
User Documentation for ida v2.3.0

Alan C. Hindmarsh and Radu Serban

Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

April 2005

UCRL-SM-208112

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or the
University of California, and shall not be used for advertising or product endorsement purposes.

This research was supported under the auspices of the U.S. Department of Energy by the Uni-
versity of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Approved for public release; further dissemination unlimited

Contents

List of Tables v

List of Figures vii

1 Introduction 1

1.1 Changes from previous versions . 1

1.2 Reading this User Guide . 2

2 IDA Installation Procedure 3

2.1 Installation steps . 3

2.2 Configuration options . 4

2.3 Configuration examples . 8

3 Mathematical Considerations 9

4 Code Organization 13

4.1 SUNDIALS organization . 13

4.2 IDA organization . 13

5 Using IDA 17

5.1 Data types . 17

5.2 Header files . 18

5.3 A skeleton of the user’s main program . 18

5.4 User-callable functions . 20

5.4.1 IDA initialization and deallocation functions 20

5.4.2 Linear solver specification functions . 21

5.4.3 Initial condition calculation function . 23

5.4.4 IDA solver function . 24

5.4.5 Optional input functions . 25

5.4.6 Interpolated output function . 37

5.4.7 Optional output functions . 37

5.4.8 IDA reinitialization function . 48

5.5 User-supplied functions . 49

5.5.1 Residual function . 49

5.5.2 Error weight function . 50

5.5.3 Jacobian information (direct method with dense Jacobian) 50

5.5.4 Jacobian information (direct method with banded Jacobian) 51

5.5.5 Jacobian information (SPGMR matrix-vector product) 53

5.5.6 Preconditioning (SPGMR linear system solution) 53

5.5.7 Preconditioning (SPGMR Jacobian data) . 54

5.6 A parallel band-block-diagonal preconditioner module 55

iii

6 Description of the NVECTOR module 61
6.1 The NVECTOR SERIAL implementation . 65
6.2 The NVECTOR PARALLEL implementation . 67
6.3 NVECTOR functions used by IDA . 69

7 Providing Alternate Linear Solver Modules 71

8 Generic Linear Solvers in SUNDIALS 75
8.1 The DENSE module . 75

8.1.1 Type DenseMat . 75
8.1.2 Accessor Macros . 76
8.1.3 Functions . 76
8.1.4 Small Dense Matrix Functions . 76

8.2 The BAND module . 78
8.2.1 Type BandMat . 78
8.2.2 Accessor Macros . 78
8.2.3 Functions . 80

8.3 The SPGMR module . 80

9 IDA Constants 83
9.1 IDA input constants . 83
9.2 IDA output constants . 83

Bibliography 87

Index 89

iv

List of Tables

2.1 SUNDIALS libraries and header files . 5

5.1 Optional inputs for ida, idadense, idaband, and idaspgmr 26
5.2 Optional outputs from ida, idadense, idaband, and idaspgmr 38

6.1 Description of the NVECTOR operations . 63
6.2 List of vector functions usage by ida code modules 70

v

List of Figures

4.1 Organization of the SUNDIALS suite . 14
4.2 Overall structure diagram of the ida package . 15

8.1 Diagram of the storage for a matrix of type BandMat 79

vii

Chapter 1

Introduction

ida is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers. This suite consists of cvode, kinsol, and ida, and variants of these with sensi-
tivity analysis capabilities.

IDA is a general purpose solver for the initial value problem for systems of differential-algebraic
equations (DAEs). The name IDA stands for Implicit Differential-Algebraic solver. IDA is based
on DASPK [3, 4], but is written in ANSI-standard C rather than Fortran 77. Its most notable
feature is that, in the solution of the underlying nonlinear system at each time step, it offers a
choice of Newton/direct methods or an Inexact Newton/Krylov (iterative) method. Thus ida shares
significant modules previously written within CASC at LLNL to support the ordinary differential
equation (ODE) solvers cvode [11, 8] and pvode [6, 7], and also the nonlinear system solver kinsol

[9].

The Newton/Krylov method uses the GMRES (Generalized Minimal RESidual) linear iterative
method [13], and requires almost no matrix storage for solving the Newton equations as compared to
direct methods. However, the GMRES algorithm allows for a user-supplied preconditioner matrix,
and for most problems preconditioning is essential for an efficient solution.

There are several motivations for choosing the C language for ida. First, a general move-
ment away from Fortran and toward C in scientific computing is apparent. Second, the pointer,
structure, and dynamic memory allocation features in C are extremely useful in software of this
complexity, with the great variety of method options offered. Finally, we prefer C over C++ for
ida because of the wider availability of C compilers, the potentially greater efficiency of C, and the
greater ease of interfacing the solver to applications written in extended Fortran.

1.1 Changes from previous versions

Changes in v2.3.0

The user interface has been further refined. Several functions used for setting optional inputs were
combined into a single one. Additionally, to resolve potential variable scope issues, all SUNDIALS
solvers release user data right after its use. The build systems has been further improved to make
it more robust.

Changes in v2.2.0

The major changes from the previous version involve a redesign of the user interface across the entire
sundials suite. We have eliminated the mechanism of providing optional inputs and extracting
optional statistics from the solver through the iopt and ropt arrays. Instead, ida now provides a
set of routines (with prefix IDASet) to change the default values for various quantities controlling
the solver and a set of extraction routines (with prefix IDAGet) to extract statistics after return

2 Introduction

from the main solver routine. Similarly, each linear solver module provides its own set of Set- and
Get-type routines. For more details see §5.4.5 and §5.4.7.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobians
and preconditioner information) were simplified by reducing the number of arguments. The same
information that was previously accessible through such arguments can now be obtained through
Get-type functions.

Installation of ida (and all of sundials) has been completely redesigned and is now based on
configure scripts.

Changes in v2.2.1

The changes in this minor sundials release affect only the build system.

1.2 Reading this User Guide

The structure of this document is as follows:

• In Chapter 2 we begin with instructions for the installation of ida, within the structure of
sundials.

• In Chapter 3, we give short descriptions of the numerical methods implemented by ida for the
solution of initial value problems for systems of DAEs.

• The following chapter describes the structure of the sundials suite of solvers (§4.1) and the
software organization of the ida solver (§4.2).

• In Chapter 5, we give an overview of the usage of ida, as well as a complete description of the
user interface and of the user-defined routines for integration of IVP DAEs.

• Chapter 6 gives a brief overview of the generic nvector module shared among the various
components of sundials, as well as details on the two nvector implementations provided
with sundials: a serial implementation (§6.1) and a parallel MPI implementation (§6.2).

• Chapter 8 describes in detail the generic linear solvers shared by all sundials solvers.

• Finally, Chapter 9 lists the constants used for input to and output from ida.

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as IDAMalloc) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules, such
as idadense, are written in all capitals. In the Index, page numbers that appear in bold indicate
the main reference for that entry.

