stl_function.h

Go to the documentation of this file.
00001 // Functor implementations -*- C++ -*-
00002 
00003 // Copyright (C) 2001, 2002 Free Software Foundation, Inc.
00004 //
00005 // This file is part of the GNU ISO C++ Library.  This library is free
00006 // software; you can redistribute it and/or modify it under the
00007 // terms of the GNU General Public License as published by the
00008 // Free Software Foundation; either version 2, or (at your option)
00009 // any later version.
00010 
00011 // This library is distributed in the hope that it will be useful,
00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014 // GNU General Public License for more details.
00015 
00016 // You should have received a copy of the GNU General Public License along
00017 // with this library; see the file COPYING.  If not, write to the Free
00018 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
00019 // USA.
00020 
00021 // As a special exception, you may use this file as part of a free software
00022 // library without restriction.  Specifically, if other files instantiate
00023 // templates or use macros or inline functions from this file, or you compile
00024 // this file and link it with other files to produce an executable, this
00025 // file does not by itself cause the resulting executable to be covered by
00026 // the GNU General Public License.  This exception does not however
00027 // invalidate any other reasons why the executable file might be covered by
00028 // the GNU General Public License.
00029 
00030 /*
00031  *
00032  * Copyright (c) 1994
00033  * Hewlett-Packard Company
00034  *
00035  * Permission to use, copy, modify, distribute and sell this software
00036  * and its documentation for any purpose is hereby granted without fee,
00037  * provided that the above copyright notice appear in all copies and
00038  * that both that copyright notice and this permission notice appear
00039  * in supporting documentation.  Hewlett-Packard Company makes no
00040  * representations about the suitability of this software for any
00041  * purpose.  It is provided "as is" without express or implied warranty.
00042  *
00043  *
00044  * Copyright (c) 1996-1998
00045  * Silicon Graphics Computer Systems, Inc.
00046  *
00047  * Permission to use, copy, modify, distribute and sell this software
00048  * and its documentation for any purpose is hereby granted without fee,
00049  * provided that the above copyright notice appear in all copies and
00050  * that both that copyright notice and this permission notice appear
00051  * in supporting documentation.  Silicon Graphics makes no
00052  * representations about the suitability of this software for any
00053  * purpose.  It is provided "as is" without express or implied warranty.
00054  */
00055 
00056 /** @file stl_function.h
00057  *  This is an internal header file, included by other library headers.
00058  *  You should not attempt to use it directly.
00059  */
00060 
00061 #ifndef __GLIBCPP_INTERNAL_FUNCTION_H
00062 #define __GLIBCPP_INTERNAL_FUNCTION_H
00063 
00064 namespace std
00065 {
00066 // 20.3.1 base classes
00067 /** @defgroup s20_3_1_base Functor Base Classes
00068  *  Function objects, or @e functors, are objects with an @c operator()
00069  *  defined and accessible.  They can be passed as arguments to algorithm
00070  *  templates and used in place of a function pointer.  Not only is the
00071  *  resulting expressiveness of the library increased, but the generated
00072  *  code can be more efficient than what you might write by hand.  When we
00073  *  refer to "functors," then, generally we include function pointers in
00074  *  the description as well.
00075  *
00076  *  Often, functors are only created as temporaries passed to algorithm
00077  *  calls, rather than being created as named variables.
00078  *
00079  *  Two examples taken from the standard itself follow.  To perform a
00080  *  by-element addition of two vectors @c a and @c b containing @c double,
00081  *  and put the result in @c a, use
00082  *  \code
00083  *  transform (a.begin(), a.end(), b.begin(), a.begin(), plus<double>());
00084  *  \endcode
00085  *  To negate every element in @c a, use
00086  *  \code
00087  *  transform(a.begin(), a.end(), a.begin(), negate<double>());
00088  *  \endcode
00089  *  The addition and negation functions will be inlined directly.
