a udp server on port 8000
const srv (aleph:net:UdpServer 8000)

wait for a connection
while true {
trans dg (srv:accept)
dg:writeln (dg:readln)

}

6.8.2 Datagram object

With a UDP server, the accept method returns a Datagram object. Because a UDP is connection-
less, the server has no idea from whom the datagram is coming until that one has been received.
When a datagram arrives, the Datagram object is constructed with the peer address being the
source address. Standard i/o methods can be used to read or write. When a write method is used, the
data are sent back to the peer in a form of another datagram.

wait for a datagram
trans dg (s:accept)

assert datagram type
assert true (datagram-p dg)

get contents length
println "datagram buffer size : " (dg:get-buffer-length)

read a line from this datagram
trans line (dg:readln)

send it back to the sender
s:writeln line

The following table summarize the datagram methods.

6.8.3 Input data buffer

For a datagram, and generally speaking, for a UDP socket, all input operations are buffered. This
means that when a datagram is received, the accept method places all data in an input buffer. This

28 Network Services

Method Description

read read one character
read size read n characters and return a buffer
readln read a line
write send an empty datagram
write Literal write one or more literal objects
writeln same a write plus a newline character
newline write a newline character
valid-p return true if some data are available
eof-p return true if no data is available
get-buffer-length return the input buffer length
pushback pushback one character or a string

means that a read operation does not necessarily flush the whole buffer but rather consumes only
the requested character. For example, if one datagram contains the string hello world. A call to
readln will return the entire string. A call to read will return only the character ’h’. Subse-
quent call will return the next available characters. A call like read 5 will return a buffer with
5 characters (i.e the string hello). Subsequent call will return the remaining string. In any case,
the get-buffer-length will return the number of available characters in the buffer. A call
to valid-p will return true if there are some characters in the buffer or if a new datagram has
arrived.
Care should be taken with the read method. For example if there is only 4 characters in the in-
put buffer and a call to read for 10 characters is made, the method will block until a new datagram
is received which can fill the remaining 6 characters. Such situation can be avoided by using the
get-buffer-length and the valid-p methods. Remember also that a timeout can be speci-
fied with the valid-p method.

6.9 Low level socket methods

Some folks always prefer to do everything by themselves. Most of the time for good reasons. If this
is your case, you might have to use the low level socket methods. Instead of using a client or server
class, the Aleph implementation let’s you create a TcpSocket or UdpSocket. Once this done, the
bind, connect and other methods can be used to create the desired connection.

6.9.1 A socket client

A simple TCP socket client is created with the TcpSocket class. Then the connect method is
called to establish the connection.

create an address and a tcp socket
const addr (aleph:net:Address "localhost")
const sid (aleph:net:TcpSocket)
connect the socket
sid:connect 13 addr

Once the socket is connected, normal read and write operations can be performed. After the socket
is created, it is possible to set some options. A typical one is NO-DELAY which disable the Naggle
algorithm.

create an address and a tcp socket
const addr (aleph:net:Address "localhost")

Mail delivery 29

const sid (aleph:net:TcpSocket)
disable the naggle algorithm
sid:set-option sid:NO-DELAY true
connect the socket
sid:connect 13 addr

6.9.2 Other socket methods

Other socket methods are available. The bind and listen methods can be used to create a server.
The table below is a resume of the socket methods.

Method Description

bind bind this socket
connect connect this socket
ipv6-p check for ipv6 socket
read returns the next available character
readln returns the next available line
write write a character or a string
writeln write a string followed by a newline
newline write a new line character
close close this socket
valid-p returns true if a character is available
eof-p returns true if the socket has been closed
pushback pushback a character or a string
shutdown shutdown a connection
get-buffer-length return the read buffer length
get-socket-address return the socket address
get-socket-port return the socket port
get-peer-address return the peer address
get-peer-port return the peer port
set-option set a socket option

6.10 Mail delivery

The Mail class is a mail delivery object which manages to contact an MTA Mail Transport Agent in
order to deliver a message to one or several recipients. By default, the object contacts the local MTA,
but this behavior can be changed with the set-mta-address method. The class implements the
recipient address syntax as specified by RFC822.

6.10.1 A simple mail

At construction, the instance is empty. Only the recipient address needs to be specified. The send
method send the message by contacting the MTA. If an error occurs, an exception is raised.

get the network library
interp:library "aleph-net"

create an empty mail
const mail (aleph:met:Mail)

30 Network Services

add the recipient address
mail:to "me@domain.org"

send the message
mail:send

An empty message is sent to me@domain.org. By default, the subject is initialized to "no
subject".

6.10.2 Recipient address format

RFC822 defines the recipient address format. The simplest one is a local user or a qualified name
with a domain. The Mail object takes care of detecting the presence of the < and > characters. If
a string precedes the address, the enclosed address is used to communicate with the MTA, but the
original one is placed in the header. The following example illustrates various address format.

mail:to "me"
mail:to "<me>"
mail:to "me@domain.org"
mail:to "<me@domain.org>"
mail:to "user <me@domain.org>, other <other@domain.org>"

The to method adds an address to the direct recipient list. Several call to this method or several
address in one call can be made. In the case of multiple addresses in one call, a coma ’,’ is used as
the address separator. The cc method adds one or several addresses to the recipients copy list. This
list is also added in the header. The bcc method adds one or several addresses to the recipient blind
copy list. This list is not included in the header.

6.10.3 Message content

The message is built by specifying the subject and filling the message buffer. The subjectmethod
take a string argument to be used as the message subject. The add and addln methods add one
or several literals to the message buffer. The addln method adds a new-line character at the end.
Because literals are usd with this method, multiple arguments can be used as well as native repre-
sentation. This method behaves like the write method of an output stream.

set message subject
mail:subject "a simple mail demo"
add a line in the message buffer
mail:add "This line is a text added to the message"
mail:addln "a simple number: " 123 "is automatically converted"

6.10.4 Message delivery

The send method contacts the MTA and request a message delivery. Example 3303.als illus-
trates a complete use of the Mail class.

send an email to yourself

get the libraries
interp:library "aleph-sys"
interp:library "aleph-net"

Mail delivery 31

get your user name
const user-name (aleph:sys:get-user-name)

prepare the mail
const mail (aleph:net:Mail)
mail:to user-name
mail:subject "hello from aleph example"
mail:addln "This is a generated message from the Aleph"
mail:addln "mail object - Enjoy the ride"
mail:addln "The Aleph team"

send the mail
mail:send

32 Network Services

CHAPTER 7

Web Services

This chapter covers the Aleph Web services. Web services are designed to handle CGI scripts. Since
a CGI script works with the standard input and output stream, there is no particular device operations
described in this chapter. We assume that the reader as a basic knowledge of CGI operations. All
objects described in this chapter belongs to the aleph-www library. The aleph:www nameset is used
bind this library.

7.1 URL class

The URL class is a special class that parse a Uniform Resource Locator or URL string and provides
methods to access individual component of that URL. The URL object is constructed with the string
to parse.

const url (aleph:www:Url "http://www.aleph-lang.org")

An URL can be broken into several components called the scheme, the host, optionally the port,
the path, optionally the query and the fragment. The URL class provide a method to retrieve each
component of the parsed URL.

const url (aleph:www:Url "http://www.aleph-lang.org")
println (url:get-scheme) ➞ http
println (url:get-host) ➞ www.aleph-lang.org
println (url:get-port) ➞ 80
println (url:get-path) ➞ /

Note that in the previous example, the port and path are not specified. If the scheme is http, th
default values of 80 and ’/’ are returned.

7.1.1 Character conversion

The URL class performs automatically the character conversion in the input URL. For example,
the ’+’ character is replaced by a blank. The ’%’ character followed by two hexadecimal values is
replaced by the corresponding ASCII character. Note that this conversion does now apply to the
query string.

7.1.2 Query string

34 Web Services

The get-query method returns the query string of the URL. The query string starts after the ’?’
character. The query string is a series of key-pair values separated by the ’&’ character.

const url (aleph:www:Url
"http://www.aleph-lang.org?name=hello&value=world")

println (url:get-query) ➞ name=hello&value=world

The Web service library also provides a query string class which parse a query string.

7.2 Generating HTML or XHTML

The HtmlPage class is the primary interface to generate HTML code. The class operates by filling
the header and the body of the page with HTML statements. Several methods are provided to ease
the task of the page generation. The HTML version is assumed to be strict 4.01. Since HTML 4.01
is designed to work with style sheet, the user must be prepared to handle this when generating its
own HTML page. A derived class name XHtmlPage can be used to produce XHTML 1.0 page. The
interface is the same as the HtmlPage class.

7.2.1 The page header

The HtmlPage or XHtmlPage constructor takes no argument. The basic method used to add some-
thing in the header is the add-head method which take one or several literal arguments. The
add-title method adds a title to the header. The add-style adds the style sheet definition to
the header. The add-author add the author’s name to the page header. Finally, the add-meta
method adds a meta statement to the header in the form of name and content.

create a new html page
const page (aleph:www:HtmlPage)
add the title
page:add-title "An HTML page example"
add the author
page:add-author "The doc author"
add the style sheet
page:add-style "style.css"

7.2.2 The page body

The only method provided to access the page body is the add-body method. The method takes
one or several literal arguments. These arguments are used to fill the page body.

add a simple message to the page
page:add-body "<p class="title">Hello World"

7.2.3 Page generation

The write-page method write the complete HTML page. The write-head only writes the
header and the write-body only writes the page body. The get-buffer method returns the
page in a buffer object. A special method called write-cgi can be used inside a CGI script to
write the HTML page. The following example is a resume of the previous examples.

get the library

Writing CGI scripts 35

interp:library "aleph-www"
create a new html page
const page (aleph:www:HtmlPage)
add the title
page:add-title "An HTML page example"
add the author
page:add-author "The doc author"
add the style sheet
page:add-style "/style.css"
add a simple message to the page
page:add-body "<p class="title">Hello World"
write the page
page:write-page

This example will produce the following HTML code.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
<head>
<meta http-equiv="Content-Type"

content="text/html; charset=iso-8859-1">
<title>An HTML page example</title>
<meta name="author" content="The doc author">
<link href=/style.css rel="stylesheet"

type="text/css">
</head>
<body>
<p class="title">Hello World
</body>
</html>

7.3 Writing CGI scripts

With an HTML page generator and a query string parser, Aleph is armed to handle Common Gate-
way Interface or CGI scripts. The rule of the game are quite simple. Everything rely on the request
method and the protocol in use. We illustrate this by first looking at the query string retrieval, then
parsing it, and finally generating the HTML result or an error status.

