cook.c
Go to the documentation of this file.
1 /*
2  * COOK compatible decoder
3  * Copyright (c) 2003 Sascha Sommer
4  * Copyright (c) 2005 Benjamin Larsson
5  *
6  * This file is part of Libav.
7  *
8  * Libav is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * Libav is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with Libav; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
45 #include "libavutil/lfg.h"
46 #include "avcodec.h"
47 #include "get_bits.h"
48 #include "dsputil.h"
49 #include "bytestream.h"
50 #include "fft.h"
51 #include "libavutil/audioconvert.h"
52 #include "sinewin.h"
53 
54 #include "cookdata.h"
55 
56 /* the different Cook versions */
57 #define MONO 0x1000001
58 #define STEREO 0x1000002
59 #define JOINT_STEREO 0x1000003
60 #define MC_COOK 0x2000000 // multichannel Cook, not supported
61 
62 #define SUBBAND_SIZE 20
63 #define MAX_SUBPACKETS 5
64 
65 typedef struct {
66  int *now;
67  int *previous;
68 } cook_gains;
69 
70 typedef struct {
71  int ch_idx;
72  int size;
76  int subbands;
81  unsigned int channel_mask;
88 
89  float mono_previous_buffer1[1024];
90  float mono_previous_buffer2[1024];
94  int gain_1[9];
95  int gain_2[9];
96  int gain_3[9];
97  int gain_4[9];
99 
100 typedef struct cook {
101  /*
102  * The following 5 functions provide the lowlevel arithmetic on
103  * the internal audio buffers.
104  */
105  void (*scalar_dequant)(struct cook *q, int index, int quant_index,
106  int *subband_coef_index, int *subband_coef_sign,
107  float *mlt_p);
108 
109  void (*decouple)(struct cook *q,
110  COOKSubpacket *p,
111  int subband,
112  float f1, float f2,
113  float *decode_buffer,
114  float *mlt_buffer1, float *mlt_buffer2);
115 
116  void (*imlt_window)(struct cook *q, float *buffer1,
117  cook_gains *gains_ptr, float *previous_buffer);
118 
119  void (*interpolate)(struct cook *q, float *buffer,
120  int gain_index, int gain_index_next);
121 
122  void (*saturate_output)(struct cook *q, int chan, float *out);
123 
127  /* stream data */
129  int bit_rate;
133  /* states */
136 
137  /* transform data */
139  float* mlt_window;
140 
141  /* VLC data */
143  VLC sqvh[7]; // scalar quantization
144 
145  /* generatable tables and related variables */
147  float gain_table[23];
148 
149  /* data buffers */
150 
153  float decode_buffer_1[1024];
154  float decode_buffer_2[1024];
155  float decode_buffer_0[1060]; /* static allocation for joint decode */
156 
157  const float *cplscales[5];
160 } COOKContext;
161 
162 static float pow2tab[127];
163 static float rootpow2tab[127];
164 
165 /*************** init functions ***************/
166 
167 /* table generator */
168 static av_cold void init_pow2table(void)
169 {
170  int i;
171  for (i = -63; i < 64; i++) {
172  pow2tab[63 + i] = pow(2, i);
173  rootpow2tab[63 + i] = sqrt(pow(2, i));
174  }
175 }
176 
177 /* table generator */
179 {
180  int i;
182  for (i = 0; i < 23; i++)
183  q->gain_table[i] = pow(pow2tab[i + 52],
184  (1.0 / (double) q->gain_size_factor));
185 }
186 
187 
189 {
190  int i, result;
191 
192  result = 0;
193  for (i = 0; i < 13; i++) {
194  result |= init_vlc(&q->envelope_quant_index[i], 9, 24,
196  envelope_quant_index_huffcodes[i], 2, 2, 0);
197  }
198  av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
199  for (i = 0; i < 7; i++) {
200  result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
201  cvh_huffbits[i], 1, 1,
202  cvh_huffcodes[i], 2, 2, 0);
203  }
204 
205  for (i = 0; i < q->num_subpackets; i++) {
206  if (q->subpacket[i].joint_stereo == 1) {
207  result |= init_vlc(&q->subpacket[i].ccpl, 6, (1 << q->subpacket[i].js_vlc_bits) - 1,
208  ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1,
209  ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0);
210  av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
