stl_multimap.h

Go to the documentation of this file.
00001 // Multimap implementation -*- C++ -*-
00002 
00003 // Copyright (C) 2001, 2002 Free Software Foundation, Inc.
00004 //
00005 // This file is part of the GNU ISO C++ Library.  This library is free
00006 // software; you can redistribute it and/or modify it under the
00007 // terms of the GNU General Public License as published by the
00008 // Free Software Foundation; either version 2, or (at your option)
00009 // any later version.
00010 
00011 // This library is distributed in the hope that it will be useful,
00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014 // GNU General Public License for more details.
00015 
00016 // You should have received a copy of the GNU General Public License along
00017 // with this library; see the file COPYING.  If not, write to the Free
00018 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
00019 // USA.
00020 
00021 // As a special exception, you may use this file as part of a free software
00022 // library without restriction.  Specifically, if other files instantiate
00023 // templates or use macros or inline functions from this file, or you compile
00024 // this file and link it with other files to produce an executable, this
00025 // file does not by itself cause the resulting executable to be covered by
00026 // the GNU General Public License.  This exception does not however
00027 // invalidate any other reasons why the executable file might be covered by
00028 // the GNU General Public License.
00029 
00030 /*
00031  *
00032  * Copyright (c) 1994
00033  * Hewlett-Packard Company
00034  *
00035  * Permission to use, copy, modify, distribute and sell this software
00036  * and its documentation for any purpose is hereby granted without fee,
00037  * provided that the above copyright notice appear in all copies and
00038  * that both that copyright notice and this permission notice appear
00039  * in supporting documentation.  Hewlett-Packard Company makes no
00040  * representations about the suitability of this software for any
00041  * purpose.  It is provided "as is" without express or implied warranty.
00042  *
00043  *
00044  * Copyright (c) 1996,1997
00045  * Silicon Graphics Computer Systems, Inc.
00046  *
00047  * Permission to use, copy, modify, distribute and sell this software
00048  * and its documentation for any purpose is hereby granted without fee,
00049  * provided that the above copyright notice appear in all copies and
00050  * that both that copyright notice and this permission notice appear
00051  * in supporting documentation.  Silicon Graphics makes no
00052  * representations about the suitability of this software for any
00053  * purpose.  It is provided "as is" without express or implied warranty.
00054  */
00055 
00056 /** @file stl_multimap.h
00057  *  This is an internal header file, included by other library headers.
00058  *  You should not attempt to use it directly.
00059  */
00060 
00061 #ifndef __GLIBCPP_INTERNAL_MULTIMAP_H
00062 #define __GLIBCPP_INTERNAL_MULTIMAP_H
00063 
00064 #include <bits/concept_check.h>
00065 
00066 namespace std
00067 {
00068   // Forward declaration of operators < and ==, needed for friend declaration.
00069   
00070   template <typename _Key, typename _Tp,
00071             typename _Compare = less<_Key>,
00072             typename _Alloc = allocator<pair<const _Key, _Tp> > >
00073   class multimap;
00074   
00075   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00076   inline bool operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
00077                          const multimap<_Key,_Tp,_Compare,_Alloc>& __y);
00078   
00079   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00080   inline bool operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
00081                         const multimap<_Key,_Tp,_Compare,_Alloc>& __y);
00082   
00083   /**
00084    *  @brief A standard container made up of (key,value) pairs, which can be
00085    *  retrieved based on a key, in logarithmic time.
00086    *
00087    *  @ingroup Containers
00088    *  @ingroup Assoc_containers
00089    *
00090    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
00091    *  <a href="tables.html#66">reversible container</a>, and an
00092    *  <a href="tables.html#69">associative container</a> (using equivalent
00093    *  keys).  For a @c multimap<Key,T> the key_type is Key, the mapped_type
00094    *  is T, and the value_type is std::pair<const Key,T>.
00095    *
00096    *  Multimaps support bidirectional iterators.
00097    *
00098    *  @if maint
00099    *  The private tree data is declared exactly the same way for map and
00100    *  multimap; the distinction is made entirely in how the tree functions are
00101    *  called (*_unique versus *_equal, same as the standard).