7.3.1 Getting the query string

If the request method is GET, then the query string is available in the environment variable
QUERY_STRING. If the request method is POST, the query string is available in the input stream.
The length of the query string is given by the CONTENT_LENGTH environment variable. The fol-
lowing example illustrates the extraction of the query string.

initialize the query result
const query (aleph:sys:get-env "QUERY_STRING")
get the request method
const rqm (aleph:sys:get-env "REQUEST_METHOD")
check for a post request
if (== rqm "POST") {
create a buffer from the content length

36 Web Services

const len (Integer (aleph:sys:get-env "CONTENT_LENGTH"))
get the standard input stream and read content
const is (interp:get-input-stream)
const buf (is:read len)
set the query string
query:= (buf:to-string)

}

7.3.2 Parsing the query string

The CgiQuery class is designed to parse a CGI query string. Once the string has been parsed, it
is possible to perform a query by key. The class takes care of converting all special characters as
described in the URL class. The class is constructed with the query string as an argument.

const query (aleph:www:CgiQuery "name=hello&value=world")
query:length ➞ 2
query:get "name" ➞ hello
query:get "value" ➞ world

Armed with the length and get methods, one can enjoy to write nice CGI script. Note that the
class provides numerous methods to query for the existence of a key, get a key or a value by index
and many more. All of them are described in the volume 2, Library reference manual.

7.3.3 A complete example

We illustrate our discussion with a simple CGI script which prints the value of an environment
variable. We assume that the request method is GET. We assume as well that an HTML page uses
a simple input form to query the name the environment variable to query. The key will be denoted
name to refer to the user input.

get the libraries
interp:library "aleph-sys"
interp:library "aleph-www"

extract the query string
const query (aleph:www:CgiQuery

(aleph:sys:get-env "QUERY_STRING"))
get the environment value
const name (query:get "name")
const value (aleph:sys:get-env name)

print the result embedded in a simple html page
const page (aleph:www:HtmlPage)
page:set-title "Environment variable query result"
page:add-body "<p>Query result for: " name " = " value
page:write-cgi

This is it. That’s all what is needed. The write-cgi method take care of responding to the HTTP
server by specifying the status and the result content type (aka text/html).

7.4 Cookie

Cookie 37

The Cookie object is a special object that can be used during a CGI session, to post data to the HTTP
client. The idea behind cookies is to be able to maintain some state, during the user session of for
some time. A cookie is a name/value pair and eventually an expiration time. By default, the Aleph
cookie object are defined for one HTTP client session, but this behavior can be changed.

7.4.1 Managing cookies

A cookie is created with a name/value pair and eventually an expiration time. Such expiration time
is called the maximum-age and is automatically formatted by the object. With two arguments a
session cookie is created. With a third argument as an integer, the constructor set the maximum age
in second since in reference to the current time.

create a cookie with name/value
const cookie (aleph:www:Cookie "cartid" "12345678")

The cookie method support the RFC 2109 which is actually obsoleted by RFC 2965. However, both
RFC are not widely supported, so the original cookie definition has been implemented by default.
This means that most of the available method have no effect. Most of the time, the methods used
are set-max-age and set-path. A set-domain method is also available but its use is not
recommended since most the HTTP client have a security mechanism where only cookies originating
from the same domain are accepted.
The set-max-age method sets the cookie life time in seconds, in reference to the current time. A
negative value is always reset to -1 and defined a session cookie. a 0 value tells the HTTP client to
remove the cookie. The set-path method defines the path for which this cookie apply.

7.4.2 Adding a cookie

Once the cookie is defined, the set-cookiemethod of the HtmlPage object can be used to install
the cookie. Combined with the write-cgi method, the complete page can be send to the HTTP
client. For illustration, we provide the code of the aleph web site that demonstrates the usage of a
cookie.

get the aleph libraries
interp:library "aleph-sys"
interp:library "aleph-www"

load the html utils
interp:load "html-util.als"

get the query string
const query (get-query)
const cname (query:get "name")
const value (query:get "value")
const maxtm (query:get "maxtm")

prepare the html page
const page (aleph:www:HtmlPage)

check if we add the cookie
try {
if (!= (maxtm:length) 0) {

const tmval (Integer maxtm)
const cookie (aleph:www:Cookie cname value tmval)

38 Web Services

} {
const cookie (aleph:www:Cookie cname value)

}
add the cookie to the page
page:add-cookie cookie

}

add a simple message
add-page-title page "Aleph Cookie Tester"
set some news
page:add-body "<p class=text>"
page:add-body "Thank you for using the cookie tester."
page:add-body "You can check the cookie setting by using the"
page:add-body "browser demo"
page:add-body "The cookie is stored in the HTTP_COOKIE"
page:add-body "variable. You can also go back to the"
page:add-body " example page."
page:add-body "

"
page:add-body "<div class=example><pre>"
page:add-body "Cookie name : " cname
page:add-body "Cookie value : " value
page:add-body "</pre></div>"
add the footer
page:add-body "<p>"
add-page-footer page

write the html page
page:write-cgi

CHAPTER 8

Introduction

The Aleph Object database or AOD system is an environment that integrates data in such way that
they can be further processed. The AOD system is divided in two parts. One is the programming en-
vironment called ODB. The other one is an interface that uses the ODB programming environment.
ODB is built on top of the Aleph Programming Language. AOD is built on top of ODB. AOD
can also be seen as a command environment that permits to administer the database.

8.1 Data integration

The sole purpose of performing data integration is to collect various data and store them in such a
way that they can be accessed later. Unlike standard Database environment, AOD does not place
restrictions on the data organization. Although, the concept of tables is still present, there is no
requirement concerning the number of columns, columns names or similar things. AOD operates on
demand, to integrate data.

8.2 Basic concepts

The AOD system integrates data in a hierarchical fashion. The basic data element is called a cell. A
set of cell is a record. A set of records is a table. A set of tables and records is collection.

8.2.1 Cell and data

A cell is a data container. There is only one data element per cell. Eventually a name can be
associated with a cell. The cell data can be any kind of literals. Such literals are integer, real,
boolean, character or strings.

8.2.2 Record

A record is a vector of cells. A record can be created by adding cell or simply by adding data. If the
record has a predefined size, the cell or data can be set by indexing (i.e position).

8.2.3 Table

A table is a vector of records. A table can be created by adding record. Similarly, if the table has
a predefined size, record cell or data can be added by indexing. A table can be aslo seen as a 2

40 Introduction

dimensional array of cells.

8.2.4 Collection

A collection is a set of tables and/or records. A collection of table permits to structure data in the
form of sheets. Since cell, record and table can have a name, it is possible to create link between
various elements, thus creating a collection of structure data.

CHAPTER 9

Integration and Importation

The process of importing data requires first to create a collectable environment. When starting from
the beginning, the best way is to create a new Collection with the open command, create one or
several tables with the create command and finally import data with the import command. The
save command write a binary representation of the collection in a file.

9.1 Creting a collection

Creating a new collection is a single operation with the open command. The command take a single
string argument as the collection name.

(aod) aod:open "elements"

This command creates a new Collection object named elements. Once created, the collection
becomes the default one for the session. The next step is to create a table that will be used during
the importation process.

(aod) aod:create "data"

A new table named data is created and becoming the default one. Once the table is created, data
can be added to it; either by importation or by direct integration.

9.1.1 The periodic table of elements

The Periodic table of elements is a simple example that illustrates the importation process. The
original file is located into the exp/elem directory. The elements.tbl file is a simple file that
associates the atomic number with an element name, it chemical symbol and other parameters. An
extract of the file is shown below.

--
- elements.tbl -
- the periodic table of elements -
--
- element name sym weight bp (c) mp (c) density -
--

1 "Hydrogen" "H" 1.00797 -252.7 -259.2 0.071
2 "Helium" "He" 4.0026 -268.9 -269.7 0.126

42 Integration and Importation

3 "Lithium" "Li" 6.939 1330 180.5 0.53
4 "Beryllium" "Be" 9.0122 2770 1277 1.85
5 "Boron" "B" 10.811 nil 2030 2.34

There are 112 rows in this table. Not all rows have data. A particular cell, with no data is marked
with the special symbol nil. Strings are enclosed with double quotes. Integer and reals numbers
differentiate themselves automatically. A line with no data is ignored. A comment starts with the ’#’
character. The importation process is very simple.

(aod) aod:open "elements"
(aod) aod:create "data"
(aod) aod:import "elements.tbl"
(aod) aod:save "elements.odb"

After the import command, the save command write the collection in a file called
elements.orb. Such file can be later used with the open command. The command file
import.als is an ODB script that does the same thing. Note that the script is also an Aleph
file.

APPENDIX A

Streams

This chapter is a reference of the Aleph input/output streams. The classes described here are part of
the aleph-sio library. The library must be loaded prior any use of these functions. Once the library
is loaded, all functions are located in the aleph:sio nameset.

Table 2 Aleph standard input/output streams

Object Description

Input input stream base class
Output output stream base class
Terminal input/output terminal stream
Selector i/o multiplexing selector
Directory directory information
InputFile input file stream
InputTerm input terminal stream
InputString input string stream
InputMapped input mapped stream
ErrorTerm error terminal stream
OutputFile output file stream
OutputTerm output terminal stream
OutputString output string stream

For each stream object, a predicate is provided.

44 Streams

Table 3 Aleph stream object predicates

Object Predicate

input stream input-p
output stream output-p
Terminal terminal-p
Directory directory-p
InputFile input-file-p
InputTerm input-term-p
InputString input-string-p
InputMapped input-mapped-p
OutputFile output-file-p
OutputTerm output-term-p
OutputString output-string-p
Selector selector-p

45

Input [aleph:sio]

Description
The Input class is a base class for the Aleph standard input/output library. The class is automati-
cally constructed by a derived class and provide the common methods for all input streams.

Methods Summary

Method Description

read returns the next available character
readln returns the next available line
valid-p returns true if a character is available
eof-p returns true if the file is at its end
pushback pushback a character or a string
get-buffer-length return the length of the pushback buffer

Input:read

■ return: Character

■ arguments: none

The read method returns the next character available from the input steram. If the stream has
been closed or consumed, the eof character is returned.

Input:read

■ return: Buffer

■ arguments: Integer

The read method returns a buffer object with at most the number of characters specified as an
argument. The buffer length method should be used to check how many characters have been
placed in the buffer.

Input:readln

■ return: String

■ arguments: none

The readln method returns the next line available from the input stream. If the stream has been
closed or consumed, the eof character is returned.

Input:valid-p

■ return: Boolean

■ arguments: none|Integer

46 Streams

The valid-p method returns true if the input stream is in a valid state. By valid state, we mean
that the input stream can return a character with a call to the read method. With one argument, the
method timeout after the specified time in milliseconds. If the timeout is null, the method returns
immediately. With -1, the method blocks indefinitely if no character is available.

Input:eof-p

■ return: Boolean

■ arguments: none

The eof-p method returns true if the input stream has been closed or consumed.

Input:pushback

■ return: none

■ arguments: Character|String

The pushback method pushback a character or a string in the input stream. Subsequent calls to
read will return the last pushed characters. Pushing a string is equivalent to push each characters of
the string.

Input:get-buffer-length

■ return: Integer

■ arguments: none

The get-buffer-length method returns the length of the pushback buffer.

47

InputFile [aleph:sio]

Description
The InputFile class provide the facility for an input file stream. An input file instance is cre-
ated with a file name. If the file does not exist or cannot be opened, an exception is raised. The
InputFile class is derived from the Input class.