211  }
212  }
213 
214  av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
215  return result;
216 }
217 
219 {
220  int j, ret;
221  int mlt_size = q->samples_per_channel;
222 
223  if ((q->mlt_window = av_malloc(mlt_size * sizeof(*q->mlt_window))) == 0)
224  return AVERROR(ENOMEM);
225 
226  /* Initialize the MLT window: simple sine window. */
227  ff_sine_window_init(q->mlt_window, mlt_size);
228  for (j = 0; j < mlt_size; j++)
229  q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
230 
231  /* Initialize the MDCT. */
232  if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) {
233  av_free(q->mlt_window);
234  return ret;
235  }
236  av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
237  av_log2(mlt_size) + 1);
238 
239  return 0;
240 }
241 
242 static const float *maybe_reformat_buffer32(COOKContext *q, const float *ptr, int n)
243 {
244  if (1)
245  return ptr;
246 }
247 
249 {
250  int i;
251  for (i = 0; i < 5; i++)
252  q->cplscales[i] = maybe_reformat_buffer32(q, cplscales[i], (1 << (i + 2)) - 1);
253 }
254 
255 /*************** init functions end ***********/
256 
257 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
258 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
259 
280 static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
281 {
282  static const uint32_t tab[4] = {
283  AV_BE2NE32C(0x37c511f2), AV_BE2NE32C(0xf237c511),
284  AV_BE2NE32C(0x11f237c5), AV_BE2NE32C(0xc511f237),
285  };
286  int i, off;
287  uint32_t c;
288  const uint32_t *buf;
289  uint32_t *obuf = (uint32_t *) out;
290  /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
291  * I'm too lazy though, should be something like
292  * for (i = 0; i < bitamount / 64; i++)
293  * (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
294  * Buffer alignment needs to be checked. */
295 
296  off = (intptr_t) inbuffer & 3;
297  buf = (const uint32_t *) (inbuffer - off);
298  c = tab[off];
299  bytes += 3 + off;
300  for (i = 0; i < bytes / 4; i++)
301  obuf[i] = c ^ buf[i];
302 
303  return off;
304 }
305 
310 {
311  int i;
312  COOKContext *q = avctx->priv_data;
313  av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
314 
315  /* Free allocated memory buffers. */
316  av_free(q->mlt_window);
318 
319  /* Free the transform. */
320  ff_mdct_end(&q->mdct_ctx);
321 
322  /* Free the VLC tables. */
323  for (i = 0; i < 13; i++)
325  for (i = 0; i < 7; i++)
326  ff_free_vlc(&q->sqvh[i]);
327  for (i = 0; i < q->num_subpackets; i++)
328  ff_free_vlc(&q->subpacket[i].ccpl);
329 
330  av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
331 
332  return 0;
333 }
334 
341 static void decode_gain_info(GetBitContext *gb, int *gaininfo)
342 {
343  int i, n;
344 
345  while (get_bits1(gb)) {
346  /* NOTHING */
347  }
348 
349  n = get_bits_count(gb) - 1; // amount of elements*2 to update
350 
351  i = 0;
352  while (n--) {
353  int index = get_bits(gb, 3);
354  int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
355 
356  while (i <= index)
357  gaininfo[i++] = gain;
358  }
359  while (i <= 8)
360  gaininfo[i++] = 0;
361 }
362 
370  int *quant_index_table)
371 {
372  int i, j, vlc_index;
373 
374  quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
375 
376  for (i = 1; i < p->total_subbands; i++) {
377  vlc_index = i;
378  if (i >= p->js_subband_start * 2) {
379  vlc_index -= p->js_subband_start;
380  } else {
381  vlc_index /= 2;
382  if (vlc_index < 1)
383  vlc_index = 1;
384  }
385  if (vlc_index > 13)
386  vlc_index = 13; // the VLC tables >13 are identical to No. 13
387 
388  j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
389  q->envelope_quant_index[vlc_index - 1].bits, 2);
390  quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding
391  if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