Acknowledgments. We wish to acknowledge the contributions to previous versions of the ida

code and user guide of Allan G. Taylor.

Chapter 2

IDA Installation Procedure

The installation of ida is accomplished by installing the sundials suite as a whole, according to the
instructions that follow. The same procedure applies whether or not the downloaded file contains
solvers other than ida.

Generally speaking, the installation procedure outlined in §2.1 below will work on commodity
LINUX/UNIX systems without modification. Users are still encouraged, however, to carefully read
the entire chapter before attempting to install the sundials suite, in case non-default choices are
desired for compilers, compilation options, or the like. In lieu of reading the option list below, the
user may invoke the configuration script with the help flag to view a complete listing of available
options, which may be done by issuing

% ./configure --help

from within the sundials directory.
In the descriptions below, build tree refers to the directory under which the user wants to build

and/or install the sundials package. By default, the sundials libraries and header files are installed
under the subdirectories build tree/lib and build tree/include, respectively. Also, source tree refers
to the directory where the sundials source code is located. The chosen build tree may be different
from the source tree, thus allowing for multiple installations of the sundials suite with different
configuration options.

Concerning the installation procedure outlined below, after invoking the tar command with the
appropriate options, the contents of the sundials archive (or the source tree) will be extracted to
a directory named sundials. Since the name of the extracted directory is not version-specific it is
recommended that the user refrain from extracting the archive to a directory containing a previous
version/release of the sundials suite. If the user is only upgrading and the previous installation of
sundials is not needed, then the user may remove the previous installation by issuing

% rm -rf sundials

from a shell command prompt.
Even though the installation procedure given below presupposes that the user will use the default

vector modules supplied with the distribution, using the sundials suite with a user-supplied vector
module normally will not require any changes to the build procedure.

2.1 Installation steps

To install the sundials suite, given a downloaded file named sundials file.tar.gz, issue the following
commands from a shell command prompt, while within the directory where source tree is to be
located. The names of installed libraries and header files are listed in Table 2.1 for reference. (For
brevity, the corresponding .c files are not listed.) Regarding the file extension .lib appearing in
Table 2.1, shared libraries generally have an extension of .so and static libraries have an extension
of .a. (See Options for library support for additional details.)

4 IDA Installation Procedure

1. gunzip sundials file.tar.gz

2. tar -xf sundials file.tar [creates sundials directory]

3. cd build tree

4. path to source tree/configure options [options can be absent]

5. make

6. make install

7. make examples

8. If system storage space conservation is a priority, then issue
% make clean

and/or
% make examples_clean

from a shell command prompt to remove unneeded object files.

2.2 Configuration options

The installation procedure given above will generally work without modification; however, if the
system includes multiple MPI implementations, then certain configure script-related options may
be used to indicate which MPI implementation should be used. Also, if the user wants to use
non-default language compilers, then, again, the necessary shell environment variables must be
appropriately redefined. The remainder of this section provides explanations of available configure
script options.

General options

--prefix=PREFIX

Location for architecture-independent files.

Default: PREFIX=build tree

--includedir=DIR

Alternate location for installation of header files.

Default: DIR=PREFIX/include

--libdir=DIR

Alternate location for installation of libraries.

Default: DIR=PREFIX/lib

--disable-examples

All available example programs are automatically built unless this option is given. The example
executables are stored under the following subdirectories of the associated solver:

build tree/solver/examples ser : serial C examples

build tree/solver/examples par : parallel C examples (MPI-enabled)

build tree/solver/fcmix/examples ser : serial Fortran examples

build tree/solver/fcmix/examples par : parallel Fortran examples (MPI-enabled)

Note: Some of these subdirectories may not exist depending upon the solver and/or the config-
uration options given.

2.2 Configuration options 5

Table 2.1: SUNDIALS libraries and header files

Module Libraries Header files
shared libsundials shared.lib sundialstypes.h

sundialsmath.h

sundials config.h

dense.h

smalldense.h

band.h

spgmr.h

iterative.h

nvector.h

nvector serial libsundials nvecserial.lib nvector serial.h

libsundials fnvecserial.a

nvector parallel libsundials nvecparallel.lib nvector parallel.h

libsundials fnvecparallel.a

cvode libsundials cvode.lib cvode.h

libsundials fcvode.a cvdense.h

cvband.h

cvdiag.h

cvspgmr.h

cvbandpre.h

cvbbdpre.h

cvodes libsundials cvodes.lib cvodes.h

cvodea.h

cvdense.h

cvband.h

cvdiag.h

cvspgmr.h

cvbandpre.h

cvbbdpre.h

ida libsundials ida.lib ida.h

idadense.h

idaband.h

idaspgmr.h

idabbdpre.h

kinsol libsundials kinsol.lib kinsol.h

libsundials fkinsol.a kinspgmr.h

kinbbdpre.h

6 IDA Installation Procedure

--disable-solver

Although each existing solver module is built by default, support for a given solver can be
explicitly disabled using this option. The valid values for solver are: cvode, cvodes, ida, and
kinsol.

--with-cppflags=ARG

Specify additional C preprocessor flags (e.g., ARG=-I<include dir> if necessary header files are
located in nonstandard locations).

--with-cflags=ARG

Specify additional C compilation flags.

--with-ldflags=ARG

Specify additional linker flags (e.g., ARG=-L<lib dir> if required libraries are located in non-
standard locations).

--with-libs=ARG

Specify additional libraries to be used (e.g., ARG=-l<foo> to link with the library named
libfoo.a or libfoo.so).

--with-precision=ARG

By default, sundials will define a real number (internally referred to as realtype) to be a
double-precision floating-point numeric data type (double C-type); however, this option may
be used to build sundials with realtype alternatively defined as a single-precision floating-
point numeric data type (float C-type) if ARG=single, or as a long double C-type if
ARG=extended.

Default: ARG=double

Options for Fortran support

--disable-f77

Using this option will disable all Fortran support. The fcvode, fkinsol and fnvector

modules will not be built regardless of availability.

--with-fflags=ARG

Specify additional Fortran compilation flags.

The configuration script will attempt to automatically determine the function name mangling scheme
required by the specified Fortran compiler, but the following two options may be used to override
the default behavior.

--with-f77underscore=ARG

This option pertains to the fkinsol, fcvode and fnvector Fortran-C interface modules
and is used to specify the number of underscores to append to function names so Fortran

routines can properly link with the associated sundials libraries. Valid values for ARG are:
none, one and two.

Default: ARG=one

--with-f77case=ARG

Use this option to specify whether the external names of the fkinsol, fcvode and fnvector

Fortran-C interface functions should be lowercase or uppercase so Fortran routines can
properly link with the associated sundials libraries. Valid values for ARG are: lower and
upper.

Default: ARG=lower

2.2 Configuration options 7

Options for MPI support

The following configuration options are only applicable to the parallel sundials packages:

--disable-mpi

Using this option will completely disable MPI support.

