slist

Go to the documentation of this file.
00001 // Singly-linked list implementation -*- C++ -*-
00002 
00003 // Copyright (C) 2001, 2002 Free Software Foundation, Inc.
00004 //
00005 // This file is part of the GNU ISO C++ Library.  This library is free
00006 // software; you can redistribute it and/or modify it under the
00007 // terms of the GNU General Public License as published by the
00008 // Free Software Foundation; either version 2, or (at your option)
00009 // any later version.
00010 
00011 // This library is distributed in the hope that it will be useful,
00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014 // GNU General Public License for more details.
00015 
00016 // You should have received a copy of the GNU General Public License along
00017 // with this library; see the file COPYING.  If not, write to the Free
00018 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
00019 // USA.
00020 
00021 // As a special exception, you may use this file as part of a free software
00022 // library without restriction.  Specifically, if other files instantiate
00023 // templates or use macros or inline functions from this file, or you compile
00024 // this file and link it with other files to produce an executable, this
00025 // file does not by itself cause the resulting executable to be covered by
00026 // the GNU General Public License.  This exception does not however
00027 // invalidate any other reasons why the executable file might be covered by
00028 // the GNU General Public License.
00029 
00030 /*
00031  * Copyright (c) 1997
00032  * Silicon Graphics Computer Systems, Inc.
00033  *
00034  * Permission to use, copy, modify, distribute and sell this software
00035  * and its documentation for any purpose is hereby granted without fee,
00036  * provided that the above copyright notice appear in all copies and
00037  * that both that copyright notice and this permission notice appear
00038  * in supporting documentation.  Silicon Graphics makes no
00039  * representations about the suitability of this software for any
00040  * purpose.  It is provided "as is" without express or implied warranty.
00041  *
00042  */
00043 
00044 /** @file ext/slist
00045  *  This file is a GNU extension to the Standard C++ Library (possibly
00046  *  containing extensions from the HP/SGI STL subset).  You should only
00047  *  include this header if you are using GCC 3 or later.
00048  */
00049 
00050 #ifndef __SGI_STL_INTERNAL_SLIST_H
00051 #define __SGI_STL_INTERNAL_SLIST_H
00052 
00053 #include <bits/stl_algobase.h>
00054 #include <bits/stl_alloc.h>
00055 #include <bits/stl_construct.h>
00056 #include <bits/stl_uninitialized.h>
00057 #include <bits/concept_check.h>
00058 
00059 namespace __gnu_cxx
00060 { 
00061 using std::size_t;
00062 using std::ptrdiff_t;
00063 using std::_Alloc_traits;
00064 using std::_Construct;
00065 using std::_Destroy;
00066 using std::allocator;
00067 
00068 struct _Slist_node_base
00069 {
00070   _Slist_node_base* _M_next;
00071 };
00072 
00073 inline _Slist_node_base*
00074 __slist_make_link(_Slist_node_base* __prev_node,
00075                   _Slist_node_base* __new_node)
00076 {
00077   __new_node->_M_next = __prev_node->_M_next;
00078   __prev_node->_M_next = __new_node;
00079   return __new_node;
00080 }
00081 
00082 inline _Slist_node_base* 
00083 __slist_previous(_Slist_node_base* __head,
00084                  const _Slist_node_base* __node)
00085 {
00086   while (__head && __head->_M_next != __node)
00087     __head = __head->_M_next;
00088   return __head;
00089 }
00090 
00091 inline const _Slist_node_base* 
00092 __slist_previous(const _Slist_node_base* __head,
00093                  const _Slist_node_base* __node)
00094 {
00095   while (__head && __head->_M_next != __node)
00096     __head = __head->_M_next;
00097   return __head;
00098 }
00099 
00100 inline void __slist_splice_after(_Slist_node_base* __pos,
00101                                  _Slist_node_base* __before_first,
00102                                  _Slist_node_base* __before_last)
00103 {
00104   if (__pos != __before_first && __pos != __before_last) {
00105     _Slist_node_base* __first = __before_first->_M_next;
00106     _Slist_node_base* __after = __pos->_M_next;
00107     __before_first->_M_next = __before_last->_M_next;