00090  *
00091  *  The standard functiors are derived from structs named @c unary_function
00092  *  and @c binary_function.  These two classes contain nothing but typedefs,
00093  *  to aid in generic (template) programming.  If you write your own
00094  *  functors, you might consider doing the same.
00095  *
00096  *  @{
00097 */
00098 /**
00099  *  This is one of the @link s20_3_1_base functor base classes@endlink.
00100 */
00101 template <class _Arg, class _Result>
00102 struct unary_function {
00103   typedef _Arg argument_type;   ///< @c argument_type is the type of the argument (no surprises here)
00104   typedef _Result result_type;  ///< @c result_type is the return type
00105 };
00106 
00107 /**
00108  *  This is one of the @link s20_3_1_base functor base classes@endlink.
00109 */
00110 template <class _Arg1, class _Arg2, class _Result>
00111 struct binary_function {
00112   typedef _Arg1 first_argument_type;   ///< the type of the first argument (no surprises here)
00113   typedef _Arg2 second_argument_type;  ///< the type of the second argument
00114   typedef _Result result_type;         ///< type of the return type
00115 };      
00116 /** @}  */
00117 
00118 // 20.3.2 arithmetic
00119 /** @defgroup s20_3_2_arithmetic Arithmetic Classes
00120  *  Because basic math often needs to be done during an algorithm, the library
00121  *  provides functors for those operations.  See the documentation for
00122  *  @link s20_3_1_base the base classes@endlink for examples of their use.
00123  *
00124  *  @{
00125 */
00126 /// One of the @link s20_3_2_arithmetic math functors@endlink.
00127 template <class _Tp>
00128 struct plus : public binary_function<_Tp,_Tp,_Tp> {
00129   _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; }
00130 };
00131 
00132 /// One of the @link s20_3_2_arithmetic math functors@endlink.
00133 template <class _Tp>
00134 struct minus : public binary_function<_Tp,_Tp,_Tp> {
00135   _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; }
00136 };
00137 
00138 /// One of the @link s20_3_2_arithmetic math functors@endlink.
00139 template <class _Tp>
00140 struct multiplies : public binary_function<_Tp,_Tp,_Tp> {
00141   _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; }
00142 };
00143 
00144 /// One of the @link s20_3_2_arithmetic math functors@endlink.
00145 template <class _Tp>
00146 struct divides : public binary_function<_Tp,_Tp,_Tp> {
00147   _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; }
00148 };
00149 
00150 /// One of the @link s20_3_2_arithmetic math functors@endlink.
00151 template <class _Tp>
00152 struct modulus : public binary_function<_Tp,_Tp,_Tp> 
00153 {
00154   _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; }
00155 };
00156 
00157 /// One of the @link s20_3_2_arithmetic math functors@endlink.
00158 template <class _Tp>
00159 struct negate : public unary_function<_Tp,_Tp> 
00160 {
00161   _Tp operator()(const _Tp& __x) const { return -__x; }
00162 };
00163 /** @}  */
00164 
00165 // 20.3.3 comparisons
00166 /** @defgroup s20_3_3_comparisons Comparison Classes
00167  *  The library provides six wrapper functors for all the basic comparisons
00168  *  in C++, like @c <.
00169  *
00170  *  @{
00171 */
00172 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
00173 template <class _Tp>
00174 struct equal_to : public binary_function<_Tp,_Tp,bool> 
00175 {
00176   bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; }
00177 };
00178 
00179 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
00180 template <class _Tp>
00181 struct not_equal_to : public binary_function<_Tp,_Tp,bool> 
00182 {
00183   bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; }
00184 };
00185 
00186 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
00187 template <class _Tp>
00188 struct greater : public binary_function<_Tp,_Tp,bool> 
00189 {
00190   bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; }
00191 };
00192 
00193 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
00194 template <class _Tp>
00195 struct less : public binary_function<_Tp,_Tp,bool> 
00196 {
00197   bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; }
00198 };
00199 
00200 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
00201 template <class _Tp>
00202 struct greater_equal : public binary_function<_Tp,_Tp,bool>
00203 {
00204   bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; }
00205 };
00206 
00207 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
00208 template <class _Tp>
00209 struct less_equal : public binary_function<_Tp,_Tp,bool> 
00210 {
00211   bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; }
00212 };
00213 /** @}  */
00214 
00215 // 20.3.4 logical operations
00216 /** @defgroup s20_3_4_logical Boolean Operations Classes
00217  *  Here are wrapper functors for Boolean operations:  @c &&, @c ||, and @c !.