--with-mpicc=ARG

--with-mpif77=ARG

By default, the configuration utility script will use the MPI compiler scripts named mpicc and
mpif77 to compile the parallelized sundials subroutines; however, for reasons of compatibility,
different executable names may be specified via the above options. Also, ARG=no can be used
to disable the use of MPI compiler scripts, thus causing the serial C and Fortran compilers
to be used to compile the parallelized sundials functions and examples.

--with-mpi-root=MPIDIR

This option may be used to specify which MPI implementation should be used. The sun-

dials configuration script will automatically check under the subdirectories MPIDIR/include

and MPIDIR/lib for the necessary header files and libraries. The subdirectory MPIDIR/bin

will also be searched for the C and Fortran MPI compiler scripts, unless the user uses
--with-mpicc=no or --with-mpif77=no.

--with-mpi-incdir=INCDIR

--with-mpi-libdir=LIBDIR

--with-mpi-libs=LIBS

These options may be used if the user would prefer not to use a preexisting MPI compiler
script, but instead would rather use a serial complier and provide the flags necessary to compile
the MPI-aware subroutines in sundials.

Often an MPI implementation will have unique library names and so it may be necessary to
specify the appropriate libraries to use (e.g., LIBS=-lmpich).

Default: INCDIR=MPIDIR/include, LIBDIR=MPIDIR/lib and LIBS=-lmpi

--with-mpi-flags=ARG

Specify additional MPI-specific flags.

Options for library support

By default, only static libraries are built, but the following option may be used to build shared
libraries on supported platforms.

--enable-shared

Using this particular option will result in both static and shared versions of the available sun-

dials libraries being built if the system supports shared libraries. To build only shared libraries
also specify --disable-static.

Note: The fcvode and fkinsol libraries can only be built as static libraries because they
contain references to externally defined symbols, namely user-supplied Fortran subroutines.
Although the Fortran interfaces to the serial and parallel implementations of the supplied
nvector module do not contain any unresolvable external symbols, the libraries are still built
as static libraries for the purpose of consistency.

8 IDA Installation Procedure

Options for cross-compilation

If the sundials suite will be cross-compiled (meaning the build procedure will not be completed on
the actual destination system, but rather on an alternate system with a different architecture) then
the following two options should be used:

--build=BUILD

This particular option is used to specify the canonical system/platform name for the build
system.

--host=HOST

If cross-compiling, then the user must use this option to specify the canonical system/platform
name for the destination system.

Environment variables

The following environment variables can be locally (re)defined for use during the configuration of
sundials. See the next section for illustrations of these.

CC

F77

Since the configuration script uses the first C and Fortran compilers found in the current
executable search path, then each relevant shell variable (CC and F77) must be locally (re)defined
in order to use a different compiler. For example, to use xcc (executable name of chosen
compiler) as the C language compiler, use CC=xcc in the configure step.

CFLAGS

FFLAGS

Use these environment variables to override the default C and Fortran compilation flags.

2.3 Configuration examples

The following examples are meant to help demonstrate proper usage of the configure options:

% configure CC=gcc F77=g77 --with-cflags=-g3 --with-fflags=-g3 \

--with-mpicc=/usr/apps/mpich/1.2.4/bin/mpicc \

--with-mpif77=/usr/apps/mpich/1.2.4/bin/mpif77

The above example builds sundials using gcc as the serial C compiler, g77 as the serial Fortran

compiler, mpicc as the parallel C compiler, mpif77 as the parallel Fortran compiler, and appends
the -g3 compilaton flag to the list of default flags.

% configure CC=gcc --disable-examples --with-mpicc=no \

--with-mpi-root=/usr/apps/mpich/1.2.4 \

--with-mpi-libs=-lmpich

This example again builds sundials using gcc as the serial C compiler, but the --with-mpicc=no
option explicitly disables the use of the corresponding MPI compiler script. In addition, since
the --with-mpi-root option is given, the compilation flags -I/usr/apps/mpich/1.2.4/include

and -L/usr/apps/mpich/1.2.4/lib are passed to gcc when compiling the MPI-enabled functions.
The --disable-examples option disables the examples (which means a Fortran compiler is not
required). The --with-mpi-libs option is still needed so that the configure script can check if gcc
can link with the appropriate MPI library as -lmpi is the internal default.

Chapter 3

Mathematical Considerations

IDA solves the initial-value problem for a DAE system of the general form

F (t, y, y′) = 0 , y(t0) = y0 , y
′(t0) = y′0 , (3.1)

where y, y′, and F are vectors in RN , t is the independent variable, y′ = dy/dt, and initial conditions
y(t0) = y0, y

′(t0) = y′0 are given. (Often t is time, but it certainly need not be.)
Prior to integrating a DAE initial-value problem, an important requirement is that the pair of

vectors y0 and y′0 are both initialized to satisfy the DAE residual F (t0, y0, y
′
0) = 0. For a class

of problems that includes so-called semi-explicit index-one systems, IDA provides a routine that
computes consistent initial conditions from a user’s initial guess [4]. For this, the user must identify
sub-vectors of y (not necessarily contiguous), denoted yd and ya, which are its differential and
algebraic parts, respectively, such that F depends on y′d but not on any components of y′a. The
assumption that the system is “index one” means that for a given t and yd, the system F (t, y, y′) = 0
defines ya uniquely. In this case, a solver within IDA computes ya and y′d at t = t0, given yd and an
initial guess for ya. A second available option with this solver also computes all of y(t0) given y

′(t0);
this is intended mainly for quasi-steady-state problems, where y′(t0) = 0 is given. In both cases,
IDA solves the system F (t0, y0, y

′
0) = 0 for the unknown components of y0 and y′0, using Newton

iteration augmented with a line search global strategy. In doing this, it makes use of the existing
machinery that is to be used for solving the linear systems during the integration, in combination
with certain tricks involving the step size (which is set artificially for this calculation). For problems
that do not fall into either of these categories, the user is responsible for passing consistent values
or risk failure in the numerical integration.

The integration method in IDA is variable-order, variable-coefficient BDF, in fixed-leading-
coefficient form [1]. The method order ranges from 1 to 5, with the BDF of order q given by
the multistep formula

q
∑

i=0

αn,iyn−i = hny
′
n , (3.2)

where yn and y′n are the computed approximations to y(tn) and y′(tn), respectively, and the step
size is hn = tn− tn−1. The coefficients αn,i are uniquely determined by the order q, and the history
of the step sizes. The application of the BDF (3.2) to the DAE system (3.1) results in a nonlinear
algebraic system to be solved at each step:

G(yn) ≡ F

(

tn, yn, h
−1
n

q
∑

i=0

αn,iyn−i

)

= 0 . (3.3)

Regardless of the method options, the solution of the nonlinear system (3.3) is accomplished with
some form of Newton iteration. This leads to a linear system for each Newton correction, of the
form

J [yn(m+1) − yn(m)] = −G(yn(m)) , (3.4)

10 Mathematical Considerations

where yn(m) is the m-th approximation to yn. Here J is some approximation to the system Jacobian

J =
∂G

∂y
=
∂F

∂y
+ α

∂F

∂y′
, (3.5)

where α = αn,0/hn. The scalar α changes whenever the step size or method order changes. The
linear systems are solved by one of three methods:

• direct dense solve (serial version only),

• direct banded solve (serial version only), or

• SPGMR = Scaled Preconditioned GMRES, with restarts allowed.

