libgphoto2 photo camera library (libgphoto2) API 2.4.11
|
00001 /* This file is generated automatically by configure */ 00002 /* It is valid only for the system type x86_64-suse-linux-gnu */ 00003 00004 #ifndef __BYTEORDER_H 00005 #define __BYTEORDER_H 00006 00007 /* ntohl and relatives live here */ 00008 #include <arpa/inet.h> 00009 00010 /* Define generic byte swapping functions */ 00011 #include <byteswap.h> 00012 #define swap16(x) bswap_16(x) 00013 #define swap32(x) bswap_32(x) 00014 #define swap64(x) bswap_64(x) 00015 00016 /* The byte swapping macros have the form: */ 00017 /* EENN[a]toh or htoEENN[a] where EE is be (big endian) or */ 00018 /* le (little-endian), NN is 16 or 32 (number of bits) and a, */ 00019 /* if present, indicates that the endian side is a pointer to an */ 00020 /* array of uint8_t bytes instead of an integer of the specified length. */ 00021 /* h refers to the host's ordering method. */ 00022 00023 /* So, to convert a 32-bit integer stored in a buffer in little-endian */ 00024 /* format into a uint32_t usable on this machine, you could use: */ 00025 /* uint32_t value = le32atoh(&buf[3]); */ 00026 /* To put that value back into the buffer, you could use: */ 00027 /* htole32a(&buf[3], value); */ 00028 00029 /* Define aliases for the standard byte swapping macros */ 00030 /* Arguments to these macros must be properly aligned on natural word */ 00031 /* boundaries in order to work properly on all architectures */ 00032 #ifndef htobe16 00033 # define htobe16(x) htons(x) 00034 #endif 00035 #ifndef htobe32 00036 # define htobe32(x) htonl(x) 00037 #endif 00038 #ifndef be16toh 00039 # define be16toh(x) ntohs(x) 00040 #endif 00041 #ifndef be32toh 00042 # define be32toh(x) ntohl(x) 00043 #endif 00044 00045 #define HTOBE16(x) (x) = htobe16(x) 00046 #define HTOBE32(x) (x) = htobe32(x) 00047 #define BE32TOH(x) (x) = be32toh(x) 00048 #define BE16TOH(x) (x) = be16toh(x) 00049 00050 /* On little endian machines, these macros are null */ 00051 #ifndef htole16 00052 # define htole16(x) (x) 00053 #endif 00054 #ifndef htole32 00055 # define htole32(x) (x) 00056 #endif 00057 #ifndef htole64 00058 # define htole64(x) (x) 00059 #endif 00060 #ifndef le16toh 00061 # define le16toh(x) (x) 00062 #endif 00063 #ifndef le32toh 00064 # define le32toh(x) (x) 00065 #endif 00066 #ifndef le64toh 00067 # define le64toh(x) (x) 00068 #endif 00069 00070 #define HTOLE16(x) (void) (x) 00071 #define HTOLE32(x) (void) (x) 00072 #define HTOLE64(x) (void) (x) 00073 #define LE16TOH(x) (void) (x) 00074 #define LE32TOH(x) (void) (x) 00075 #define LE64TOH(x) (void) (x) 00076 00077 /* These don't have standard aliases */ 00078 #ifndef htobe64 00079 # define htobe64(x) swap64(x) 00080 #endif 00081 #ifndef be64toh 00082 # define be64toh(x) swap64(x) 00083 #endif 00084 00085 #define HTOBE64(x) (x) = htobe64(x) 00086 #define BE64TOH(x) (x) = be64toh(x) 00087 00088 /* Define the C99 standard length-specific integer types */ 00089 #include <_stdint.h> 00090 00091 /* Here are some macros to create integers from a byte array */ 00092 /* These are used to get and put integers from/into a uint8_t array */ 00093 /* with a specific endianness. This is the most portable way to generate */ 00094 /* and read messages to a network or serial device. Each member of a */ 00095 /* packet structure must be handled separately. */ 00096 00097 /* Non-optimized but portable macros */ 00098 #define be16atoh(x) ((uint16_t)(((x)[0]<<8)|(x)[1])) 00099 #define be32atoh(x) ((uint32_t)(((x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])) 00100 #define be64atoh_x(x,off,shift) (((uint64_t)((x)[off]))<<shift) 00101 #define be64atoh(x) ((uint64_t)(be64atoh_x(x,0,56)|be64atoh_x(x,1,48)|be64atoh_x(x,2,40)| \ 00102 be64atoh_x(x,3,32)|be64atoh_x(x,4,24)|be64atoh_x(x,5,16)|be64atoh_x(x,6,8)|((x)[7]))) 00103 #define le16atoh(x) ((uint16_t)(((x)[1]<<8)|(x)[0])) 00104 #define le32atoh(x) ((uint32_t)(((x)[3]<<24)|((x)[2]<<16)|((x)[1]<<8)|(x)[0])) 00105 #define le64atoh_x(x,off,shift) (((uint64_t)(x)[off])<<shift) 00106 #define le64atoh(x) ((uint64_t)(le64atoh_x(x,7,56)|le64atoh_x(x,6,48)|le64atoh_x(x,5,40)| \ 00107 le64atoh_x(x,4,32)|le64atoh_x(x,3,24)|le64atoh_x(x,2,16)|le64atoh_x(x,1,8)|((x)[0]))) 00108 00109 #define htobe16a(a,x) (a)[0]=(uint8_t)((x)>>8), (a)[1]=(uint8_t)(x) 00110 #define htobe32a(a,x) (a)[0]=(uint8_t)((x)>>24), (a)[1]=(uint8_t)((x)>>16), \ 00111 (a)[2]=(uint8_t)((x)>>8), (a)[3]=(uint8_t)(x) 00112 #define htobe64a(a,x) (a)[0]=(uint8_t)((x)>>56), (a)[1]=(uint8_t)((x)>>48), \ 00113 (a)[2]=(uint8_t)((x)>>40), (a)[3]=(uint8_t)((x)>>32), \ 00114 (a)[4]=(uint8_t)((x)>>24), (a)[5]=(uint8_t)((x)>>16), \ 00115 (a)[6]=(uint8_t)((x)>>8), (a)[7]=(uint8_t)(x) 00116 #define htole16a(a,x) (a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x) 00117 #define htole32a(a,x) (a)[3]=(uint8_t)((x)>>24), (a)[2]=(uint8_t)((x)>>16), \ 00118 (a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x) 00119 #define htole64a(a,x) (a)[7]=(uint8_t)((x)>>56), (a)[6]=(uint8_t)((x)>>48), \ 00120 (a)[5]=(uint8_t)((x)>>40), (a)[4]=(uint8_t)((x)>>32), \ 00121 (a)[3]=(uint8_t)((x)>>24), (a)[2]=(uint8_t)((x)>>16), \ 00122 (a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x) 00123 00124 #endif /*__BYTEORDER_H*/