00218  *
00219  *  @{
00220 */
00221 /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
00222 template <class _Tp>
00223 struct logical_and : public binary_function<_Tp,_Tp,bool>
00224 {
00225   bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; }
00226 };
00227 
00228 /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
00229 template <class _Tp>
00230 struct logical_or : public binary_function<_Tp,_Tp,bool>
00231 {
00232   bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; }
00233 };
00234 
00235 /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
00236 template <class _Tp>
00237 struct logical_not : public unary_function<_Tp,bool>
00238 {
00239   bool operator()(const _Tp& __x) const { return !__x; }
00240 };
00241 /** @}  */
00242 
00243 // 20.3.5 negators
00244 /** @defgroup s20_3_5_negators Negators
00245  *  The functions @c not1 and @c not2 each take a predicate functor
00246  *  and return an instance of @c unary_negate or
00247  *  @c binary_negate, respectively.  These classes are functors whose
00248  *  @c operator() performs the stored predicate function and then returns
00249  *  the negation of the result.
00250  *
00251  *  For example, given a vector of integers and a trivial predicate,
00252  *  \code
00253  *  struct IntGreaterThanThree
00254  *    : public std::unary_function<int, bool>
00255  *  {
00256  *      bool operator() (int x) { return x > 3; }
00257  *  };
00258  *  
00259  *  std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree()));
00260  *  \endcode
00261  *  The call to @c find_if will locate the first index (i) of @c v for which
00262  *  "!(v[i] > 3)" is true.
00263  *
00264  *  The not1/unary_negate combination works on predicates taking a single
00265  *  argument.  The not2/binary_negate combination works on predicates which
00266  *  take two arguments.
00267  *
00268  *  @{
00269 */
00270 /// One of the @link s20_3_5_negators negation functors@endlink.
00271 template <class _Predicate>
00272 class unary_negate
00273   : public unary_function<typename _Predicate::argument_type, bool> {
00274 protected:
00275   _Predicate _M_pred;
00276 public:
00277   explicit unary_negate(const _Predicate& __x) : _M_pred(__x) {}
00278   bool operator()(const typename _Predicate::argument_type& __x) const {
00279     return !_M_pred(__x);
00280   }
00281 };
00282 
00283 /// One of the @link s20_3_5_negators negation functors@endlink.
00284 template <class _Predicate>
00285 inline unary_negate<_Predicate> 
00286 not1(const _Predicate& __pred)
00287 {
00288   return unary_negate<_Predicate>(__pred);
00289 }
00290 
00291 /// One of the @link s20_3_5_negators negation functors@endlink.
00292 template <class _Predicate> 
00293 class binary_negate 
00294   : public binary_function<typename _Predicate::first_argument_type,
00295                            typename _Predicate::second_argument_type,
00296                            bool> {
00297 protected:
00298   _Predicate _M_pred;
00299 public:
00300   explicit binary_negate(const _Predicate& __x) : _M_pred(__x) {}
00301   bool operator()(const typename _Predicate::first_argument_type& __x, 
00302                   const typename _Predicate::second_argument_type& __y) const
00303   {
00304     return !_M_pred(__x, __y); 
00305   }
00306 };
00307 
00308 /// One of the @link s20_3_5_negators negation functors@endlink.