00102    *  @endif
00103   */
00104   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00105     class multimap
00106   {
00107     // concept requirements
00108     __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
00109     __glibcpp_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept)
00110   
00111   public:
00112     typedef _Key                                          key_type;
00113     typedef _Tp                                           mapped_type;
00114     typedef pair<const _Key, _Tp>                         value_type;
00115     typedef _Compare                                      key_compare;
00116   
00117     class value_compare
00118       : public binary_function<value_type, value_type, bool>
00119       {
00120         friend class multimap<_Key,_Tp,_Compare,_Alloc>;
00121       protected:
00122         _Compare comp;
00123         value_compare(_Compare __c) : comp(__c) {}
00124       public:
00125         bool operator()(const value_type& __x, const value_type& __y) const
00126         { return comp(__x.first, __y.first); }
00127     };
00128   
00129   private:
00130     /// @if maint  This turns a red-black tree into a [multi]map.  @endif
00131     typedef _Rb_tree<key_type, value_type,
00132                     _Select1st<value_type>, key_compare, _Alloc> _Rep_type;
00133     /// @if maint  The actual tree structure.  @endif
00134     _Rep_type _M_t;
00135   
00136   public:
00137     // many of these are specified differently in ISO, but the following are
00138     // "functionally equivalent"
00139     typedef typename _Rep_type::allocator_type            allocator_type;
00140     typedef typename _Rep_type::reference                 reference;
00141     typedef typename _Rep_type::const_reference           const_reference;
00142     typedef typename _Rep_type::iterator                  iterator;
00143     typedef typename _Rep_type::const_iterator            const_iterator;
00144     typedef typename _Rep_type::size_type                 size_type;
00145     typedef typename _Rep_type::difference_type           difference_type;
00146     typedef typename _Rep_type::pointer                   pointer;
00147     typedef typename _Rep_type::const_pointer             const_pointer;
00148     typedef typename _Rep_type::reverse_iterator          reverse_iterator;
00149     typedef typename _Rep_type::const_reverse_iterator    const_reverse_iterator;
00150   
00151   
00152     // [23.3.2] construct/copy/destroy
00153     // (get_allocator() is also listed in this section)
00154     /**
00155      *  @brief  Default constructor creates no elements.
00156     */
00157     multimap() : _M_t(_Compare(), allocator_type()) { }
00158   
00159     // for some reason this was made a separate function
00160     /**
00161      *  @brief  Default constructor creates no elements.
00162     */
00163     explicit
00164     multimap(const _Compare& __comp, const allocator_type& __a = allocator_type())
00165       : _M_t(__comp, __a) { }
00166   
00167     /**
00168      *  @brief  %Multimap copy constructor.
00169      *  @param  x  A %multimap of identical element and allocator types.
00170      *
00171      *  The newly-created %multimap uses a copy of the allocation object used
00172      *  by @a x.
00173     */
00174     multimap(const multimap& __x)
00175       : _M_t(__x._M_t) { }
00176   
00177     /**
00178      *  @brief  Builds a %multimap from a range.
00179      *  @param  first  An input iterator.
00180      *  @param  last  An input iterator.
00181      *
00182      *  Create a %multimap consisting of copies of the elements from
00183      *  [first,last).  This is linear in N if the range is already sorted,
00184      *  and NlogN otherwise (where N is distance(first,last)).
00185     */
00186     template <typename _InputIterator>
00187       multimap(_InputIterator __first, _InputIterator __last)
00188         : _M_t(_Compare(), allocator_type())
00189         { _M_t.insert_equal(__first, __last); }
00190   
00191     /**
00192      *  @brief  Builds a %multimap from a range.
00193      *  @param  first  An input iterator.
00194      *  @param  last  An input iterator.
00195      *  @param  comp  A comparison functor.
00196      *  @param  a  An allocator object.
00197      *
00198      *  Create a %multimap consisting of copies of the elements from
00199      *  [first,last).  This is linear in N if the range is already sorted,
00200      *  and NlogN otherwise (where N is distance(first,last)).