00108     __pos->_M_next = __first;
00109     __before_last->_M_next = __after;
00110   }
00111 }
00112 
00113 inline void
00114 __slist_splice_after(_Slist_node_base* __pos, _Slist_node_base* __head)
00115 {
00116   _Slist_node_base* __before_last = __slist_previous(__head, 0);
00117   if (__before_last != __head) {
00118     _Slist_node_base* __after = __pos->_M_next;
00119     __pos->_M_next = __head->_M_next;
00120     __head->_M_next = 0;
00121     __before_last->_M_next = __after;
00122   }
00123 }
00124 
00125 inline _Slist_node_base* __slist_reverse(_Slist_node_base* __node)
00126 {
00127   _Slist_node_base* __result = __node;
00128   __node = __node->_M_next;
00129   __result->_M_next = 0;
00130   while(__node) {
00131     _Slist_node_base* __next = __node->_M_next;
00132     __node->_M_next = __result;
00133     __result = __node;
00134     __node = __next;
00135   }
00136   return __result;
00137 }
00138 
00139 inline size_t __slist_size(_Slist_node_base* __node)
00140 {
00141   size_t __result = 0;
00142   for ( ; __node != 0; __node = __node->_M_next)
00143     ++__result;
00144   return __result;
00145 }
00146 
00147 template <class _Tp>
00148 struct _Slist_node : public _Slist_node_base
00149 {
00150   _Tp _M_data;
00151 };
00152 
00153 struct _Slist_iterator_base
00154 {
00155   typedef size_t                    size_type;
00156   typedef ptrdiff_t                 difference_type;
00157   typedef std::forward_iterator_tag iterator_category;
00158 
00159   _Slist_node_base* _M_node;
00160 
00161   _Slist_iterator_base(_Slist_node_base* __x) : _M_node(__x) {}
00162   void _M_incr() { _M_node = _M_node->_M_next; }
00163 
00164   bool operator==(const _Slist_iterator_base& __x) const {
00165     return _M_node == __x._M_node;
00166   }
00167   bool operator!=(const _Slist_iterator_base& __x) const {
00168     return _M_node != __x._M_node;
00169   }
00170 };
00171 
00172 template <class _Tp, class _Ref, class _Ptr>
00173 struct _Slist_iterator : public _Slist_iterator_base
00174 {
00175   typedef _Slist_iterator<_Tp, _Tp&, _Tp*>             iterator;
00176   typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
00177   typedef _Slist_iterator<_Tp, _Ref, _Ptr>             _Self;
00178 
00179   typedef _Tp              value_type;
00180   typedef _Ptr             pointer;
00181   typedef _Ref             reference;
00182   typedef _Slist_node<_Tp> _Node;
00183 
00184   _Slist_iterator(_Node* __x) : _Slist_iterator_base(__x) {}
00185   _Slist_iterator() : _Slist_iterator_base(0) {}
00186   _Slist_iterator(const iterator& __x) : _Slist_iterator_base(__x._M_node) {}
00187 
00188   reference operator*() const { return ((_Node*) _M_node)->_M_data; }
00189   pointer operator->() const { return &(operator*()); }
00190 
00191   _Self& operator++()
00192   {
00193     _M_incr();
00194     return *this;
00195   }
00196   _Self operator++(int)
00197   {
00198     _Self __tmp = *this;
00199     _M_incr();
00200     return __tmp;
00201   }
00202 };
00203 
00204 
00205 // Base class that encapsulates details of allocators.  Three cases:
00206 // an ordinary standard-conforming allocator, a standard-conforming
00207 // allocator with no non-static data, and an SGI-style allocator.
00208 // This complexity is necessary only because we're worrying about backward
00209 // compatibility and because we want to avoid wasting storage on an 
00210 // allocator instance if it isn't necessary.
00211 
00212 // Base for general standard-conforming allocators.
00213 template <class _Tp, class _Allocator, bool _IsStatic>
00214 class _Slist_alloc_base {
00215 public:
00216   typedef typename _Alloc_traits<_Tp,_Allocator>::allocator_type
00217           allocator_type;
00218   allocator_type get_allocator() const { return _M_node_allocator; }
00219 
00220   _Slist_alloc_base(const allocator_type& __a) : _M_node_allocator(__a) {}
00221 
00222 protected:
00223   _Slist_node<_Tp>* _M_get_node() 
00224     { return _M_node_allocator.allocate(1); }
00225   void _M_put_node(_Slist_node<_Tp>* __p) 
00226     { _M_node_allocator.deallocate(__p, 1); }
00227 
00228 protected:
00229   typename _Alloc_traits<_Slist_node<_Tp>,_Allocator>::allocator_type
00230            _M_node_allocator;
00231   _Slist_node_base _M_head;
00232 };
00233 
00234 // Specialization for instanceless allocators.