00309 template <class _Predicate>
00310 inline binary_negate<_Predicate> 
00311 not2(const _Predicate& __pred)
00312 {
00313   return binary_negate<_Predicate>(__pred);
00314 }
00315 /** @}  */
00316 
00317 // 20.3.6 binders
00318 /** @defgroup s20_3_6_binder Binder Classes
00319  *  Binders turn functions/functors with two arguments into functors with
00320  *  a single argument, storing an argument to be applied later.  For
00321  *  example, an variable @c B of type @c binder1st is constructed from a functor
00322  *  @c f and an argument @c x.  Later, B's @c operator() is called with a
00323  *  single argument @c y.  The return value is the value of @c f(x,y).
00324  *  @c B can be "called" with various arguments (y1, y2, ...) and will in
00325  *  turn call @c f(x,y1), @c f(x,y2), ...
00326  *
00327  *  The function @c bind1st is provided to save some typing.  It takes the
00328  *  function and an argument as parameters, and returns an instance of
00329  *  @c binder1st.
00330  *
00331  *  The type @c binder2nd and its creator function @c bind2nd do the same
00332  *  thing, but the stored argument is passed as the second parameter instead
00333  *  of the first, e.g., @c bind2nd(std::minus<float>,1.3) will create a
00334  *  functor whose @c operator() accepts a floating-point number, subtracts
00335  *  1.3 from it, and returns the result.  (If @c bind1st had been used,
00336  *  the functor would perform "1.3 - x" instead.
00337  *
00338  *  Creator-wrapper functions like @c bind1st are intended to be used in
00339  *  calling algorithms.  Their return values will be temporary objects.
00340  *  (The goal is to not require you to type names like
00341  *  @c std::binder1st<std::plus<int>> for declaring a variable to hold the
00342  *  return value from @c bind1st(std::plus<int>,5).
00343  *
00344  *  These become more useful when combined with the composition functions.
00345  *
00346  *  @{
00347 */
00348 /// One of the @link s20_3_6_binder binder functors@endlink.
00349 template <class _Operation> 
00350 class binder1st
00351   : public unary_function<typename _Operation::second_argument_type,
00352                           typename _Operation::result_type> {
00353 protected:
00354   _Operation op;
00355   typename _Operation::first_argument_type value;
00356 public:
00357   binder1st(const _Operation& __x,
00358             const typename _Operation::first_argument_type& __y)
00359       : op(__x), value(__y) {}
00360   typename _Operation::result_type
00361   operator()(const typename _Operation::second_argument_type& __x) const {
00362     return op(value, __x); 
00363   }
00364 #ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS
00365   //109.  Missing binders for non-const sequence elements
00366   typename _Operation::result_type
00367   operator()(typename _Operation::second_argument_type& __x) const {
00368     return op(value, __x); 
00369   }
00370 #endif
00371 };
00372 
00373 /// One of the @link s20_3_6_binder binder functors@endlink.
00374 template <class _Operation, class _Tp>
00375 inline binder1st<_Operation> 
00376 bind1st(const _Operation& __fn, const _Tp& __x) 
00377 {
00378   typedef typename _Operation::first_argument_type _Arg1_type;
00379   return binder1st<_Operation>(__fn, _Arg1_type(__x));
00380 }
00381 
00382 /// One of the @link s20_3_6_binder binder functors@endlink.
00383 template <class _Operation> 
00384 class binder2nd
00385   : public unary_function<typename _Operation::first_argument_type,
00386                           typename _Operation::result_type> {
00387 protected:
00388   _Operation op;
00389   typename _Operation::second_argument_type value;
00390 public:
00391   binder2nd(const _Operation& __x,
00392             const typename _Operation::second_argument_type& __y) 
00393       : op(__x), value(__y) {}
00394   typename _Operation::result_type
00395   operator()(const typename _Operation::first_argument_type& __x) const {
00396     return op(__x, value); 
00397   }
00398 #ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS
00399   //109.  Missing binders for non-const sequence elements
00400   typename _Operation::result_type
00401   operator()(typename _Operation::first_argument_type& __x) const {
00402     return op(__x, value); 
00403   }
00404 #endif
00405 };
00406 
00407 /// One of the @link s20_3_6_binder binder functors@endlink.