00201     */
00202     template <typename _InputIterator>
00203       multimap(_InputIterator __first, _InputIterator __last,
00204                const _Compare& __comp,
00205                const allocator_type& __a = allocator_type())
00206         : _M_t(__comp, __a)
00207         { _M_t.insert_equal(__first, __last); }
00208   
00209     // FIXME There is no dtor declared, but we should have something generated
00210     // by Doxygen.  I don't know what tags to add to this paragraph to make
00211     // that happen:
00212     /**
00213      *  The dtor only erases the elements, and note that if the elements
00214      *  themselves are pointers, the pointed-to memory is not touched in any
00215      *  way.  Managing the pointer is the user's responsibilty.
00216     */
00217   
00218     /**
00219      *  @brief  %Multimap assignment operator.
00220      *  @param  x  A %multimap of identical element and allocator types.
00221      *
00222      *  All the elements of @a x are copied, but unlike the copy constructor,
00223      *  the allocator object is not copied.
00224     */
00225     multimap&
00226     operator=(const multimap& __x)
00227     {
00228       _M_t = __x._M_t;
00229       return *this;
00230     }
00231   
00232     /// Get a copy of the memory allocation object.
00233     allocator_type
00234     get_allocator() const { return _M_t.get_allocator(); }
00235   
00236     // iterators
00237     /**
00238      *  Returns a read/write iterator that points to the first pair in the
00239      *  %multimap.  Iteration is done in ascending order according to the keys.
00240     */
00241     iterator
00242     begin() { return _M_t.begin(); }
00243   
00244     /**
00245      *  Returns a read-only (constant) iterator that points to the first pair
00246      *  in the %multimap.  Iteration is done in ascending order according to the
00247      *  keys.
00248     */
00249     const_iterator
00250     begin() const { return _M_t.begin(); }
00251   
00252     /**
00253      *  Returns a read/write iterator that points one past the last pair in the
00254      *  %multimap.  Iteration is done in ascending order according to the keys.
00255     */
00256     iterator
00257     end() { return _M_t.end(); }
00258   
00259     /**
00260      *  Returns a read-only (constant) iterator that points one past the last
00261      *  pair in the %multimap.  Iteration is done in ascending order according
00262      *  to the keys.
00263     */
00264     const_iterator
00265     end() const { return _M_t.end(); }
00266   
00267     /**
00268      *  Returns a read/write reverse iterator that points to the last pair in
00269      *  the %multimap.  Iteration is done in descending order according to the
00270      *  keys.
00271     */
00272     reverse_iterator
00273     rbegin() { return _M_t.rbegin(); }
00274   
00275     /**
00276      *  Returns a read-only (constant) reverse iterator that points to the last
00277      *  pair in the %multimap.  Iteration is done in descending order according
00278      *  to the keys.
00279     */
00280     const_reverse_iterator
00281     rbegin() const { return _M_t.rbegin(); }
00282   
00283     /**
00284      *  Returns a read/write reverse iterator that points to one before the
00285      *  first pair in the %multimap.  Iteration is done in descending order
00286      *  according to the keys.
00287     */
00288     reverse_iterator
00289     rend() { return _M_t.rend(); }
00290   
00291     /**
00292      *  Returns a read-only (constant) reverse iterator that points to one
00293      *  before the first pair in the %multimap.  Iteration is done in descending
00294      *  order according to the keys.
00295     */
00296     const_reverse_iterator
00297     rend() const { return _M_t.rend(); }
00298   
00299     // capacity
00300     /** Returns true if the %multimap is empty.  */
00301     bool
00302     empty() const { return _M_t.empty(); }
00303   
00304     /** Returns the size of the %multimap.  */
00305     size_type
00306     size() const { return _M_t.size(); }
00307   
00308     /** Returns the maximum size of the %multimap.  */
00309     size_type
00310     max_size() const { return _M_t.max_size(); }
00311   
00312     // modifiers
00313     /**
00314      *  @brief Inserts a std::pair into the %multimap.
00315      *  @param  x  Pair to be inserted (see std::make_pair for easy creation of
00316      *             pairs).
00317      *  @return An iterator that points to the inserted (key,value) pair.
