00001 // List implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 2, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // You should have received a copy of the GNU General Public License along 00017 // with this library; see the file COPYING. If not, write to the Free 00018 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, 00019 // USA. 00020 00021 // As a special exception, you may use this file as part of a free software 00022 // library without restriction. Specifically, if other files instantiate 00023 // templates or use macros or inline functions from this file, or you compile 00024 // this file and link it with other files to produce an executable, this 00025 // file does not by itself cause the resulting executable to be covered by 00026 // the GNU General Public License. This exception does not however 00027 // invalidate any other reasons why the executable file might be covered by 00028 // the GNU General Public License. 00029 00030 /* 00031 * 00032 * Copyright (c) 1994 00033 * Hewlett-Packard Company 00034 * 00035 * Permission to use, copy, modify, distribute and sell this software 00036 * and its documentation for any purpose is hereby granted without fee, 00037 * provided that the above copyright notice appear in all copies and 00038 * that both that copyright notice and this permission notice appear 00039 * in supporting documentation. Hewlett-Packard Company makes no 00040 * representations about the suitability of this software for any 00041 * purpose. It is provided "as is" without express or implied warranty. 00042 * 00043 * 00044 * Copyright (c) 1996,1997 00045 * Silicon Graphics Computer Systems, Inc. 00046 * 00047 * Permission to use, copy, modify, distribute and sell this software 00048 * and its documentation for any purpose is hereby granted without fee, 00049 * provided that the above copyright notice appear in all copies and 00050 * that both that copyright notice and this permission notice appear 00051 * in supporting documentation. Silicon Graphics makes no 00052 * representations about the suitability of this software for any 00053 * purpose. It is provided "as is" without express or implied warranty. 00054 */ 00055 00056 /** @file stl_list.h 00057 * This is an internal header file, included by other library headers. 00058 * You should not attempt to use it directly. 00059 */ 00060 00061 #ifndef _LIST_H 00062 #define _LIST_H 1 00063 00064 #include <bits/concept_check.h> 00065 00066 namespace _GLIBCXX_STD 00067 { 00068 // Supporting structures are split into common and templated types; the 00069 // latter publicly inherits from the former in an effort to reduce code 00070 // duplication. This results in some "needless" static_cast'ing later on, 00071 // but it's all safe downcasting. 00072 00073 /// @if maint Common part of a node in the %list. @endif 00074 struct _List_node_base 00075 { 00076 _List_node_base* _M_next; ///< Self-explanatory 00077 _List_node_base* _M_prev; ///< Self-explanatory 00078 00079 static void 00080 swap(_List_node_base& __x, _List_node_base& __y); 00081 00082 void 00083 transfer(_List_node_base * const __first, 00084 _List_node_base * const __last); 00085 00086 void 00087 reverse(); 00088 00089 void 00090 hook(_List_node_base * const __position); 00091 00092 void 00093 unhook(); 00094 }; 00095 00096 /// @if maint An actual node in the %list. @endif 00097 template<typename _Tp> 00098 struct _List_node : public _List_node_base 00099 { 00100 _Tp _M_data; ///< User's data. 00101 }; 00102 00103 /** 00104 * @brief A list::iterator. 00105 * 00106 * @if maint 00107 * All the functions are op overloads. 00108 * @endif 00109 */ 00110 template<typename _Tp> 00111 struct _List_iterator 00112 { 00113 typedef _List_iterator<_Tp> _Self; 00114 typedef _List_node<_Tp> _Node; 00115 00116 typedef ptrdiff_t difference_type; 00117 typedef std::bidirectional_iterator_tag iterator_category; 00118 typedef _Tp value_type; 00119 typedef _Tp* pointer; 00120 typedef _Tp& reference; 00121 00122 _List_iterator() 00123 : _M_node() { } 00124 00125 _List_iterator(_List_node_base* __x) 00126 : _M_node(__x) { } 00127 00128 // Must downcast from List_node_base to _List_node to get to _M_data. 00129 reference 00130 operator*() const 00131 { return static_cast<_Node*>(_M_node)->_M_data; } 00132 00133 pointer 00134 operator->() const 00135 { return &static_cast<_Node*>(_M_node)->_M_data; } 00136 00137 _Self& 00138 operator++() 00139 { 00140 _M_node = _M_node->_M_next; 00141 return *this; 00142 } 00143 00144 _Self 00145 operator++(int) 00146 { 00147 _Self __tmp = *this; 00148 _M_node = _M_node->_M_next; 00149 return __tmp; 00150 } 00151 00152 _Self& 00153 operator--() 00154 { 00155 _M_node = _M_node->_M_prev; 00156 return *this; 00157 } 00158 00159 _Self 00160 operator--(int) 00161 { 00162 _Self __tmp = *this; 00163 _M_node = _M_node->_M_prev; 00164 return __tmp; 00165 } 00166 00167 bool 00168 operator==(const _Self& __x) const 00169 { return _M_node == __x._M_node; } 00170 00171 bool 00172 operator!