GVPR(1) GVPR(1)

NAME
gvpr — graph pattern scanning and processing language
(previously known agpr)

SYNOPSIS
gvpr [-icV?] [—ooutfile] [—aargs] ['prog | —f prodfile][files]

DESCRIPTION
gvpr is a graph stream editor inspired dk. It copies input graphs to its output, possibly transforming
their structure and attnilbes, creating we graphs, or printing arbitrary information. The graph model is
that provided byibagraph(3). Inparticular,gvpr reads and writes graphs using the dot language.

Basically,gvpr traverses each input graph, denoteddy, visiting each node and edge, matching it with
the predicate-action rules supplied in the input prograire rules arevaluated in order For each predi-
cate @auating to true, the corresponding action is performed. During thersed, the current node or
edge being visited is denoted &y

For each input graph, there is a target subgraph, denot&d pitially empty and used to accumulate cho-
sen entities, and an output graph), used for final processing and then written to output. By default, the
output graph is the target graplhe output graph can be set in the prograninoa limited sense, on the
command line.

OPTIONS
The following options are supported:

—aargs The stringargsis split into whitespace-separated e¢ak, with the individual tokenssalable as
strings in thegvpr program asARGV[0],...,ARGV[ARGC-1]. Whitespace characters within
single or double quoted substrings, or preceded by a backslash, are ignored as separators. In gen-
eral, a backslash character turnsamly gpecial meaning of the foleing character Note that the
tokens deried from multiple—a flags are concatenated.

—-C Use the source graph as the output graph.
=i Derive the node-induced subgraph extension of the output graph in the context of its root graph.

—o outfile
Causes the output stream to be written to the specified file; by default, output is wittiuto

—f progfile
Use the contents of the specified file as the prograrretute on the input. Iprogfile contains a
slash charactgthe name is taken as the pathname of the file. Othergvipewill use the directo-
ries specified in the environmerdanable GPRPATH to look for the file. If-f is not gven, gvpr
will use the first non-option argument as the program.

-V Causes the program to print version information and exit.
-? Causes the program to print usage information and exit.
OPERANDS

The following operand is supported:

files Names of files containing 1 or more graphs in the dot language.—if oyation is gven, the first
name is remeed from the list and used as the input program. If the list of files is estgin
will be used.

PROGRAMS
A gvpr program consists of a list of predicate-action clauses, having one of the forms:

BEGIN { action}
BEG_G { action}
N [predicate] { action}
E [predicate] { action}

1 November 2005 1

GVPR(1) GVPR(1)

END_G { action}
END { action}

A program can contain at most one of each oBB&IN, BEG_G, END_G andEND clauses. Therean
be ary number ofN andE statements, the first applied to nodes, the second to edges. Thecteprsan-
tics of agvpr program are:

Evaluate thaBEGIN clause, if ap.
For each input grapi® {
SetG as the current graph and current object.
Evaluate thaBEG_G clause, if aw.
For each node and edge @&{
Set the node or edge as the current object.
Evaluate theN or E clauses, as appropriate.
}
SetG as the current object.
Evaluate th&eND_ G clause, if aw.

}
Evaluate th&END clause, if ag.

The actions of th8EGIN, BEG_G, END_G andEND clauses are performed when the clauses\ata-e

ated. er N or E clauses, either the predicate or action may be omitted. If there is no predicate with an
action, the action is performed ovegy node or edge, as appropriatéthere is no action and the predicate
evduates to true, the associated node or edge is added to the target graph.

Predicates and actions are sequences of statements in the C dialect supportédexpitf library The
only difference between predicates and actions is that the former masa lype that may interpreted as
either true ordlse. Herahe usual C carention is followed, in which a non-zero value is considered true.
This would include non-empty strings and non-empty references to nodes, edgesyeter,Hfoa sring

can be coverted to an integethis value is used.

