00001 // Map implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 2, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // You should have received a copy of the GNU General Public License along 00017 // with this library; see the file COPYING. If not, write to the Free 00018 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, 00019 // USA. 00020 00021 // As a special exception, you may use this file as part of a free software 00022 // library without restriction. Specifically, if other files instantiate 00023 // templates or use macros or inline functions from this file, or you compile 00024 // this file and link it with other files to produce an executable, this 00025 // file does not by itself cause the resulting executable to be covered by 00026 // the GNU General Public License. This exception does not however 00027 // invalidate any other reasons why the executable file might be covered by 00028 // the GNU General Public License. 00029 00030 /* 00031 * 00032 * Copyright (c) 1994 00033 * Hewlett-Packard Company 00034 * 00035 * Permission to use, copy, modify, distribute and sell this software 00036 * and its documentation for any purpose is hereby granted without fee, 00037 * provided that the above copyright notice appear in all copies and 00038 * that both that copyright notice and this permission notice appear 00039 * in supporting documentation. Hewlett-Packard Company makes no 00040 * representations about the suitability of this software for any 00041 * purpose. It is provided "as is" without express or implied warranty. 00042 * 00043 * 00044 * Copyright (c) 1996,1997 00045 * Silicon Graphics Computer Systems, Inc. 00046 * 00047 * Permission to use, copy, modify, distribute and sell this software 00048 * and its documentation for any purpose is hereby granted without fee, 00049 * provided that the above copyright notice appear in all copies and 00050 * that both that copyright notice and this permission notice appear 00051 * in supporting documentation. Silicon Graphics makes no 00052 * representations about the suitability of this software for any 00053 * purpose. It is provided "as is" without express or implied warranty. 00054 */ 00055 00056 /** @file stl_map.h 00057 * This is an internal header file, included by other library headers. 00058 * You should not attempt to use it directly. 00059 */ 00060 00061 #ifndef __GLIBCPP_INTERNAL_MAP_H 00062 #define __GLIBCPP_INTERNAL_MAP_H 00063 00064 #include <bits/concept_check.h> 00065 00066 namespace std 00067 { 00068 /** 00069 * @brief A standard container made up of (key,value) pairs, which can be 00070 * retrieved based on a key, in logarithmic time. 00071 * 00072 * @ingroup Containers 00073 * @ingroup Assoc_containers 00074 * 00075 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00076 * <a href="tables.html#66">reversible container</a>, and an 00077 * <a href="tables.html#69">associative container</a> (using unique keys). 00078 * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the 00079 * value_type is std::pair<const Key,T>. 00080 * 00081 * Maps support bidirectional iterators. 00082 * 00083 * @if maint 00084 * The private tree data is declared exactly the same way for map and 00085 * multimap; the distinction is made entirely in how the tree functions are 00086 * called (*_unique versus *_equal, same as the standard). 00087 * @endif 00088 */ 00089 template <typename _Key, typename _Tp, typename _Compare = less<_Key>, 00090 typename _Alloc = allocator<pair<const _Key, _Tp> > > 00091 class map 00092 { 00093 // concept requirements 00094 __glibcpp_class_requires(_Tp, _SGIAssignableConcept) 00095 __glibcpp_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept) 00096 00097 public: 00098 typedef _Key key_type; 00099 typedef _Tp mapped_type; 00100 typedef pair<const _Key, _Tp> value_type; 00101 typedef _Compare key_compare; 00102 00103 class value_compare 00104 : public binary_function<value_type, value_type, bool> 00105 { 00106 friend class map<_Key,_Tp,_Compare,_Alloc>; 00107 protected: 00108 _Compare comp; 00109 value_compare(_Compare __c) : comp(__c) {} 00110 public: 00111 bool operator()(const value_type& __x, const value_type& __y) const 00112 { return comp(__x.first, __y.first); } 00113 }; 00114 00115 private: 