00318      *
00319      *  This function inserts a (key, value) pair into the %multimap.  Contrary
00320      *  to a std::map the %multimap does not rely on unique keys and thus
00321      *  multiple pairs with the same key can be inserted.
00322      *
00323      *  Insertion requires logarithmic time.
00324     */
00325     iterator
00326     insert(const value_type& __x) { return _M_t.insert_equal(__x); }
00327   
00328     /**
00329      *  @brief Inserts a std::pair into the %multimap.
00330      *  @param  position  An iterator that serves as a hint as to where the
00331      *                    pair should be inserted.
00332      *  @param  x  Pair to be inserted (see std::make_pair for easy creation of
00333      *             pairs).
00334      *  @return An iterator that points to the inserted (key,value) pair.
00335      *
00336      *  This function inserts a (key, value) pair into the %multimap.  Contrary
00337      *  to a std::map the %multimap does not rely on unique keys and thus
00338      *  multiple pairs with the same key can be inserted.
00339      *  Note that the first parameter is only a hint and can potentially
00340      *  improve the performance of the insertion process.  A bad hint would
00341      *  cause no gains in efficiency.
00342      *
00343      *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
00344      *  for more on "hinting".
00345      *
00346      *  Insertion requires logarithmic time (if the hint is not taken).
00347     */
00348     iterator
00349     insert(iterator __position, const value_type& __x)
00350     { return _M_t.insert_equal(__position, __x); }
00351   
00352     /**
00353      *  @brief A template function that attemps to insert a range of elements.
00354      *  @param  first  Iterator pointing to the start of the range to be
00355      *                 inserted.
00356      *  @param  last  Iterator pointing to the end of the range.
00357      *
00358      *  Complexity similar to that of the range constructor.
00359     */
00360     template <typename _InputIterator>
00361       void
00362       insert(_InputIterator __first, _InputIterator __last)
00363       { _M_t.insert_equal(__first, __last); }
00364   
00365     /**
00366      *  @brief Erases an element from a %multimap.
00367      *  @param  position  An iterator pointing to the element to be erased.
00368      *
00369      *  This function erases an element, pointed to by the given iterator, from
00370      *  a %multimap.  Note that this function only erases the element, and that
00371      *  if the element is itself a pointer, the pointed-to memory is not
00372      *  touched in any way.  Managing the pointer is the user's responsibilty.
00373     */
00374     void
00375     erase(iterator __position) { _M_t.erase(__position); }
00376   
00377     /**
00378      *  @brief Erases elements according to the provided key.
00379      *  @param  x  Key of element to be erased.
00380      *  @return  The number of elements erased.
00381      *
00382      *  This function erases all elements located by the given key from a
00383      *  %multimap.
00384      *  Note that this function only erases the element, and that if
00385      *  the element is itself a pointer, the pointed-to memory is not touched
00386      *  in any way.  Managing the pointer is the user's responsibilty.
00387     */
00388     size_type
00389     erase(const key_type& __x) { return _M_t.erase(__x); }
00390   
00391     /**
00392      *  @brief Erases a [first,last) range of elements from a %multimap.
00393      *  @param  first  Iterator pointing to the start of the range to be erased.
00394      *  @param  last  Iterator pointing to the end of the range to be erased.
00395      *
00396      *  This function erases a sequence of elements from a %multimap.
00397      *  Note that this function only erases the elements, and that if
00398      *  the elements themselves are pointers, the pointed-to memory is not
00399      *  touched in any way.  Managing the pointer is the user's responsibilty.
00400     */
00401     void
00402     erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); }
00403   
00404     /**
00405      *  @brief  Swaps data with another %multimap.
00406      *  @param  x  A %multimap of the same element and allocator types.
00407      *
00408      *  This exchanges the elements between two multimaps in constant time.
00409      *  (It is only swapping a pointer, an integer, and an instance of
00410      *  the @c Compare type (which itself is often stateless and empty), so it
00411      *  should be quite fast.)
00412      *  Note that the global std::swap() function is specialized such that
00413      *  std::swap(m1,m2) will feed to this function.