00235 template <class _Tp, class _Allocator>
00236 class _Slist_alloc_base<_Tp,_Allocator, true> {
00237 public:
00238   typedef typename _Alloc_traits<_Tp,_Allocator>::allocator_type
00239           allocator_type;
00240   allocator_type get_allocator() const { return allocator_type(); }
00241 
00242   _Slist_alloc_base(const allocator_type&) {}
00243 
00244 protected:
00245   typedef typename _Alloc_traits<_Slist_node<_Tp>, _Allocator>::_Alloc_type
00246           _Alloc_type;
00247   _Slist_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); }
00248   void _M_put_node(_Slist_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); }
00249 
00250 protected:
00251   _Slist_node_base _M_head;
00252 };
00253 
00254 
00255 template <class _Tp, class _Alloc>
00256 struct _Slist_base
00257   : public _Slist_alloc_base<_Tp, _Alloc,
00258                              _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
00259 {
00260   typedef _Slist_alloc_base<_Tp, _Alloc,
00261                             _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
00262           _Base;
00263   typedef typename _Base::allocator_type allocator_type;
00264 
00265   _Slist_base(const allocator_type& __a)
00266     : _Base(__a) { this->_M_head._M_next = 0; }
00267   ~_Slist_base() { _M_erase_after(&this->_M_head, 0); }
00268 
00269 protected:
00270 
00271   _Slist_node_base* _M_erase_after(_Slist_node_base* __pos)
00272   {
00273     _Slist_node<_Tp>* __next = (_Slist_node<_Tp>*) (__pos->_M_next);
00274     _Slist_node_base* __next_next = __next->_M_next;
00275     __pos->_M_next = __next_next;
00276     _Destroy(&__next->_M_data);
00277     _M_put_node(__next);
00278     return __next_next;
00279   }
00280   _Slist_node_base* _M_erase_after(_Slist_node_base*, _Slist_node_base*);
00281 };
00282 
00283 template <class _Tp, class _Alloc> 
00284 _Slist_node_base*
00285 _Slist_base<_Tp,_Alloc>::_M_erase_after(_Slist_node_base* __before_first,
00286                                         _Slist_node_base* __last_node) {
00287   _Slist_node<_Tp>* __cur = (_Slist_node<_Tp>*) (__before_first->_M_next);
00288   while (__cur != __last_node) {
00289     _Slist_node<_Tp>* __tmp = __cur;
00290     __cur = (_Slist_node<_Tp>*) __cur->_M_next;
00291     _Destroy(&__tmp->_M_data);
00292     _M_put_node(__tmp);
00293   }
00294   __before_first->_M_next = __last_node;
00295   return __last_node;
00296 }
00297 
00298 /**
00299  *  This is an SGI extension.
00300  *  @ingroup SGIextensions
00301  *  @doctodo
00302 */
00303 template <class _Tp, class _Alloc = allocator<_Tp> >
00304 class slist : private _Slist_base<_Tp,_Alloc>
00305 {
00306   // concept requirements
00307   __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
00308 
00309 private:
00310   typedef _Slist_base<_Tp,_Alloc> _Base;
00311 public:
00312   typedef _Tp               value_type;
00313   typedef value_type*       pointer;
00314   typedef const value_type* const_pointer;
00315   typedef value_type&       reference;
00316   typedef const value_type& const_reference;
00317   typedef size_t            size_type;
00318   typedef ptrdiff_t         difference_type;
00319 
00320   typedef _Slist_iterator<_Tp, _Tp&, _Tp*>             iterator;
00321   typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
00322 
00323   typedef typename _Base::allocator_type allocator_type;
00324   allocator_type get_allocator() const { return _Base::get_allocator(); }
00325 
00326 private:
00327   typedef _Slist_node<_Tp>      _Node;
00328   typedef _Slist_node_base      _Node_base;
00329   typedef _Slist_iterator_base  _Iterator_base;
00330 
00331   _Node* _M_create_node(const value_type& __x) {
00332     _Node* __node = this->_M_get_node();
00333     try {
00334       _Construct(&__node->_M_data, __x);
00335       __node->_M_next = 0;
00336     }
00337     catch(...)
00338       {
00339     this->_M_put_node(__node);
00340     __throw_exception_again;
00341       }
00342     return __node;
00343   }
00344   
00345   _Node* _M_create_node() {
00346     _Node* __node = this->_M_get_node();
00347     try {
00348       _Construct(&__node->_M_data);
00349       __node->_M_next = 0;
00350     }
00351     catch(...)
00352       {
00353     this->_M_put_node(__node);
00354     __throw_exception_again;
00355       }
00356     return __node;
00357   }
00358 
00359 public:
00360   explicit slist(const allocator_type& __a = allocator_type()) : _Base(__a) {}
00361 
00362   slist(size_type __n, const value_type& __x,
00363         const allocator_type& __a =  allocator_type()) : _Base(__a)
00364     { _M_insert_after_fill(&this->_M_head, __n, __x); }
00365 
00366   explicit slist(size_type __n) : _Base(allocator_type())
00367     { _M_insert_after_fill(&this->_M_head, __n, value_type()); }
00368 
00369   // We don't need any dispatching tricks here, because _M_insert_after_range
00370   // already does them.