For the SPGMR case, preconditioning is allowed only on the left,1 so that GMRES is applied to
systems (P−1J)∆y = −P−1G.

In the process of controlling errors at various levels, ida uses a weighted root-mean-square norm,
denoted ‖ · ‖WRMS, for all error-like quantities. The weights used are based on the current solution
and on the relative and absolute tolerances input by the user, namely

Wi = rtol · |yi|+ atoli . (3.6)

Because Wi represents a tolerance in the component yi, a vector whose norm is 1 is regarded as
“small.” For brevity, we will usually drop the subscript WRMS on norms in what follows.

In the case of a direct linear solver (dense or banded), the nonlinear iteration (3.4) is a Modified
Newton iteration, in that the Jacobian J is fixed (and usually out of date), with a coefficient ᾱ
in place of α in J . When using SPGMR as the linear solver, the iteration is an Inexact Newton
iteration, using the current Jacobian (through matrix-free products Jv), in which the linear residual
J∆y +G is nonzero but controlled. The Jacobian matrix J (direct cases) or preconditioner matrix
P (SPGMR case) is updated when:

• starting the problem,

• the value ᾱ at the last update is such that α/ᾱ < 3/5 or α/ᾱ > 5/3, or

• a non-fatal convergence failure occurred with an out-of-date J or P .

The above strategy balances the high cost of frequent matrix evaluations and preprocessing with
the slow convergence due to infrequent updates. To reduce storage costs on an update, Jacobian
information is always reevaluated from scratch.

The stopping test for the Newton iteration in IDA ensures that the iteration error yn − yn(m) is
small relative to y itself. For this, we estimate the linear convergence rate at all iterations m > 1 as

R =

(

δm

δ1

)
1

m−1

,

where the δm = yn(m) − yn(m−1) is the correction at iteration m = 1, 2, The Newton iteration is
halted if R > 0.9. The convergence test at the m-th iteration is then

S‖δm‖ < 0.33 , (3.7)

where S = R/(R − 1) whenever m > 1 and R ≤ 0.9. The user has the option of changing the
constant in the convergence test from its default value of 0.33. The quantity S is set to S = 20
initially and whenever J or P is updated, and it is reset to S = 100 on a step with α 6= ᾱ. Note that
at m = 1, the convergence test (3.7) uses an old value for S. Therefore, at the first Newton iteration,
we make an additional test and stop the iteration if ‖δ1‖ < 0.33 · 10−4 (since such a δ1 is probably

1Left preconditioning is required to make the norm of the linear residual in the Newton iteration meaningful; in
general, ‖J∆y +G‖ is meaningless, since the weights used in the WRMS-norm correspond to y.

11

just noise and therefore not appropriate for use in evaluating R). We allow only a small number
(default value 4) of Newton iterations. If convergence fails with J or P current, we are forced to
reduce the step size hn, and we replace hn by hn/4. The integration is halted after a preset number
(default value 10) of convergence failures. Both the maximum allowable Newton iterations and the
maximum nonlinear convergence failures can be changed by the user from their default values.

When SPGMR is used to solve the linear system, to minimize the effect of linear iteration errors
on the nonlinear and local integration error controls, we require the preconditioned linear residual
to be small relative to the allowed error in the Newton iteration, i.e., ‖P−1(Jx+G)‖ < 0.05 · 0.33.
The safety factor 0.05 can be changed by the user.

In the direct linear solver cases, the Jacobian J defined in (3.5) can be either supplied by the
user or have IDA compute one internally by difference quotients. In the latter case, we use the
approximation

Jij = [Fi(t, y + σjej , y
′ + ασjej)− Fi(t, y, y

′)]/σj , with

σj =
√
U max

{

|yj |, |hy′j |,Wj

}

sign(hy′j) ,

where U is the unit roundoff, h is the current step size, andWj is the error weight for the component
yj defined by (3.6). In the SPGMR case, if a routine for Jv is not supplied, such products are
approximated by

Jv = [F (t, y + σv, y′ + ασv)− F (t, y, y′)]/σ ,

where the increment σ is 1/‖v‖.2 As an option, the user can specify a constant factor that is inserted
into this expression for σ.

During the course of integrating the system, IDA computes an estimate of the local truncation
error, LTE, at the n-th time step, and requires this to satisfy the inequality

‖LTE‖WRMS ≤ 1 .

Asymptotically, LTE varies as hq+1 at step size h and order q, as does the predictor-corrector
difference ∆n ≡ yn − yn(0). Thus there is a constant C such that

LTE = C∆n +O(hq+2) ,

and so the norm of LTE is estimated as |C| · ‖∆n‖. In addition, IDA requires that the error in the
associated polynomial interpolant over the current step be bounded by 1 in norm. The leading term
of the norm of this error is bounded by C̄‖∆n‖ for another constant C̄. Thus the local error test in
IDA is

max{|C|, C̄}‖∆n‖ ≤ 1 . (3.8)

A user option is available by which the algebraic components of the error vector are omitted from
the test (3.8), if these have been so identified.

In IDA, the local error test is tightly coupled with the logic for selecting the step size and order.
First, there is an initial phase that is treated specially; for the first few steps, the step size is doubled
and the order raised (from its initial value of 1) on every step, until (a) the local error test (3.8)
fails, (b) the order is reduced (by the rules given below), or (c) the order reaches 5 (the maximum).
For step and order selection on the general step, IDA uses a different set of local error estimates,
based on the asymptotic behavior of the local error in the case of fixed step sizes. At each of the
orders q′ equal to q, q − 1 (if q > 1), q − 2 (if q > 2), or q + 1 (if q < 5), there are constants C(q′)
such that the norm of the local truncation error at order q′ satisfies

LTE(q′) = C(q′)‖φ(q′ + 1)‖+O(hq′+2) ,

where φ(k) is a modified divided difference of order k that is retained by IDA (and behaves asymp-
totically as hk). Thus the local truncation errors are estimated as ELTE(q′) = C(q′)‖φ(q′ + 1)‖

2All vectors v occurring here have been divided by the weights Wi and then scaled so as to have L2 norm equal to
1. Thus, in fact σ = 1/‖v‖WRMS =

√
N .

12 Mathematical Considerations

to select step sizes. But the choice of order in IDA is based on the requirement that the scaled
derivative norms, ‖hky(k)‖, are monotonically decreasing with k, for k near q. These norms are
again estimated using the φ(k), and in fact

‖hq′+1y(q′+1)‖ ≈ T (q′) ≡ (q′ + 1)ELTE(q′) .