=(const _Self& __x) const 00173 { return _M_node != __x._M_node; } 00174 00175 // The only member points to the %list element. 00176 _List_node_base* _M_node; 00177 }; 00178 00179 /** 00180 * @brief A list::const_iterator. 00181 * 00182 * @if maint 00183 * All the functions are op overloads. 00184 * @endif 00185 */ 00186 template<typename _Tp> 00187 struct _List_const_iterator 00188 { 00189 typedef _List_const_iterator<_Tp> _Self; 00190 typedef const _List_node<_Tp> _Node; 00191 typedef _List_iterator<_Tp> iterator; 00192 00193 typedef ptrdiff_t difference_type; 00194 typedef std::bidirectional_iterator_tag iterator_category; 00195 typedef _Tp value_type; 00196 typedef const _Tp* pointer; 00197 typedef const _Tp& reference; 00198 00199 _List_const_iterator() 00200 : _M_node() { } 00201 00202 _List_const_iterator(const _List_node_base* __x) 00203 : _M_node(__x) { } 00204 00205 _List_const_iterator(const iterator& __x) 00206 : _M_node(__x._M_node) { } 00207 00208 // Must downcast from List_node_base to _List_node to get to 00209 // _M_data. 00210 reference 00211 operator*() const 00212 { return static_cast<_Node*>(_M_node)->_M_data; } 00213 00214 pointer 00215 operator->() const 00216 { return &static_cast<_Node*>(_M_node)->_M_data; } 00217 00218 _Self& 00219 operator++() 00220 { 00221 _M_node = _M_node->_M_next; 00222 return *this; 00223 } 00224 00225 _Self 00226 operator++(int) 00227 { 00228 _Self __tmp = *this; 00229 _M_node = _M_node->_M_next; 00230 return __tmp; 00231 } 00232 00233 _Self& 00234 operator--() 00235 { 00236 _M_node = _M_node->_M_prev; 00237 return *this; 00238 } 00239 00240 _Self 00241 operator--(int) 00242 { 00243 _Self __tmp = *this; 00244 _M_node = _M_node->_M_prev; 00245 return __tmp; 00246 } 00247 00248 bool 00249 operator==(const _Self& __x) const 00250 { return _M_node == __x._M_node; } 00251 00252 bool 00253 operator!=(const _Self& __x) const 00254 { return _M_node != __x._M_node; } 00255 00256 // The only member points to the %list element. 00257 const _List_node_base* _M_node; 00258 }; 00259 00260 template<typename _Val> 00261 inline bool 00262 operator==(const _List_iterator<_Val>& __x, 00263 const _List_const_iterator<_Val>& __y) 00264 { return __x._M_node == __y._M_node; } 00265 00266 template<typename _Val> 00267 inline bool 00268 operator!=(const _List_iterator<_Val>& __x, 00269 const _List_const_iterator<_Val>& __y) 00270 { return __x._M_node != __y._M_node; } 00271 00272 00273 /** 00274 * @if maint 00275 * See bits/stl_deque.h's _Deque_base for an explanation. 00276 * @endif 00277 */ 00278 template<typename _Tp, typename _Alloc> 00279 class _List_base 00280 { 00281 protected: 00282 // NOTA BENE 00283 // The stored instance is not actually of "allocator_type"'s 00284 // type. Instead we rebind the type to 00285 // Allocator<List_node<Tp>>, which according to [20.1.5]/4 00286 // should probably be the same. List_node<Tp> is not the same 00287 // size as Tp (it's two pointers larger), and specializations on 00288 // Tp may go unused because List_node<Tp> is being bound 00289 // instead. 00290 // 00291 // We put this to the test in the constructors and in 00292 // get_allocator, where we use conversions between 00293 // allocator_type and _Node_Alloc_type. The conversion is 00294 // required by table 32 in [20.1.5]. 00295 typedef typename _Alloc::template rebind<_List_node<_Tp> >::other 00296 00297 _Node_Alloc_type; 00298 00299 struct _List_impl 00300 : public _Node_Alloc_type 00301 { 00302 _List_node_base _M_node; 00303 00304 _List_impl (const _Node_Alloc_type& __a) 00305 : _Node_Alloc_type(__a), _M_node() 00306 { } 00307 }; 00308 00309 _List_impl _M_impl; 00310 00311 _List_node<_Tp>* 00312 _M_get_node() 00313 { return _M_impl._Node_Alloc_type::allocate(1); } 00314 00315 void 00316 _M_put_node(_List_node<_Tp>* __p) 00317 { _M_impl._Node_Alloc_type::deallocate(__p, 1); } 00318 00319 public: 00320 typedef _Alloc allocator_type; 00321 00322 allocator_type 00323 get_allocator() const 00324 { return allocator_type(*static_cast< 00325 const _Node_Alloc_type*>(&this->_M_impl)); } 00326 00327 _List_base(const allocator_type& __a) 00328 : _M_impl(__a) 00329 { _M_init(); } 00330 00331 // This is what actually destroys the list. 00332 ~_List_base() 00333 { _M_clear(); } 00334 00335 void 00336 _M_clear(); 00337 00338 void 00339 _M_init() 00340 { 00341 this->_M_impl._M_node._M_next = &this->_M_impl._M_node; 00342 this->_M_impl._M_node._M_prev = &this->_M_impl._M_node; 00343 } 00344 }; 00345 00346 /** 00347 * @brief A standard container with linear time access to elements, 00348 * and fixed time insertion/deletion at any point in the sequence. 00349 * 00350 * @ingroup Containers 00351 * @ingroup Sequences 00352 * 00353 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00354 * <a href="tables.html#66">reversible container</a>, and a 00355 * <a href="tables.html#67">sequence</a>, including the 00356 * <a href="tables.html#68">optional sequence requirements</a> with the 00357 * %exception of @c at and @c operator[]. 