Constructors Summary

Constructor Description

InputFile file-name create an input file by name

Derivation summary

Derived from Description

Input the input stream class

Methods Summary

Method Description

lseek set the file at a certain position
close close this input file
length return the length of the input file
get-name returns the input file name

InputFile:get-name

■ return: String

■ arguments: none

The get-name method returns the input file name.

InputFile:close

■ return: Boolean

■ arguments: none

The close method close the input file and returns true on success, false otherwise. In case
of success, multiple calls return true.

48 Streams

InputFile:lseek

■ return: none

■ arguments: Integer

The lseek set the input file position to the integer argument. Note that the pushback buffer is
reset after this call.

InputFile:length

■ return: Integer

■ arguments: none

The length method returns the length of the input file. The length is expressed in characters.

49

InputMapped [aleph:sio]

Description
The InputMapped class provide the facility for an input file stream with offset and size. The class
is similar to the InputFile class except that the constructor can also accepts an integer offset and
size argument. If the file offset or size are out of range, the class behaves like an input file. If the
file does not exist or cannot be opened, an exception is raised. The InputMapped class is derived
from the Input class.

Constructors Summary

Constructor Description

InputMapped file-name create a mapped input file
InputMapped file-name offset size create a mapped input file

Derivation summary

Derived from Description
Input the input stream class

Methods Summary

Method Description

lseek set the mapped file at a certain position
length return the length of the mapped file
get-name returns the mapped file name
get-offset returns the mapped file offset

InputMapped:lseek

■ return: none

■ arguments: Integer

The lseek set the input mapped file position to the integer argument. Note that the pushback
buffer is reset after this call.

InputMapped:length

■ return: Integer

50 Streams

■ arguments: none

The length method returns the length of the input mapped file. The length is expressed in
characters.

InputMapped:get-name

■ return: String

■ arguments: none

The get-name method returns the input mapped file name.

InputMapped:get-offset

■ return: Integer

■ arguments: none

The get-name method returns the input mapped file offset.

51

InputString [aleph:sio]

Description
The InputString class provide the facility for an input string stream. The class is initialized or
set with a string and then behaves like a steram. This class is very usefull to handle generaic stream
method without knowing what kind of sream is behind it.

Constructors Summary

Constructor Description

InputString create an empty input string
InputString value create an input string by value

Derivation summary

Derived from Description

Input the input stream class

Methods Summary

Method Description

set set the input string value
get get a character from the stream

InputString:get

■ return: Character

■ arguments: none

The get method returns the next available character from the input stream but do not remove it.

InputString:set

■ return: none

■ arguments: String

The set method sets the input string by first resetting the pushback buffer and then initializing
the input string with the argument value.

52 Streams

53

InputTerm [aleph:sio]

Description
The InputTerm class provide the facility for an input terminal stream. The input terminal reads
character from the standard input stream. No line editing facility is provided with this class This is
a low level class, and normally, the Terminal class should be used instead.

Constructors Summary

Constructor Description

InputTerm create an input terminal

Derivation summary

Derived from Description

Input the input stream class

Methods Summary

Method Description

set-eof-ignore set the ctrl-d ignore flag
set-eof-character set the ctrl-d character

InputTerm:set-eof-ignore

■ return: none

■ arguments: Boolean

The set-eof-ignore method set the input terminal ctrl-d ignore flag. When the flag is on,
any character that match a ctrl-d is changed to the remapped character and returned by a read. This
method is usefull to prevent a reader to exit when the ctrl-d character is generated.

InputTerm:set-eof-character

■ return: none

■ arguments: Character

The set-eof-character method set the input terminal ctrl-d remapping character. By default
the character is set to the end-of-line character. This method should be used in conjunction with the
set-eof-ignore method.

54 Streams

55

OutputFile [aleph:sio]

Description
The Output class is a base class for the Aleph standard input/output library. The class is automat-
ically constructed by a derived class and provide the common methods for all output streams.

Methods Summary

Method Description

write write literals
writeln write literals followed by a newline
errorln write literals followed by a newline
newline write a new line character

Output:write

■ return: none

■ arguments: [Literal...]

The write method write one or more literal arguments on the output stream. This method returns
nil;

Output:writeln

■ return: none

■ arguments: [Literal...]

The writeln method write one or more literal argument to the output stream and finish with a
newline. This method return nil.

Output:errorln

■ return: none

■ arguments: [Literal...]

The errorln method write one or more literal argument to the associated output error stream
and finish with a newline. Most of the time, the output stream and error steram are the same except
for an outut terminal.

Output:newline

■ return: none

■ arguments: none

The newline method writes a new line character to the output stream. The method returns nil.

56 Streams

57

OutputFile [aleph:sio]

Description
The OutputFile class provide the facility for an output file stream. An output file instance is
created with a file name. If the file does not exist, it is created. If the file cannot be created, an
exception is raised. Once the file is created, it is possible to write literals. The class is derived from
the Output class. By default an output file is created if it does not exist. If the file already exist, the
file is truncated to 0. Another constructor for the output file gives more control about this behavior.
It takes two boolean flags that defines the truncate and append mode. The t-flag is the truncate
flag. The a-flag is the append flag.

Constructors Summary

Constructor Description

OutputFile file-name create an output file by name
OutputFile file-name t-flag a-flag create an output file by name and flag

Derivation summary

Derived from Description

Output the output stream class

Methods Summary

Method Description

get-name returns the output file name
close close this output file

OutputFile:close

■ return: Boolean

■ arguments: none

The close method closes the output file and returns true on success, false otherwise. In case
of success, multiple calls return true.

OutputFile:get-name

■ return: String

58 Streams

■ arguments: none

The get-name method returns the output file name.

59

OutputString [aleph:sio]

Description
The OutputString class provide the facility for an output string stream. The class is initially
empty and acts as a buffer which accumulate the write method characters. The to-stringmethod
can be used to retreive the buffer content.

Constructors Summary

Constructor Description

OutputString create an empty output string
OutputString value create an output string with a value

Derivation summary

Derived from Description

Output the output stream class

Methods Summary

Method Description

flush flush the output string
to-string return the string buffer

OutputString:flush

■ return: none

■ arguments: none

The flush method flushes the output string steram by resettng the string buffer.

OutputString:to-string

■ return: String

■ arguments: none

The to-string method returns a string representation of the output string buffer.

60 Streams

61

OutputTerm [aleph:sio]

Description
The OutputTerm class provide the facility for an output terminal. The output terminal is defined
as the standard output stream. If the standard error stream needs to be used, the ErrorTerm class is
more appropriate. The class is derived from the Output class.

Constructors Summary

Constructor Description
ErrorTerm create an error terminal
OutputTerm create an output terminal

Derivation summary

Derived from Description

Output the output stream class

62 Streams

63

Terminal [aleph:sio]

Description
The Terminal class provide the facility for an input/output terminal with line editing capability.
The class combines the InputTerm and OutputTerm methods.

Constructors Summary

Constructor Description

Terminal create a new terminal

Derivation summary

Derived from Description

InputTerm the input terminal class
OutputTerm the output terminal class

Methods Summary

Method Description

set-primary set the primary prompt
set-secondary set the secondary prompt
get-primary get the primary prompt
get-secondary get the secondary prompt

Terminal:set-primary

■ return: none

■ arguments: String

The set-primary method sets the terminal primary prompt which is used when the readline
method is called.

Terminal:set-secondary

■ return: none

■ arguments: String

64 Streams

The set-secondary method sets the terminal secondary prompt which is used when the
readline method is called.

Terminal:get-primary

■ return: String

■ arguments: none

The get-primary method returns the terminal primary prompt.

Terminal:get-secondary

■ return: String

■ arguments: none

The get-secondary method returns the terminal secondary prompt.

65

Directory [aleph:sio]

Description
The Directory class provides some facilities to access a directory. By default, a directory object
is constructed to represent the current directory. With one argument, the object is constructed from
the directory name. Once the object is constructed, it is possible to retrieve its content.

Constructors Summary

Constructor Description

Directory open the current directory
Directory directory-name open a directory by name

Methods Summary

Method Description

mkdir create a directory
rmdir remove a directory
rmfile remove a file
get-name return the directory name
get-list return a list of the directory contents
get-files return a list of files in this directory
get-subdirs return a list of sub directories

Directory:mkdir

■ return: Directory

■ arguments: String

The mkdir method creates a new directory in the current one. The full path is constructed by
taking the directory name and adding the argument. Once the directory is created, the method returns
a directory object of the newly constructed directory. An exception is thrown if the directory cannot
be created.

Directory:rmdir

■ return: none

■ arguments: String

The rmdir method removes an empty directory. The full path is constructed by taking the
directory name and adding the argument. An exception is thrown if the directory cannot be removed.

66 Streams

Directory:rmfile

■ return: none

■ arguments: String

The rmfile method removes a file in the current directory. The full path is constructed by taking
the directory name and adding the argument. An exception is thrown if the file cannot be removed.

Directory:get-name

■ return: String

■ arguments: none

The get-name method returns the directory name. If the default directory was created, the
method returns the full directory path.

Directory:get-list

■ return: List

■ arguments: none

The get-list method returns the directory contents. The method returns a list of strings. The
list contains all valid names at the time of the call, including the current directory and the parent
directory.

Directory:get-files

■ return: List

■ arguments: none

The get-files method returns the directory contents. The method returns a list of strings of
files. The list contains all valid names at the time of the call.

Directory:get-subdirs

■ return: List

■ arguments: none

The get-subdirs method returns the sub directories. The method returns a list of strings of
subdirectories. The list contains all valid names at the time of the call, including the current directory
and the parent directory.

67

Selector [aleph:sio]

Description
The Selector class provides some facilities to perform I/O multiplexing. The constructor takes
0 or several stream arguments.The class manages automatically to differentiate between Input and
Output streams. Once the class is constructed, it is possible to get the first stream ready for reading
or writing or all of them. It is also possible to add more steams after construction with the add
method. When used with several input streams in a multi-threaded context, the selector behavior
can becomes quite complicated. Either wait and wait-all methods check first the input streams
push-back buffer. If one or several buffer is (are) not empty, the method returns with these streams.
During this operation, the input streams are locked, so no other thread can push-back a character.
The selector then checks for status change and unlock the streams. Note that the output streams are
not locked. Note also that a thread which rely on the input stream push-back method to release a
selector will result in a dead lock.

Constructors Summary

Constructor Description

Selector create an empty selector
Selector [Input|Output] create a selector with streams

Methods Summary

Method Description

add add a new stream to the selector
wait wait for one stream to change status
wait-all wait for some stream to change status
input-get return an input stream by index
output-get return an output stream by index
input-length return the number of input streams
output-length return the number of output streams

Selector:add

■ return: nil

■ arguments: Input|Output

The add method adds an input or output stream to the selector.

Selector:wait

■ return: Object

68 Streams

■ arguments: none|Integer

The wait method waits for a status change in the selector and returns the first stream that has
change status. With one argument, the selector time-out after the specified time in milliseconds.
Note that at the time of the return, several streams may have changed status.