00371   template <class _InputIterator>
00372   slist(_InputIterator __first, _InputIterator __last,
00373         const allocator_type& __a =  allocator_type()) : _Base(__a)
00374     { _M_insert_after_range(&this->_M_head, __first, __last); }
00375 
00376   slist(const slist& __x) : _Base(__x.get_allocator())
00377     { _M_insert_after_range(&this->_M_head, __x.begin(), __x.end()); }
00378 
00379   slist& operator= (const slist& __x);
00380 
00381   ~slist() {}
00382 
00383 public:
00384   // assign(), a generalized assignment member function.  Two
00385   // versions: one that takes a count, and one that takes a range.
00386   // The range version is a member template, so we dispatch on whether
00387   // or not the type is an integer.
00388 
00389   void assign(size_type __n, const _Tp& __val)
00390     { _M_fill_assign(__n, __val); }
00391 
00392   void _M_fill_assign(size_type __n, const _Tp& __val);
00393 
00394   template <class _InputIterator>
00395   void assign(_InputIterator __first, _InputIterator __last) {
00396     typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
00397     _M_assign_dispatch(__first, __last, _Integral());
00398   }
00399 
00400   template <class _Integer>
00401   void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
00402     { _M_fill_assign((size_type) __n, (_Tp) __val); }
00403 
00404   template <class _InputIterator>
00405   void _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
00406                           __false_type);
00407 
00408 public:
00409 
00410   iterator begin() { return iterator((_Node*)this->_M_head._M_next); }
00411   const_iterator begin() const 
00412     { return const_iterator((_Node*)this->_M_head._M_next);}
00413 
00414   iterator end() { return iterator(0); }
00415   const_iterator end() const { return const_iterator(0); }
00416 
00417   // Experimental new feature: before_begin() returns a
00418   // non-dereferenceable iterator that, when incremented, yields
00419   // begin().  This iterator may be used as the argument to
00420   // insert_after, erase_after, etc.  Note that even for an empty 
00421   // slist, before_begin() is not the same iterator as end().  It 
00422   // is always necessary to increment before_begin() at least once to
00423   // obtain end().
00424   iterator before_begin() { return iterator((_Node*) &this->_M_head); }
00425   const_iterator before_begin() const
00426     { return const_iterator((_Node*) &this->_M_head); }
00427 
00428   size_type size() const { return __slist_size(this->_M_head._M_next); }
00429   
00430   size_type max_size() const { return size_type(-1); }
00431 
00432   bool empty() const { return this->_M_head._M_next == 0; }
00433 
00434   void swap(slist& __x)
00435     { std::swap(this->_M_head._M_next, __x._M_head._M_next); }
00436 
00437 public:
00438 
00439   reference front() { return ((_Node*) this->_M_head._M_next)->_M_data; }
00440   const_reference front() const 
00441     { return ((_Node*) this->_M_head._M_next)->_M_data; }
00442   void push_front(const value_type& __x)   {
00443     __slist_make_link(&this->_M_head, _M_create_node(__x));
00444   }
00445   void push_front() { __slist_make_link(&this->_M_head, _M_create_node()); }
00446   void pop_front() {
00447     _Node* __node = (_Node*) this->_M_head._M_next;
00448     this->_M_head._M_next = __node->_M_next;
00449     _Destroy(&__node->_M_data);
00450     this->_M_put_node(__node);
00451   }
00452 
00453   iterator previous(const_iterator __pos) {
00454     return iterator((_Node*) __slist_previous(&this->_M_head, __pos._M_node));
00455   }
00456   const_iterator previous(const_iterator __pos) const {
00457     return const_iterator((_Node*) __slist_previous(&this->_M_head,
00458                                                     __pos._M_node));
00459   }
00460 
00461 private:
00462   _Node* _M_insert_after(_Node_base* __pos, const value_type& __x) {
00463     return (_Node*) (__slist_make_link(__pos, _M_create_node(__x)));
00464   }
00465 
00466   _Node* _M_insert_after(_Node_base* __pos) {
00467     return (_Node*) (__slist_make_link(__pos, _M_create_node()));
00468   }
00469 
00470   void _M_insert_after_fill(_Node_base* __pos,
00471                             size_type __n, const value_type& __x) {
00472     for (size_type __i = 0; __i < __n; ++__i)
00473       __pos = __slist_make_link(__pos, _M_create_node(__x));
00474   }
00475 
00476   // Check whether it's an integral type.  If so, it's not an iterator.