In addition to the usual C base typesidy int, chasfloat, long, unsigned and doublgypr provides string

as a synonym for char*, and the graph-based types node_t, edge _t, graph_t anthebpktj t type can

be viaved as a supertype of the other 3 concrete types; the correct base type is maintained dynamically
Besides these base types, the only other supported type expressions are Yasanaigsi

Constants foller C syntax, hut strings may be quoted with eitier” or’...’. In certain contexts, stringal
ues are interpreted as patterns for the purpose of regular expression maRategs useksh(l) file
match pattern syntaxgvpr accepts C++ comments as well as cpp-type commé&iasthe latter if a line
begins with a '#' charactgethe rest of the line is ignored.

A statement can be a declaration of a function, a variable or an ereyeecutable statement. For decla-
rations, there is a single scope. Array declarations te form:

type array[var]

where thevar is optional. As in C, ariables and arrays must be declared. In particaramdeclared &ri-
able will be interpreted as the name of an attribute of a node, edge or graph, depending on the context.

Executable statements can be one of the following:
{[statement .] }
expression /I commonlyvar = expression
if(expression) statemenf elsestatement
for(expression; expression; expression) statement
for(array [var]) statement
while(expression) statement
switch(expression) case statements
break [expression)|
continue [expression]
retur n [expression]

1 November 2005 2

GVPR(1) GVPR(1)

Items in brackets are optional.

In the second form of thier statement, theariablevar is set to each value used as an xidethe speci-
fied array and then the associatdtementis evaluated. Function definitions can only appear in the
BEGIN clause.

Expressions include the usual &peessions. Stringomparisons using= and != treat the right hand
operand as a pattergvpr will attempt to use an expression as a string or numeric value as appropriate.

Expressions of graphical type (i.graph_t, node _t, edge_t, obj)tmay be followed by a field reference in

the form of.name The resulting value is the value of the attribute nansdeof the gien object. Inaddi-

tion, in certain contexts an undeclared, unmodified identifier is taken to be an attribute name. Specifically
such identifiers denote attutes of the current node or edge, respelstiin N andE clauses, and the cur

rent graph irBEG_G andEND_G clauses.

As usual in thelibagraph(3) model, attributes are stringdued. Inaddition, gvpr supports certain
pseudo-attribtes of graph objects, not necessarily string-valued. These reflect intrinsic properties of the
graph objects and cannot be set by the user.

head: node_t
the head of an edge.

tail : node_t
the tail of an edge.

name: string
the name of an edge, node or graph. The name of an edge has the form
"<tail-name><edge-op><head-namg3key>]", where<edge-op>is "->" or "——" depending on

whether the graph is directed or not. The bracket [skey>] only appears if the edge has a
non-trivial key.

indegree: int
the indegree of a node.

outdegree: int
the outdegree of a node.

degree: int

the degree of a node.
root : graph_t

the root graph of an object. The root of a root graph is itself.
parent : graph_t

the parent graph of a subgraph. The parent of a root grajibLis
n_edges int

the number of edges in the graph

n_nodes: int
the number of nodes in the graph

directed : int
true (non-zero) if the graph is directed

strict : int
true (non-zero) if the graph is strict

BUILT-IN FUNCTIONS
The following functions are built intgvpr. Those functions returning references to graph objects return
NULL in case of failure.

Graphs and subgraph

1 November 2005 3

GVPR(1) GVPR(1)

graph(s: string, t : string) : graph_t
creates a graph whose namesiand whose type is specified by the stringgnoring case, the
characterd), D, S, N have the interpretation undirected, directed, strict, and non-strict, respec-
tively. If tis empty a drected, non-strict graph is generated.

subg(g: graph_t, s: string) : graph_t
creates a subgraph in graplvith names. If the subgraph already exists, it is returned.

isSubgg : graph_t, s: string) : graph_t
returns the subgraph in graghvith names, if it exists, orNULL otherwise.

fstsubg(g : graph_t) : graph_t
returns the first subgraph in graghor NULL if none exists.

nxtsubg(sg: graph_t) : graph_t
returns the next subgraph aftgy or NULL .

isDirect(g : graph_t) : int
returns true if and only i is directed.

isStrict(g : graph_t) : int
returns true if and only i is strict.

nNodegg : graph_t) : int
returns the number of nodesgn

nEdgedg: graph_t) : int
returns the number of edgesgn

Nodes
node(sg: graph_t, s: string) : node_t
creates a node in graghof names. If such a node already exists, it is returned.

subnoddsg: graph_t, n: node_{ : node_t
inserts the node into the subgraph. Returns the node.

fstnodg(g : graph_t) : node _t
returns the first node in graghor NULL if none exists.

nxtnode(n : node_9 : node_t
returns the next node afteror NULL .

isNodg(sg: graph_t, s: string) : node_t
looks for a node in graph of names. If such a node exists, it is returned. OtherwNNEILL is
returned.