Selector:wait-all

■ return: Vector

■ arguments: none|Integer

The wait method waits for a status change in the selector and returns all streams that has change
status in a vector object. With one argument, the selector time-out after the specified time in mil-
liseconds. If the selector has timed-out, the vector is empty.

Selector:input-get

■ return: Input

■ arguments: Integer

The input-get method returns the input streams in the selector by index. If the index is out of
bound, an exception is raised.

Selector:output-get

■ return: Output

■ arguments: Integer

The output-get method returns the output streams in the selector by index. If the index is out
of bound, an exception is raised.

Selector:input-length

■ return: Integer

■ arguments: none

The input-length method returns the number of input streams in the selector.

Selector:output-length

■ return: Integer

■ arguments: none

The output-length method returns the number of output streams in the selector.

APPENDIX B

File System Functions

This chapter is a reference of the Aleph file system functions. The functions described here are part
of the aleph-sio library. The library must be loaded prior any use of these functions. Once the library
is loaded, all functions are located in the aleph:sio nameset.

Table 4 Aleph file system functions

Object Description

dir-p check for a directory
file-p checks for a regular file
rmdir remove one or several directories
rmfile remove one or several files
absolute-path create an absolute path name
relative-path create a relative path name

aleph:sio:dir-p

■ return: Boolean

■ arguments: String

The dir-p function returns true if the argument name is a directory name, false otherwise.

aleph:sio:file-p

■ return: Boolean

■ arguments: String

The file-p function returns true if the argument name is a regular file name, false otherwise.

aleph:sio:absolute-path

■ return: String

■ arguments: [String ...]

The absolute-path function returns an absolute path name from an argument list. Without
argument, the command returns the root directory name. With one or several argument, the absolute
path is computed from the root directory.

70 File System Functions

aleph:sio:relative-path

■ return: String

■ arguments: [String ...]

The relative-path function returns a relative path name from an argument list. With one
argument, the function returns it. With two or more arguments, the relative path is computed by
joining each argument with the previous one.

aleph:sio:rmfile

■ return: none

■ arguments: [String ...]

The rmfile function removes one or several files specified as the arguments. If one file fails to
be removed, an exception is raised.

aleph:sio:rmdir

■ return: none

■ arguments: [String ...]

The rmdir function removes one or several directories specified as the arguments. If one directory
fails to be removed, an exception is raised.

APPENDIX C

System Classes

This chapter is a reference of the Aleph system classes. The classes described here are part of the
aleph-sys library. The library must be loaded prior any use of these classes. Once the library is
loaded, all classes are located in the aleph:sys nameset.

Table 5 Aleph system classes

Object Description

Time time and date class

For each system class, a predicate is provided.

Table 6 Aleph system class predicates

Object Predicate

Time time-p

72 System Classes

73

Time [aleph:sys]

Description
The Time class is the system access to the date and time. When an instance of that class is created,
the creation time is recorded in the instance. The recorded time is the epoch time corresponding to
the UTC time of January 1, 1970. The resolution is in seconds. Various methods are provided to
extract the date and time. The time can either be the local time or the UTC time. With one argument,
the object is initialized to the date specified as an integer argument in reference to the epoch.

Constructors Summary

Constructor Description

Time create a new time class
Time tval create a new time class by value

Methods Summary

Method Description

add add a time in second to the current time
get-time returns the time in seconds since the epoch
get-year returns the local year
get-hours returns the local number of hours
get-seconds returns the local number of seconds
get-minutes returns the local number of minutes
get-day-of-week returns the local day in the week
get-day-of-year returns the local day in the year
get-day-of-month returns the local day in the month
get-month-of-year returns the local month in the year
get-utc-year returns the utc year
get-utc-hours returns the utc number of hours
get-utc-seconds returns the utc number of seconds
get-utc-minutes returns the utc number of minutes
get-utc-day-of-week returns the utc day in the week
get-utc-day-of-year returns the utc day in the year
get-utc-day-of-month returns the utc day in the month
get-utc-month-of-year returns the utc month in the year
format-date format local date
format-time format local time
utc-format-date format utc date
utc-format-time format utc time
utc-format-rfc format utc time as RFC 822
utc-format-cookie format utc time for cookie expire

74 System Classes

Time:add

■ return: none

■ arguments: Integer

The add method adds the time argument in second to the current time value. The new date is
recomputed after it. This method is useful to compute a time in the future, in reference to the current
time.

Time:get-time

■ return: Integer

■ arguments: none

The get-time method returns the number of seconds elapsed since the epoch. The epoch is
January 1, 1970.

Time:get-seconds

■ return: Integer

■ arguments: none

The get-seconds method returns the number of seconds after the minute for the local time,
corrected for daylight saving time. The returned value is the range 0 to 61, eventually accounting for
the leap second.

Time:get-minutes

■ return: Integer

■ arguments: none

The get-minutes method returns the number of minutes after the hour for the local time,
corrected for daylight saving time. The returned value is the range 0 to 59.

Time:get-hours

■ return: Integer

■ arguments: none

The get-hours method returns the number of hours since midnight for the local time, corrected
for daylight saving time. The returned value is the range 0 to 23.

Time:get-month

■ return: Integer

■ arguments: none

The get-month method returns the month in the year for the local time, corrected for daylight
saving time. The returned value is the range 0 to 11.

Time:get-year

■ return: Integer

75

■ arguments: none

The get-year method returns the year for the local time, corrected for daylight saving time. The
returned value is an absolute year value (year 2000 is 2000).

Time:get-day-of-month

■ return: Integer

■ arguments: none

The get-day-of-month method returns the day in the month for the local time, corrected for
daylight saving time. The returned value is the range 1 to 31.

Time:get-day-of-week

■ return: Integer

■ arguments: none

The get-day-of-week method returns the day in the week for the local time, corrected for
daylight saving time. The returned value is the range 0 to 6 in reference to Sunday.

Time:get-day-of-year

■ return: Integer

■ arguments: none

The get-day-of-year method returns the day in the year for the local time, corrected for
daylight saving time. The returned value is the range 0 to 365 in reference to January 1.

Time:get-utc-seconds

■ return: Integer

■ arguments: none

The get-utc-seconds method returns the number of seconds after the minute for the UTC
time. The returned value is the range 0 to 61, eventually accounting for the leap second.

Time:get-utc-minutes

■ return: Integer

■ arguments: none

The get-utc-minutes method returns the number of minutes after the hour for the UTC time.
The returned value is the range 0 to 59.

Time:get-utc-hours

■ return: Integer

■ arguments: none

The get-utc-hours method returns the number of hours since midnight for the UTC time.
The returned value is the range 0 to 23.

76 System Classes

Time:get-utc-month

■ return: Integer

■ arguments: none

The get-utc-month method returns the month in the year for the UTC time. The returned
value is the range 0 to 11.

Time:get-utc-year

■ return: Integer

■ arguments: none

The get-utc-year method returns the year for the UTC time, The returned value is an absolute
year value (year 2000 is 2000).

Time:get-utc-day-of-month

■ return: Integer

■ arguments: none

The get-utc-day-of-month method returns the day in the month for the UTC time. The
returned value is the range 1 to 31.

Time:get-utc-day-of-week

■ return: Integer

■ arguments: none

The get-utc-day-of-week method returns the day in the week for the UTC time. The
returned value is the range 0 to 6 in reference to Sunday.

Time:get-utc-day-of-year

■ return: Integer

■ arguments: none

The get-utc-day-of-year method returns the day in the year for the UTC time. The returned
value is the range 0 to 365 in reference to January 1.

Time:format-date

■ return: String

■ arguments: none

The format-date method returns a formatted string of the local date.

Time:format-time

■ return: String

■ arguments: none

77

The format-time method returns a formatted string of the local time.

Time:utc-format-date

■ return: String

■ arguments: none

The utc-format-date method returns a formatted string of the utc date.

Time:utc-format-time

■ return: String

■ arguments: none

The utc-format-time method returns a formatted string of the utc time.

Time:utc-format-rfc

■ return: String

■ arguments: none

The utc-format-rfc method returns a formatted string of the utc date and time as specified
by RFC 822.

Time:utc-format-cookie

■ return: String

■ arguments: none

The utc-format-cookie method returns a formatted string of the utc date and time suitable
to be used as a cookie expiration time. Of course, the cookie time is not the same as the RFC 822.

78 System Classes

APPENDIX D

System Calls

This chapter is a reference of the Aleph system calls. The functions described here are part of the
aleph-sys library. The library must be loaded prior any use of these functions. Once the library is
loaded, all functions are located in the aleph:sys nameset.

Table 7 Aleph system call functions

Function Description

exit exit unconditionally with an exit code
sleep pause for a certain time
random return a random integer number
get-pid get the process identifier
get-env get an environment variable
get-host-name return the host name
get-user-name return the user name

aleph:sys:exit

■ return: none

■ arguments: Integer

The exit function exit unconditionally with the exit code as the argument.

aleph:sys:sleep

■ return: none

■ arguments: Integer

The sleep function pause the specific thread for a certain time. The time argument is expressed
in milliseconds. This function returns nil.

aleph:sys:random

■ return: Integer

■ arguments: none

The random function returns a random integer number. The function is protected by a mutex. A
calling thread will block until the other one has completed the call.

80 System Calls

aleph:sys:get-pid

■ return: Integer

■ arguments: none

The get-pid function returns the process identifier (pid). The returned value is a positive integer.

aleph:sys:get-env

■ return: String

■ arguments: String

The get-env function returns the environment variable associated with the string argument. If
the environment does not exist an exception is raised.

aleph:sys:get-host-name

■ return: String

■ arguments: none

The get-host-name function returns the host name. The host name can be either a simple
name or a canonical name with its domain, depending on the system configuration.

aleph:sys:get-user-name

■ return: String

■ arguments: none

The get-user-name function returns the current user name.

APPENDIX E

Formatting

This appendix is a reference of the Aleph text processing library. All classes described here are part
of the aleph-txt library. The library must be loaded prior any use of these classes. Once the library
is loaded, all classes are located in the aleph:txt nameset.

Table 8 Aleph text processing classes

Object Description

PrintTable table formatting object
Digest message digest computation

For each class, a predicate is provided.

Table 9 Aleph text processing predicates

Object Predicate
PrintTable print-table-p
Digest digest-p

82 Formatting

83

PrintTable [aleph:txt]

Description
The PrintTable class is a formating class for tables. The table is constructed with the number
of columns (default to 1) and eventually the number of rows. Once the table is created, element are
added to the table with the add method. Specific table element can be set with the set method.
The class provide a format method those default is to print the table on the interpreter standard
output. With an output stream argument or a buffer, the table is formatted to these objects. The
table formating includes an optional column width, a filling character and a filling direction flag.
By default, the column width is 0. This means that the column width is computed as the maximum
length of all column elements. If the column width is set with the set-column-sizemethod, the
string element might be truncated to the left or right (depending on the filling flag) to fit the column
width.