00358 * 00359 * This is a @e doubly @e linked %list. Traversal up and down the 00360 * %list requires linear time, but adding and removing elements (or 00361 * @e nodes) is done in constant time, regardless of where the 00362 * change takes place. Unlike std::vector and std::deque, 00363 * random-access iterators are not provided, so subscripting ( @c 00364 * [] ) access is not allowed. For algorithms which only need 00365 * sequential access, this lack makes no difference. 00366 * 00367 * Also unlike the other standard containers, std::list provides 00368 * specialized algorithms %unique to linked lists, such as 00369 * splicing, sorting, and in-place reversal. 00370 * 00371 * @if maint 00372 * A couple points on memory allocation for list<Tp>: 00373 * 00374 * First, we never actually allocate a Tp, we allocate 00375 * List_node<Tp>'s and trust [20.1.5]/4 to DTRT. This is to ensure 00376 * that after elements from %list<X,Alloc1> are spliced into 00377 * %list<X,Alloc2>, destroying the memory of the second %list is a 00378 * valid operation, i.e., Alloc1 giveth and Alloc2 taketh away. 00379 * 00380 * Second, a %list conceptually represented as 00381 * @code 00382 * A <---> B <---> C <---> D 00383 * @endcode 00384 * is actually circular; a link exists between A and D. The %list 00385 * class holds (as its only data member) a private list::iterator 00386 * pointing to @e D, not to @e A! To get to the head of the %list, 00387 * we start at the tail and move forward by one. When this member 00388 * iterator's next/previous pointers refer to itself, the %list is 00389 * %empty. @endif 00390 */ 00391 template<typename _Tp, typename _Alloc = std::allocator<_Tp> > 00392 class list : protected _List_base<_Tp, _Alloc> 00393 { 00394 // concept requirements 00395 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00396 00397 typedef _List_base<_Tp, _Alloc> _Base; 00398 00399 public: 00400 typedef _Tp value_type; 00401 typedef typename _Alloc::pointer pointer; 00402 typedef typename _Alloc::const_pointer const_pointer; 00403 typedef typename _Alloc::reference reference; 00404 typedef typename _Alloc::const_reference const_reference; 00405 typedef _List_iterator<_Tp> iterator; 00406 typedef _List_const_iterator<_Tp> const_iterator; 00407 typedef std::reverse_iterator<const_iterator> const_reverse_iterator; 00408 typedef std::reverse_iterator<iterator> reverse_iterator; 00409 typedef size_t size_type; 00410 typedef ptrdiff_t difference_type; 00411 typedef typename _Base::allocator_type allocator_type; 00412 00413 protected: 00414 // Note that pointers-to-_Node's can be ctor-converted to 00415 // iterator types. 00416 typedef _List_node<_Tp> _Node; 00417 00418 /** @if maint 00419 * One data member plus two memory-handling functions. If the 00420 * _Alloc type requires separate instances, then one of those 00421 * will also be included, accumulated from the topmost parent. 00422 * @endif 00423 */ 00424 using _Base::_M_impl; 00425 using _Base::_M_put_node; 00426 using _Base::_M_get_node; 00427 00428 /** 00429 * @if maint 00430 * @param x An instance of user data. 00431 * 00432 * Allocates space for a new node and constructs a copy of @a x in it. 00433 * @endif 00434 */ 00435 _Node* 00436 _M_create_node(const value_type& __x) 00437 { 00438 _Node* __p = this->_M_get_node(); 00439 try 00440 { 00441 this->get_allocator().construct(&__p->_M_data, __x); 00442 } 00443 catch(...) 00444 { 00445 _M_put_node(__p); 00446 __throw_exception_again; 00447 } 00448 return __p; 00449 } 00450 00451 public: 00452 // [23.2.2.1] construct/copy/destroy 00453 // (assign() and get_allocator() are also listed in this section) 00454 /** 00455 * @brief Default constructor creates no elements. 00456 */ 00457 explicit 00458 list(const allocator_type& __a = allocator_type()) 00459 : _Base(__a) { } 00460 00461 /** 00462 * @brief Create a %list with copies of an exemplar element. 00463 * @param n The number of elements to initially create. 00464 * @param value An element to copy. 00465 * 00466 * This constructor fills the %list with @a n copies of @a value. 00467 */ 00468 list(size_type __n, const value_type& __value, 00469 const allocator_type& __a = allocator_type()) 00470 : _Base(__a) 00471 { this->insert(begin(), __n, __value); } 00472 00473 /** 00474 * @brief Create a %list with default elements. 00475 * @param n The number of elements to initially create. 00476 * 00477 * This constructor fills the %list with @a n copies of a 00478 * default-constructed element. 00479 */ 00480 explicit 00481 list(size_type __n) 00482 : _Base(allocator_type()) 00483 { this->insert(begin(), __n, value_type()); } 00484 00485 /** 00486 * @brief %List copy constructor. 00487 * @param x A %list of identical element and allocator types. 00488 * 00489 * The newly-created %list uses a copy of the allocation object used 00490 * by @a x. 00491 */ 00492 list(const list& __x) 00493 : _Base(__x.get_allocator()) 00494 { this->insert(begin(), __x.begin(), __x.end()); } 00495 00496 /** 00497 * @brief Builds a %list from a range. 00498 * @param first An input iterator. 