00414     */
00415     void
00416     swap(multimap& __x) { _M_t.swap(__x._M_t); }
00417   
00418     /**
00419      *  Erases all elements in a %multimap.  Note that this function only erases
00420      *  the elements, and that if the elements themselves are pointers, the
00421      *  pointed-to memory is not touched in any way.  Managing the pointer is
00422      *  the user's responsibilty.
00423     */
00424     void
00425     clear() { _M_t.clear(); }
00426   
00427     // observers
00428     /**
00429      *  Returns the key comparison object out of which the %multimap
00430      *  was constructed.
00431     */
00432     key_compare
00433     key_comp() const { return _M_t.key_comp(); }
00434   
00435     /**
00436      *  Returns a value comparison object, built from the key comparison
00437      *  object out of which the %multimap was constructed.
00438     */
00439     value_compare
00440     value_comp() const { return value_compare(_M_t.key_comp()); }
00441   
00442     // multimap operations
00443     /**
00444      *  @brief Tries to locate an element in a %multimap.
00445      *  @param  x  Key of (key, value) pair to be located.
00446      *  @return  Iterator pointing to sought-after element,
00447      *           or end() if not found.
00448      *
00449      *  This function takes a key and tries to locate the element with which
00450      *  the key matches.  If successful the function returns an iterator
00451      *  pointing to the sought after %pair.  If unsuccessful it returns the
00452      *  past-the-end ( @c end() ) iterator.
00453     */
00454     iterator
00455     find(const key_type& __x) { return _M_t.find(__x); }
00456   
00457     /**
00458      *  @brief Tries to locate an element in a %multimap.
00459      *  @param  x  Key of (key, value) pair to be located.
00460      *  @return  Read-only (constant) iterator pointing to sought-after
00461      *           element, or end() if not found.
00462      *
00463      *  This function takes a key and tries to locate the element with which
00464      *  the key matches.  If successful the function returns a constant iterator
00465      *  pointing to the sought after %pair.  If unsuccessful it returns the
00466      *  past-the-end ( @c end() ) iterator.
00467     */
00468     const_iterator
00469     find(const key_type& __x) const { return _M_t.find(__x); }
00470   
00471     /**
00472      *  @brief Finds the number of elements with given key.
00473      *  @param  x  Key of (key, value) pairs to be located.
00474      *  @return Number of elements with specified key.
00475     */
00476     size_type
00477     count(const key_type& __x) const { return _M_t.count(__x); }
00478   
00479     /**
00480      *  @brief Finds the beginning of a subsequence matching given key.
00481      *  @param  x  Key of (key, value) pair to be located.
00482      *  @return  Iterator pointing to first element matching given key, or
00483      *           end() if not found.
00484      *
00485      *  This function returns the first element of a subsequence of elements
00486      *  that matches the given key.  If unsuccessful it returns an iterator
00487      *  pointing to the first element that has a greater value than given key
00488      *  or end() if no such element exists.
00489     */
00490     iterator
00491     lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); }
00492   
00493     /**
00494      *  @brief Finds the beginning of a subsequence matching given key.
00495      *  @param  x  Key of (key, value) pair to be located.
00496      *  @return  Read-only (constant) iterator pointing to first element
00497      *           matching given key, or end() if not found.
00498      *
00499      *  This function returns the first element of a subsequence of elements
00500      *  that matches the given key.  If unsuccessful the iterator will point
00501      *  to the next greatest element or, if no such greater element exists, to
00502      *  end().
00503     */
00504     const_iterator
00505     lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); }
00506   
00507     /**
00508      *  @brief Finds the end of a subsequence matching given key.
00509      *  @param  x  Key of (key, value) pair to be located.
00510      *  @return Iterator pointing to last element matching given key.
00511     */
00512     iterator
00513     upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); }
00514   
00515     /**
00516      *  @brief Finds the end of a subsequence matching given key.
00517      *  @param  x  Key of (key, value) pair to be located.
00518      *  @return  Read-only (constant) iterator pointing to last element matching
00519      *           given key.
00520     */
00521     const_iterator
00522     upper_bound(const key_type& __x) const { return _M_t.upper_bound(__x); }
00523   
00524     /**
00525      *  @brief Finds a subsequence matching given key.
00526      *  @param  x  Key of (key, value) pairs to be located.