The step/order selection begins with a test for monotonicity that is made even before the local error
test is performed. Namely, the order is reset to q′ = q − 1 if (a) q = 2 and T (1) ≤ T (2)/2, or (b)
q > 2 and max{T (q − 1), T (q − 2)} ≤ T (q); otherwise q′ = q. Next the local error test (3.8) is
performed, and if it fails, the step is redone at order q ← q′ and a new step size h′. The latter is
based on the hq+1 asymptotic behavior of ELTE(q), and, with safety factors, is given by

η = h′/h = 0.9/[2 ELTE(q)]1/(q+1) .

The value of η is adjusted so that 0.25 ≤ η ≤ 0.9 before setting h← h′ = ηh. If the local error test
fails a second time, IDA uses η = 0.25, and on the third and subsequent failures it uses q = 1 and
η = 0.25. After 10 failures, IDA returns with a give-up message.

As soon as the local error test has passed, the step and order for the next step may be adjusted.
No such change is made if q′ = q − 1 from the prior test, if q = 5, or if q was increased on the
previous step. Otherwise, if the last q+1 steps were taken at a constant order q < 5 and a constant
step size, IDA considers raising the order to q + 1. The logic is as follows: (a) If q = 1, then reset
q = 2 if T (2) < T (1)/2. (b) If q > 1 then

• reset q ← q − 1 if T (q − 1) ≤ min{T (q), T (q + 1)};

• else reset q ← q + 1 if T (q + 1) < T (q);

• leave q unchanged otherwise [then T (q − 1) > T (q) ≤ T (q + 1)].

In any case, the new step size h′ is set much as before:

η = h′/h = 1/[2 ELTE(q)]1/(q+1) .

The value of η is adjusted such that (a) if η > 2, η is reset to 2; (b) if η ≤ 1, η is restricted to
0.5 ≤ η ≤ 0.9; and (c) if 1 < η < 2 we use η = 1. Finally h is reset to h′ = ηh. Thus we do not
increase the step size unless it can be doubled. See [1] for details.

IDA permits the user to impose optional inequality constraints on individual components of the
solution vector y. Any of the following four constraints can be imposed: yi > 0, yi < 0, yi ≥ 0,
or yi ≤ 0. The constraint satisfaction is tested after a successful nonlinear system solution. If any
constraint fails, we declare a convergence failure of the Newton iteration and reduce the step size.
Rather than cutting the step size by some arbitrary factor, IDA estimates a new step size h′ using a
linear approximation of the components in y that failed the constraint test (including a safety factor
of 0.9 to cover the strict inequality case). These additional constraints are also imposed during the
calculation of consistent initial conditions.

Normally, IDA takes steps until a user-defined output value t = tout is overtaken, and then
computes y(tout) by interpolation. However, a “one step” mode option is available, where control
returns to the calling program after each step. There are also options to force IDA not to integrate
past a given stopping point t = tstop.

Chapter 4

Code Organization

4.1 SUNDIALS organization

The family of solvers referred to as sundials consists of the solvers cvode (for ODE systems),
kinsol (for nonlinear algebraic systems), and ida (for differential-algebraic systems). In addition,
variants of these which also do sensitivity analysis calculations are available or in development.
cvodes, an extension of cvode that provides both forward and adjoint sensitivity capabilities is
available, while idas is currently in development.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Fig. 4.1). The following is a
list of the solver packages presently available:

• cvode, a solver for stiff and nonstiff ODEs dy/dt = f(t, y);

• cvodes, a solver for stiff and nonstiff ODEs dy/dt = f(t, y, p) with sensitivity analysis capa-
bilities;

• kinsol, a solver for nonlinear algebraic systems F (u) = 0;

• ida, a solver for differential-algebraic systems F (t, y, y′) = 0.

4.2 IDA organization

The ida package is written in the ANSI C language. The following summarizes the basic structure
of the package, although knowledge of this structure is not necessary for its use.

The overall organization of the ida package is shown in Figure 4.2. The central integration
module, implemented in the files ida.h and ida.c, deals with the evaluation of integration coeffi-
cients, the Newton iteration process, estimation of local error, selection of stepsize and order, and
interpolation to user output points, among other issues. Although this module contains logic for the
basic Newton iteration algorithm, it has no knowledge of the method being used to solve the linear
systems that arise. For any given user problem, one of the linear system modules is specified, and
is then invoked as needed during the integration.

At present, the package includes the following three ida linear system modules:

• idadense: LU factorization and backsolving with dense matrices;

• idaband: LU factorization and backsolving with banded matrices;

• idaspgmr: scaled preconditioned GMRES method.

This set of linear solver modules is intended to be expanded in the future as new algorithms are
developed.

14 Code Organization

CVDIAG CVDENSE CVBAND CVSPGMR IDADENSE IDABAND IDASPGMR

IDA KINSOL

KINSPGMR

CVODE CVODES

SUNDIALS

DENSE SPGMR
ITERATIVE

BAND NVECTOR

NVECTOR_SERIAL NVECTOR_PARALLEL

(a) High-level diagram

nvector.h
dense.h
spgmr.h
...

sundialstypes.h
sundialsmath.h

...

...
......

cvdense.h
cvspgmr.h

cvodes.h
cvodea.h
cvdense.h
cvspgmr.h
...

cvode.c
cvdense.c
cvspgmr.c

cvodes.c
cvodea.c
cvdense.c
cvspgmr.c

kinsol.h
kinspgmr.h
...

ida.h
idadense.h
idaspgmr.h
...

kinsol.c
kinspgmr.c

ida.c
idadense.c
idaspgmr.c
...

cvode.h

configure

nvector.c
dense.c
spgmr.c

sundialsmath.c

...

source

fcmix fcmix

doc

examples_par

examples_ser examples_ser

examples_par

doc doc

examples_par

examples_ser

source sourcesourcesource

includeincludeincludeincludeinclude

shared cvode cvodes kinsol ida nvec_ser nvec_par

sundials

examples_ser

examples_par

doc

(b) Directory structure

Figure 4.1: Organization of the SUNDIALS suite

4.2 IDA organization 15

CVODE

SPGMR
ITERATIVE

BANDDENSE

NVECTOR_PARALLEL

NVECTOR

IDADENSE IDABAND IDASPGMR

IDABBDPRE

NVECTOR_SERIAL

SUNDIALS

IDAKINSOLCVODES

Figure 4.2: Overall structure diagram of the ida package. Modules specific to ida are distinguished
by rounded boxes, while generic solver and auxiliary modules are in square boxes.