00116 /// @if maint This turns a red-black tree into a [multi]map. @endif 00117 typedef _Rb_tree<key_type, value_type, 00118 _Select1st<value_type>, key_compare, _Alloc> _Rep_type; 00119 /// @if maint The actual tree structure. @endif 00120 _Rep_type _M_t; 00121 00122 public: 00123 // many of these are specified differently in ISO, but the following are 00124 // "functionally equivalent" 00125 typedef typename _Rep_type::allocator_type allocator_type; 00126 typedef typename _Rep_type::reference reference; 00127 typedef typename _Rep_type::const_reference const_reference; 00128 typedef typename _Rep_type::iterator iterator; 00129 typedef typename _Rep_type::const_iterator const_iterator; 00130 typedef typename _Rep_type::size_type size_type; 00131 typedef typename _Rep_type::difference_type difference_type; 00132 typedef typename _Rep_type::pointer pointer; 00133 typedef typename _Rep_type::const_pointer const_pointer; 00134 typedef typename _Rep_type::reverse_iterator reverse_iterator; 00135 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00136 00137 00138 // [23.3.1.1] construct/copy/destroy 00139 // (get_allocator() is normally listed in this section, but seems to have 00140 // been accidentally omitted in the printed standard) 00141 /** 00142 * @brief Default constructor creates no elements. 00143 */ 00144 map() : _M_t(_Compare(), allocator_type()) { } 00145 00146 // for some reason this was made a separate function 00147 /** 00148 * @brief Default constructor creates no elements. 00149 */ 00150 explicit 00151 map(const _Compare& __comp, const allocator_type& __a = allocator_type()) 00152 : _M_t(__comp, __a) { } 00153 00154 /** 00155 * @brief Map copy constructor. 00156 * @param x A %map of identical element and allocator types. 00157 * 00158 * The newly-created %map uses a copy of the allocation object used 00159 * by @a x. 00160 */ 00161 map(const map& __x) 00162 : _M_t(__x._M_t) { } 00163 00164 /** 00165 * @brief Builds a %map from a range. 00166 * @param first An input iterator. 00167 * @param last An input iterator. 00168 * 00169 * Create a %map consisting of copies of the elements from [first,last). 00170 * This is linear in N if the range is already sorted, and NlogN 00171 * otherwise (where N is distance(first,last)). 00172 */ 00173 template <typename _InputIterator> 00174 map(_InputIterator __first, _InputIterator __last) 00175 : _M_t(_Compare(), allocator_type()) 00176 { _M_t.insert_unique(__first, __last); } 00177 00178 /** 00179 * @brief Builds a %map from a range. 00180 * @param first An input iterator. 00181 * @param last An input iterator. 00182 * @param comp A comparison functor. 00183 * @param a An allocator object. 00184 * 00185 * Create a %map consisting of copies of the elements from [first,last). 00186 * This is linear in N if the range is already sorted, and NlogN 00187 * otherwise (where N is distance(first,last)). 00188 */ 00189 template <typename _InputIterator> 00190 map(_InputIterator __first, _InputIterator __last, 00191 const _Compare& __comp, const allocator_type& __a = allocator_type()) 00192 : _M_t(__comp, __a) 00193 { _M_t.insert_unique(__first, __last); } 00194 00195 // FIXME There is no dtor declared, but we should have something generated 00196 // by Doxygen. I don't know what tags to add to this paragraph to make 00197 // that happen: 00198 /** 00199 * The dtor only erases the elements, and note that if the elements 00200 * themselves are pointers, the pointed-to memory is not touched in any 00201 * way. Managing the pointer is the user's responsibilty. 00202 */ 00203 00204 /** 00205 * @brief Map assignment operator. 00206 * @param x A %map of identical element and allocator types. 00207 * 00208 * All the elements of @a x are copied, but unlike the copy constructor, 00209 * the allocator object is not copied. 00210 */ 00211 map& 00212 operator=(const map& __x) 00213 { 00214 _M_t = __x._M_t; 00215 return *this; 00216 } 00217 00218 /// Get a copy of the memory allocation object. 