Libav 0.7.1
|
00001 /* 00002 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at> 00003 * 00004 * This file is part of Libav. 00005 * 00006 * Libav is free software; you can redistribute it and/or 00007 * modify it under the terms of the GNU Lesser General Public 00008 * License as published by the Free Software Foundation; either 00009 * version 2.1 of the License, or (at your option) any later version. 00010 * 00011 * Libav is distributed in the hope that it will be useful, 00012 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00014 * Lesser General Public License for more details. 00015 * 00016 * You should have received a copy of the GNU Lesser General Public 00017 * License along with Libav; if not, write to the Free Software 00018 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00019 */ 00020 00021 #include <inttypes.h> 00022 #include "config.h" 00023 #include "libswscale/swscale.h" 00024 #include "libswscale/swscale_internal.h" 00025 #include "libavutil/intreadwrite.h" 00026 #include "libavutil/x86_cpu.h" 00027 #include "libavutil/cpu.h" 00028 #include "libavutil/pixdesc.h" 00029 00030 DECLARE_ASM_CONST(8, uint64_t, bF8)= 0xF8F8F8F8F8F8F8F8LL; 00031 DECLARE_ASM_CONST(8, uint64_t, bFC)= 0xFCFCFCFCFCFCFCFCLL; 00032 DECLARE_ASM_CONST(8, uint64_t, w10)= 0x0010001000100010LL; 00033 DECLARE_ASM_CONST(8, uint64_t, w02)= 0x0002000200020002LL; 00034 DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL; 00035 DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL; 00036 DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL; 00037 DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL; 00038 00039 const DECLARE_ALIGNED(8, uint64_t, ff_dither4)[2] = { 00040 0x0103010301030103LL, 00041 0x0200020002000200LL,}; 00042 00043 const DECLARE_ALIGNED(8, uint64_t, ff_dither8)[2] = { 00044 0x0602060206020602LL, 00045 0x0004000400040004LL,}; 00046 00047 DECLARE_ASM_CONST(8, uint64_t, b16Mask)= 0x001F001F001F001FLL; 00048 DECLARE_ASM_CONST(8, uint64_t, g16Mask)= 0x07E007E007E007E0LL; 00049 DECLARE_ASM_CONST(8, uint64_t, r16Mask)= 0xF800F800F800F800LL; 00050 DECLARE_ASM_CONST(8, uint64_t, b15Mask)= 0x001F001F001F001FLL; 00051 DECLARE_ASM_CONST(8, uint64_t, g15Mask)= 0x03E003E003E003E0LL; 00052 DECLARE_ASM_CONST(8, uint64_t, r15Mask)= 0x7C007C007C007C00LL; 00053 00054 DECLARE_ALIGNED(8, const uint64_t, ff_M24A) = 0x00FF0000FF0000FFLL; 00055 DECLARE_ALIGNED(8, const uint64_t, ff_M24B) = 0xFF0000FF0000FF00LL; 00056 DECLARE_ALIGNED(8, const uint64_t, ff_M24C) = 0x0000FF0000FF0000LL; 00057 00058 #ifdef FAST_BGR2YV12 00059 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000000210041000DULL; 00060 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000FFEEFFDC0038ULL; 00061 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00000038FFD2FFF8ULL; 00062 #else 00063 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000020E540830C8BULL; 00064 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000ED0FDAC23831ULL; 00065 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00003831D0E6F6EAULL; 00066 #endif /* FAST_BGR2YV12 */ 00067 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset) = 0x1010101010101010ULL; 00068 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL; 00069 DECLARE_ALIGNED(8, const