Derivation summary

Derived from Description

Object the base object class

Constructors Summary

Constructor Description

PrintTable create a one column table
PrintTable cols create a multi-column table
PrintTable cols rows create a multi-column table with rows

Methods Summary

PrintTable:add

■ return: none|Integer

■ arguments: none|[Literal...]

The add method serves several purposes. Without argument, a new row is added and the row
index is returned. The row index can be lated used with the set method to set a particular table
element. With one or several literal arguments (those length must match the number of columns), a
new row is created and those arguments added to the table. In that later case, the method returns the
nil object.

PrintTable:get

84 Formatting

Method Description

add add a new column and eventually element
get get a table element by row and column
set set a table element by row and column
format format the table to a stream or buffer
get-rows return the number of rows
get-columns return the number of columns
set-column-size set a column desired size
get-column-size get a column desired size
set-column-fill set a column fill character
get-column-fill get a column fill character
set-column-direction set a column fill direction flag
get-column-direction get a column fill direction flag

■ return: String

■ arguments: Integer Integer

The get method returns a particular table element by row and column. The first argument is the
table row index and the second is the table column index.

PrintTable:set

■ return: none

■ arguments: Integer Integer Literal

The set method sets a particular table element by row and column. The first argument is the
table row index and the second is the table column index. The last argument is a literal object that is
converted to a string prior its insertion.

PrintTable:format

■ return: none

■ arguments: none|Output|Buffer

The format method writes the formated table to an output stream or a buffer. Without argument,
the default interpreter output stream is used.

PrintTable:get-rows

■ return: Integer

■ arguments: none

The get-rows method returns the number of rows in the table.

PrintTable:get-columns

■ return: Integer

■ arguments: none

The get-columns method returns the number of columns in the table.

85

PrintTable:set-column-size

■ return: none

■ arguments: Integer Integer

The set-column-size method sets the desired width for a particular column. The first ar-
gument is the column index and the second argument is the column width.If 0 is given, the column
width is computed as the maximum of the column elements.

PrintTable:get-column-size

■ return: Integer

■ arguments: Integer

The get-column-size method returns the desired width for a particular column.

PrintTable:set-column-fill

■ return: none

■ arguments: Integer Character

The set-column-fill method sets the filling character for a particular column. The first
argument is the column index and the second argument is a character to use when filling a particular
column element. The default filling character is the blank character.

PrintTable:get-column-fill

■ return: Character

■ arguments: Integer

The get-column-fill method returns the filling character for a particular column.

PrintTable:set-column-direction

■ return: none

■ arguments: Integer Boolean

The set-column-direction method sets the direction flag for a particular column. The first
argument is the column index and the second argument is a boolean. A false value indicates a filling
by the left while a true value indicates a filling by the right. The column filling character is used for
this operation.

PrintTable:get-column-direction

■ return: Boolean

■ arguments: Integer

The get-column-direction method returns the direction flag for a particular column.

86 Formatting

87

Digest [aleph:txt]

Description
The Digest class is a message digest computation class. By default, the MD5 algorithm as defined
by RFC 1321 is bound to the class. The message digest class computes a message digest fomr an
input string or a buffer. The message digest is returned as a string.

Derivation summary

Derived from Description

Object the base object class

Constructors Summary

Constructor Description

Digest create a default message digest

Methods Summary

Method Description

compute compute the message digest

Digest:compute

■ return: String

■ arguments: String|Buffer

The compute method computes a message digest from the input string or the inpout buffer. The
method returns the message digest as a string.

88 Formatting

APPENDIX F

Sorting and searching

This chapter is a reference of the Aleph sorting and searching functions. The functions described
here are part of the aleph-txt library. The library must be loaded prior any use of these functions.
Once the library is loaded, all functions are located in the aleph:txt nameset.

Table 10 Sorting and searching functions

Object Description

sort sort a vector

aleph:txt:sort

■ return: none

■ arguments: Vector

The sort function sorts in ascending the vector. The vector is sorted in place.

90 Sorting and searching

APPENDIX G

Networking Classes

This appendix is a reference of the Aleph networking services. All classes described here are part of
the aleph-net library. The library must be loaded prior any use of these classes. Once the library is
loaded, all classes are located in the aleph:net nameset.

Table 11 Aleph network system classes

Object Description

Mail message delivery class
Socket base socket class
Address ip address manipulation class
Datagram udp datagram class
TcpSocket base tcp socket
TcpClient tcp client socket class
TcpServer tcp server socket class
UdpSocket base udp socket
UdpClient udp client socket class
UdpServer udp server socket class
Multicast multicast socket class

For each class, a predicate is provided.

Table 12 Aleph network class predicates

Object Predicate

Mail mail-p
Socket socket-p
Address address-p
Datagram datagram-p
TcpSocket tcp-socket-p
TcpServer tcp-server-p
TcpClient tcp-client-p
UdpSocket udp-socket-p
UdpServer udp-server-p
UdpClient udp-client-p
Multicast multicast-p

92 Networking Classes

93

Address [aleph:net]

Description
The Address class is the Internet address manipulation class. The class can be used to perform the
conversion between a host name and an IP address. The opposite is also possible. Finally, the class
supports both IPv4 and IPv6 address formats.

Constructors Summary

Constructor Description

Address name create a address class

Methods Summary

Method Description

get-name returns the original address name
get-ip-address returns the ip address as a string
get-ip-vector returns the ip address as a vector
get-canonical-name returns the address canonical name

Address:get-name

■ return: String

■ arguments: none

The get-name method returns the original name used during the object construction.

Address:get-ip-address

■ return: String

■ arguments: none

The get-ip-address method returns a string representation of the IP address. The string
representation follows the IPv4 or IPv6 preferred format, depending on the internal representation.

Address:get-ip-vector

■ return: Vector

■ arguments: none

The get-ip-vector method returns a vector representation of the IP address. The vector result
follows the IPv4 or IPv6 preferred format, depending on the internal representation.

94 Networking Classes

Address:get-canonical-name

■ return: String

■ arguments: none

The get-canonical-name method returns a fully qualified name of the address. The resulting
name is obtained by performing a reverse lookup. Note that the name can be different from the
original name.

95

Socket [aleph:net]

Description
The Socket class is a base class for the Aleph network services. The class is automatically con-
structed by a derived class and provide some common methods for all socket objects.

Derivation summary

Derived from Description

Input the input stream class
output the output stream class

Constants Summary

Constant Description

REUSE-ADDRESS enable address reuse
BROADCAST enable broadcast packet
DONT-ROUTE bypass routing table lookup
KEEP-ALIVE test for connection alive
LINGER linger on close
RCV-SIZE receive buffer size
SND-SIZE send buffer size
HOP-LIMIT the the maximum hop limit
MULTICAST-LOOPBACK enable the multicast loopback
MULTICAST-HOP-LIMIT multicast hop limit option
MAX-SEGMENT-SIZE max TCP segment size
NO-DELAY disable the naggle algorithm

Methods Summary

Socket:REUSE-ADDRESS
The REUSE-ADDRESS constant is used by the set-option method to enable socket address
reuse. This option changes the rules that validates the address used by bind. It is not recommended
to use that option as it decreases TCP reliability.

Socket:BROADCAST
The BROADCAST constant is used by the set-option method to enable broadcast of packets.
This options only works with IPV4 address. The argument is a boolean flag only.

Socket:DONT-ROUTE

96 Networking Classes

Method Description

bind bind this socket
connect connect this socket
ipv6-p check for ipv6 socket
read returns the next available character
readln returns the next available line
write write a character or a string
writeln write a string followed by a newline
newline write a new line character
close close this socket
valid-p returns true if a character is available
eof-p returns true if the socket has been closed
pushback pushback a character or a string
shutdown shutdown a connection
get-buffer-length return the read buffer length
get-socket-address return the socket address
get-socket-port return the socket port
get-peer-address return the peer address
get-peer-port return the peer port
set-option set a socket option

The DONT-ROUTE constant is used by the set-option method to control if a packet is to be
sent via the routing table. This option is rarely used with Aleph. The argument is a boolean flag
only.

Socket:KEEP-ALIVE
The KEEP-ALIVE constant is used by the set-option method to check periodically if the
connection is still alive. This option is rarely used with Aleph. The argument is a boolean flag only.

Socket:LINGER
The LINGER constant is used by the set-option method to turn on or off the lingering on
close. If the first argument is true, the second argument is the linger time.

Socket:RCV-SIZE
The RCV-SIZE constant is used by the set-option method to set the receive buffer size.

Socket:SND-SIZE
The SND-SIZE constant is used by the set-option method to set the send buffer size.

Socket:HOP-LIMIT
The HOP-LIMIT constant is used by the set-option method to set packet hop limit.

Socket:MULTICAST-LOOPBACK
The MULTICAST-LOOPBACK constant is used by the set-option method to control whether
or not multicast packets are copied to the loopback. The argument is a boolean flag only.

Socket:MULTICAST-HOP-LIMIT
The MULTICAST-HOP-LIMIT constant is used by the set-option method to set the hop
limit for multicast packets.

Socket:MAX-SEGMENT-SIZE

97

The MAX-SEGMENT-SIZE constant is used by the set-option method to set the TCP maxi-
mum segment size.

Socket:NO-DELAY
The NO-DELAY constant is used by the set-option method to enable or disable the Naggle
algorithm.

Socket:bind

■ return: none

■ arguments: Integer

The bind method binds this socket to the port specified as the argument.

Socket:bind

■ return: none

■ arguments: Integer Address

The bind method binds this socket to the port specified as the first argument and the address
specified as the second argument.

Socket:connect

■ return: none

■ arguments: Integer Address

The connect method connects this socket to the port specified as the first argument and the
address specified as the second argument. A connected socket is useful with udp client that talks
only with one fixed server.

Socket:shutdown

■ return: Boolean

■ arguments: Boolean

The shutdown method shutdowns one side of the connection. If the mode argument is false,
further receive is disallowed. If the mode argument is true, further send is disallowed. The method
returns true on success, false otherwise.

Socket:ipv6-p

■ return: Boolean

■ arguments: none

The ipv6-p predicate returns true if the socket address is an IPV6 address, false otherwise.

Socket:read

■ return: Character

■ arguments: none

98 Networking Classes

The read method returns the next character available from the socket. If the socket has been
closed, the eof character is returned.

Socket:read

■ return: Buffer

■ arguments: Integer

The read method with an integer argument returns a buffer of characters by reading the socket.
The number of read characters might be less than requested. Use the length method to check for
the returned buffer size.

Socket:readln

■ return: String

■ arguments: none

The readln method returns the next line available from the socket. If the socket has been closed,
the eof character is returned.

Socket:write

■ return: none

■ arguments: [Literal...]

The write method write one or more literal arguments on the socket. This method returns nil;

Socket:writeln

■ return: none

■ arguments: Literal

The writeln method write one or more literal argument to the socket and finish with a newline.
This method return nil.

Socket:newline

■ return: none

■ arguments: none

The newline method writes a new line character to the socket. The method returns nil.