00219 allocator_type 00220 get_allocator() const { return _M_t.get_allocator(); } 00221 00222 // iterators 00223 /** 00224 * Returns a read/write iterator that points to the first pair in the %map. 00225 * Iteration is done in ascending order according to the keys. 00226 */ 00227 iterator 00228 begin() { return _M_t.begin(); } 00229 00230 /** 00231 * Returns a read-only (constant) iterator that points to the first pair 00232 * in the %map. Iteration is done in ascending order according to the 00233 * keys. 00234 */ 00235 const_iterator 00236 begin() const { return _M_t.begin(); } 00237 00238 /** 00239 * Returns a read/write iterator that points one past the last pair in the 00240 * %map. Iteration is done in ascending order according to the keys. 00241 */ 00242 iterator 00243 end() { return _M_t.end(); } 00244 00245 /** 00246 * Returns a read-only (constant) iterator that points one past the last 00247 * pair in the %map. Iteration is done in ascending order according to the 00248 * keys. 00249 */ 00250 const_iterator 00251 end() const { return _M_t.end(); } 00252 00253 /** 00254 * Returns a read/write reverse iterator that points to the last pair in 00255 * the %map. Iteration is done in descending order according to the keys. 00256 */ 00257 reverse_iterator 00258 rbegin() { return _M_t.rbegin(); } 00259 00260 /** 00261 * Returns a read-only (constant) reverse iterator that points to the last 00262 * pair in the %map. Iteration is done in descending order according to 00263 * the keys. 00264 */ 00265 const_reverse_iterator 00266 rbegin() const { return _M_t.rbegin(); } 00267 00268 /** 00269 * Returns a read/write reverse iterator that points to one before the 00270 * first pair in the %map. Iteration is done in descending order according 00271 * to the keys. 00272 */ 00273 reverse_iterator 00274 rend() { return _M_t.rend(); } 00275 00276 /** 00277 * Returns a read-only (constant) reverse iterator that points to one 00278 * before the first pair in the %map. Iteration is done in descending 00279 * order according to the keys. 00280 */ 00281 const_reverse_iterator 00282 rend() const { return _M_t.rend(); } 00283 00284 // capacity 00285 /** Returns true if the %map is empty. (Thus begin() would equal end().) */ 00286 bool 00287 empty() const { return _M_t.empty(); } 00288 00289 /** Returns the size of the %map. */ 00290 size_type 00291 size() const { return _M_t.size(); } 00292 00293 /** Returns the maximum size of the %map. */ 00294 size_type 00295 max_size() const { return _M_t.max_size(); } 00296 00297 // [23.3.1.2] element access 00298 /** 00299 * @brief Subscript ( @c [] ) access to %map data. 00300 * @param k The key for which data should be retrieved. 00301 * @return A reference to the data of the (key,data) %pair. 00302 * 00303 * Allows for easy lookup with the subscript ( @c [] ) operator. Returns 00304 * data associated with the key specified in subscript. If the key does 00305 * not exist, a pair with that key is created using default values, which 00306 * is then returned. 00307 * 00308 * Lookup requires logarithmic time. 00309 */ 00310 mapped_type& 00311 operator[](const key_type& __k) 00312 { 00313 // concept requirements 00314 __glibcpp_function_requires(_DefaultConstructibleConcept<mapped_type>) 00315 00316 iterator __i = lower_bound(__k); 00317 // __i->first is greater than or equivalent to __k. 00318 if (__i == end() || key_comp()(__k, (*__i).first)) 00319 __i = insert(__i, value_type(__k, mapped_type())); 00320 return (*__i).second; 00321 } 00322 00323 // modifiers 00324 /** 00325 * @brief Attempts to insert a std::pair into the %map. 00326 * @param x Pair to be inserted (see std::make_pair for easy creation of 00327 * pairs). 00328 * @return A pair, of which the first element is an iterator that points 00329 * to the possibly inserted pair, and the second is a bool that 00330 * is true if the pair was actually inserted. 00331 * 00332 * This function attempts to insert a (key, value) %pair into the %map. 00333 * A %map relies on unique keys and thus a %pair is only inserted if its 00334 * first element (the key) is not already present in the %map. 00335 * 00336 * Insertion requires logarithmic time. 00337 */ 00338 pair<iterator,bool> 00339 insert(const value_type& __x) 00340 { return _M_t.insert_unique(__x); } 00341 00342 /** 00343 * @brief Attempts to insert a std::pair into the %map. 00344 * @param position An iterator that serves as a hint as to where the 00345 * pair should be inserted. 