Formula Evaluation

by Amol Deshmukh

1. Introduction

The POI formula evaluation code enables you to calculate the result of formulas in Excels
sheets read-in, or created in POI. This document explains how to use the APl to evaluate
your formulas.

This code currently lives the scratchpad area of the POl CVS repository. Ensure that you have the scratchpad jar or the
scratchpad build areain your classpath before experimenting with this code.

2. Status

The code currently provides implementations for all the arithmatic operators. It also provides
implementations for approx. 20 built in functions in Excel. The framework however makesis
easy to add implementation of new functions. See the Formula evaluation development guide
for details.

Note that user-defined functions are not supported, and is not likely to done any time soon...
at least, not till thereisa VB implementation in Javal
3. Usar APl How-TO

The following code demonstrates how to use the HSSFFormulaEvaluator in the context of
other POI excel reading code.

There are two ways in which you can use the HSSFFormulaEval utator API.

3.1. Using HSSFFormulaEvaluator .evaluate(H SSFCell cell)

FilelnputStreamfis = new Fil el nput Stream("c:/tenp/test.xls");
HSSFWr kbook wb = new HSSFWor kbook(fi s);

HSSFSheet sheet = wb. get Sheet At (0);

HSSFFor nul aEval uat or eval uat or = new HSSFFor nul aEval uat or (sheet, wb);

Page 1

eval-devguide.html

Formula Evaluation

/1 suppose your formula is in B3

Cel | Ref erence cel | Reference = new Cel | Ref erence("B3");

HSSFRow r ow = sheet . get Row(cel | Ref er ence. get Row()) ;

HSSFCel | cell = row. getCell (cell Reference.getCol ());

HSSFFor mul aEval uat or. Cel | Val ue cel | Val ue = eval uator. eval uate(cell);

switch (cell Val ue. get Cel | Type())

case HSSFCel | . CELL_TYPE_BOOLEAN:
System out. println(cell Val ue. get Bool eanVal ue());
br eak;

case HSSFCel | . CELL_TYPE_NUMERI C.
System out. println(cell Val ue. get Nunber Val ue()) ;
br eak;

case HSSFCel | . CELL_TYPE_STRI NG
System out. println(cell Val ue. getStringVal ue());

br eak;

case HSSFCel | . CELL_TYPE BLANK:
br eak;

case HSSFCel | . CELL_TYPE ERROR:
br eak;

/] CELL_TYPE_FORMJLA wi |l never happen
case HSSFCel | . CELL_TYPE_FORMULA:
br eak;

}

Thus using the retrieved value (of type HSSFFormulaEvaluator.CellValue - a nested class)
returned by HSSFFormulaEvaluator is similar to using a HSSFCell object containing the
value of the formula evaluation. CellValue is a simple value object and does not maintain
reference to the original cell.

3.2. Using HSSFFor mulaEvaluator .evaluatel nCell(HSSFCéll cell)

FilelnputStreamfis = new Fil el nput Streanm("/sonmepat h/test.xls");
HSSFWor kbook wbh = new HSSFWbr kbook(fi s);

HSSFSheet sheet = wb. get Sheet At (0);

HSSFFor mul aEval uat or eval uat or = new HSSFFor nul aEval uat or (sheet, wb);

/1 suppose your formula is in B3

Cel | Reference cel | Reference = new Cel | Ref erence("B3");
HSSFRow row = sheet . get Row cel | Ref erence. get Row)) ;
HSSFCel | cell = row. getCell (cell Reference.getCol ());

if (cell!l=null) {
switch (eval uator.evaluatelnCell (cell).getCell Type()) {
case HSSFCel | . CELL_TYPE_BOOLEAN:
System out. println(cell.getBool eanCel | Val ue());
br eak;
case HSSFCel | . CELL_TYPE_NUMERI C.
System out. println(cell.getNunber Cel | Val ue());

Page 2

Formula Evaluation

br eak;

case HSSFCel | . CELL_TYPE_STRI NG
Eystt;m out.println(cell.getStringCellValue());

reak;

case HSSFCel | . CELL_TYPE BLANK:
br eak;

case HSSFCel | . CELL_TYPE ERROR:
Systemout.println(cell.getErrorCell Value());
br eak;

/1 CELL_TYPE FORMULA will never occur
case HSSFCel | . CELL_TYPE_FORMULA:
br eak;

4. Performance Notes

» Generally you should have to create only one HSSFFormulaEval uator instance per sheet,
but there really is no overhead in creating multiple HSSFFormulaEvaluators per sheet
other than that of the HSSFFormulaEvaluator object creation.

» Also note that HSSFFormulaEvaluator maintains a reference to the sheet and workbook,
so ensure that the evaluator instance is available for garbage collection when you are
done with it (in other words don't maintain long lived reference to
HSSFFormulaEvaluator if you don't really need to - unless all referencesto the sheet and
workbook are removed, these don't get garbage collected and continue to occupy
potentially large amounts of memory).

« CedlValueinstances however do not maintain reference to the HSSFCell or the sheet or
workbook, so these can be long-lived objects without any adverse effect on performance.

Page 3

	1 Introduction
	2 Status
	3 User API How-TO
	3.1 Using HSSFFormulaEvaluator.evaluate(HSSFCell cell)
	3.2 Using HSSFFormulaEvaluator.evaluateInCell(HSSFCell cell)
				

	4 Performance Notes