Socket:close

■ return: Boolean

■ arguments: none

The close method close the socket and returns true on success, false otherwise. In case of
success, multiple calls return true.

Socket:valid-p

■ return: Boolean

99

■ arguments: [Integer]

The valid-p method returns true if the socket is in a valid state. By valid state, we mean that
the socket can read a character. With one argument, the method timeout after the specified time.

Socket:eof-p

■ return: Boolean

■ arguments: none

The eof-p method returns true no more characters can be read from this socket or the socket
has been closed.

Socket:pushback

■ return: none

■ arguments: Character|String

The pushback method pushback a character or a string in the input stream. Subsequent calls to
read will return the last pushed characters. Pushing a string is equivalent to push each characters of
the string.

Socket:get-socket-address

■ return: Address

■ arguments: none

The get-socket-address method returns an address object of the socket. The returned object
can be later used to query the canonical name and the ip address.

Socket:get-socket-port

■ return: Integer

■ arguments: none

The get-socket-address method returns the port number of the socket.

Socket:get-peer-address

■ return: Address

■ arguments: none

The get-peer-address method returns an address object of the socket’s peer. The returned
object can be later used to query the canonical name and the ip address.

Socket:get-peer-port

■ return: Integer

■ arguments: none

The get-socket-address method returns the port number of the socket’s peer.

Socket:set-option

100 Networking Classes

■ return: Boolean

■ arguments: constant [Boolean|Integer] [Integer]

The set-option method set a socket option. The first argument is the option to set. The second
argument is a boolean value which turn on or off the option. The optional third argument is an
integer needed for some options.

101

TcpSocket [aleph:net]

Description
The TcpSocket class is a base class for all tcp socket objects. The class is derived from the
Socket class and provides some specific tcp methods. If a TcpSocket is created, the user is re-
sponsible to connect it to the proper address and port.

Constructors Summary

Constructor Description

TcpSocket create a new tcp socket

Derivation summary

Derived from Description

Socket the socket class

Methods Summary

Method Description

accept accept a connection
listen listen for connection

TcpSocket:accept

■ return: TcpSocket

■ arguments: none

The accept method waits for incoming connection and returned a TcpSocket object initialized
with the connected peer. The result socket can be used to perform i/o operations. This method is
used by tcp server.

TcpSocket:listen

■ return: Boolean

■ arguments: none|Integer

The listen method initialize a socket to accept incoming connection. Without argument, the
default number of incoming connection is 5. The integer argument can be used to specify the number
of incoming connection that socket is willing to queue. This method is used by tcp server.

102 Networking Classes

103

TcpClient [aleph:net]

Description
The TcpClient class creates a tcp client by host and port. The host argument can be either a name
or an address object. The port argument is the server port to contact. The TcpClient class is derived
from the TcpSocket class. This class has no specific methods

Constructors Summary

Constructor Description

TcpClient host port create a tcp client by host and port

Derivation summary

Derived from Description

TcpSocket the TCP socket class

104 Networking Classes

105

TcpServer [aleph:net]

Description
The TcpServer class creates a tcp server by port. An optional host argument can be either a name
or an address object. The port argument is the server port to bind. The TcpServer class is derived
from the TcpSocket class. This class has no specific methods. With one argument, the server bind
the port argument on the local host. The backlog can be specified as the last argument. The host
name can also be specified as the first argument, the port as second argument and eventually the
backlog. Note that the host can be either a string or an address object.

Constructors Summary

Constructor Description

TcpServer create a tcp server
TcpServer port create a tcp server by port
TcpServer port backlog create a tcp server by port
TcpServer host port create a tcp server by host
TcpServer host port backlog create a tcp server by host

Derivation summary

Derived from Description

TcpSocket the TCP socket class

106 Networking Classes

107

Datagram [aleph:net]

Description
The Datagram class is a socket class used by udp socket. A datagram is constructed by the Udp-
Socket accept method. The purpose of a datagram is to store the peer information so one can
reply to the sender. The datagram also stores in a buffer the data sent by the peer. This class does
not have any constructor nor any specific method.

Derivation summary

Derived from Description

Socket the socket class

108 Networking Classes

109

UdpSocket [aleph:net]

Description
The UdpSocket class is a base class for all udp socket objects. The class is derived from the
Socket class and provides some specific udp methods.

Constructors Summary

Constructor Description

UdpSocket create a new udp socket

Derivation summary

Derived from Description

Socket the socket class

Methods Summary

Method Description

accept accept a datagram

UdpSocket:accept

■ return: Datagram

■ arguments: none

The accept method waits for an incoming datagram and returns a Datagram object. The
datagram is initialized with the peer address and port as well as the incoming data.

110 Networking Classes

111

UdpClient [aleph:net]

Description
The UdpClient class creates a udp client by host and port. The host argument can be either a
name or an address object. The port argument is the server port to contact. The UdpClient class is
derived from the UdpSocket class. This class has no specific methods

Constructors Summary

Constructor Description

UdpClient host port create a udp client by host and port

Derivation summary

Derived from Description

UdpSocket the UDP socket class

112 Networking Classes

113

UdpServer [aleph:net]

Description
The UdpServer class creates a udp server by port. An optional host argument can be either a name
or an address object. The port argument is the server port to bind. The UdpServer class is derived
from the UdpSocket class. This class has no specific methods. With one argument, the server bind
the port argument on the local host. The host name can also be specified as the first argument, the
port as second argument. Note that the host can be either a string or an address object.

Constructors Summary

Constructor Description

UdpServer create a udp server
UdpServer port create a udp server by port
UdpServer host port create a udp server by host

Derivation summary

Derived from Description

UdpSocket the UDP socket class

114 Networking Classes

115

Multicast [aleph:net]

Description
The Multicast class creates a udp multicast socket by port. An optional host argument can be
either a name or an address object. The port argument is the server port to bind. The Multicast
class is derived from the UdpSocket class. This class has no specific methods. With one argument,
the server bind the port argument on the local host. The host name can also be specified as the
first argument, the port as second argument. Note that the host can be either a string or an address
object. This class is similar to the UdpServer class, except that the socket join the multicast group
at construction and leave it at destruction.

Constructors Summary

Constructor Description

Multicast host create a multicast socket by host
Multicast addr create a multicast socket by address
Multicast host port create a multicast socket by host and port
Multicast addr port create a multicast socket by address and port

Derivation summary

Derived from Description

UdpSocket the UDP socket class

116 Networking Classes

117

Mail [aleph:net]

Description
The Mail class is a mail delivery object which manages to contact an MTA Mail Transport Agent in
order to deliver a message to one or several recipients. By default, the object contacts the local MTA,
but this behavior can be changed with the set-mta-address method. The class implements the
recipient address syntax as specified by RFC822. At construction, the instance is empty. Only the
recipient address needs to be specified. The send method send the message by contacting the MTA.
If an error occurs, an exception is raised.

Constructors Summary

Constructor Description

Mail create an empty message

Methods Summary

Method Description

to add a new recipient in the to list
cc add a new recipient in the cc list
bcc add a new recipient in the bcc list
add add literals to the message buffer
addln add literals followed by a newline
send send the message by contacting the MTA
subject set the message subject
get-mta-address get the mta IP address
set-mta-address set the mta IP address
get-mta-port get the mta IP port number
set-mta-port set the mta IP port number

Mail:to

■ return: none

■ arguments: String

The to method adds one or several address to the destination list. The address format must
conform to RFC822. Multiple address are coma separated. Multiple call to this method is possible.

Mail:cc

■ return: none

■ arguments: String

118 Networking Classes

The cc method adds one or several address to the copy list. The address format must conform to
RFC822. Multiple address are coma separated. Multiple call to this method is possible.

Mail:bcc

■ return: none

■ arguments: String

The bcc method adds one or several address to the blind copy list. The address format must
conform to RFC822. Multiple address are coma separated. Multiple call to this method is possible.
The blind copy list is not included in the message header.

Mail:add

■ return: none

■ arguments: String ...

The add method adds one or several literals to the message buffer. This is the normal way to fill a
message buffer by string line.

Mail:addln

■ return: none

■ arguments: String ...

The addln method adds one or several literals to the message buffer. A newline character is
added at the end of the line. This is a similar way to fill a message buffer by string line.

Mail:send

■ return: none

■ arguments: none

The send method request a message delivery by contacting the MTA. Once the MTA has been
contacted, the message header and the message body is transfered. The MTA is responsible to deliver
the message to the appropriate recipients.

Mail:subject

■ return: none

■ arguments: String

The subject method sets the message subject string line.

Mail:set-mta-address

■ return: none

■ arguments: String

The set-mta-address method sets the MTA IP address that the class needs to contact for mail
request. The address can be an fully qualified host name or an IP number.

Mail:get-mta-address

119

■ return: String

■ arguments: none

The get-mta-address method returns the current MTA IP address for this mail object.

Mail:set-mta-port

■ return: none

■ arguments: Integer

The set-mta-port method set the current MTA IP port number for this mail object. With the
MTA IP address, the MTA to contact for mail request is uniquely defined. The default port value is
25.

Mail:get-mta-port

■ return: Integer

■ arguments: none

The get-mta-port method returns the current MTA IP port number for this mail object. The
default port value is 25.

120 Networking Classes

APPENDIX H

Networking Functions

This chapter is a reference of the Aleph networking functions. The functions described here are
part of the aleph-net library. The library must be loaded prior any use of these functions. Once the
library is loaded, all functions are located in the aleph:net nameset.

Table 13 Aleph network call functions

Function Description

get-loopback return the loopback name
get-tcp-service return the tcp service name by id
get-udp-service return the udp service name by id

aleph:net:get-loopback

■ return: String

■ arguments: none

The get-loopback function returns the name of the machine loopback. On a UNIX system,
that name is localhost.

aleph:net:get-tcp-service

■ return: String

■ arguments: Integer

The get-tcp-service function returns the name of the tcp service given its port number. For
example, the tcp service at port 13 is the daytime server.

aleph:net:get-udp-service

■ return: String

■ arguments: Integer

The get-udp-service function returns the name of the udp service given its port number. For
example, the udp service at port 19 is the chargen server.

122 Networking Functions

APPENDIX I

WWW/CGI Classes and Functions

This appendix is a reference of the Aleph web services. The classes described here are part of the
aleph-www library. The library must be loaded prior any use of these classes. Once the library is
loaded, all classes are located in the aleph:www namesets.

Table 14 Aleph web classes

Object Description

Url url class
Cookie http cookie class
CgiQuery cgi query class
HtmlPage html page class
XHtmlPage xhtml page class

For each class, a predicate is provided.

Table 15 Aleph web class predicates

Object Predicate

Url url-p
Cookie cookie-p
CgiQuery cgi-query-p
HtmlPage html-page-p

124 WWW/CGI Classes and Functions

125

Url [aleph:www]

Description
The Url class is the Universal Resource Locator manipulation class. The class can be
used to either parse a URL or build one by pieces. The class do automatically the escape sequence
conversion.