00499 * @param last An input iterator. 00500 * 00501 * Create a %list consisting of copies of the elements from 00502 * [@a first,@a last). This is linear in N (where N is 00503 * distance(@a first,@a last)). 00504 * 00505 * @if maint 00506 * We don't need any dispatching tricks here, because insert does all of 00507 * that anyway. 00508 * @endif 00509 */ 00510 template<typename _InputIterator> 00511 list(_InputIterator __first, _InputIterator __last, 00512 const allocator_type& __a = allocator_type()) 00513 : _Base(__a) 00514 { this->insert(begin(), __first, __last); } 00515 00516 /** 00517 * No explicit dtor needed as the _Base dtor takes care of 00518 * things. The _Base dtor only erases the elements, and note 00519 * that if the elements themselves are pointers, the pointed-to 00520 * memory is not touched in any way. Managing the pointer is 00521 * the user's responsibilty. 00522 */ 00523 00524 /** 00525 * @brief %List assignment operator. 00526 * @param x A %list of identical element and allocator types. 00527 * 00528 * All the elements of @a x are copied, but unlike the copy 00529 * constructor, the allocator object is not copied. 00530 */ 00531 list& 00532 operator=(const list& __x); 00533 00534 /** 00535 * @brief Assigns a given value to a %list. 00536 * @param n Number of elements to be assigned. 00537 * @param val Value to be assigned. 00538 * 00539 * This function fills a %list with @a n copies of the given 00540 * value. Note that the assignment completely changes the %list 00541 * and that the resulting %list's size is the same as the number 00542 * of elements assigned. Old data may be lost. 00543 */ 00544 void 00545 assign(size_type __n, const value_type& __val) 00546 { _M_fill_assign(__n, __val); } 00547 00548 /** 00549 * @brief Assigns a range to a %list. 00550 * @param first An input iterator. 00551 * @param last An input iterator. 00552 * 00553 * This function fills a %list with copies of the elements in the 00554 * range [@a first,@a last). 00555 * 00556 * Note that the assignment completely changes the %list and 00557 * that the resulting %list's size is the same as the number of 00558 * elements assigned. Old data may be lost. 00559 */ 00560 template<typename _InputIterator> 00561 void 00562 assign(_InputIterator __first, _InputIterator __last) 00563 { 00564 // Check whether it's an integral type. If so, it's not an iterator. 00565 typedef typename std::__is_integer<_InputIterator>::__type _Integral; 00566 _M_assign_dispatch(__first, __last, _Integral()); 00567 } 00568 00569 /// Get a copy of the memory allocation object. 00570 allocator_type 00571 get_allocator() const 00572 { return _Base::get_allocator(); } 00573 00574 // iterators 00575 /** 00576 * Returns a read/write iterator that points to the first element in the 00577 * %list. Iteration is done in ordinary element order. 00578 */ 00579 iterator 00580 begin() 00581 { return this->_M_impl._M_node._M_next; } 00582 00583 /** 00584 * Returns a read-only (constant) iterator that points to the 00585 * first element in the %list. Iteration is done in ordinary 00586 * element order. 00587 */ 00588 const_iterator 00589 begin() const 00590 { return this->_M_impl._M_node._M_next; } 00591 00592 /** 00593 * Returns a read/write iterator that points one past the last 00594 * element in the %list. Iteration is done in ordinary element 00595 * order. 00596 */ 00597 iterator 00598 end() { return &this->_M_impl._M_node; } 00599 00600 /** 00601 * Returns a read-only (constant) iterator that points one past 00602 * the last element in the %list. Iteration is done in ordinary 00603 * element order. 00604 */ 00605 const_iterator 00606 end() const 00607 { return &this->_M_impl._M_node; } 00608 00609 /** 00610 * Returns a read/write reverse iterator that points to the last 00611 * element in the %list. Iteration is done in reverse element 00612 * order. 00613 */ 00614 reverse_iterator 00615 rbegin() 00616 { return reverse_iterator(end()); } 00617 00618 /** 00619 * Returns a read-only (constant) reverse iterator that points to 00620 * the last element in the %list. Iteration is done in reverse 00621 * element order. 00622 */ 00623 const_reverse_iterator 00624 rbegin() const 00625 { return const_reverse_iterator(end()); } 00626 00627 /** 00628 * Returns a read/write reverse iterator that points to one 00629 * before the first element in the %list. Iteration is done in 00630 * reverse element order. 00631 */ 00632 reverse_iterator 00633 rend() 00634 { return reverse_iterator(begin()); } 00635 00636 /** 00637 * Returns a read-only (constant) reverse iterator that points to one 00638 * before the first element in the %list. Iteration is done in reverse 00639 * element order. 00640 */ 00641 const_reverse_iterator 00642 rend() const 00643 { return const_reverse_iterator(begin()); } 00644 00645 // [23.2.2.2] capacity 00646 /** 00647 * Returns true if the %list is empty. (Thus begin() would equal 00648 * end().) 