00408 template <class _Operation, class _Tp>
00409 inline binder2nd<_Operation> 
00410 bind2nd(const _Operation& __fn, const _Tp& __x) 
00411 {
00412   typedef typename _Operation::second_argument_type _Arg2_type;
00413   return binder2nd<_Operation>(__fn, _Arg2_type(__x));
00414 }
00415 /** @}  */
00416 
00417 // 20.3.7 adaptors pointers functions
00418 /** @defgroup s20_3_7_adaptors Adaptors for pointers to functions
00419  *  The advantage of function objects over pointers to functions is that
00420  *  the objects in the standard library declare nested typedefs describing
00421  *  their argument and result types with uniform names (e.g., @c result_type
00422  *  from the base classes @c unary_function and @c binary_function).
00423  *  Sometimes those typedefs are required, not just optional.
00424  *
00425  *  Adaptors are provided to turn pointers to unary (single-argument) and
00426  *  binary (double-argument) functions into function objects.  The long-winded
00427  *  functor @c pointer_to_unary_function is constructed with a function
00428  *  pointer @c f, and its @c operator() called with argument @c x returns
00429  *  @c f(x).  The functor @c pointer_to_binary_function does the same thing,
00430  *  but with a double-argument @c f and @c operator().
00431  *
00432  *  The function @c ptr_fun takes a pointer-to-function @c f and constructs
00433  *  an instance of the appropriate functor.
00434  *
00435  *  @{
00436 */
00437 /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
00438 template <class _Arg, class _Result>
00439 class pointer_to_unary_function : public unary_function<_Arg, _Result> {
00440 protected:
00441   _Result (*_M_ptr)(_Arg);
00442 public:
00443   pointer_to_unary_function() {}
00444   explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) {}
00445   _Result operator()(_Arg __x) const { return _M_ptr(__x); }
00446 };
00447 
00448 /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
00449 template <class _Arg, class _Result>
00450 inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg))
00451 {
00452   return pointer_to_unary_function<_Arg, _Result>(__x);
00453 }
00454 
00455 /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
00456 template <class _Arg1, class _Arg2, class _Result>
00457 class pointer_to_binary_function : 
00458   public binary_function<_Arg1,_Arg2,_Result> {
00459 protected:
00460     _Result (*_M_ptr)(_Arg1, _Arg2);
00461 public:
00462     pointer_to_binary_function() {}
00463     explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2)) 
00464       : _M_ptr(__x) {}
00465     _Result operator()(_Arg1 __x, _Arg2 __y) const {
00466       return _M_ptr(__x, __y);
00467     }
00468 };
00469 
00470 /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
00471 template <class _Arg1, class _Arg2, class _Result>
00472 inline pointer_to_binary_function<_Arg1,_Arg2,_Result> 
00473 ptr_fun(_Result (*__x)(_Arg1, _Arg2)) {
00474   return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__x);
00475 }
00476 /** @}  */
00477 
00478 template <class _Tp>
00479 struct _Identity : public unary_function<_Tp,_Tp> {
00480   _Tp& operator()(_Tp& __x) const { return __x; }
00481   const _Tp& operator()(const _Tp& __x) const { return __x; }
00482 };
00483 
00484 template <class _Pair>
00485 struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> {
00486   typename _Pair::first_type& operator()(_Pair& __x) const {
00487     return __x.first;
00488   }
00489   const typename _Pair::first_type& operator()(const _Pair& __x) const {
00490     return __x.first;
00491   }
00492 };
00493 
00494 template <class _Pair>
00495 struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type>
00496 {
00497   typename _Pair::second_type& operator()(_Pair& __x) const {
00498     return __x.second;
00499   }
00500   const typename _Pair::second_type& operator()(const _Pair& __x) const {
00501     return __x.second;
00502   }
00503 };
00504 
00505 // 20.3.8 adaptors pointers members
00506 /** @defgroup s20_3_8_memadaptors Adaptors for pointers to members
00507  *  There are a total of 16 = 2^4 function objects in this family.