00346 * @param x Pair to be inserted (see std::make_pair for easy creation of 00347 * pairs). 00348 * @return An iterator that points to the element with key of @a x (may 00349 * or may not be the %pair passed in). 00350 * 00351 * This function is not concerned about whether the insertion took place, 00352 * and thus does not return a boolean like the single-argument 00353 * insert() does. Note that the first parameter is only a hint and can 00354 * potentially improve the performance of the insertion process. A bad 00355 * hint would cause no gains in efficiency. 00356 * 00357 * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4 00358 * for more on "hinting". 00359 * 00360 * Insertion requires logarithmic time (if the hint is not taken). 00361 */ 00362 iterator 00363 insert(iterator position, const value_type& __x) 00364 { return _M_t.insert_unique(position, __x); } 00365 00366 /** 00367 * @brief A template function that attemps to insert a range of elements. 00368 * @param first Iterator pointing to the start of the range to be 00369 * inserted. 00370 * @param last Iterator pointing to the end of the range. 00371 * 00372 * Complexity similar to that of the range constructor. 00373 */ 00374 template <typename _InputIterator> 00375 void 00376 insert(_InputIterator __first, _InputIterator __last) 00377 { _M_t.insert_unique(__first, __last); } 00378 00379 /** 00380 * @brief Erases an element from a %map. 00381 * @param position An iterator pointing to the element to be erased. 00382 * 00383 * This function erases an element, pointed to by the given iterator, from 00384 * a %map. Note that this function only erases the element, and that if 00385 * the element is itself a pointer, the pointed-to memory is not touched 00386 * in any way. Managing the pointer is the user's responsibilty. 00387 */ 00388 void 00389 erase(iterator __position) { _M_t.erase(__position); } 00390 00391 /** 00392 * @brief Erases elements according to the provided key. 00393 * @param x Key of element to be erased. 00394 * @return The number of elements erased. 00395 * 00396 * This function erases all the elements located by the given key from 00397 * a %map. 00398 * Note that this function only erases the element, and that if 00399 * the element is itself a pointer, the pointed-to memory is not touched 00400 * in any way. Managing the pointer is the user's responsibilty. 00401 */ 00402 size_type 00403 erase(const key_type& __x) { return _M_t.erase(__x); } 00404 00405 /** 00406 * @brief Erases a [first,last) range of elements from a %map. 00407 * @param first Iterator pointing to the start of the range to be erased. 00408 * @param last Iterator pointing to the end of the range to be erased. 00409 * 00410 * This function erases a sequence of elements from a %map. 00411 * Note that this function only erases the element, and that if 00412 * the element is itself a pointer, the pointed-to memory is not touched 00413 * in any way. Managing the pointer is the user's responsibilty. 00414 */ 00415 void 00416 erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); } 00417 00418 /** 00419 * @brief Swaps data with another %map. 00420 * @param x A %map of the same element and allocator types. 00421 * 00422 * This exchanges the elements between two maps in constant time. 00423 * (It is only swapping a pointer, an integer, and an instance of 00424 * the @c Compare type (which itself is often stateless and empty), so it 00425 * should be quite fast.) 00426 * Note that the global std::swap() function is specialized such that 00427 * std::swap(m1,m2) will feed to this function. 00428 */ 00429 void 00430 swap(map& __x) { _M_t.swap(__x._M_t); } 00431 00432 /** 00433 * Erases all elements in a %map. Note that this function only erases 00434 * the elements, and that if the elements themselves are pointers, the 00435 * pointed-to memory is not touched in any way. Managing the pointer is 00436 * the user's responsibilty. 00437 */ 00438 void 00439 clear() { _M_t.clear(); } 00440 00441 // observers 00442 /** 00443 * Returns the key comparison object out of which the %map was constructed. 00444 */ 00445 key_compare 00446 key_comp() const { return _M_t.key_comp(); } 00447 00448 /** 00449 * Returns a value comparison object, built from the key comparison 00450 * object out of which the %map was constructed. 