uint64_t, ff_w1111) = 0x0001000100010001ULL; 00070 00071 DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY1Coeff) = 0x0C88000040870C88ULL; 00072 DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY2Coeff) = 0x20DE4087000020DEULL; 00073 DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY1Coeff) = 0x20DE0000408720DEULL; 00074 DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY2Coeff) = 0x0C88408700000C88ULL; 00075 DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toYOffset) = 0x0008400000084000ULL; 00076 00077 DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUV)[2][4] = { 00078 {0x38380000DAC83838ULL, 0xECFFDAC80000ECFFULL, 0xF6E40000D0E3F6E4ULL, 0x3838D0E300003838ULL}, 00079 {0xECFF0000DAC8ECFFULL, 0x3838DAC800003838ULL, 0x38380000D0E33838ULL, 0xF6E4D0E30000F6E4ULL}, 00080 }; 00081 00082 DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUVOffset)= 0x0040400000404000ULL; 00083 00084 //MMX versions 00085 #if HAVE_MMX 00086 #undef RENAME 00087 #define COMPILE_TEMPLATE_MMX2 0 00088 #define RENAME(a) a ## _MMX 00089 #include "swscale_template.c" 00090 #endif 00091 00092 //MMX2 versions 00093 #if HAVE_MMX2 00094 #undef RENAME 00095 #undef COMPILE_TEMPLATE_MMX2 00096 #define COMPILE_TEMPLATE_MMX2 1 00097 #define RENAME(a) a ## _MMX2 00098 #include "swscale_template.c" 00099 #endif 00100 00101 void updateMMXDitherTables(SwsContext *c, int dstY, int lumBufIndex, int chrBufIndex, 00102 int lastInLumBuf, int lastInChrBuf) 00103 { 00104 const int dstH= c->dstH; 00105 const int flags= c->flags; 00106 int16_t **lumPixBuf= c->lumPixBuf; 00107 int16_t **chrUPixBuf= c->chrUPixBuf; 00108 int16_t **alpPixBuf= c->alpPixBuf; 00109 const int vLumBufSize= c->vLumBufSize; 00110 const int vChrBufSize= c->vChrBufSize; 00111 int16_t *vLumFilterPos= c->vLumFilterPos; 00112 int16_t *vChrFilterPos= c->vChrFilterPos; 00113 int16_t *vLumFilter= c->vLumFilter; 00114 int16_t *vChrFilter= c->vChrFilter; 00115 int32_t *lumMmxFilter= c->lumMmxFilter; 00116 int32_t *chrMmxFilter= c->chrMmxFilter; 00117 int32_t av_unused *alpMmxFilter= c->alpMmxFilter; 00118 const int vLumFilterSize= c->vLumFilterSize; 00119 const int vChrFilterSize= c->vChrFilterSize; 00120 const int chrDstY= dstY>>c->chrDstVSubSample; 00121 const int firstLumSrcY= vLumFilterPos[dstY]; //First line needed as input 00122 const int firstChrSrcY= vChrFilterPos[chrDstY]; //First line needed as input 00123 00124 c->blueDither= ff_dither8[dstY&1]; 00125 if (c->dstFormat == PIX_FMT_RGB555 || c->dstFormat == PIX_FMT_BGR555) 00126 c->greenDither= ff_dither8[dstY&1]; 00127 else 00128 c->greenDither= ff_dither4[dstY&1]; 00129 c->redDither= ff_dither8[(dstY+1)&1]; 00130 if (dstY < dstH - 2) { 00131 const int16_t **lumSrcPtr= (const int16_t **) lumPixBuf + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize; 00132 const int16_t **chrUSrcPtr= (const int16_t **) chrUPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize; 00133 const int16_t **alpSrcPtr= (CONFIG_SWSCALE_ALPHA && alpPixBuf) ? (const int16_t **) alpPixBuf + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize : NULL; 00134 int i; 00135 00136 if (firstLumSrcY < 0 || firstLumSrcY + vLumFilterSize > c->srcH) { 00137 const int16_t **tmpY = (const int16_t **) lumPixBuf + 2 * vLumBufSize; 