00477   template <class _InIter>
00478   void _M_insert_after_range(_Node_base* __pos, 
00479                              _InIter __first, _InIter __last) {
00480     typedef typename _Is_integer<_InIter>::_Integral _Integral;
00481     _M_insert_after_range(__pos, __first, __last, _Integral());
00482   }
00483 
00484   template <class _Integer>
00485   void _M_insert_after_range(_Node_base* __pos, _Integer __n, _Integer __x,
00486                              __true_type) {
00487     _M_insert_after_fill(__pos, __n, __x);
00488   }
00489 
00490   template <class _InIter>
00491   void _M_insert_after_range(_Node_base* __pos,
00492                              _InIter __first, _InIter __last,
00493                              __false_type) {
00494     while (__first != __last) {
00495       __pos = __slist_make_link(__pos, _M_create_node(*__first));
00496       ++__first;
00497     }
00498   }
00499 
00500 public:
00501 
00502   iterator insert_after(iterator __pos, const value_type& __x) {
00503     return iterator(_M_insert_after(__pos._M_node, __x));
00504   }
00505 
00506   iterator insert_after(iterator __pos) {
00507     return insert_after(__pos, value_type());
00508   }
00509 
00510   void insert_after(iterator __pos, size_type __n, const value_type& __x) {
00511     _M_insert_after_fill(__pos._M_node, __n, __x);
00512   }
00513 
00514   // We don't need any dispatching tricks here, because _M_insert_after_range
00515   // already does them.
00516   template <class _InIter>
00517   void insert_after(iterator __pos, _InIter __first, _InIter __last) {
00518     _M_insert_after_range(__pos._M_node, __first, __last);
00519   }
00520 
00521   iterator insert(iterator __pos, const value_type& __x) {
00522     return iterator(_M_insert_after(__slist_previous(&this->_M_head,
00523                                                      __pos._M_node),
00524                     __x));
00525   }
00526 
00527   iterator insert(iterator __pos) {
00528     return iterator(_M_insert_after(__slist_previous(&this->_M_head,
00529                                                      __pos._M_node),
00530                                     value_type()));
00531   }
00532 
00533   void insert(iterator __pos, size_type __n, const value_type& __x) {
00534     _M_insert_after_fill(__slist_previous(&this->_M_head, __pos._M_node),
00535                          __n, __x);
00536   } 
00537     
00538   // We don't need any dispatching tricks here, because _M_insert_after_range
00539   // already does them.
00540   template <class _InIter>
00541   void insert(iterator __pos, _InIter __first, _InIter __last) {
00542     _M_insert_after_range(__slist_previous(&this->_M_head, __pos._M_node), 
00543                           __first, __last);
00544   }
00545 
00546 public:
00547   iterator erase_after(iterator __pos) {
00548     return iterator((_Node*) this->_M_erase_after(__pos._M_node));
00549   }
00550   iterator erase_after(iterator __before_first, iterator __last) {
00551     return iterator((_Node*) this->_M_erase_after(__before_first._M_node, 
00552                                                   __last._M_node));
00553   } 
00554 
00555   iterator erase(iterator __pos) {
00556     return (_Node*) this->_M_erase_after(__slist_previous(&this->_M_head, 
00557                                                           __pos._M_node));
00558   }
00559   iterator erase(iterator __first, iterator __last) {
00560     return (_Node*) this->_M_erase_after(
00561       __slist_previous(&this->_M_head, __first._M_node), __last._M_node);
00562   }
00563 
00564   void resize(size_type new_size, const _Tp& __x);
00565   void resize(size_type new_size) { resize(new_size, _Tp()); }
00566   void clear() { this->_M_erase_after(&this->_M_head, 0); }
00567 
00568 public:
00569   // Moves the range [__before_first + 1, __before_last + 1) to *this,
00570   //  inserting it immediately after __pos.  This is constant time.
00571   void splice_after(iterator __pos, 
00572                     iterator __before_first, iterator __before_last)
00573   {
00574     if (__before_first != __before_last) 
00575       __slist_splice_after(__pos._M_node, __before_first._M_node, 
00576                            __before_last._M_node);
00577   }
00578 
00579   // Moves the element that follows __prev to *this, inserting it immediately
00580   //  after __pos.  This is constant time.
00581   void splice_after(iterator __pos, iterator __prev)
00582   {
00583     __slist_splice_after(__pos._M_node,
00584                          __prev._M_node, __prev._M_node->_M_next);
00585   }
00586 
00587 
00588   // Removes all of the elements from the list __x to *this, inserting
00589   // them immediately after __pos.  __x must not be *this.  Complexity:
00590   // linear in __x.size().