393  "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
394  quant_index_table[i], i);
395  return AVERROR_INVALIDDATA;
396  }
397  }
398 
399  return 0;
400 }
401 
410 static void categorize(COOKContext *q, COOKSubpacket *p, int *quant_index_table,
411  int *category, int *category_index)
412 {
413  int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
414  int exp_index2[102];
415  int exp_index1[102];
416 
417  int tmp_categorize_array[128 * 2];
418  int tmp_categorize_array1_idx = p->numvector_size;
419  int tmp_categorize_array2_idx = p->numvector_size;
420 
421  bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
422 
423  if (bits_left > q->samples_per_channel) {
424  bits_left = q->samples_per_channel +
425  ((bits_left - q->samples_per_channel) * 5) / 8;
426  //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
427  }
428 
429  memset(&exp_index1, 0, sizeof(exp_index1));
430  memset(&exp_index2, 0, sizeof(exp_index2));
431  memset(&tmp_categorize_array, 0, sizeof(tmp_categorize_array));
432 
433  bias = -32;
434 
435  /* Estimate bias. */
436  for (i = 32; i > 0; i = i / 2) {
437  num_bits = 0;
438  index = 0;
439  for (j = p->total_subbands; j > 0; j--) {
440  exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
441  index++;
442  num_bits += expbits_tab[exp_idx];
443  }
444  if (num_bits >= bits_left - 32)
445  bias += i;
446  }
447 
448  /* Calculate total number of bits. */
449  num_bits = 0;
450  for (i = 0; i < p->total_subbands; i++) {
451  exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
452  num_bits += expbits_tab[exp_idx];
453  exp_index1[i] = exp_idx;
454  exp_index2[i] = exp_idx;
455  }
456  tmpbias1 = tmpbias2 = num_bits;
457 
458  for (j = 1; j < p->numvector_size; j++) {
459  if (tmpbias1 + tmpbias2 > 2 * bits_left) { /* ---> */
460  int max = -999999;
461  index = -1;
462  for (i = 0; i < p->total_subbands; i++) {
463  if (exp_index1[i] < 7) {
464  v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
465  if (v >= max) {
466  max = v;
467  index = i;
468  }
469  }
470  }
471  if (index == -1)
472  break;
473  tmp_categorize_array[tmp_categorize_array1_idx++] = index;
474  tmpbias1 -= expbits_tab[exp_index1[index]] -
475  expbits_tab[exp_index1[index] + 1];
476  ++exp_index1[index];
477  } else { /* <--- */
478  int min = 999999;
479  index = -1;
480  for (i = 0; i < p->total_subbands; i++) {
481  if (exp_index2[i] > 0) {
482  v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
483  if (v < min) {
484  min = v;
485  index = i;
486  }
487  }
488  }
489  if (index == -1)
490  break;
491  tmp_categorize_array[--tmp_categorize_array2_idx] = index;
492  tmpbias2 -= expbits_tab[exp_index2[index]] -
493  expbits_tab[exp_index2[index] - 1];
494  --exp_index2[index];
495  }
496  }
497 
498  for (i = 0; i < p->total_subbands; i++)
499  category[i] = exp_index2[i];
500 
501  for (i = 0; i < p->numvector_size - 1; i++)
502  category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
503 }
504 
505 
513 static inline void expand_category(COOKContext *q, int *category,
514  int *category_index)
515 {
516  int i;
517  for (i = 0; i < q->num_vectors; i++)
518  {
519  int idx = category_index[i];
520  if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
521  --category[idx];
522  }
523 }
524 
535 static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
536  int *subband_coef_index, int *subband_coef_sign,
537  float *mlt_p)
538 {
539  int i;
540  float f1;
541 
542  for (i = 0; i < SUBBAND_SIZE; i++) {
543  if (subband_coef_index[i]) {
544  f1 = quant_centroid_tab[index][subband_coef_index[i]];
545  if (subband_coef_sign[i])
546  f1 = -f1;
547  } else {
548  /* noise coding if subband_coef_index[i] == 0 */
549  f1 = dither_tab[index];
550  if (av_lfg_get(&q->random_state) < 0x80000000)