00451 */ 00452 value_compare 00453 value_comp() const { return value_compare(_M_t.key_comp()); } 00454 00455 // [23.3.1.3] map operations 00456 /** 00457 * @brief Tries to locate an element in a %map. 00458 * @param x Key of (key, value) %pair to be located. 00459 * @return Iterator pointing to sought-after element, or end() if not 00460 * found. 00461 * 00462 * This function takes a key and tries to locate the element with which 00463 * the key matches. If successful the function returns an iterator 00464 * pointing to the sought after %pair. If unsuccessful it returns the 00465 * past-the-end ( @c end() ) iterator. 00466 */ 00467 iterator 00468 find(const key_type& __x) { return _M_t.find(__x); } 00469 00470 /** 00471 * @brief Tries to locate an element in a %map. 00472 * @param x Key of (key, value) %pair to be located. 00473 * @return Read-only (constant) iterator pointing to sought-after 00474 * element, or end() if not found. 00475 * 00476 * This function takes a key and tries to locate the element with which 00477 * the key matches. If successful the function returns a constant iterator 00478 * pointing to the sought after %pair. If unsuccessful it returns the 00479 * past-the-end ( @c end() ) iterator. 00480 */ 00481 const_iterator 00482 find(const key_type& __x) const { return _M_t.find(__x); } 00483 00484 /** 00485 * @brief Finds the number of elements with given key. 00486 * @param x Key of (key, value) pairs to be located. 00487 * @return Number of elements with specified key. 00488 * 00489 * This function only makes sense for multimaps; for map the result will 00490 * either be 0 (not present) or 1 (present). 00491 */ 00492 size_type 00493 count(const key_type& __x) const 00494 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; } 00495 00496 /** 00497 * @brief Finds the beginning of a subsequence matching given key. 00498 * @param x Key of (key, value) pair to be located. 00499 * @return Iterator pointing to first element matching given key, or 00500 * end() if not found. 00501 * 00502 * This function is useful only with multimaps. It returns the first 00503 * element of a subsequence of elements that matches the given key. If 00504 * unsuccessful it returns an iterator pointing to the first element that 00505 * has a greater value than given key or end() if no such element exists. 00506 */ 00507 iterator 00508 lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); } 00509 00510 /** 00511 * @brief Finds the beginning of a subsequence matching given key. 00512 * @param x Key of (key, value) pair to be located. 00513 * @return Read-only (constant) iterator pointing to first element 00514 * matching given key, or end() if not found. 00515 * 00516 * This function is useful only with multimaps. It returns the first 00517 * element of a subsequence of elements that matches the given key. If 00518 * unsuccessful the iterator will point to the next greatest element or, 00519 * if no such greater element exists, to end(). 00520 */ 00521 const_iterator 00522 lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); } 00523 00524 /** 00525 * @brief Finds the end of a subsequence matching given key. 00526 * @param x Key of (key, value) pair to be located. 00527 * @return Iterator pointing to last element matching given key. 00528 * 00529 * This function only makes sense with multimaps. 00530 */ 00531 iterator 00532 upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); } 00533 00534 /** 00535 * @brief Finds the end of a subsequence matching given key. 00536 * @param x Key of (key, value) pair to be located. 00537 * @return Read-only (constant) iterator pointing to last element matching 00538 * given key. 00539 * 00540 * This function only makes sense with multimaps. 00541 */ 00542 const_iterator 00543 upper_bound(const key_type& __x) const 00544 { return _M_t.upper_bound(__x); } 00545 00546 /** 00547 * @brief Finds a subsequence matching given key. 00548 * @param x Key of (key, value) pairs to be located. 