00649 */ 00650 bool 00651 empty() const 00652 { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; } 00653 00654 /** Returns the number of elements in the %list. */ 00655 size_type 00656 size() const 00657 { return std::distance(begin(), end()); } 00658 00659 /** Returns the size() of the largest possible %list. */ 00660 size_type 00661 max_size() const 00662 { return size_type(-1); } 00663 00664 /** 00665 * @brief Resizes the %list to the specified number of elements. 00666 * @param new_size Number of elements the %list should contain. 00667 * @param x Data with which new elements should be populated. 00668 * 00669 * This function will %resize the %list to the specified number 00670 * of elements. If the number is smaller than the %list's 00671 * current size the %list is truncated, otherwise the %list is 00672 * extended and new elements are populated with given data. 00673 */ 00674 void 00675 resize(size_type __new_size, const value_type& __x); 00676 00677 /** 00678 * @brief Resizes the %list to the specified number of elements. 00679 * @param new_size Number of elements the %list should contain. 00680 * 00681 * This function will resize the %list to the specified number of 00682 * elements. If the number is smaller than the %list's current 00683 * size the %list is truncated, otherwise the %list is extended 00684 * and new elements are default-constructed. 00685 */ 00686 void 00687 resize(size_type __new_size) 00688 { this->resize(__new_size, value_type()); } 00689 00690 // element access 00691 /** 00692 * Returns a read/write reference to the data at the first 00693 * element of the %list. 00694 */ 00695 reference 00696 front() 00697 { return *begin(); } 00698 00699 /** 00700 * Returns a read-only (constant) reference to the data at the first 00701 * element of the %list. 00702 */ 00703 const_reference 00704 front() const 00705 { return *begin(); } 00706 00707 /** 00708 * Returns a read/write reference to the data at the last element 00709 * of the %list. 00710 */ 00711 reference 00712 back() 00713 { 00714 iterator __tmp = end(); 00715 --__tmp; 00716 return *__tmp; 00717 } 00718 00719 /** 00720 * Returns a read-only (constant) reference to the data at the last 00721 * element of the %list. 00722 */ 00723 const_reference 00724 back() const 00725 { 00726 const_iterator __tmp = end(); 00727 --__tmp; 00728 return *__tmp; 00729 } 00730 00731 // [23.2.2.3] modifiers 00732 /** 00733 * @brief Add data to the front of the %list. 00734 * @param x Data to be added. 00735 * 00736 * This is a typical stack operation. The function creates an 00737 * element at the front of the %list and assigns the given data 00738 * to it. Due to the nature of a %list this operation can be 00739 * done in constant time, and does not invalidate iterators and 00740 * references. 00741 */ 00742 void 00743 push_front(const value_type& __x) 00744 { this->_M_insert(begin(), __x); } 00745 00746 /** 00747 * @brief Removes first element. 00748 * 00749 * This is a typical stack operation. It shrinks the %list by 00750 * one. Due to the nature of a %list this operation can be done 00751 * in constant time, and only invalidates iterators/references to 00752 * the element being removed. 00753 * 00754 * Note that no data is returned, and if the first element's data 00755 * is needed, it should be retrieved before pop_front() is 00756 * called. 00757 */ 00758 void 00759 pop_front() 00760 { this->_M_erase(begin()); } 00761 00762 /** 00763 * @brief Add data to the end of the %list. 00764 * @param x Data to be added. 00765 * 00766 * This is a typical stack operation. The function creates an 00767 * element at the end of the %list and assigns the given data to 00768 * it. Due to the nature of a %list this operation can be done 00769 * in constant time, and does not invalidate iterators and 00770 * references. 00771 */ 00772 void 00773 push_back(const value_type& __x) 00774 { this->_M_insert(end(), __x); } 00775 00776 /** 00777 * @brief Removes last element. 00778 * 00779 * This is a typical stack operation. It shrinks the %list by 00780 * one. Due to the nature of a %list this operation can be done 00781 * in constant time, and only invalidates iterators/references to 00782 * the element being removed. 00783 * 00784 * Note that no data is returned, and if the last element's data 00785 * is needed, it should be retrieved before pop_back() is called. 00786 */ 00787 void 00788 pop_back() 00789 { this->_M_erase(this->_M_impl._M_node._M_prev); } 00790 00791 /** 00792 * @brief Inserts given value into %list before specified iterator. 00793 * @param position An iterator into the %list. 00794 * @param x Data to be inserted. 00795 * @return An iterator that points to the inserted data. 00796 * 00797 * This function will insert a copy of the given value before 00798 * the specified location. Due to the nature of a %list this 00799 * operation can be done in constant time, and does not 00800 * invalidate iterators and references. 00801 */ 00802 iterator 00803 insert(iterator __position, const value_type& __x); 00804 00805 /** 00806 * @brief Inserts a number of copies of given data into the %list. 00807 * @param position An iterator into the %list. 00808 * @param n Number of elements to be inserted. 