00508  *   (1) Member functions taking no arguments vs member functions taking
00509  *        one argument.
00510  *   (2) Call through pointer vs call through reference.
00511  *   (3) Member function with void return type vs member function with
00512  *       non-void return type.
00513  *   (4) Const vs non-const member function.
00514  *
00515  *  Note that choice (3) is nothing more than a workaround: according
00516  *   to the draft, compilers should handle void and non-void the same way.
00517  *   This feature is not yet widely implemented, though.  You can only use
00518  *   member functions returning void if your compiler supports partial
00519  *   specialization.
00520  *
00521  *  All of this complexity is in the function objects themselves.  You can
00522  *   ignore it by using the helper function mem_fun and mem_fun_ref,
00523  *   which create whichever type of adaptor is appropriate.
00524  *
00525  *  @{
00526 */
00527 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
00528 template <class _Ret, class _Tp>
00529 class mem_fun_t : public unary_function<_Tp*,_Ret> {
00530 public:
00531   explicit mem_fun_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}
00532   _Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); }
00533 private:
00534   _Ret (_Tp::*_M_f)();
00535 };
00536 
00537 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
00538 template <class _Ret, class _Tp>
00539 class const_mem_fun_t : public unary_function<const _Tp*,_Ret> {
00540 public:
00541   explicit const_mem_fun_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}
00542   _Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); }
00543 private:
00544   _Ret (_Tp::*_M_f)() const;
00545 };
00546 
00547 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
00548 template <class _Ret, class _Tp>
00549 class mem_fun_ref_t : public unary_function<_Tp,_Ret> {
00550 public:
00551   explicit mem_fun_ref_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}
00552   _Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); }
00553 private:
00554   _Ret (_Tp::*_M_f)();
00555 };
00556 
00557 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
00558 template <class _Ret, class _Tp>
00559 class const_mem_fun_ref_t : public unary_function<_Tp,_Ret> {
00560 public:
00561   explicit const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}
00562   _Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); }
00563 private:
00564   _Ret (_Tp::*_M_f)() const;
00565 };
00566 
00567 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
00568 template <class _Ret, class _Tp, class _Arg>
00569 class mem_fun1_t : public binary_function<_Tp*,_Arg,_Ret> {
00570 public:
00571   explicit mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
00572   _Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); }
00573 private:
00574   _Ret (_Tp::*_M_f)(_Arg);
00575 };
00576 
00577 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
00578 template <class _Ret, class _Tp, class _Arg>
00579 class const_mem_fun1_t : public binary_function<const _Tp*,_Arg,_Ret> {
00580 public:
00581   explicit const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
00582   _Ret operator()(const _Tp* __p, _Arg __x) const
00583     { return (__p->*_M_f)(__x); }
00584 private:
00585   _Ret (_Tp::*_M_f)(_Arg) const;
00586 };
00587 
00588 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
00589 template <class _Ret, class _Tp, class _Arg>
00590 class mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
00591 public:
00592   explicit mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
00593   _Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
00594 private:
00595   _Ret (_Tp::*_M_f)(_Arg);
00596 };
00597 
00598 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
00599 template <class _Ret, class _Tp, class _Arg>
00600 class const_mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
00601 public:
00602   explicit const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
00603   _Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
00604 private:
00605   _Ret (_Tp::*_M_f)(_Arg) const;
00606 };
00607 
00608 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
00609 template <class _Tp>
00610 class mem_fun_t<void, _Tp> : public unary_function<_Tp*,void> {
00611 public:
00612   explicit mem_fun_t(void (_Tp::*__pf)()) : _M_f(__pf) {}
00613   void operator()(_Tp* __p) const { (__p->*_M_f)(); }
00614 private:
00615   void (_Tp::*_M_f)();
00616 };
00617 
00618 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
00619 template <class _Tp>
00620 class const_mem_fun_t<void, _Tp> : public unary_function<const _Tp*,void> {