Derivation summary

Derived from Description

Object the base object class

Constructors Summary

Constructor Description

Url create an empty url
Url name create a URL by name

Methods Summary

Method Description

parse parse a string
get-scheme returns the url scheme
get-host returns the url host
get-port returns the url port
get-path returns the url path
get-query returns the url query
get-fragment returns the url fragment

Url:parse

■ return: none

■ arguments: String

The parse method reset the URL object, parse the string argument and fill the URL object with
the result.

Url:get-scheme

126 WWW/CGI Classes and Functions

■ return: String

■ arguments: none

The get-scheme method returns the scheme of the parsed URL object. The default scheme is
http if not specified at object construction.

Url:get-host

■ return: String

■ arguments: none

The get-host method returns the host of the parsed url.

Url:get-port

■ return: Integer

■ arguments: none

The get-port method returns the host of the parsed url. The default port is 80 if not specified.
With some scheme, the port value do not make sense.

Url:get-path

■ return: String

■ arguments: none

The get-path method returns the path of the parsed url. The default path is ’/’ if not specified.

Url:get-query

■ return: String

■ arguments: none

The get-query method returns the complete query string of the parsed URL.

Url:get-fragment

■ return: String

■ arguments: none

The get-fragment method returns the complete query string of the parsed URL.

127

CgiQuery [aleph:www]

Description
The CgiQuery class is a special object that parse a CGI query string and provides methods to
access form values by key. The class takes care of converting the escaped characters.

Derivation summary

Derived from Description

Object the base object class

Constructors Summary

Constructor Description

CgiQuery create an empty query
CgiQuery query create a query by value

Methods Summary

Method Description

get get a value by key
parse parse the query string
exists-p check if a key exist
length return the number of keys
lookup return the key index by name
get-name get the key name by index

get-value get a key value by index
get-query return the query string

CgiQuery:get

■ return: String

■ arguments: String

The get method returns the value associated with the key specified by the argument. If the key
does not exist, the empty string is returned.

CgiQuery:parse

128 WWW/CGI Classes and Functions

■ return: none

■ arguments: String

The parse method reset the query object, parse the string argument and fill the query object with
the result.

CgiQuery:length

■ return: Integer

■ arguments: none

The length method returns the number of keys available in the query object.

CgiQuery:exists-p

■ return: Boolean

■ arguments: String

The exists-p predicate returns true if the key argument exists in this query object.

CgiQuery:lookup

■ return: Integer

■ arguments: String

The lookup method returns index of the key argument in the query object. If the key does not
exist, -1 is returned.

CgiQuery:get-name

■ return: String

■ arguments: Integer

The get-name method returns the name of the key specified by the index argument.

CgiQuery:get-value

■ return: String

■ arguments: Integer

The get-value method returns the value associated with the key specified by the index argu-
ment.

CgiQuery:get-query

■ return: String

■ arguments: none

The get-query method returns the original query string used during the parsing.

129

HtmlPage [aleph:www]

Description
The HtmlPage class is the primary interface to generate HTML code. The class operates by filling
the header and the body of the page with HTML statements. Several methods are provided to ease
the task of the page generation. The HTML version is assumed to be strict 4.01. Since HTML 4.01
is designed to work with style sheet, the user must be prepared to handle this when generating its
own HTML page. The HtmlPage constructor takes no argument. The basic method used to add
something in the header is the add-head method which take one or several literal arguments. The
add-title method adds a title to the header. The add-style adds the style sheet definition to
the header. The add-author add the author’s name to the page header. Finally, the add-meta
method adds a meta statement to the header in the form of name and content. The add-body
method adds any literal object into the body buffer.

Derivation summary

Derived from Description

Object the base object class

Constructors Summary

Constructor Description

HtmlPage create an empty html page

Methods Summary

HtmlPage:add-http

■ return: none

■ arguments: [Literal...]

The add-http method adds one or more literal objects into the http buffer. This methods can be
used to add specific http attributes.

HtmlPage:add-head

■ return: none

■ arguments: [Literal...]

The add-head method adds one or more literal objects into the head buffer.

130 WWW/CGI Classes and Functions

Method Description

add-http add http content in the http buffer
add-head add literals in the head buffer
add-body add literals in the body buffer
add-meta add a meta in the head buffer
add-title add a title in the head buffer
add-style add a style sheet in the head buffer
add-author add the author in the head buffer
add-cookie add a cookie in the http buffer
get-buffer get the full page in a buffer
write-cgi write the page with cgi header
write-http write the page http buffer
write-head write the page head buffer
write-body write the page head buffer
write-page write the page

HtmlPage:add-body

■ return: none

■ arguments: [Literal...]

The add-head method adds one or more literal objects into the body buffer.

HtmlPage:add-meta

■ return: none

■ arguments: String String

The add-meta adds a meta mark-up in the head buffer. The first argument is mark-up name and
the second argument is the mark-up value.

HtmlPage:add-title

■ return: none

■ arguments: String

The add-title adds a title mark-up in the head buffer. The title is the string argument.

HtmlPage:add-author

■ return: none

■ arguments: String

The add-author adds an author mark-up in the head buffer. The author is the string argument.

HtmlPage:add-style

■ return: none

■ arguments: String

The add-style adds a style sheet name in the head buffer. Several style sheets can be specified.
The style sheet path is specified as a string argument.

131

HtmlPage:add-cookie

■ return: none

■ arguments: Cookie

The add-cookie adds a cookie content in the http buffer. The cookie object is translated into a
string http content value and added into the http buffer.

HtmlPage:get-buffer

■ return: Buffer

■ arguments: none

The get-buffer method returns the full content of the html page into a buffer object. This
method is useful for one who want to query the page length and then write it on an output stream.
Remember that the buffer class as a write method to do so.

HtmlPage:write-http

■ return: none

■ arguments: Output

The write-http method writes the http buffer into the output stream specified as the argument.

HtmlPage:write-head

■ return: none

■ arguments: Output

The write-head method writes the head buffer into the output stream specified as the argument.

HtmlPage:write-body

■ return: none

■ arguments: Output

The write-body method writes the body buffer into the output stream specified as the argument.

HtmlPage:write-page

■ return: none

■ arguments: Output

The write-page method writes the whole page into the output stream specified as the argument.

HtmlPage:write-cgi

■ return: none

■ arguments: Output

The write-cgi method writes first a CGI server reply in the form of content type and status and
then the whole page into the output stream specified as the argument.

132 WWW/CGI Classes and Functions

133

XHtmlPage [aleph:www]

Description
The XHtmlPage class is specialized class that produces XHTML code. The class is derived from the
HtmlPage class and inherits all methods.

Derivation summary

Derived from Description

HtmlPage the HTML page class

Constructors Summary

Constructor Description

XHtmlPage create an empty xhtml page

Methods Summary

Method Description

get-language get the xml language
set-language set the xml language

XHtmlPage:set-language

■ return: none

■ arguments: String

The set-language method set the xml language tag in the html document. By default, the xml
language is set to "en".

XHtmlPage:get-language

■ return: String

■ arguments: none

The get-language method returns the xml language tag in the html document. By default, the
xml language is set to "en".

134 WWW/CGI Classes and Functions

135

Cookie [aleph:www]

Description
The Cookie class is a special class designed to handle cookie setting within a CGI script. A cookie is
name/value pair that is set by the server and stored by the HTTP client. Further connection with the
client will result with the cookie value transmitted by the client to the server. A cookie has various
parameters that controls its existence and behavior. The most important one the cookie maximum
age that is defined in second. A null value tells the client to discard the cookie. A cookie without
maximum age is valid only during the HTTP client session. A cookie can be added to the HTML
page with the set-cookie method. A cookie can be constructed with a name/value pair. An
optional third argument is the maximum age.

Derivation summary

Derived from Description
Object the base object class

Constructors Summary

Constructor Description

Cookie name value create a new cookie with name and value
Cookie name value age create a new cookie with name, value and age

Methods Summary

Cookie:get-name

■ return: String

■ arguments: none

The get-name method returns the cookie name. This is the name store on the HTTP client.

Cookie:set-name

■ return: none

■ arguments: String

The set-name method sets the cookie name. This is the name store on the HTTP client.

Cookie:get-value

136 WWW/CGI Classes and Functions

Method Description

get-name return the cookie name
set-name set the cookie name
get-value return the cookie value
set-value set the cookie value
get-max-age return the cookie maximum age
set-max-age set the cookie maximum age
get-path return the cookie path
set-path set the cookie path
get-domain return the cookie domain
set-domain set the cookie domain
get-comment return the cookie comment
set-comment set the cookie comment
get-secure return the cookie secure flag
set-secure set the cookie secure flag
to-string return an HTTP cookie string value

■ return: String

■ arguments: none

The get-value method returns the cookie value. This is the value stored on the HTTP client
bounded by the cookie name.

Cookie:set-value

■ return: none

■ arguments: String

The set-value method sets the cookie value. This is the value store on the HTTP client bounded
by the cookie name.

Cookie:get-maximum-age

■ return: Integer

■ arguments: none

The get-maximum-age method returns the cookie maximum age. The default value is -1, that
is, no maximum age is set and the cookie is valid only for the HTTP client session.

Cookie:set-maximum-age

■ return: none

■ arguments: Integer

The set-maximum-age method sets the cookie maximum age. A negative value is reset to -1.
A 0 value tells the HTTP client to discard the cookie. A positive value tells the HTTP client to store
the cookie for the remaining seconds.

Cookie:get-path

■ return: String

137

■ arguments: none

The get-path method returns the cookie path value. The path determines for which HTTP
request the cookie is valid.

Cookie:set-path

■ return: none

■ arguments: String

The set-path method sets the cookie path value. The path determines for which HTTP request
the cookie is valid.

Cookie:get-domain

■ return: String

■ arguments: none

The get-domain method returns the cookie domain value.

Cookie:set-path

■ return: none

■ arguments: String

The set-domain method sets the cookie domain value. It is string recommended to use the
originator domain name since many HTTP client can reject cookie those domain name does not
match the originator name.

Cookie:get-comment

■ return: String

■ arguments: none

The get-comment method returns the cookie comment value.

Cookie:set-comment

■ return: none

■ arguments: String

The set-comment method sets the cookie comment value.

Cookie:get-secure

■ return: String

■ arguments: none

The get-secure method returns the cookie secure flag.

Cookie:set-comment

■ return: none

138 WWW/CGI Classes and Functions

■ arguments: String

The set-secure method sets the cookie secure flag. When a cookie is secured, it is only
returned by the HTTP client if a connection has been secured (i.e use HTTPS).

Cookie:to-string

■ return: String

■ arguments: none

The to-string method returns a string formatted as an HTTP Set-cookie request. Normally
this method should not be called since the HtmlPageadd-cookiemethod takes care of such thing.

BIBLIOGRAPHY

[1] RFC 738 - Time server, 1977.

[2] RFC 791 - DARPA Internet Program Protocol Specification, 1981.

[3] Revised Report on the Algorithmic Language Scheme. Technical report, November 1991.

[4] C++ Language Reference Manual, 1996.

[5] RFC 2101 - IPV4 Address Behaviour Today, 1997.