00809 * @param x Data to be inserted. 00810 * 00811 * This function will insert a specified number of copies of the 00812 * given data before the location specified by @a position. 00813 * 00814 * Due to the nature of a %list this operation can be done in 00815 * constant time, and does not invalidate iterators and 00816 * references. 00817 */ 00818 void 00819 insert(iterator __position, size_type __n, const value_type& __x) 00820 { _M_fill_insert(__position, __n, __x); } 00821 00822 /** 00823 * @brief Inserts a range into the %list. 00824 * @param position An iterator into the %list. 00825 * @param first An input iterator. 00826 * @param last An input iterator. 00827 * 00828 * This function will insert copies of the data in the range [@a 00829 * first,@a last) into the %list before the location specified by 00830 * @a position. 00831 * 00832 * Due to the nature of a %list this operation can be done in 00833 * constant time, and does not invalidate iterators and 00834 * references. 00835 */ 00836 template<typename _InputIterator> 00837 void 00838 insert(iterator __position, _InputIterator __first, 00839 _InputIterator __last) 00840 { 00841 // Check whether it's an integral type. If so, it's not an iterator. 00842 typedef typename std::__is_integer<_InputIterator>::__type _Integral; 00843 _M_insert_dispatch(__position, __first, __last, _Integral()); 00844 } 00845 00846 /** 00847 * @brief Remove element at given position. 00848 * @param position Iterator pointing to element to be erased. 00849 * @return An iterator pointing to the next element (or end()). 00850 * 00851 * This function will erase the element at the given position and thus 00852 * shorten the %list by one. 00853 * 00854 * Due to the nature of a %list this operation can be done in 00855 * constant time, and only invalidates iterators/references to 00856 * the element being removed. The user is also cautioned that 00857 * this function only erases the element, and that if the element 00858 * is itself a pointer, the pointed-to memory is not touched in 00859 * any way. Managing the pointer is the user's responsibilty. 00860 */ 00861 iterator 00862 erase(iterator __position); 00863 00864 /** 00865 * @brief Remove a range of elements. 00866 * @param first Iterator pointing to the first element to be erased. 00867 * @param last Iterator pointing to one past the last element to be 00868 * erased. 00869 * @return An iterator pointing to the element pointed to by @a last 00870 * prior to erasing (or end()). 00871 * 00872 * This function will erase the elements in the range @a 00873 * [first,last) and shorten the %list accordingly. 00874 * 00875 * Due to the nature of a %list this operation can be done in 00876 * constant time, and only invalidates iterators/references to 00877 * the element being removed. The user is also cautioned that 00878 * this function only erases the elements, and that if the 00879 * elements themselves are pointers, the pointed-to memory is not 00880 * touched in any way. Managing the pointer is the user's 00881 * responsibilty. 00882 */ 00883 iterator 00884 erase(iterator __first, iterator __last) 00885 { 00886 while (__first != __last) 00887 __first = erase(__first); 00888 return __last; 00889 } 00890 00891 /** 00892 * @brief Swaps data with another %list. 00893 * @param x A %list of the same element and allocator types. 00894 * 00895 * This exchanges the elements between two lists in constant 00896 * time. Note that the global std::swap() function is 00897 * specialized such that std::swap(l1,l2) will feed to this 00898 * function. 00899 */ 00900 void 00901 swap(list& __x) 00902 { _List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node); } 00903 00904 /** 00905 * Erases all the elements. Note that this function only erases 00906 * the elements, and that if the elements themselves are 00907 * pointers, the pointed-to memory is not touched in any way. 00908 * Managing the pointer is the user's responsibilty. 00909 */ 00910 void 00911 clear() 00912 { 00913 _Base::_M_clear(); 00914 _Base::_M_init(); 00915 } 00916 00917 // [23.2.2.4] list operations 00918 /** 00919 * @brief Insert contents of another %list. 00920 * @param position Iterator referencing the element to insert before. 00921 * @param x Source list. 00922 * 00923 * The elements of @a x are inserted in constant time in front of 00924 * the element referenced by @a position. @a x becomes an empty 00925 * list. 00926 */ 00927 void 00928 splice(iterator __position, list& __x) 00929 { 00930 if (!__x.empty()) 00931 this->_M_transfer(__position, __x.begin(), __x.end()); 00932 } 00933 00934 /** 00935 * @brief Insert element from another %list. 00936 * @param position Iterator referencing the element to insert before. 00937 * @param x Source list. 00938 * @param i Iterator referencing the element to move. 00939 * 00940 * Removes the element in list @a x referenced by @a i and 00941 * inserts it into the current list before @a position. 