Edges
edgdt: node_t h:node_t s: string) : edge_t
creates an edge with tail notjdead nodér and names. If the graph is undirected, the distinction
between head and tail nodes is unimportant. If such an edge already exists, it is returned.

subedgdg : graph_t, e: edge) : edge t
inserts the edgeinto the subgraph. Returns the edge.
isEdgdt: node_t h:node_t s: string) : edge _t
looks for an edge with tail nodghead nodéh and names. If the graph is undirected, the distinc-
tion between head and tail nodes is unimportant. If such an edge exists, it is returned. Otherwise,
NULL is returned.
fstout(n: node 9 : edge_t
returns the first out edge of node
nxtout(e: edge_} : edge t
returns the next out edge after

1 November 2005 4

GVPR(1)

fstin(n :

nxtin(e:

GVPR(1)

node 9 : edge t

returns the first in edge of node
edge }:edge t

returns the next in edge afeer

fstedgdn : node_ 1 : edge_t

returns the first edge of node

nxtedgge: edge_tnode_{ : edge_t

Graph I/O
write (g :

returns the next edge after

graph_t) : void
printsg in dot format onto the output stream.

writeG (g : graph_t, fname: string) : void

printsg in dot format into the filéname

fwriteG (g : graph_t, fd: int) : void

printsg in dot format onto the open stream denoted by the infdger

readG(fname: string) : graph_t

returns a graph read from the fileame The graph should be in dot format. If no graph can be
read,NULL is returned.

freadG(fd : int) : graph_t

Graph misce
deletgg

returns the next graph read from the open stifglarReturnsNULL at end of file.

llany

. graph_t, x: obj_t) : void

deletes object from graphg. If gis NULL , the function uses the root graphxofif x is a graph
or subgraph, it is closed unlesis locked.

isin(g: graph_t, x: obj_t) : int

clong(g:

copy(g :

copyA(s

returns true ik is in subgraphy. If xis a graph, this indicates thats the immediate parent graph
of x.

graph_t, x: obj_t): obj_t

creates a clone of objegtin graphg. In particular the nev object has the same namalive
attributes and structure as the original object. If an object with the seyres k already exists, its
attributes are werlaid by those ok and the object is returnedf. an edge is cloned, both endpoints
are implicitly cloned.If a graph is cloned, all nodes, edges and subgraphs are implicitly cliéned.
x is a graphg may beNULL , in which case the cloned object will be avm®ot graph.

graph_t, x: obj_t) : obj_t

creates a cgpof objectx in graphg, where the n& object has the same name/value attributes as
the original object. If an object with the sameyks x already exists, its attributes areedaid by
those ofx and the object is returned. Note that this is a siadtmpy. If x is a graph, none of its
nodes, edges or subgraphs are copied into tlvegraph. Ifx is an edge, the endpoints are created
if necessarybut they are not cloned.If x is a graphg may beNULL , in which case the cloned
object will be a ne& root graph.

rc: obj_t, tgt: obj_t) :int
copies the attributes of objestc to objecttgt, overwriting ary attribute \aluestgt may initially
have.

induce(g : graph_t) : void

agef(src

extendsg to its node-induced subgraph extension in its root graph.