551  f1 = -f1;
552  }
553  mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
554  }
555 }
564 static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
565  int *subband_coef_index, int *subband_coef_sign)
566 {
567  int i, j;
568  int vlc, vd, tmp, result;
569 
570  vd = vd_tab[category];
571  result = 0;
572  for (i = 0; i < vpr_tab[category]; i++) {
573  vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
574  if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
575  vlc = 0;
576  result = 1;
577  }
578  for (j = vd - 1; j >= 0; j--) {
579  tmp = (vlc * invradix_tab[category]) / 0x100000;
580  subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
581  vlc = tmp;
582  }
583  for (j = 0; j < vd; j++) {
584  if (subband_coef_index[i * vd + j]) {
585  if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
586  subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
587  } else {
588  result = 1;
589  subband_coef_sign[i * vd + j] = 0;
590  }
591  } else {
592  subband_coef_sign[i * vd + j] = 0;
593  }
594  }
595  }
596  return result;
597 }
598 
599 
608 static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
609  int *quant_index_table, float *mlt_buffer)
610 {
611  /* A zero in this table means that the subband coefficient is
612  random noise coded. */
613  int subband_coef_index[SUBBAND_SIZE];
614  /* A zero in this table means that the subband coefficient is a
615  positive multiplicator. */
616  int subband_coef_sign[SUBBAND_SIZE];
617  int band, j;
618  int index = 0;
619 
620  for (band = 0; band < p->total_subbands; band++) {
621  index = category[band];
622  if (category[band] < 7) {
623  if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
624  index = 7;
625  for (j = 0; j < p->total_subbands; j++)
626  category[band + j] = 7;
627  }
628  }
629  if (index >= 7) {
630  memset(subband_coef_index, 0, sizeof(subband_coef_index));
631  memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
632  }
633  q->scalar_dequant(q, index, quant_index_table[band],
634  subband_coef_index, subband_coef_sign,
635  &mlt_buffer[band * SUBBAND_SIZE]);
636  }
637 
638  /* FIXME: should this be removed, or moved into loop above? */
640  return;
641 }
642 
643 
650 static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
651 {
652  int category_index[128];
653  int quant_index_table[102];
654  int category[128];
655  int res;
656 
657  memset(&category, 0, sizeof(category));
658  memset(&category_index, 0, sizeof(category_index));
659 
660  if ((res = decode_envelope(q, p, quant_index_table)) < 0)
661  return res;
663  categorize(q, p, quant_index_table, category, category_index);
664  expand_category(q, category, category_index);
665  decode_vectors(q, p, category, quant_index_table, mlt_buffer);
666 
667  return 0;
668 }
669 
670 
679 static void interpolate_float(COOKContext *q, float *buffer,
680  int gain_index, int gain_index_next)
681 {
682  int i;
683  float fc1, fc2;
684  fc1 = pow2tab[gain_index + 63];
685 
686  if (gain_index == gain_index_next) { // static gain
687  for (i = 0; i < q->gain_size_factor; i++)
688  buffer[i] *= fc1;
689  } else { // smooth gain
690  fc2 = q->gain_table[11 + (gain_index_next - gain_index)];
691  for (i = 0; i < q->gain_size_factor; i++) {
692  buffer[i] *= fc1;
693  fc1 *= fc2;
694  }
695  }
696 }
697 
706 static void imlt_window_float(COOKContext *q, float *inbuffer,
707  cook_gains *gains_ptr, float *previous_buffer)
708 {
709  const float fc = pow2tab[gains_ptr->previous[0] + 63];
710  int i;
711  /* The weird thing here, is that the two halves of the time domain
712  * buffer are swapped. Also, the newest data, that we save away for
713  * next frame, has the wrong sign. Hence the subtraction below.
714  * Almost sounds like a complex conjugate/reverse data/FFT effect.