00942 */ 00943 void 00944 splice(iterator __position, list&, iterator __i) 00945 { 00946 iterator __j = __i; 00947 ++__j; 00948 if (__position == __i || __position == __j) 00949 return; 00950 this->_M_transfer(__position, __i, __j); 00951 } 00952 00953 /** 00954 * @brief Insert range from another %list. 00955 * @param position Iterator referencing the element to insert before. 00956 * @param x Source list. 00957 * @param first Iterator referencing the start of range in x. 00958 * @param last Iterator referencing the end of range in x. 00959 * 00960 * Removes elements in the range [first,last) and inserts them 00961 * before @a position in constant time. 00962 * 00963 * Undefined if @a position is in [first,last). 00964 */ 00965 void 00966 splice(iterator __position, list&, iterator __first, iterator __last) 00967 { 00968 if (__first != __last) 00969 this->_M_transfer(__position, __first, __last); 00970 } 00971 00972 /** 00973 * @brief Remove all elements equal to value. 00974 * @param value The value to remove. 00975 * 00976 * Removes every element in the list equal to @a value. 00977 * Remaining elements stay in list order. Note that this 00978 * function only erases the elements, and that if the elements 00979 * themselves are pointers, the pointed-to memory is not 00980 * touched in any way. Managing the pointer is the user's 00981 * responsibilty. 00982 */ 00983 void 00984 remove(const _Tp& __value); 00985 00986 /** 00987 * @brief Remove all elements satisfying a predicate. 00988 * @param Predicate Unary predicate function or object. 00989 * 00990 * Removes every element in the list for which the predicate 00991 * returns true. Remaining elements stay in list order. Note 00992 * that this function only erases the elements, and that if the 00993 * elements themselves are pointers, the pointed-to memory is 00994 * not touched in any way. Managing the pointer is the user's 00995 * responsibilty. 00996 */ 00997 template<typename _Predicate> 00998 void 00999 remove_if(_Predicate); 01000 01001 /** 01002 * @brief Remove consecutive duplicate elements. 01003 * 01004 * For each consecutive set of elements with the same value, 01005 * remove all but the first one. Remaining elements stay in 01006 * list order. Note that this function only erases the 01007 * elements, and that if the elements themselves are pointers, 01008 * the pointed-to memory is not touched in any way. Managing 01009 * the pointer is the user's responsibilty. 01010 */ 01011 void 01012 unique(); 01013 01014 /** 01015 * @brief Remove consecutive elements satisfying a predicate. 01016 * @param BinaryPredicate Binary predicate function or object. 01017 * 01018 * For each consecutive set of elements [first,last) that 01019 * satisfy predicate(first,i) where i is an iterator in 01020 * [first,last), remove all but the first one. Remaining 01021 * elements stay in list order. Note that this function only 01022 * erases the elements, and that if the elements themselves are 01023 * pointers, the pointed-to memory is not touched in any way. 01024 * Managing the pointer is the user's responsibilty. 01025 */ 01026 template<typename _BinaryPredicate> 01027 void 01028 unique(_BinaryPredicate); 01029 01030 /** 01031 * @brief Merge sorted lists. 01032 * @param x Sorted list to merge. 01033 * 01034 * Assumes that both @a x and this list are sorted according to 01035 * operator<(). Merges elements of @a x into this list in 01036 * sorted order, leaving @a x empty when complete. Elements in 01037 * this list precede elements in @a x that are equal. 01038 */ 01039 void 01040 merge(list& __x); 01041 01042 /** 01043 * @brief Merge sorted lists according to comparison function. 01044 * @param x Sorted list to merge. 01045 * @param StrictWeakOrdering Comparison function definining 01046 * sort order. 01047 * 01048 * Assumes that both @a x and this list are sorted according to 01049 * StrictWeakOrdering. Merges elements of @a x into this list 01050 * in sorted order, leaving @a x empty when complete. Elements 01051 * in this list precede elements in @a x that are equivalent 01052 * according to StrictWeakOrdering(). 01053 */ 01054 template<typename _StrictWeakOrdering> 01055 void 01056 merge(list&, _StrictWeakOrdering); 01057 01058 /** 01059 * @brief Reverse the elements in list. 01060 * 01061 * Reverse the order of elements in the list in linear time. 01062 */ 01063 void 01064 reverse() 01065 { this->_M_impl._M_node.reverse(); } 01066 01067 /** 01068 * @brief Sort the elements. 01069 * 01070 * Sorts the elements of this list in NlogN time. Equivalent 01071 * elements remain in list order. 01072 */ 01073 void 01074 sort(); 01075 01076 /** 01077 * @brief Sort the elements according to comparison function. 01078 * 01079 * Sorts the elements of this list in NlogN time. Equivalent 01080 * elements remain in list order. 01081 */ 01082 template<typename _StrictWeakOrdering> 01083 void 01084 sort(_StrictWeakOrdering); 01085 01086 protected: 01087 // Internal assign functions follow. 