In the case of the direct idadense and idaband methods, the package includes an algorithm
for the approximation of the Jacobian by difference quotients, but the user also has the option of
supplying the Jacobian (or an approximation to it) directly. In the case of the iterative idaspgmr

method, the package includes an algorithm for the approximation by difference quotients of the
product between the Jacobian matrix and a vector of appropriate length. Again, the user has the
option of providing a routine for this operation. In the case of idaspgmr, the preconditioning must
be supplied by the user in two phases: setup (preprocessing of Jacobian data) and solve. While there
is no default choice of preconditioner analogous to the difference quotient approximation in the direct
case, the references [2]-[5], together with the example and demonstration programs included with
ida, offer considerable assistance in building preconditioners.

Each ida linear solver module consists of five routines, devoted to (1) memory allocation and
initialization, (2) setup of the matrix data involved, (3) solution of the system, (4) monitoring
performance, and (5) freeing of memory. The setup and solution phases are separate because the
evaluation of Jacobians and preconditioners is done only periodically during the integration, as
required to achieve convergence. The call list within the central ida module to each of the five
associated functions is fixed, thus allowing the central module to be completely independent of the
linear system method.

These modules are also decomposed in another way. Each of the modules idadense, idaband,
and idaspgmr is a set of interface routines built on top of a generic solver module, named dense,
band, and spgmr, respectively. The interfaces deal with the use of these methods in the ida

context, whereas the generic solver is independent of the context. While the generic solvers here
were generated with sundials in mind, our intention is that they be usable in other applications
as general-purpose solvers. This separation also allows for any generic solver to be replaced by an
improved version, with no necessity to revise the ida package elsewhere.

ida also provides a preconditioner module, idabbdpre, that works in conjunction with nvec-

tor parallel and generates a preconditioner that is a block-diagonal matrix with each block being
a band matrix.

All state information used by ida to solve a given problem is saved in a structure, and a pointer
to that structure is returned to the user. There is no global data in the ida package, and so in this
respect it is reentrant. State information specific to the linear solver is saved in a separate structure,
a pointer to which resides in the ida memory structure. The reentrancy of ida was motivated by

16 Code Organization

the situation where two or more problems are solved by intermixed calls to the package from one
user program.

Chapter 5

Using IDA

This chapter is concerned with the use of ida for the integration of DAEs. The following sections
treat the header files, the layout of the user’s main program, description of the ida user-callable
functions, and description of user-supplied functions. The listings of the sample programs in the
companion document [10] may also be helpful. Those codes may be used as templates (with the
removal of some lines involved in testing), and are included in the ida package.

The user should be aware that not all linear solver modules are compatible with all nvector

implementations. For example, nvector parallel is not compatible with the direct dense or direct
band linear solvers, since these linear solver modules need to form the complete system Jacobian.
The idadense and idaband modules can only be used with nvector serial. The preconditioner
module idabbdpre can only be used with nvector parallel.

ida uses various constants for both input and output. These are defined as needed in this chapter,
but for convenience are also listed separately in Chapter 9.

5.1 Data types

The sundialstypes.h file contains the definition of the type realtype, which is used by the sundi-

als solvers for all floating-point data. The type realtype can be float, double, or long double,
with the default being double. The user can change the precision of the sundials solvers arithmetic
at the configuration stage (see §2.2).

Additionally, based on the current precision, sundialstypes.h defines BIG REAL to be the largest
value representable as a realtype, SMALL REAL to be the smallest value representable as a realtype,
and UNIT ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within sundials, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with
no suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes
it a float, whereas using the suffix “L” makes it a long double. For example,

#define A 1.0

#define B 1.0F

#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to
be a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to
1.0 if realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double.
sundials uses the RCONST macro internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONST macro to handle floating-point
constants is precision-independent except for any calls to precision-specific standard math library
functions. (Our example programs use both realtype and RCONST.) Users can, however, use the
type double, float, or long double in their code (assuming the typedef for realtype matches this
choice). Thus, a previously existing piece of ANSI C code can use sundials without modifying the

18 Using IDA

code to use realtype, so long as the sundials libraries use the correct precision (for details see
§2.2).

5.2 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

• ida.h, the header file for ida, which defines the several types and various constants, and
includes function prototypes.

Note that ida.h includes sundialstypes.h, which defines the types realtype and booleantype

and the constants FALSE and TRUE.
The calling program must also include an nvector implementation header file (see Chapter

6 for details). For the two nvector implementations that are included in the ida package, the
corresponding header files are:

• nvector serial.h, which defines the serial implementation nvector serial;

• nvector parallel.h, which defines the parallel MPI implementation, nvector parallel.

Note that both these files include in turn the header file nvector.h which defines the abstract
N Vector type.

Finally, a linear solver module header file is required. The header files corresponding to the
various linear solver options in ida are:

• idadense.h, which is used with the dense direct linear solver in the context of ida. This
in turn includes a header file (dense.h) which defines the DenseMat type and corresponding
accessor macros;

• idaband.h, which is used with the band direct linear solver in the context of ida. This in turn
includes a header file (band.h) which defines the BandMat type and corresponding accessor
macros;

• idaspgmr.h, which is used with the Krylov solver spgmr in the context of ida. This in turn
includes a header file (iterative.h) which enumerates the kind of preconditioning and the
choices for the Gram-Schmidt process.

5.3 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration
of a DAE IVP. Some steps are independent of the nvector implementation used; where this is
not the case, usage specifications are given for the two implementations provided with ida: steps
marked with [P] correspond to nvector parallel, while steps marked with [S] correspond to
nvector serial.

1. [P] Initialize MPI

Call MPI Init(&argc, &argv); to initialize MPI if used by the user’s program, aside from
the internal use in nvector parallel. Here argc and argv are the command line argument
counter and array received by main.

2. Set problem dimensions

[S] Set N, the problem size N .

[P] Set Nlocal, the local vector length (the sub-vector length for this processor); N, the global
vector length (the problem size N , and the sum of all the values of Nlocal); and the active set
of processors.

5.3 A skeleton of the user’s main program 19

3. Set vector of initial values

To set the vectors y0 and yp0 to initial values for y and y′, use functions defined by a particular
nvector implementation. For the two nvector implementations provided, if a realtype array
ydata already exists, containing the initial values of y, make the call:

[S] y0 = NV Make Serial(N, ydata);

[P] y0 = NV Make Parallel(comm, Nlocal, N, ydata);

Otherwise, make the call:

[S] y0 = NV New Serial(N);

[P] y0 = NV New Parallel(comm, Nlocal, N);

and load initial values into the structure defined by:

[S] NV DATA S(y0)

[P] NV DATA P(y0)

Here comm is the MPI communicator, set in one of two ways: If a proper subset of active
processors is to be used, comm must be set by suitable MPI calls. Otherwise, to specify that all
processors are to be used, comm must be MPI COMM WORLD.

The initial conditions for y′ are set similarly.

4. Create ida object

Call ida mem = IDACreate(); to create the ida memory block. IDACreate returns a pointer
to the ida memory structure. See §5.4.1 for details.

5. Allocate internal memory

Call IDAMalloc(...); to provide required problem specifications, allocate internal memory for
ida, and initialize ida. IDAMalloc returns an error flag to indicate success or an illegal argument
value. See §5.4.1 for details.