715  */
716 
717  /* Apply window and overlap */
718  for (i = 0; i < q->samples_per_channel; i++)
719  inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
720  previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
721 }
722 
734 static void imlt_gain(COOKContext *q, float *inbuffer,
735  cook_gains *gains_ptr, float *previous_buffer)
736 {
737  float *buffer0 = q->mono_mdct_output;
738  float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
739  int i;
740 
741  /* Inverse modified discrete cosine transform */
742  q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
743 
744  q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
745 
746  /* Apply gain profile */
747  for (i = 0; i < 8; i++)
748  if (gains_ptr->now[i] || gains_ptr->now[i + 1])
749  q->interpolate(q, &buffer1[q->gain_size_factor * i],
750  gains_ptr->now[i], gains_ptr->now[i + 1]);
751 
752  /* Save away the current to be previous block. */
753  memcpy(previous_buffer, buffer0,
754  q->samples_per_channel * sizeof(*previous_buffer));
755 }
756 
757 
765 static void decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
766 {
767  int i;
768  int vlc = get_bits1(&q->gb);
769  int start = cplband[p->js_subband_start];
770  int end = cplband[p->subbands - 1];
771  int length = end - start + 1;
772 
773  if (start > end)
774  return;
775 
776  if (vlc)
777  for (i = 0; i < length; i++)
778  decouple_tab[start + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
779  else
780  for (i = 0; i < length; i++)
781  decouple_tab[start + i] = get_bits(&q->gb, p->js_vlc_bits);
782 }
783 
784 /*
785  * function decouples a pair of signals from a single signal via multiplication.
786  *
787  * @param q pointer to the COOKContext
788  * @param subband index of the current subband
789  * @param f1 multiplier for channel 1 extraction
790  * @param f2 multiplier for channel 2 extraction
791  * @param decode_buffer input buffer
792  * @param mlt_buffer1 pointer to left channel mlt coefficients
793  * @param mlt_buffer2 pointer to right channel mlt coefficients
794  */
796  COOKSubpacket *p,
797  int subband,
798  float f1, float f2,
799  float *decode_buffer,
800  float *mlt_buffer1, float *mlt_buffer2)
801 {
802  int j, tmp_idx;
803  for (j = 0; j < SUBBAND_SIZE; j++) {
804  tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
805  mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
806  mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
807  }
808 }
809 
817 static int joint_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer1,
818  float *mlt_buffer2)
819 {
820  int i, j, res;
821  int decouple_tab[SUBBAND_SIZE];
822  float *decode_buffer = q->decode_buffer_0;
823  int idx, cpl_tmp;
824  float f1, f2;
825  const float *cplscale;
826 
827  memset(decouple_tab, 0, sizeof(decouple_tab));
828  memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
829 
830  /* Make sure the buffers are zeroed out. */
831  memset(mlt_buffer1, 0, 1024 * sizeof(*mlt_buffer1));
832  memset(mlt_buffer2, 0, 1024 * sizeof(*mlt_buffer2));
833  decouple_info(q, p, decouple_tab);
834  if ((res = mono_decode(q, p, decode_buffer)) < 0)
835  return res;
836 
837  /* The two channels are stored interleaved in decode_buffer. */
838  for (i = 0; i < p->js_subband_start; i++) {
839  for (j = 0; j < SUBBAND_SIZE; j++) {
840  mlt_buffer1[i * 20 + j] = decode_buffer[i * 40 + j];
841  mlt_buffer2[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
842  }
843  }
844 
845  /* When we reach js_subband_start (the higher frequencies)
846  the coefficients are stored in a coupling scheme. */
847  idx = (1 << p->js_vlc_bits) - 1;
848  for (i = p->js_subband_start; i < p->subbands; i++) {
849  cpl_tmp = cplband[i];
850  idx -= decouple_tab[cpl_tmp];
851  cplscale = q->cplscales[p->js_vlc_bits - 2]; // choose decoupler table
852  f1 = cplscale[decouple_tab[cpl_tmp] + 1];
853  f2 = cplscale[idx];
854  q->decouple(q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
855  idx = (1 << p->js_vlc_bits) - 1;
856  }
857 
858  return 0;
859 }
860 
870  const uint8_t *inbuffer,
871  cook_gains *gains_ptr)
872 {
873  int offset;