00591   void splice_after(iterator __pos, slist& __x)
00592   {
00593     __slist_splice_after(__pos._M_node, &__x._M_head);
00594   }
00595 
00596   // Linear in distance(begin(), __pos), and linear in __x.size().
00597   void splice(iterator __pos, slist& __x) {
00598     if (__x._M_head._M_next)
00599       __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
00600                            &__x._M_head, __slist_previous(&__x._M_head, 0));
00601   }
00602 
00603   // Linear in distance(begin(), __pos), and in distance(__x.begin(), __i).
00604   void splice(iterator __pos, slist& __x, iterator __i) {
00605     __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
00606                          __slist_previous(&__x._M_head, __i._M_node),
00607                          __i._M_node);
00608   }
00609 
00610   // Linear in distance(begin(), __pos), in distance(__x.begin(), __first),
00611   // and in distance(__first, __last).
00612   void splice(iterator __pos, slist& __x, iterator __first, iterator __last)
00613   {
00614     if (__first != __last)
00615       __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
00616                            __slist_previous(&__x._M_head, __first._M_node),
00617                            __slist_previous(__first._M_node, __last._M_node));
00618   }
00619 
00620 public:
00621   void reverse() { 
00622     if (this->_M_head._M_next)
00623       this->_M_head._M_next = __slist_reverse(this->_M_head._M_next);
00624   }
00625 
00626   void remove(const _Tp& __val); 
00627   void unique(); 
00628   void merge(slist& __x);
00629   void sort();     
00630 
00631   template <class _Predicate> 
00632   void remove_if(_Predicate __pred);
00633 
00634   template <class _BinaryPredicate> 
00635   void unique(_BinaryPredicate __pred); 
00636 
00637   template <class _StrictWeakOrdering> 
00638   void merge(slist&, _StrictWeakOrdering);
00639 
00640   template <class _StrictWeakOrdering> 
00641   void sort(_StrictWeakOrdering __comp); 
00642 };
00643 
00644 template <class _Tp, class _Alloc>
00645 slist<_Tp,_Alloc>& slist<_Tp,_Alloc>::operator=(const slist<_Tp,_Alloc>& __x)
00646 {
00647   if (&__x != this) {
00648     _Node_base* __p1 = &this->_M_head;
00649     _Node* __n1 = (_Node*) this->_M_head._M_next;
00650     const _Node* __n2 = (const _Node*) __x._M_head._M_next;
00651     while (__n1 && __n2) {
00652       __n1->_M_data = __n2->_M_data;
00653       __p1 = __n1;
00654       __n1 = (_Node*) __n1->_M_next;
00655       __n2 = (const _Node*) __n2->_M_next;
00656     }
00657     if (__n2 == 0)
00658       this->_M_erase_after(__p1, 0);
00659     else
00660       _M_insert_after_range(__p1, const_iterator((_Node*)__n2), 
00661                                   const_iterator(0));
00662   }
00663   return *this;
00664 }
00665 
00666 template <class _Tp, class _Alloc>
00667 void slist<_Tp, _Alloc>::_M_fill_assign(size_type __n, const _Tp& __val) {
00668   _Node_base* __prev = &this->_M_head;
00669   _Node* __node = (_Node*) this->_M_head._M_next;
00670   for ( ; __node != 0 && __n > 0 ; --__n) {
00671     __node->_M_data = __val;
00672     __prev = __node;
00673     __node = (_Node*) __node->_M_next;
00674   }
00675   if (__n > 0)
00676     _M_insert_after_fill(__prev, __n, __val);
00677   else
00678     this->_M_erase_after(__prev, 0);
00679 }
00680 
00681 template <class _Tp, class _Alloc> template <class _InputIter>
00682 void
00683 slist<_Tp, _Alloc>::_M_assign_dispatch(_InputIter __first, _InputIter __last,
00684                                        __false_type)
00685 {
00686   _Node_base* __prev = &this->_M_head;
00687   _Node* __node = (_Node*) this->_M_head._M_next;
00688   while (__node != 0 && __first != __last) {
00689     __node->_M_data = *__first;
00690     __prev = __node;
00691     __node = (_Node*) __node->_M_next;
00692     ++__first;
00693   }
00694   if (__first != __last)
00695     _M_insert_after_range(__prev, __first, __last);
00696   else
00697     this->_M_erase_after(__prev, 0);
00698 }
00699 
00700 template <class _Tp, class _Alloc>
00701 inline bool 
00702 operator==(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2)
00703 {
00704   typedef typename slist<_Tp,_Alloc>::const_iterator const_iterator;