00527      *  @return  Pair of iterators that possibly points to the subsequence
00528      *           matching given key.
00529      *
00530      *  This function returns a pair of which the first
00531      *  element possibly points to the first element matching the given key
00532      *  and the second element possibly points to the last element matching the
00533      *  given key.  If unsuccessful the first element of the returned pair will
00534      *  contain an iterator pointing to the next greatest element or, if no such
00535      *  greater element exists, to end().
00536     */
00537     pair<iterator,iterator>
00538     equal_range(const key_type& __x) { return _M_t.equal_range(__x); }
00539   
00540     /**
00541      *  @brief Finds a subsequence matching given key.
00542      *  @param  x  Key of (key, value) pairs to be located.
00543      *  @return  Pair of read-only (constant) iterators that possibly points to
00544      *           the subsequence matching given key.
00545      *
00546      *  This function returns a pair of which the first
00547      *  element possibly points to the first element matching the given key
00548      *  and the second element possibly points to the last element matching the
00549      *  given key.  If unsuccessful the first element of the returned pair will
00550      *  contain an iterator pointing to the next greatest element or, if no such
00551      *  a greater element exists, to end().
00552     */
00553     pair<const_iterator,const_iterator>
00554     equal_range(const key_type& __x) const { return _M_t.equal_range(__x); }
00555   
00556     template <typename _K1, typename _T1, typename _C1, typename _A1>
00557     friend bool operator== (const multimap<_K1,_T1,_C1,_A1>&,
00558                             const multimap<_K1,_T1,_C1,_A1>&);
00559     template <typename _K1, typename _T1, typename _C1, typename _A1>
00560     friend bool operator< (const multimap<_K1,_T1,_C1,_A1>&,
00561                            const multimap<_K1,_T1,_C1,_A1>&);
00562   };
00563   
00564   
00565   /**
00566    *  @brief  Multimap equality comparison.
00567    *  @param  x  A %multimap.
00568    *  @param  y  A %multimap of the same type as @a x.
00569    *  @return  True iff the size and elements of the maps are equal.
00570    *
00571    *  This is an equivalence relation.  It is linear in the size of the
00572    *  multimaps.  Multimaps are considered equivalent if their sizes are equal,
00573    *  and if corresponding elements compare equal.
00574   */
00575   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00576     inline bool
00577     operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
00578                const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
00579     {
00580       return __x._M_t == __y._M_t;
00581     }
00582   
00583   /**
00584    *  @brief  Multimap ordering relation.
00585    *  @param  x  A %multimap.
00586    *  @param  y  A %multimap of the same type as @a x.
00587    *  @return  True iff @a x is lexographically less than @a y.
00588    *
00589    *  This is a total ordering relation.  It is linear in the size of the
00590    *  multimaps.  The elements must be comparable with @c <.
00591    *
00592    *  See std::lexographical_compare() for how the determination is made.
00593   */
00594   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00595     inline bool
00596     operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
00597               const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
00598     { return __x._M_t < __y._M_t; }
00599   
00600   /// Based on operator==
00601   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00602     inline bool
00603     operator!=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
00604                const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
00605     { return !(__x == __y); }
00606   
00607   /// Based on operator<
00608   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00609     inline bool
00610     operator>(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
00611               const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
00612     { return __y < __x; }
00613   
00614   /// Based on operator<
00615   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00616     inline bool
00617     operator<=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
00618                const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
00619     { return !(__y < __x); }
00620   
00621   /// Based on operator<
00622   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00623     inline bool
00624     operator>=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
00625                const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
00626     { return !(__x < __y); }
00627   
00628   /// See std::multimap::swap().
00629   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00630     inline void
00631     swap(multimap<_Key,_Tp,_Compare,_Alloc>& __x,
00632          multimap<_Key,_Tp,_Compare,_Alloc>& __y)
00633     { __x.swap(__y); }
00634 } // namespace std
00635 
00636 #endif /* __GLIBCPP_INTERNAL_MULTIMAP_H */

Generated on Thu Feb 10 23:22:59 2005 for libstdc++-v3 Source by  doxygen 1.4.0