874 
875  offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
876  p->bits_per_subpacket / 8);
877  init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
878  p->bits_per_subpacket);
879  decode_gain_info(&q->gb, gains_ptr->now);
880 
881  /* Swap current and previous gains */
882  FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
883 }
884 
892 static void saturate_output_float(COOKContext *q, int chan, float *out)
893 {
894  int j;
895  float *output = q->mono_mdct_output + q->samples_per_channel;
896  for (j = 0; j < q->samples_per_channel; j++) {
897  out[chan + q->nb_channels * j] = av_clipf(output[j], -1.0, 1.0);
898  }
899 }
900 
913 static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
914  cook_gains *gains_ptr, float *previous_buffer,
915  float *out, int chan)
916 {
917  imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
918  if (out)
919  q->saturate_output(q, chan, out);
920 }
921 
922 
932  const uint8_t *inbuffer, float *outbuffer)
933 {
934  int sub_packet_size = p->size;
935  int res;
936  /* packet dump */
937  // for (i = 0; i < sub_packet_size ; i++)
938  // av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
939  // av_log(q->avctx, AV_LOG_ERROR, "\n");
940  memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
941  decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
942 
943  if (p->joint_stereo) {
944  if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
945  return res;
946  } else {
947  if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0)
948  return res;
949 
950  if (p->num_channels == 2) {
951  decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
952  if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0)
953  return res;
954  }
955  }
956 
958  p->mono_previous_buffer1, outbuffer, p->ch_idx);
959 
960  if (p->num_channels == 2)
961  if (p->joint_stereo)
963  p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
964  else
966  p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
967 
968  return 0;
969 }
970 
971 
978  int *got_frame_ptr, AVPacket *avpkt)
979 {
980  const uint8_t *buf = avpkt->data;
981  int buf_size = avpkt->size;
982  COOKContext *q = avctx->priv_data;
983  float *samples = NULL;
984  int i, ret;
985  int offset = 0;
986  int chidx = 0;
987 
988  if (buf_size < avctx->block_align)
989  return buf_size;
990 
991  /* get output buffer */
992  if (q->discarded_packets >= 2) {
994  if ((ret = avctx->get_buffer(avctx, &q->frame)) < 0) {
995  av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
996  return ret;
997  }
998  samples = (float *) q->frame.data[0];
999  }
1000 
1001  /* estimate subpacket sizes */
1002  q->subpacket[0].size = avctx->block_align;
1003 
1004  for (i = 1; i < q->num_subpackets; i++) {
1005  q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
1006  q->subpacket[0].size -= q->subpacket[i].size + 1;
1007  if (q->subpacket[0].size < 0) {
1008  av_log(avctx, AV_LOG_DEBUG,
1009  "frame subpacket size total > avctx->block_align!\n");
1010  return AVERROR_INVALIDDATA;
1011  }
1012  }
1013 
1014  /* decode supbackets */
1015  for (i = 0; i < q->num_subpackets; i++) {
1016  q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
1018  q->subpacket[i].ch_idx = chidx;
1019  av_log(avctx, AV_LOG_DEBUG,
1020  "subpacket[%i] size %i js %i %i block_align %i\n",
1021  i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
1022  avctx->block_align);
1023 
1024  if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0)
1025  return ret;
1026  offset += q->subpacket[i].size;
1027  chidx += q->subpacket[i].num_channels;
1028  av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
1029  i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
1030  }
1031 
1032  /* Discard the first two frames: no valid audio. */
1033  if (q->discarded_packets < 2) {
1034  q->discarded_packets++;
1035  *got_frame_ptr = 0;
1036  return avctx->block_align;
1037  }
1038 
1039  *got_frame_ptr = 1;
1040  *(AVFrame *) data = q->frame;
1041 
1042  return avctx->block_align;
1043 }
1044 
1045 #ifdef DEBUG
1046 static void dump_cook_context(COOKContext *q)
1047 {
1048  //int i=0;