: obj_t, name: string) : string
returns the value of attiiibe namein objectsrc. This is useful for those cases wheameconflicts
with one of the kywords such as "head" or "rootReturnsNULL on failure or if the attribute is

1 November 2005 5

GVPR(1) GVPR(1)

not defined.

ase{src: obj_t, name: string, value: string) : int
sets the value of attiilbe namein objectsrc to value Returns 0 on success, hon-zero aiufe.
Seeagetabove.

getDflt(g : graph_t, kind: string, name: string) : string
returns the default value of attuite namein objects ing of the given kind. For nodes, edges, and
graphs,kind should be "N", "E", and "G", respeatly. ReturnsNULL on failure or if the
attribute is not defined.

setDflt(g : graph_t, kind: string, name: string, value: string) : int
sets the default value of attuite nameto valuein objects ing of the given kind. For nodes, edges,
and graphskind should be "N", "E", and "G", respeatly. Returns 0 on success, non-zero on
failure. SeesetDflt above.

compOf(g: graph_t, n: node_9 : graph_t
returns the connected component of the g@pbntaining noden, as a sbgraph ofg. The sub-
graph only contains the nodes. One canindeceto add the edges. The function fails and returns
NULL if nis not ing. Connectivity is based on the underlying undirected gragh of

kindOf (obj : obj_t) : string
returns an indication of what kind of graph object is tlgisrent. Br nodes, edges, and graphs,
it returns should be "N", "E", and "G", respeely.

lock(g: graph_t, v:int) :int
implements graph locking on root graphs. If thegete is positve, the graph is set so that future
calls todeletehave o immediate déct. If vis zero, the graph is unlocked. If there has been a call
to delete the graph while it was locked, the graph is clodedis negaive, nothing is done. In all
cases, the previous lock value is returned.

Strings
sprintf (fmt: string, ...) : string
returns the string resulting from formatting the values of the expressions occurrindmsfter
according to therintf (3) format fmt

gsub(str : string, pat: string) : string

gsub(str : string, pat: string, repl : string) : string
returnsstr with all substrings matchingat deleted or replaced brgpl, respectiely.

sub(str : string, pat: string) : string

sub(str : string, pat: string, repl : string) : string
returnsstr with the leftmost substring matchinmat deleted or replaced lrgpl, respectiely. The
characters ™ and '$’ may be used at the beginning and end, regbeaf patto anchor the pat-
tern to the beginning or end stf.

substr(str : string, idx : int) : string

substr(str: string, idx : int, len: int) : string
returns the substring afr starting at positiondx to the end of the string or of lengm, respec-
tively. Indexing starts at 0. Ifdx is negative a idx is greater than the length sff, a fatal error

occurs. Similarlyin the second case,lénis negative a idx + lenis greater than the length sff,
a fatal error occurs.

length(s: string) : int
returns the length of the strisg

index(s: string, t : string) : int
returns the indeof the character in stringwhere the leftmost cgpof string t can be found, or -1
if tis not a substring of

1 November 2005 6

GVPR(1) GVPR(1)

I/0

match(s: string, p : string) : int
returns the indeof the character in stringwhere the leftmost match of pattgrcan be found, or
-1 if no substring of matches.

canon(s: string) : string
returns a version afappropriate to be used as an identifier in a dot file.

xOf(s: string) : string
returns the stringX" if shas the formXy", where bothx andy are numeric.

yOf(s: string) : string
returns the stringy” if shas the formXy", where bothx andy are numeric.

lIOf (s: string) : string
returns the stringlik,lly" if s has the form Ifx,lly,urx,ury", where all ofllx, lly, urx, and ury are
numeric.

urOf(s)
urOf (s: string) : string returns the stringurx,ury" if s has the formlix,lly,urx,ury", where all of
I, Iy, urx, and ury are numeric.

sscanfs: string, fmt: string, ...) : int
scans the string, extracting \alues according to thescanf{3) formatfmt. The values are stored
in the addresses folldng fmt, addresses having the for&w, wherev is some declared variable of
the correct type. Returns the number of items successfully scanned.

print (...) : void
print(expr, ...) prints a string representation of each argument in turnstdtut, followed by a
newline.