00549 * @return Pair of iterators that possibly points to the subsequence 00550 * matching given key. 00551 * 00552 * This function returns a pair of which the first 00553 * element possibly points to the first element matching the given key 00554 * and the second element possibly points to the last element matching the 00555 * given key. If unsuccessful the first element of the returned pair will 00556 * contain an iterator pointing to the next greatest element or, if no such 00557 * greater element exists, to end(). 00558 * 00559 * This function only makes sense for multimaps. 00560 */ 00561 pair<iterator,iterator> 00562 equal_range(const key_type& __x) 00563 { return _M_t.equal_range(__x); } 00564 00565 /** 00566 * @brief Finds a subsequence matching given key. 00567 * @param x Key of (key, value) pairs to be located. 00568 * @return Pair of read-only (constant) iterators that possibly points to 00569 * the subsequence matching given key. 00570 * 00571 * This function returns a pair of which the first 00572 * element possibly points to the first element matching the given key 00573 * and the second element possibly points to the last element matching the 00574 * given key. If unsuccessful the first element of the returned pair will 00575 * contain an iterator pointing to the next greatest element or, if no such 00576 * a greater element exists, to end(). 00577 * 00578 * This function only makes sense for multimaps. 00579 */ 00580 pair<const_iterator,const_iterator> 00581 equal_range(const key_type& __x) const 00582 { return _M_t.equal_range(__x); } 00583 00584 template <typename _K1, typename _T1, typename _C1, typename _A1> 00585 friend bool operator== (const map<_K1,_T1,_C1,_A1>&, 00586 const map<_K1,_T1,_C1,_A1>&); 00587 template <typename _K1, typename _T1, typename _C1, typename _A1> 00588 friend bool operator< (const map<_K1,_T1,_C1,_A1>&, 00589 const map<_K1,_T1,_C1,_A1>&); 00590 }; 00591 00592 00593 /** 00594 * @brief Map equality comparison. 00595 * @param x A %map. 00596 * @param y A %map of the same type as @a x. 00597 * @return True iff the size and elements of the maps are equal. 00598 * 00599 * This is an equivalence relation. It is linear in the size of the 00600 * maps. Maps are considered equivalent if their sizes are equal, 00601 * and if corresponding elements compare equal. 00602 */ 00603 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00604 inline bool 00605 operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x, 00606 const map<_Key,_Tp,_Compare,_Alloc>& __y) 00607 { return __x._M_t == __y._M_t; } 00608 00609 /** 00610 * @brief Map ordering relation. 00611 * @param x A %map. 00612 * @param y A %map of the same type as @a x. 00613 * @return True iff @a x is lexographically less than @a y. 00614 * 00615 * This is a total ordering relation. It is linear in the size of the 00616 * maps. The elements must be comparable with @c <. 00617 * 00618 * See std::lexographical_compare() for how the determination is made. 00619 */ 00620 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00621 inline bool 00622 operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x, 00623 const map<_Key,_Tp,_Compare,_Alloc>& __y) 00624 { return __x._M_t < __y._M_t; } 00625 00626 /// Based on operator== 00627 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00628 inline bool 00629 operator!=(const map<_Key,_Tp,_Compare,_Alloc>& __x, 00630 const map<_Key,_Tp,_Compare,_Alloc>& __y) 00631 { return !(__x == __y); } 00632 00633 /// Based on operator< 00634 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00635 inline bool 00636 operator>(const map<_Key,_Tp,_Compare,_Alloc>& __x, 00637 const map<_Key,_Tp,_Compare,_Alloc>& __y) 00638 { return __y < __x; } 00639 00640 /// Based on operator< 00641 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00642 inline bool 00643 operator<=(const map<_Key,_Tp,_Compare,_Alloc>& __x, 00644 const map<_Key,_Tp,_Compare,_Alloc>& __y) 00645 { return !(__y < __x); } 00646 00647 /// Based on operator< 00648 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00649 inline bool 00650 operator>=(const map<_Key,_Tp,_Compare,_Alloc>& __x, 00651 const map<_Key,_Tp,_Compare,_Alloc>& __y) 00652 { return !(__x < __y); } 00653 00654 /// See std::map::swap(). 00655 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00656 inline void 00657 swap(map<_Key,_Tp,_Compare,_Alloc>& __x, map<_Key,_Tp,_Compare,_Alloc>& __y) 00658 { __x.swap(__y); } 00659 } // namespace std 00660 00661 #endif /* __GLIBCPP_INTERNAL_MAP_H */