1049 #define PRINT(a, b) av_log(q->avctx, AV_LOG_ERROR, " %s = %d\n", a, b);
1050  av_log(q->avctx, AV_LOG_ERROR, "COOKextradata\n");
1051  av_log(q->avctx, AV_LOG_ERROR, "cookversion=%x\n", q->subpacket[0].cookversion);
1052  if (q->subpacket[0].cookversion > STEREO) {
1053  PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1054  PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
1055  }
1056  av_log(q->avctx, AV_LOG_ERROR, "COOKContext\n");
1057  PRINT("nb_channels", q->nb_channels);
1058  PRINT("bit_rate", q->bit_rate);
1059  PRINT("sample_rate", q->sample_rate);
1060  PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
1061  PRINT("samples_per_frame", q->subpacket[0].samples_per_frame);
1062  PRINT("subbands", q->subpacket[0].subbands);
1063  PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1064  PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
1065  PRINT("numvector_size", q->subpacket[0].numvector_size);
1066  PRINT("total_subbands", q->subpacket[0].total_subbands);
1067 }
1068 #endif
1069 
1070 static av_cold int cook_count_channels(unsigned int mask)
1071 {
1072  int i;
1073  int channels = 0;
1074  for (i = 0; i < 32; i++)
1075  if (mask & (1 << i))
1076  ++channels;
1077  return channels;
1078 }
1079 
1086 {
1087  COOKContext *q = avctx->priv_data;
1088  const uint8_t *edata_ptr = avctx->extradata;
1089  const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
1090  int extradata_size = avctx->extradata_size;
1091  int s = 0;
1092  unsigned int channel_mask = 0;
1093  int ret;
1094  q->avctx = avctx;
1095 
1096  /* Take care of the codec specific extradata. */
1097  if (extradata_size <= 0) {
1098  av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
1099  return AVERROR_INVALIDDATA;
1100  }
1101  av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
1102 
1103  /* Take data from the AVCodecContext (RM container). */
1104  q->sample_rate = avctx->sample_rate;
1105  q->nb_channels = avctx->channels;
1106  q->bit_rate = avctx->bit_rate;
1107  if (!q->nb_channels) {
1108  av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
1109  return AVERROR_INVALIDDATA;
1110  }
1111 
1112  /* Initialize RNG. */
1113  av_lfg_init(&q->random_state, 0);
1114 
1115  while (edata_ptr < edata_ptr_end) {
1116  /* 8 for mono, 16 for stereo, ? for multichannel
1117  Swap to right endianness so we don't need to care later on. */
1118  if (extradata_size >= 8) {
1119  q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
1120  q->subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr);
1121  q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
1122  extradata_size -= 8;
1123  }
1124  if (extradata_size >= 8) {
1125  bytestream_get_be32(&edata_ptr); // Unknown unused
1126  q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
1127  q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
1128  extradata_size -= 8;
1129  }
1130 
1131  /* Initialize extradata related variables. */
1133  q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1134 
1135  /* Initialize default data states. */
1136  q->subpacket[s].log2_numvector_size = 5;
1138  q->subpacket[s].num_channels = 1;
1139 
1140  /* Initialize version-dependent variables */
1141 
1142  av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
1143  q->subpacket[s].cookversion);
1144  q->subpacket[s].joint_stereo = 0;
1145  switch (q->subpacket[s].cookversion) {
1146  case MONO:
1147  if (q->nb_channels != 1) {
1148  av_log_ask_for_sample(avctx, "Container channels != 1.\n");
1149  return AVERROR_PATCHWELCOME;
1150  }
1151  av_log(avctx, AV_LOG_DEBUG, "MONO\n");
1152  break;
1153  case STEREO:
1154  if (q->nb_channels != 1) {
1155  q->subpacket[s].bits_per_subpdiv = 1;
1156  q->subpacket[s].num_channels = 2;
1157  }
1158  av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
1159  break;
1160  case JOINT_STEREO:
1161  if (q->nb_channels != 2) {
1162  av_log_ask_for_sample(avctx, "Container channels != 2.\n");
1163  return AVERROR_PATCHWELCOME;
1164  }
1165  av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
1166  if (avctx->extradata_size >= 16) {