01088 01089 // Called by the range assign to implement [23.1.1]/9 01090 template<typename _Integer> 01091 void 01092 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) 01093 { 01094 _M_fill_assign(static_cast<size_type>(__n), 01095 static_cast<value_type>(__val)); 01096 } 01097 01098 // Called by the range assign to implement [23.1.1]/9 01099 template<typename _InputIterator> 01100 void 01101 _M_assign_dispatch(_InputIterator __first, _InputIterator __last, 01102 __false_type); 01103 01104 // Called by assign(n,t), and the range assign when it turns out 01105 // to be the same thing. 01106 void 01107 _M_fill_assign(size_type __n, const value_type& __val); 01108 01109 01110 // Internal insert functions follow. 01111 01112 // Called by the range insert to implement [23.1.1]/9 01113 template<typename _Integer> 01114 void 01115 _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x, 01116 __true_type) 01117 { 01118 _M_fill_insert(__pos, static_cast<size_type>(__n), 01119 static_cast<value_type>(__x)); 01120 } 01121 01122 // Called by the range insert to implement [23.1.1]/9 01123 template<typename _InputIterator> 01124 void 01125 _M_insert_dispatch(iterator __pos, 01126 _InputIterator __first, _InputIterator __last, 01127 __false_type) 01128 { 01129 for (; __first != __last; ++__first) 01130 _M_insert(__pos, *__first); 01131 } 01132 01133 // Called by insert(p,n,x), and the range insert when it turns out 01134 // to be the same thing. 01135 void 01136 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x) 01137 { 01138 for (; __n > 0; --__n) 01139 _M_insert(__pos, __x); 01140 } 01141 01142 01143 // Moves the elements from [first,last) before position. 01144 void 01145 _M_transfer(iterator __position, iterator __first, iterator __last) 01146 { __position._M_node->transfer(__first._M_node, __last._M_node); } 01147 01148 // Inserts new element at position given and with value given. 01149 void 01150 _M_insert(iterator __position, const value_type& __x) 01151 { 01152 _Node* __tmp = _M_create_node(__x); 01153 __tmp->hook(__position._M_node); 01154 } 01155 01156 // Erases element at position given. 01157 void 01158 _M_erase(iterator __position) 01159 { 01160 __position._M_node->unhook(); 01161 _Node* __n = static_cast<_Node*>(__position._M_node); 01162 this->get_allocator().destroy(&__n->_M_data); 01163 _M_put_node(__n); 01164 } 01165 }; 01166 01167 /** 01168 * @brief List equality comparison. 01169 * @param x A %list. 01170 * @param y A %list of the same type as @a x. 01171 * @return True iff the size and elements of the lists are equal. 01172 * 01173 * This is an equivalence relation. It is linear in the size of 01174 * the lists. Lists are considered equivalent if their sizes are 01175 * equal, and if corresponding elements compare equal. 01176 */ 01177 template<typename _Tp, typename _Alloc> 01178 inline bool 01179 operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) 01180 { 01181 typedef typename list<_Tp, _Alloc>::const_iterator const_iterator; 01182 const_iterator __end1 = __x.end(); 01183 const_iterator __end2 = __y.end(); 01184 01185 const_iterator __i1 = __x.begin(); 01186 const_iterator __i2 = __y.begin(); 01187 while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) 01188 { 01189 ++__i1; 01190 ++__i2; 01191 } 01192 return __i1 == __end1 && __i2 == __end2; 01193 } 01194 01195 /** 01196 * @brief List ordering relation. 01197 * @param x A %list. 01198 * @param y A %list of the same type as @a x. 01199 * @return True iff @a x is lexicographically less than @a y. 01200 * 01201 * This is a total ordering relation. It is linear in the size of the 01202 * lists. The elements must be comparable with @c <. 01203 * 01204 * See std::lexicographical_compare() for how the determination is made. 01205 */ 01206 template<typename _Tp, typename _Alloc> 01207 inline bool 01208 operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) 01209 { return std::lexicographical_compare(__x.begin(), __x.end(), 01210 __y.begin(), __y.end()); } 01211 01212 /// Based on operator== 01213 template<typename _Tp, typename _Alloc> 01214 inline bool 01215 operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) 01216 { return !(__x == __y); } 01217 01218 /// Based on operator< 01219 template<typename _Tp, typename _Alloc> 01220 inline bool 01221 operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) 01222 { return __y < __x; } 01223 01224 /// Based on operator< 01225 template<typename _Tp, typename _Alloc> 01226 inline bool 01227 operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) 01228 { return !(__y < __x); } 01229 01230 /// Based on operator< 01231 template<typename _Tp, typename _Alloc> 01232 inline bool 01233 operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) 01234 { return !(__x < __y); } 01235 01236 /// See std::list::swap(). 01237 template<typename _Tp, typename _Alloc> 01238 inline void 01239 swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y) 01240 { __x.swap(__y); } 01241 } // namespace std 01242 01243 #endif /* _LIST_H */ 01244