[6] RFC 2373 - IP Version 6 Addressing Architecture, 1998.

[7] Guy L. Steele Jr. Common Lisp, The Language. 1990.

[8] Donald E. Knuth. The Art of Computer Programming, Volume 1. 1997.

[9] Donald E. Knuth. The Art of Computer Programming, Volume 2. 1997.

[10] Donald E. Knuth. The Art of Computer Programming, Volume 3. 1997.

[11] George Springer and Daniel P. Friedman. Scheme and the Art of Programming. 1997.

[12] W. Richard Stevens. TCP/IP Illustrated Volume 1. 1994.

[13] W. Richard Stevens. UNIX Network Programming - Interprocess Communication. 1998.

[14] W. Richard Stevens. UNIX Network Programming - Socket API. 1998.

[15] Bjarne Stroustrup. The C++ Programming Language. 2000.

140 BIBLIOGRAPHY

INDEX

142 INDEX

absolute-path
aleph:sio function, 69

accept
TcpSocket method, 101
UdpSocket method, 109

add
Mail method, 118
PrintTable method, 83
Selector method, 67
Time method, 74

add-author
HtmlPage method, 130

add-body
HtmlPage method, 130

add-cookie
HtmlPage method, 131

add-head
HtmlPage method, 129

add-http
HtmlPage method, 129

add-meta
HtmlPage method, 130

add-style
HtmlPage method, 130

add-title
HtmlPage method, 130

addln
Mail method, 118

Address
aleph:net:Address class, 19
constructors summary, 93
get-canonical-name method, 20
get-ip-address method, 20
methods summary, 93
object reference, 93

aleph:sys:get-host-name, 20
AOD

Aleph Object Database, 39
structured elements, 39

bcc
Mail method, 118

bind
Socket method, 97

BROADCAST
Socket constant, 95

cc
Mail method, 117

cell
definition, 39

CGI
Web service, 33

CgiQuery

constructors summary, 127
derivation summary, 127
methods summary, 127
object reference, 127

close
InputFile method, 47
OutputFile method, 57
Socket method, 98

collection
definition, 40

command
create, 41
import, 41
open, 41
save, 41

compute
Digest method, 87

connect
Socket method, 97

Cookie
constructors summary, 135
derivation summary, 135
methods summary, 135
object reference, 135

create
command usage, 41

data
with cell, 39

Datagram
derivation summary, 107
object reference, 107

Digest
constructors summary, 87
derivation summary, 87
methods summary, 87
object reference, 87

dir-p
aleph:sio function, 69

Directory, 6
constructors summary, 65
methods summary, 65
object reference, 65

DNS, 19
DONT-ROUTE

Socket constant, 95

eof-p
Input method, 46
Socket method, 99

errorln
Output method, 55

ErrorTerm, 5
exists-p

INDEX 143

CgiQuery method, 128
exit

aleph:sys function, 79

file-p
aleph:sio function, 69

flush
OutputString method, 59

format
PrintTable method, 84

format-date
Time method, 76

format-time
Time method, 76

get
CgiQuery method, 127
InputString method, 51
PrintTable method, 83

get-buffer
HtmlPage method, 131

get-buffer-length
Input method, 46

get-canonical-name
Address method, 94

get-column-direction
PrintTable method, 85

get-column-fill
PrintTable method, 85

get-column-size
PrintTable method, 85

get-columns
PrintTable method, 84

get-comment
Cookie method, 137

get-day-of-month
Time method, 75

get-day-of-week
Time method, 75

get-day-of-year
Time method, 75

get-domain
Cookie method, 137

get-env
aleph:sys function, 80

get-files
Directory method, 66

get-fragment
Url method, 126

get-host
Url method, 126

get-host-name
aleph:sys function, 80

get-hours

Time method, 74
get-ip-address

Address method, 93
get-ip-vector

Address method, 93
get-language

XHtmlPage method, 133
get-list

Directory method, 66
get-loopback

aleph:net function, 121
get-maximum-age

Cookie method, 136
get-minutes

Time method, 74
get-month

Time method, 74
get-mta-address

Mail method, 118
get-mta-port

Mail method, 119
get-name

Address method, 93
CgiQuery method, 128
Cookie method, 135
Directory method, 66
InputFile method, 47
InputMapped method, 50
OutputFile method, 57

get-offset
InputMapped method, 50

get-path
Cookie method, 136
Url method, 126

get-peer-address, 24
Socket method, 99

get-peer-port, 24
Socket method, 99

get-pid
aleph:sys function, 80

get-port
Url method, 126

get-primary
Terminal method, 64

get-query
CgiQuery method, 128
Url method, 126

get-rows
PrintTable method, 84

get-scheme
Url method, 125

get-secondary
Terminal method, 64

144 INDEX

get-seconds
Time method, 74

get-secure
Cookie method, 137

get-socket-address, 24
Socket method, 99

get-socket-port, 24
Socket method, 99

get-subdirs
Directory method, 66

get-tcp-service, 21
aleph:net function, 121

get-time
Time method, 74

get-udp-service, 21
aleph:net function, 121

get-user-name
aleph:sys function, 80

get-utc-day-of-month
Time method, 76

get-utc-day-of-week
Time method, 76

get-utc-day-of-year
Time method, 76

get-utc-hours
Time method, 75

get-utc-minutes
Time method, 75

get-utc-month
Time method, 75

get-utc-seconds
Time method, 75

get-utc-year
Time method, 76

get-value
CgiQuery method, 128
Cookie method, 135

get-year
Time method, 74

HOP-LIMIT
Socket constant, 96

HtmlPage
constructors summary, 129
derivation summary, 129
methods summary, 129
object reference, 129

import
command usage, 42

Input
object reference, 45

input-get
Selector method, 68

input-length
Selector method, 68

InputFile
constructors summary, 47
derivation summary, 47
methods summary, 45, 47
object reference, 47

InputMapped
constructors summary, 49
derivation summary, 49
methods summary, 49
object reference, 49

InputString
constructors summary, 51
derivation summary, 51
methods summary, 51
object reference, 51

InputTerm, 5
constructors summary, 53
derivation summary, 53
methods summary, 53
object reference, 53

interpreter
system information, 9

IP address, 19
IPv4

address example, 19
IPv6

address example, 19
ipv6-p

Socket method, 97

KEEP-ALIVE
Socket constant, 96

length
CgiQuery method, 128
InputFile method, 48
InputMapped method, 49

LINGER
Socket constant, 96

listen
TcpSocket method, 101

lookup
CgiQuery method, 128

lseek
InputFile method, 48
InputMapped method, 49

Mail
constructors summary, 117
methods summary, 117
object reference, 117

MAX-SEGMENT-SIZE

INDEX 145

Socket constant, 96
mkdir

Directory method, 65
Multicast

constructors summary, 115
derivation summary, 115
object reference, 115

MULTICAST-HOP-LIMIT
Socket constant, 96

MULTICAST-LOOPBACK
Socket constant, 96

newline
Output method, 55
Socket method, 98

NO-DELAY
Socket constant, 97

ODB
Object database library, 39

open
command usage, 41

output-get
Selector method, 68

output-length
Selector method, 68

OutputFile
constructors summary, 57
derivation summary, 57, 59
methods summary, 55, 57
object reference, 55, 57

OutputString
constructors summary, 59
methods summary, 59
object reference, 59

OutputTerm, 5
constructors summary, 61
derivation summary, 61
object reference, 61

parse
CgiQuery method, 127
Url method, 125

peer
address and port, 21

PrintTable
constructors summary, 83
derivation summary, 83
methods summary, 83
object reference, 83

pushback
Input method, 46
Socket method, 99

random

aleph:sys function, 79
RCV-SIZE

Socket constant, 96
read

Input method, 45
Socket method, 97, 98

readln
Input method, 45
Socket method, 98

record
definition, 39

relative-path
aleph:sio function, 70

REUSE-ADDRESS
Socket constant, 95

RFC 738, 23
rmdir

aleph:sio function, 70
Directory method, 65

rmfile
aleph:sio function, 70
Directory method, 65

save
command usage, 42

Selector
constructors summary, 67
methods summary, 67
object reference, 67

send
Mail method, 118

set
InputString method, 51
PrintTable method, 84

set-column-direction
PrintTable method, 85

set-column-fill
PrintTable method, 85

set-column-size
PrintTable method, 84

set-comment
Cookie method, 137

set-eof-character
InputTerm method, 53

set-eof-ignore
InputTerm method, 53

set-language
XHtmlPage method, 133

set-maximum-age
Cookie method, 136

set-mta-address
Mail method, 118

set-mta-port
Mail method, 119

146 INDEX

set-name
Cookie method, 135

set-option
Socket method, 99

set-path
Cookie method, 137

set-primary
Terminal method, 63

set-secondary
Terminal method, 63

set-value
Cookie method, 136

shutdown
Socket method, 97

sleep
aleph:sys function, 79

SND-SIZE
Socket constant, 96

Socket
constant summary, 95
derivation summary, 95
methods summary, 95
object reference, 95

socket-p, 25
sort

aleph:txt function, 89
subject

Mail method, 118

table
definition, 40

tcp-client-p, 25
TcpClient

constructors summary, 103
derivation summary, 103
object reference, 103

TcpServer
constructors summary, 105
derivation summary, 105
object reference, 105

TcpSocket
constructors summary, 101
derivation summary, 101
methods summary, 101
object reference, 101

Terminal, 5
constructors summary, 63
derivation summary, 63
methods summary, 63
object reference, 63

Time
constructors summary, 73
methods summary, 73
object reference, 73

to
Mail method, 117

to-string
Cookie method, 138
OutputString method, 59

udp-client-p, 25
UdpClient

constructors summary, 111
derivation summary, 111
object reference, 111

UdpServer
constructors summary, 113
derivation summary, 113
object reference, 113

UdpSocket
constructors summary, 109
derivation summary, 109
methods summary, 109
object reference, 109

URL
class description, 33

Url
constructors summary, 125
derivation summary, 125
methods summary, 125
object reference, 125

utc-format-cookie
Time method, 77

utc-format-date
Time method, 77

utc-format-rfc
Time method, 77

utc-format-time
Time method, 77

valid-p
Input method, 45
Socket method, 98

wait
Selector method, 67

wait-all
Selector method, 68

write
Output method, 55
Socket method, 98

write-body
HtmlPage method, 131

write-cgi
HtmlPage method, 131

write-head
HtmlPage method, 131

write-http

INDEX 147

HtmlPage method, 131
write-page

HtmlPage method, 131
writeln

Output method, 55
Socket method, 98

XHtmlPage
constructors summary, 133
derivation summary, 133
methods summary, 133
object reference, 133

148 INDEX

Colophon

This manual was written for the LATEXdocumentation preparation system. A custom document class
was designed by the author. The document style has been simplified as to produce a high quality
technical manual. Title, chapter and section names have been produced with an Helvetica font. The
document has been produced with a 10 points Times font. Both fonts are assumed to be in the public
domain. The documentation is available in both A4 and letter format.