00138 int neg = -firstLumSrcY, i, end = FFMIN(c->srcH - firstLumSrcY, vLumFilterSize); 00139 for (i = 0; i < neg; i++) 00140 tmpY[i] = lumSrcPtr[neg]; 00141 for ( ; i < end; i++) 00142 tmpY[i] = lumSrcPtr[i]; 00143 for ( ; i < vLumFilterSize; i++) 00144 tmpY[i] = tmpY[i-1]; 00145 lumSrcPtr = tmpY; 00146 00147 if (alpSrcPtr) { 00148 const int16_t **tmpA = (const int16_t **) alpPixBuf + 2 * vLumBufSize; 00149 for (i = 0; i < neg; i++) 00150 tmpA[i] = alpSrcPtr[neg]; 00151 for ( ; i < end; i++) 00152 tmpA[i] = alpSrcPtr[i]; 00153 for ( ; i < vLumFilterSize; i++) 00154 tmpA[i] = tmpA[i - 1]; 00155 alpSrcPtr = tmpA; 00156 } 00157 } 00158 if (firstChrSrcY < 0 || firstChrSrcY + vChrFilterSize > c->chrSrcH) { 00159 const int16_t **tmpU = (const int16_t **) chrUPixBuf + 2 * vChrBufSize; 00160 int neg = -firstChrSrcY, i, end = FFMIN(c->chrSrcH - firstChrSrcY, vChrFilterSize); 00161 for (i = 0; i < neg; i++) { 00162 tmpU[i] = chrUSrcPtr[neg]; 00163 } 00164 for ( ; i < end; i++) { 00165 tmpU[i] = chrUSrcPtr[i]; 00166 } 00167 for ( ; i < vChrFilterSize; i++) { 00168 tmpU[i] = tmpU[i - 1]; 00169 } 00170 chrUSrcPtr = tmpU; 00171 } 00172 00173 if (flags & SWS_ACCURATE_RND) { 00174 int s= APCK_SIZE / 8; 00175 for (i=0; i<vLumFilterSize; i+=2) { 00176 *(const void**)&lumMmxFilter[s*i ]= lumSrcPtr[i ]; 00177 *(const void**)&lumMmxFilter[s*i+APCK_PTR2/4 ]= lumSrcPtr[i+(vLumFilterSize>1)]; 00178 lumMmxFilter[s*i+APCK_COEF/4 ]= 00179 lumMmxFilter[s*i+APCK_COEF/4+1]= vLumFilter[dstY*vLumFilterSize + i ] 00180 + (vLumFilterSize>1 ? vLumFilter[dstY*vLumFilterSize + i + 1]<<16 : 0); 00181 if (CONFIG_SWSCALE_ALPHA && alpPixBuf) { 00182 *(const void**)&alpMmxFilter[s*i ]= alpSrcPtr[i ]; 00183 *(const void**)&alpMmxFilter[s*i+APCK_PTR2/4 ]= alpSrcPtr[i+(vLumFilterSize>1)]; 00184 alpMmxFilter[s*i+APCK_COEF/4 ]= 00185 alpMmxFilter[s*i+APCK_COEF/4+1]= lumMmxFilter[s*i+APCK_COEF/4 ]; 00186 } 00187 } 00188 for (i=0; i<vChrFilterSize; i+=2) { 00189 *(const void**)&chrMmxFilter[s*i ]= chrUSrcPtr[i ]; 00190 *(const void**)&chrMmxFilter[s*i+APCK_PTR2/4 ]= chrUSrcPtr[i+(vChrFilterSize>1)]; 00191 chrMmxFilter[s*i+APCK_COEF/4 ]= 00192 chrMmxFilter[s*i+APCK_COEF/4+1]= vChrFilter[chrDstY*vChrFilterSize + i ] 00193 + (vChrFilterSize>1 ? vChrFilter[chrDstY*vChrFilterSize + i + 1]<<16 : 0); 00194 } 00195 } else { 00196 for (i=0; i<vLumFilterSize; i++) { 00197 *(const void**)&lumMmxFilter[4*i+0]= lumSrcPtr[i]; 00198 lumMmxFilter[4*i+2]= 00199 lumMmxFilter[4*i+3]= 00200 ((uint16_t)vLumFilter[dstY*vLumFilterSize + i])*0x10001; 00201 if (CONFIG_SWSCALE_ALPHA && alpPixBuf) { 00202 *(const void**)&alpMmxFilter[4*i+0]= alpSrcPtr[i]; 00203 alpMmxFilter[4*i+2]= 00204 alpMmxFilter[4*i+3]= lumMmxFilter[4*i+2]; 00205 } 00206 } 00207 for (i=0; i<vChrFilterSize; i++) { 00208 *(const void**)&chrMmxFilter[4*i+0]= chrUSrcPtr[i]; 00209 chrMmxFilter[4*i+2]= 00210 chrMmxFilter[4*i+3]= 00211 ((uint16_t)vChrFilter[chrDstY*vChrFilterSize + i])*0x10001; 00212 } 00213 } 00214 } 00215 } 00216 00217 void ff_sws_init_swScale_mmx(SwsContext *c) 00218 { 00219 int cpu_flags = av_get_cpu_flags(); 00220 00221 if (cpu_flags & AV_CPU_FLAG_MMX) 00222 sws_init_swScale_MMX(c); 00223 #if HAVE_MMX2 00224 if (cpu_flags & AV_CPU_FLAG_MMX2) 00225 sws_init_swScale_MMX2(c); 00226 #endif 00227 }