00705   const_iterator __end1 = _SL1.end();
00706   const_iterator __end2 = _SL2.end();
00707 
00708   const_iterator __i1 = _SL1.begin();
00709   const_iterator __i2 = _SL2.begin();
00710   while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) {
00711     ++__i1;
00712     ++__i2;
00713   }
00714   return __i1 == __end1 && __i2 == __end2;
00715 }
00716 
00717 
00718 template <class _Tp, class _Alloc>
00719 inline bool
00720 operator<(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2)
00721 {
00722   return std::lexicographical_compare(_SL1.begin(), _SL1.end(), 
00723                       _SL2.begin(), _SL2.end());
00724 }
00725 
00726 template <class _Tp, class _Alloc>
00727 inline bool 
00728 operator!=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
00729   return !(_SL1 == _SL2);
00730 }
00731 
00732 template <class _Tp, class _Alloc>
00733 inline bool 
00734 operator>(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
00735   return _SL2 < _SL1;
00736 }
00737 
00738 template <class _Tp, class _Alloc>
00739 inline bool 
00740 operator<=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
00741   return !(_SL2 < _SL1);
00742 }
00743 
00744 template <class _Tp, class _Alloc>
00745 inline bool 
00746 operator>=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
00747   return !(_SL1 < _SL2);
00748 }
00749 
00750 template <class _Tp, class _Alloc>
00751 inline void swap(slist<_Tp,_Alloc>& __x, slist<_Tp,_Alloc>& __y) {
00752   __x.swap(__y);
00753 }
00754 
00755 
00756 template <class _Tp, class _Alloc>
00757 void slist<_Tp,_Alloc>::resize(size_type __len, const _Tp& __x)
00758 {
00759   _Node_base* __cur = &this->_M_head;
00760   while (__cur->_M_next != 0 && __len > 0) {
00761     --__len;
00762     __cur = __cur->_M_next;
00763   }
00764   if (__cur->_M_next) 
00765     this->_M_erase_after(__cur, 0);
00766   else
00767     _M_insert_after_fill(__cur, __len, __x);
00768 }
00769 
00770 template <class _Tp, class _Alloc>
00771 void slist<_Tp,_Alloc>::remove(const _Tp& __val)
00772 {
00773   _Node_base* __cur = &this->_M_head;
00774   while (__cur && __cur->_M_next) {
00775     if (((_Node*) __cur->_M_next)->_M_data == __val)
00776       this->_M_erase_after(__cur);
00777     else
00778       __cur = __cur->_M_next;
00779   }
00780 }
00781 
00782 template <class _Tp, class _Alloc> 
00783 void slist<_Tp,_Alloc>::unique()
00784 {
00785   _Node_base* __cur = this->_M_head._M_next;
00786   if (__cur) {
00787     while (__cur->_M_next) {
00788       if (((_Node*)__cur)->_M_data == 
00789           ((_Node*)(__cur->_M_next))->_M_data)
00790         this->_M_erase_after(__cur);
00791       else
00792         __cur = __cur->_M_next;
00793     }
00794   }
00795 }
00796 
00797 template <class _Tp, class _Alloc>
00798 void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x)
00799 {
00800   _Node_base* __n1 = &this->_M_head;
00801   while (__n1->_M_next && __x._M_head._M_next) {
00802     if (((_Node*) __x._M_head._M_next)->_M_data < 
00803         ((_Node*)       __n1->_M_next)->_M_data) 
00804       __slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
00805     __n1 = __n1->_M_next;
00806   }
00807   if (__x._M_head._M_next) {
00808     __n1->_M_next = __x._M_head._M_next;
00809     __x._M_head._M_next = 0;
00810   }
00811 }
00812 
00813 template <class _Tp, class _Alloc>
00814 void slist<_Tp,_Alloc>::sort()
00815 {
00816   if (this->_M_head._M_next && this->_M_head._M_next->_M_next) {
00817     slist __carry;
00818     slist __counter[64];
00819     int __fill = 0;
00820     while (!empty()) {
00821       __slist_splice_after(&__carry._M_head,
00822                            &this->_M_head, this->_M_head._M_next);
00823       int __i = 0;
00824       while (__i < __fill && !__counter[__i].empty()) {
00825         __counter[__i].merge(__carry);
00826         __carry.swap(__counter[__i]);
00827         ++__i;
00828       }
00829       __carry.swap(__counter[__i]);
00830       if (__i == __fill)
00831         ++__fill;
00832     }
00833 
00834     for (int __i = 1; __i < __fill; ++__i)
00835       __counter[__i].merge(__counter[__i-1]);
00836     this->swap(__counter[__fill-1]);
00837   }
00838 }
00839 