6. Set optional inputs

Call IDASet* functions to change from their default values any optional inputs that control the
behavior of ida. See §5.4.5 for details.

7. Attach linear solver module

Initialize the linear solver module with one of the following calls (for details see §5.4.2):
[S] flag = IDADense(...);

[S] flag = IDABand(...);

flag = IDASpgmr(...);

8. Set linear solver optional inputs

Call IDA*Set* functions from the selected linear solver module to change optional inputs specific
to that linear solver. See §5.4.5 for details.

9. Correct initial values

Optionally, call IDACalcIC to correct the initial values y0 and yp0.

10. Advance solution in time

For each point at which output is desired, call flag = IDASolve(ida mem, tout, &tret,

yret, ypret, itask); Set itask to specify the return mode. The vector yret (which can
be the same as the vector y0 above) will contain y(t), while the vector ypret will contain y ′(t).

20 Using IDA

See §5.4.4 for details.

11. Get optional outputs

Call IDA*Get* functions to obtain optional output. See §5.4.7 for details.

12. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vectors yret and ypret by calling
the destructor function defined by the nvector implementation:

[S] NV Destroy Serial(yret);

[P] NV Destroy Parallel(yret);

and similarly for ypret.

13. Free solver memory

IDAFree(ida mem); to free the memory allocated for ida.

14. [P] Finalize MPI

Call MPI Finalize(); to terminate MPI.

5.4 User-callable functions

This section describes the ida functions that are called by the user to set up and solve a DAE.
Some of these are required. However, starting with §5.4.5, the functions listed involve optional
inputs/outputs or restarting, and those paragraphs can be skipped for a casual use of ida. In any
case, refer to §5.3 for the correct order of these calls.

5.4.1 IDA initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only
after the DAE solution is complete, as it frees the ida memory block created and allocated by the
first two calls.

IDACreate

Call ida mem = IDACreate();

Description The function IDACreate instantiates an ida solver object.

Arguments IDACreate has no arguments.

Return value If successful, IDACreate returns a pointer to the newly created ida memory block (of
type void *). If an error occurred, IDACreate prints an error message to stderr and
returns NULL.

IDAMalloc

Call flag = IDAMalloc(ida mem, res, t0, y0, yp0, itol, reltol, abstol);

Description The function IDAMalloc provides required problem and solution specifications, allo-
cates internal memory, and initializes ida.

Arguments ida mem (void *) pointer to the ida memory block returned by IDACreate.

res (IDAResFn) is the C function which computes F in the DAE. This function
has the form res(t, yy, yp, resval, res data) (for full details see §5.5).

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

5.4 User-callable functions 21

yp0 (N Vector) is the initial value of y′.

itol (int) is one of IDA SS, IDA SV, or IDA WF, where itol=IDA SS indicates
scalar relative error tolerance and scalar absolute error tolerance, while itol=IDA SV

indicates scalar relative error tolerance and vector absolute error tolerance.
The latter choice is important when the absolute error tolerance needs to be
different for each component of the DAE. If itol=IDA WF, the arguments
reltol and abstol are ignored and the user is expected to provide a func-
tion to evaluate the error weight vector W from (3.6). See IDASetEwtFn in
§5.4.5.

reltol (realtype) is the relative error tolerance.

abstol (void *) is a pointer to the absolute error tolerance. If itol=IDA SS, abstol
must be a pointer to a realtype variable. If itol=IDA SV, abstol must be
an N Vector variable.

Return value The return flag flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAMalloc was successful.

IDA MEM NULL The ida memory block was not initialized through a previous call to
IDACreate.

IDA MEM FAIL A memory allocation request has failed.

IDA ILL INPUT An input argument to IDAMalloc has an illegal value.

Notes If an error occurred, IDAMalloc also prints an error message to the file specified by
the optional input errfp.

The tolerance values in reltol and abstol may be changed between calls to IDASolve
(see IDASetTolerances in §5.4.5).

! It is the user’s responsibility to provide compatible itol and abstol arguments.

IDAFree

Call IDAFree(ida mem);

Description The function IDAFree frees the pointer allocated by a previous call to IDAMalloc.

Arguments The argument is the pointer to the ida memory block (of type void *).

Return value The function IDAFree has no return value.

5.4.2 Linear solver specification functions

As previously explained, Newton iteration requires the solution of linear systems of the form (3.4).
There are three ida linear solvers currently available for this task: idadense, idaband, and
idaspgmr. The first two are direct solvers and derive their name from the type of approxima-
tion used for the Jacobian J = ∂F/∂y + cj∂F/∂y

′. idadense and idaband work with dense and
banded approximations to J , respectively. The third ida linear solver, idaspgmr, is an iterative
solver. The spgmr in the name indicates that it uses a scaled preconditioned GMRES method.

To specify an ida linear solver, after the call to IDACreate but before any calls to IDASolve, the
user’s program must call one of the functions IDADense, IDABand, IDASpgmr, as documented below.
The first argument passed to these functions is the ida memory pointer returned by IDACreate. A
call to one of these functions links the main ida integrator to a linear solver and allows the user to
specify parameters which are specific to a particular solver, such as the bandwidths in the idaband

case. The use of each of the linear solvers involves certain constants and possibly some macros,
that are likely to be needed in the user code. These are available in the corresponding header file
associated with the linear solver, as specified below.

In each case the linear solver module used by ida is actually built on top of a generic linear
system solver, which may be of interest in itself. These generic solvers, denoted dense, band, and
spgmr, are described separately in Chapter 8.

22 Using IDA

IDADense

Call flag = IDADense(ida mem, N);

Description The function IDADense selects the idadense linear solver.

The user’s main function must include the idadense.h header file.

Arguments ida mem (void *) pointer to the ida memory block.

N (long int) problem dimension.

Return value The return value flag (of type int) is one of

IDADENSE SUCCESS The idadense initialization was successful.

IDADENSE MEM NULL The ida mem pointer is NULL.

IDADENSE ILL INPUT The idadense solver is not compatible with the current nvec-

tor module.

IDADENSE MEM FAIL A memory allocation request failed.

Notes The idadense linear solver may not be compatible with a particular implementation
of the nvector module. Of the two nvector modules provided by sundials, only
nvector serial is compatible, while nvector parallel is not.

IDABand

Call flag = IDABand(ida mem, N, mupper, mlower);

Description The function IDABand selects the idaband linear solver.

The user’s main function must include the idaband.h header file.

Arguments ida mem (void *) pointer to the ida memory block.

N (long int) problem dimension.

mupper (long int) upper half-bandwidth of the problem Jacobian (or of the approx-
imation of it).

mlower (long int) lower half-bandwidth of the problem Jacobian (or of the approx-
imation of it).

Return value The return value flag (of type int) is one of

IDABAND SUCCESS The idaband initialization was successful.