1167  q->subpacket[s].total_subbands = q->subpacket[s].subbands +
1169  q->subpacket[s].joint_stereo = 1;
1170  q->subpacket[s].num_channels = 2;
1171  }
1172  if (q->subpacket[s].samples_per_channel > 256) {
1173  q->subpacket[s].log2_numvector_size = 6;
1174  }
1175  if (q->subpacket[s].samples_per_channel > 512) {
1176  q->subpacket[s].log2_numvector_size = 7;
1177  }
1178  break;
1179  case MC_COOK:
1180  av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
1181  if (extradata_size >= 4)
1182  channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
1183 
1184  if (cook_count_channels(q->subpacket[s].channel_mask) > 1) {
1185  q->subpacket[s].total_subbands = q->subpacket[s].subbands +
1187  q->subpacket[s].joint_stereo = 1;
1188  q->subpacket[s].num_channels = 2;
1190 
1191  if (q->subpacket[s].samples_per_channel > 256) {
1192  q->subpacket[s].log2_numvector_size = 6;
1193  }
1194  if (q->subpacket[s].samples_per_channel > 512) {
1195  q->subpacket[s].log2_numvector_size = 7;
1196  }
1197  } else
1199 
1200  break;
1201  default:
1202  av_log_ask_for_sample(avctx, "Unknown Cook version.\n");
1203  return AVERROR_PATCHWELCOME;
1204  }
1205 
1206  if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1207  av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
1208  return AVERROR_INVALIDDATA;
1209  } else
1211 
1212 
1213  /* Initialize variable relations */
1215 
1216  /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1217  if (q->subpacket[s].total_subbands > 53) {
1218  av_log_ask_for_sample(avctx, "total_subbands > 53\n");
1219  return AVERROR_PATCHWELCOME;
1220  }
1221 
1222  if ((q->subpacket[s].js_vlc_bits > 6) ||
1223  (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
1224  av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
1225  q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
1226  return AVERROR_INVALIDDATA;
1227  }
1228 
1229  if (q->subpacket[s].subbands > 50) {
1230  av_log_ask_for_sample(avctx, "subbands > 50\n");
1231  return AVERROR_PATCHWELCOME;
1232  }
1233  q->subpacket[s].gains1.now = q->subpacket[s].gain_1;
1234  q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1235  q->subpacket[s].gains2.now = q->subpacket[s].gain_3;
1236  q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1237 
1238  q->num_subpackets++;
1239  s++;
1240  if (s > MAX_SUBPACKETS) {
1241  av_log_ask_for_sample(avctx, "Too many subpackets > 5\n");
1242  return AVERROR_PATCHWELCOME;
1243  }
1244  }
1245  /* Generate tables */
1246  init_pow2table();
1247  init_gain_table(q);
1249 
1250  if ((ret = init_cook_vlc_tables(q)))
1251  return ret;
1252 
1253 
1254  if (avctx->block_align >= UINT_MAX / 2)
1255  return AVERROR(EINVAL);
1256 
1257  /* Pad the databuffer with:
1258  DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1259  FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1261  av_mallocz(avctx->block_align
1262  + DECODE_BYTES_PAD1(avctx->block_align)
1264  if (q->decoded_bytes_buffer == NULL)
1265  return AVERROR(ENOMEM);
1266 
1267  /* Initialize transform. */
1268  if ((ret = init_cook_mlt(q)))
1269  return ret;
1270 
1271  /* Initialize COOK signal arithmetic handling */
1272  if (1) {
1274  q->decouple = decouple_float;
1278  }
1279 
1280  /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1281  if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512)
1282  || (q->samples_per_channel == 1024)) {
1283  } else {
1284  av_log_ask_for_sample(avctx,
1285  "unknown amount of samples_per_channel = %d\n",
1286  q->samples_per_channel);
1287  return AVERROR_PATCHWELCOME;
1288  }
1289 
1290  avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
1291  if (channel_mask)
1292  avctx->channel_layout = channel_mask;
1293  else
1294  avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
1295 
1297  avctx->coded_frame = &q->frame;
1298 
1299 #ifdef DEBUG
1300  dump_cook_context(q);
1301 #endif
1302  return 0;
1303 }
1304 
1306  .name = "cook",
1307  .type = AVMEDIA_TYPE_AUDIO,
1308  .id = CODEC_ID_COOK,
1309  .priv_data_size = sizeof(COOKContext),
1313  .capabilities = CODEC_CAP_DR1,
1314  .long_name = NULL_IF_CONFIG_SMALL("COOK"),
1315 };