00840 template <class _Tp, class _Alloc> 
00841 template <class _Predicate>
00842 void slist<_Tp,_Alloc>::remove_if(_Predicate __pred)
00843 {
00844   _Node_base* __cur = &this->_M_head;
00845   while (__cur->_M_next) {
00846     if (__pred(((_Node*) __cur->_M_next)->_M_data))
00847       this->_M_erase_after(__cur);
00848     else
00849       __cur = __cur->_M_next;
00850   }
00851 }
00852 
00853 template <class _Tp, class _Alloc> template <class _BinaryPredicate> 
00854 void slist<_Tp,_Alloc>::unique(_BinaryPredicate __pred)
00855 {
00856   _Node* __cur = (_Node*) this->_M_head._M_next;
00857   if (__cur) {
00858     while (__cur->_M_next) {
00859       if (__pred(((_Node*)__cur)->_M_data, 
00860                  ((_Node*)(__cur->_M_next))->_M_data))
00861         this->_M_erase_after(__cur);
00862       else
00863         __cur = (_Node*) __cur->_M_next;
00864     }
00865   }
00866 }
00867 
00868 template <class _Tp, class _Alloc> template <class _StrictWeakOrdering>
00869 void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x,
00870                               _StrictWeakOrdering __comp)
00871 {
00872   _Node_base* __n1 = &this->_M_head;
00873   while (__n1->_M_next && __x._M_head._M_next) {
00874     if (__comp(((_Node*) __x._M_head._M_next)->_M_data,
00875                ((_Node*)       __n1->_M_next)->_M_data))
00876       __slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
00877     __n1 = __n1->_M_next;
00878   }
00879   if (__x._M_head._M_next) {
00880     __n1->_M_next = __x._M_head._M_next;
00881     __x._M_head._M_next = 0;
00882   }
00883 }
00884 
00885 template <class _Tp, class _Alloc> template <class _StrictWeakOrdering> 
00886 void slist<_Tp,_Alloc>::sort(_StrictWeakOrdering __comp)
00887 {
00888   if (this->_M_head._M_next && this->_M_head._M_next->_M_next) {
00889     slist __carry;
00890     slist __counter[64];
00891     int __fill = 0;
00892     while (!empty()) {
00893       __slist_splice_after(&__carry._M_head,
00894                            &this->_M_head, this->_M_head._M_next);
00895       int __i = 0;
00896       while (__i < __fill && !__counter[__i].empty()) {
00897         __counter[__i].merge(__carry, __comp);
00898         __carry.swap(__counter[__i]);
00899         ++__i;
00900       }
00901       __carry.swap(__counter[__i]);
00902       if (__i == __fill)
00903         ++__fill;
00904     }
00905 
00906     for (int __i = 1; __i < __fill; ++__i)
00907       __counter[__i].merge(__counter[__i-1], __comp);
00908     this->swap(__counter[__fill-1]);
00909   }
00910 }
00911 
00912 } // namespace __gnu_cxx
00913 
00914 namespace std
00915 {
00916 // Specialization of insert_iterator so that insertions will be constant
00917 // time rather than linear time.
00918 
00919 template <class _Tp, class _Alloc>
00920 class insert_iterator<__gnu_cxx::slist<_Tp, _Alloc> > {
00921 protected:
00922   typedef __gnu_cxx::slist<_Tp, _Alloc> _Container;
00923   _Container* container;
00924   typename _Container::iterator iter;
00925 public:
00926   typedef _Container          container_type;
00927   typedef output_iterator_tag iterator_category;
00928   typedef void                value_type;
00929   typedef void                difference_type;
00930   typedef void                pointer;
00931   typedef void                reference;
00932 
00933   insert_iterator(_Container& __x, typename _Container::iterator __i) 
00934     : container(&__x) {
00935     if (__i == __x.begin())
00936       iter = __x.before_begin();
00937     else
00938       iter = __x.previous(__i);
00939   }
00940 
00941   insert_iterator<_Container>&
00942   operator=(const typename _Container::value_type& __value) { 
00943     iter = container->insert_after(iter, __value);
00944     return *this;
00945   }
00946   insert_iterator<_Container>& operator*() { return *this; }
00947   insert_iterator<_Container>& operator++() { return *this; }
00948   insert_iterator<_Container>& operator++(int) { return *this; }
00949 };
00950 
00951 } // namespace std
00952 
00953 #endif /* __SGI_STL_INTERNAL_SLIST_H */
00954 
00955 // Local Variables:
00956 // mode:C++
00957 // End:

Generated on Thu Feb 10 23:22:57 2005 for libstdc++-v3 Source by  doxygen 1.4.0