printf (fmt: string, ...) : int

printf (fd : int, fmt: string, ...)) : int
prints the string resulting from formatting thalwes of the expressions folling fmtaccording to
the printf (3) formatfmt. Returns 0 on succes®8y default, it prints orstdout. If the optional
integerfd is given, output is written on the open stream associatedfdith

scanffmt: string, ...) : int

scanffd: int, fmt: string, ...) : int
scans in values from an input stream according tethaf(3) formatfmt. The values are stored
in the addresses folldng fmt, addresses having the for&w, wherev is some declared variable of
the correct type. By default, it reads fratdin. If the optional intgerfd is given, input is read
from the open stream associated viith Returns the number of items successfully scanned.

openHs: string, t : string) : int
opens the files as an I/O stream. The stringgamentt specifies ha the file is opened. Thegu-
ments are the same as for the C functagren(3). It returns an integer denoting the stream, or -1
on error.

As usual, streams 0, 1 and 2 are already opestdas, stdout, and stderr, respectiely. Since
gvpr may usestdin to read the input graphs, the user shoutlidausing this stream.

closeRfd : int) : int
closes the open stream denoted by thegertiel. Streams 0,1 and 2 cannot be closed. Returns 0
on success.

readL(fd : int) : string
returns the next line read from the input strfdmit returns the empty string
Note that the newline character is left in the returned string.

on end of file.

1 November 2005 7

GVPR(1) GVPR(1)

Math
exp(d : double) : double
returns e to thdth power.

log(d : double) : double
returns the natural log of

sqrt(d : double) : double
returns the square root of the douthle

pow(d : double, x : double) : double
returnsd raised to theth power.

cogd : double) : double
returns the cosine af

sin(d : double) : double
returns the sine daf.

atan2(y : double, x : double) : double
returns the arctangent wfin the range —pi to pi.

Miscellaneous
exit() : void
exit(v : int) : void
causegvpr to exit with the exit code. v defaults to 0 if omitted.

rand() : double
returns a pseudo-random double between 0 and 1.

srand() : int

srand(v: int) : int
sets a seed for the random number generteroptional argumentgs the seed; if it is omitted,
the current time is used. The previous seed value is retwsraad] should be called before yan
calls torand.

BUILT-IN VARIABLES
gvpr provides certain special, built-in variables, whose values are set automaticgiypbglepending on
the context. Except as noted, the user cannot modify their values.
$:obj_t
denotes the current object (node, edge, graph) depending on thet.cdhte not aailable in
BEGIN or END clauses.

$F : string
is the name of the current input file.

$G : graph_t
denotes the current graph being processed. It isvaitdilsle inBEGIN or END clauses.

$0O : graph_t
denotes the output graph. Before graphensal, it is initialized to the tget graph. After tneersal
and ay END_G actions, if it refers to a non-empty graph, that graph is printed onto the output
stream. ltis only valid inN, E andEND_G clauses. Theutput graph may be set by the user.

$T : graph_t
denotes the current target graph. It is a subgrafiGaind is a@ailable only inN, E andEND_G
clauses.

$tgtname: string
denotes the name of the target grafy. default, it is set tdgvpr_result" . If used multiple
times during thexecution ofgvpr, the name will be appended with an gee This variable may
be set by the user.

1 November 2005 8

GVPR(1) GVPR(1)

$tvroot : node_t
indicates the starting node for a (directed or undirected) depth-fivstsih of the graph (cf.
$tvtype below). Thedefault value isNULL for each input graph.

$tvtype : tvtype_t
indicates hw gvpr traverses a graph. At present, it can onlyetake of six alues:TV_flat,
TV_dfs, TV_fwd, TV _ref, TV_bfs, TV_ne, andTV_en. TV_flat is the defult. Themeaning of
these values is discussed lvelo

ARGC :int
denotes the number of arguments specified by&sgscommand-line argument.

ARGV : string array
denotes the array of arguments specified by-#h&gscommand-line argument. Tl agument
is given by ARGVTi].

BUILT-IN CONSTANTS

There are s&ral symbolic constants defined gypr.

NULL : obj_t
a rull object reference, equalent to 0.

TV _flat : tvtype _t
a smple, flat trarersal, with graph objects visited in seemingly arbitrary order.