00621 public:
00622   explicit const_mem_fun_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}
00623   void operator()(const _Tp* __p) const { (__p->*_M_f)(); }
00624 private:
00625   void (_Tp::*_M_f)() const;
00626 };
00627 
00628 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
00629 template <class _Tp>
00630 class mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
00631 public:
00632   explicit mem_fun_ref_t(void (_Tp::*__pf)()) : _M_f(__pf) {}
00633   void operator()(_Tp& __r) const { (__r.*_M_f)(); }
00634 private:
00635   void (_Tp::*_M_f)();
00636 };
00637 
00638 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
00639 template <class _Tp>
00640 class const_mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
00641 public:
00642   explicit const_mem_fun_ref_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}
00643   void operator()(const _Tp& __r) const { (__r.*_M_f)(); }
00644 private:
00645   void (_Tp::*_M_f)() const;
00646 };
00647 
00648 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
00649 template <class _Tp, class _Arg>
00650 class mem_fun1_t<void, _Tp, _Arg> : public binary_function<_Tp*,_Arg,void> {
00651 public:
00652   explicit mem_fun1_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
00653   void operator()(_Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
00654 private:
00655   void (_Tp::*_M_f)(_Arg);
00656 };
00657 
00658 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
00659 template <class _Tp, class _Arg>
00660 class const_mem_fun1_t<void, _Tp, _Arg> 
00661   : public binary_function<const _Tp*,_Arg,void> {
00662 public:
00663   explicit const_mem_fun1_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
00664   void operator()(const _Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
00665 private:
00666   void (_Tp::*_M_f)(_Arg) const;
00667 };
00668 
00669 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
00670 template <class _Tp, class _Arg>
00671 class mem_fun1_ref_t<void, _Tp, _Arg>
00672   : public binary_function<_Tp,_Arg,void> {
00673 public:
00674   explicit mem_fun1_ref_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
00675   void operator()(_Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
00676 private:
00677   void (_Tp::*_M_f)(_Arg);
00678 };
00679 
00680 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
00681 template <class _Tp, class _Arg>
00682 class const_mem_fun1_ref_t<void, _Tp, _Arg>
00683   : public binary_function<_Tp,_Arg,void> {
00684 public:
00685   explicit const_mem_fun1_ref_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
00686   void operator()(const _Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
00687 private:
00688   void (_Tp::*_M_f)(_Arg) const;
00689 };
00690 
00691 
00692 // Mem_fun adaptor helper functions.  There are only two:
00693 // mem_fun and mem_fun_ref.
00694 
00695 template <class _Ret, class _Tp>
00696 inline mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)())
00697   { return mem_fun_t<_Ret,_Tp>(__f); }
00698 
00699 template <class _Ret, class _Tp>
00700 inline const_mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)() const)
00701   { return const_mem_fun_t<_Ret,_Tp>(__f); }
00702 
00703 template <class _Ret, class _Tp>
00704 inline mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)()) 
00705   { return mem_fun_ref_t<_Ret,_Tp>(__f); }
00706 
00707 template <class _Ret, class _Tp>
00708 inline const_mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)() const)
00709   { return const_mem_fun_ref_t<_Ret,_Tp>(__f); }
00710 
00711 template <class _Ret, class _Tp, class _Arg>
00712 inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg))
00713   { return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
00714 
00715 template <class _Ret, class _Tp, class _Arg>
00716 inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const)
00717   { return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
00718 
00719 template <class _Ret, class _Tp, class _Arg>
00720 inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
00721   { return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
00722 
00723 template <class _Ret, class _Tp, class _Arg>
00724 inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>
00725 mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
00726   { return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
00727 
00728 /** @}  */
00729 
00730 } // namespace std
00731 
00732 #endif /* __GLIBCPP_INTERNAL_FUNCTION_H */
00733 
00734 // Local Variables:
00735 // mode:C++
00736 // End:

Generated on Thu Feb 10 23:22:58 2005 for libstdc++-v3 Source by  doxygen 1.4.0