TV_ne: tvtype_t
a traversal which first visits all of the nodes, then all of the edges.

TV_en: tvtype_t
a traversal which first visits all of the edges, then all of the nodes.

TV_dfs : tvtype_t
a traversal of the graph using a depth-first search on the underlying undirected goapb.the
traversal, gvpr will check the value o$tvroot. If this has the same value that it had previously (at
the start, the previous value is initializedN@LL .), gvpr will simply look for some uwisited
node and tneerse its connected component. On the other harityibot has changed, its con-
nected component will be toured, assuming it has not beetopsty visited oy if $tvroot is
NULL , the traversal will stop. Note that usingV_dfs and$tvroot, it is possible to create an infi-
nite loop.

TV_fwd : tvtype_t
a fraversal of the graph using a depth-first search on the graph following only forward arcs. In

TV _bfs : tvtype_t
a traversal of the graph using a bread-first search on the graph ignoring edge directions. See the
item onTV_dfs above for the role oftvroot. libagraph(3), edges in undirected graphs aneeqi
an arbitrary direction, which is used for thisves@al. The choice of roots for the wegsal is the
same as described foK_dfs above.

TV _rev: tvtype_t
a traversal of the graph using a depth-first search on the graph following eelgeercs. Itiba-

graph(3), edges in undirected graphs aneegian abitrary direction, which is used for this ve-
sal. The choice of roots for the tessal is the same as described Tof_dfs above.

EXAMPLES
gvpr —i 'N[color=="blue"] file.dot

Generate the node-induced subgraph of all nodes with color blue.
gvpr —c 'N[color=="blue"[{color = "red"} file.dot
Make dl blue nodes red.

BEGIN {intn, e; inttot n=0; inttot e =0;}
BEG_G {

1 November 2005 9

GVPR(1) GVPR(1)

n = nNodes($G);

e = nEdges($G);

printf ("%d nodes %d edges %s0, n, e, $G.name);
tot_n +=n;

tot_e +=¢€;

}END { printf ("%d nodes %d edges totalO, tot_n, tot_e) }
Version of the programngc.

gvpr —c ™
Equivaent tonop.

BEG_G { graph_t g = graph ("merge", "S"); }
E{
node_t h = clone(g,$.head);
node_t t = clone(g,$.tail);
edge_t e = edge(t,h,";
e.weight = e.weight + 1;
}
END_G{$0=g¢;}

Produces a strict version of the input graph, where the weightugdtrii an edge indicates wamany
edges from the input graph the edge represents.

BEGIN {node_t n; int deg[]}
E{deg[head]++; degl[tail]++; }
END_G {
for (deg[n]) {
printf ("deg[%s] = %d0, n.name, deg[n]);
}
}

Computes the degrees of nodes with edges.

ENVIRONMENT

GPRPATH
Colon-separated list of directories to be searched to find the file specified by the —f option.

When the program isggn as a ommand line ayjument, the usual shell interpretation takes place, which
may affect some of the special nameg\pr. To avoid this, it is best to wrap the program in single quotes.

The constant3V_flat, TV_dfs, TV_fwd, and TV _rev

There is a single global scope, except for formal function parametersyemth@se can interfere with the
type system. Also, thextent of all variables is the entire life of the program. It might be preferable for
scope to reflect the natural nesting of the clauses, or for the program to at least reset locally deelared v
ables. Br now, it is advisable to use distinct names for all variables.

If a function ends with a completatement, such as an IF statement, with each branch doing a return, type
checking maydil. Functionsshould use a return at the end.

The expr library does not support string values of (char*)0. This means wedisdinguish between ™
and (char*)0 edgedys. For the purposes of looking up and creating edges, we translate " to be (char*)0,
since this latter value is necessary in order to look ypedge with a matching head and tail.

The language inherits the usual C problems such as dangling references and the confusion between '=" and

1 November 2005 10

GVPR(1) GVPR(1)

AUTHOR
Emden R. Gansner <erg@research.att.com>

SEE ALSO
awk(1), gc(1), dot(1), nop(1), libexpr(3), libagraph(3)

1 November 2005 11