IDABAND MEM NULL The ida mem pointer is NULL.

IDABAND ILL INPUT The idaband solver is not compatible with the current nvector

module, or one of the Jacobian half-bandwidths is outside its
valid range (0 . . . N−1).

IDABAND MEM FAIL A memory allocation request failed.

Notes The idaband linear solver may not be compatible with a particular implementa-
tion of the nvector module. Of the two nvector modules provided by sundials,
only nvector serial is compatible, while nvector parallel is not. The half-
bandwidths are to be set so that the nonzero locations (i, j) in the banded (approxi-
mate) Jacobian satisfy −mlower ≤ j − i ≤ mupper.

IDASpgmr

Call flag = IDASpgmr(ida mem, maxl);

Description The function IDASpgmr selects the idaspgmr linear solver.

The user’s main function must include the idaspgmr.h header file.

Arguments ida mem (void *) pointer to the ida memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value IDA SPGMR MAXL= 5.

5.4 User-callable functions 23

Return value The return value flag (of type int) is one of

IDASPGMR SUCCESS The idaspgmr initialization was successful.

IDASPGMR MEM NULL The ida mem pointer is NULL.

IDASPGMR MEM FAIL A memory allocation request failed.

5.4.3 Initial condition calculation function

IDACalcIC calculates corrected initial conditions for the DAE system for a class of index-one prob-
lems of semi-implicit form. It uses Newton iteration combined with a linesearch algorithm. Calling
IDACalcIC is optional. It is only necessary when the initial conditions do not solve the given system;
i.e., if y0 and yp0 are known to satisfy F (t0, y0, y

′
0) = 0, then a call to IDACalcIC is not necessary.

A call to IDACalcIC must be preceded by successful calls to IDACreate and IDAMalloc, and by
a successful call to the linear system solver specification function. The call to IDACalcIC should
precede the call(s) to IDASolve for the given problem.

IDACalcIC

Call flag = IDACalcIC(ida mem, t0, y0, yp0, icopt, tout1);

Description The function IDACalcIC corrects the initial values y0 and yp0 at time t0.

Arguments ida mem (void *) pointer to the ida memory block.

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

yp0 (N Vector) is the initial value of y′.

icopt (int) is the option of IDACalcIC to be used.

icopt=IDA YA YDP INIT directs IDACalcIC to compute the algebraic compo-
nents of y and differential components of y′, given the differential components
of y. This option requires that the N Vector id was set through IDASetId,
specifying the differential and algebraic components.

icopt=IDA Y INIT directs IDACalcIC to compute all components of y, given
y′. id is not required.

tout1 (realtype) is the first value of t at which a solution will be requested (from
IDASolve). This value is needed here to determine the direction of integra-
tion and rough scale in the independent variable t.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS IDASolve succeeded.

IDA MEM NULL The argument ida mem was NULL.

IDA NO MALLOC The allocation function IDAMalloc has not been called.

IDA ILL INPUT One of the input arguments was illegal.

IDA LSETUP FAIL The linear solver’s setup function failed in an unrecoverable
manner.

IDA LINIT FAIL The linear solver’s initialization function failed.

IDA LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable
manner.

IDA BAD EWT Some component of the error weight vector is zero (illegal),
either for the input value of y0 or a corrected value.

IDA FIRST RES FAIL The user’s residual function returned a recoverable error flag
on the first call, but IDACalcIC was unable to recover.

IDA RES FAIL The user’s residual function returned a nonrecoverable error
flag.

24 Using IDA

IDA NO RECOVERY The user’s residual function, or the linear solver’s setup or solve
function had a recoverable error, but IDACalcIC was unable to
recover.

IDA CONSTR FAIL IDACalcIC was unable to find a solution satisfying the inequal-
ity constraints.

IDA LINESEARCH FAIL The linesearch algorithm failed to find a solution with a step
larger than steptol in weighted RMS norm.

IDA CONV FAIL IDACalcIC failed to get convergence of the Newton iterations.

Notes All failure return values are negative and therefore a test flag < 0 will trap all
IDACalcIC failures.

Note that IDACalcIC is typically called before the first call to IDASolve and after
IDAMalloc to compute consistent initial conditions for the DAE problem. However,
it can be also called at any other further time to correct a pair (y, y′).

5.4.4 IDA solver function

This is the central step in the solution process - the call to perform the integration of the DAE.

IDASolve

Call flag = IDASolve(ida mem, tout, tret, yret, ypret, itask);

Description The function IDASolve integrates the DAE over an interval in t.

Arguments ida mem (void *) pointer to the ida memory block.

tout (realtype) the next time at which a computed solution is desired.

tret (realtype *) the time reached by the solver.

yret (N Vector) the computed solution vector y.

ypret (N Vector) the computed solution vector y′.

itask (int) a flag indicating the job of the solver for the next user step. The
IDA NORMAL task is to have the solver take internal steps until it has reached
or just passed the user specified tout parameter. The solver then interpo-
lates in order to return approximate values of y(tout) and y′(tout). The
IDA ONE STEP option tells the solver to just take one internal step and return
the solution at the point reached by that step. The IDA NORMAL TSTOP and
IDA ONE STEP TSTOP modes are similar to IDA NORMAL and IDA ONE STEP,
respectively, except that the integration never proceeds past the value tstop
(specified through the function IDASetStopTime).

Return value On return, IDASolve returns vectors yret and ypret and a corresponding independent
variable value t =*tret, such that (yret, ypret) are the computed values of (y(t),
y′(t)).

In NORMAL mode with no errors, *tret will be equal to tout and yret = y(tout),
ypret = y′(tout).

The return value flag (of type int) will be one of the following:

IDA SUCCESS IDASolve succeeded.

IDA TSTOP RETURN IDASolve succeeded by reaching the stop point specified through
the optional input function IDASetStopTime (see §5.4.5).

IDA MEM NULL The ida mem argument was NULL.

IDA ILL INPUT One of the inputs to IDASolve is illegal. This includes the sit-
uation when a component of the error weight vectors becomes
negative during internal time-stepping. The IDA ILL INPUT flag
will also be returned if the linear solver function initialization

5.4 User-callable functions 25

(called by the user after calling IDACreate) failed to set the lin-
ear solver-specific lsolve field in ida mem. In any case, the user
should see the printed error message for more details.

IDA TOO MUCH WORK The solver took mxstep internal steps but could not reach tout.
The default value for mxstep is MXSTEP DEFAULT = 500.

IDA TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user
for some internal step.

IDA ERR FAIL Error test failures occurred too many times (MXNEF = 10) during
one internal time step or occurred with |h| = hmin.

IDA CONV FAIL Convergence test failures occurred too many times (MXNCF = 10)
during one internal time step or occurred with |h| = hmin.

IDA LINIT FAIL The linear solver’s initialization function failed.

IDA LSETUP FAIL The linear solver’s setup function failed in an unrecoverable man-
ner.

IDA LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable man-
ner.

IDA CONSTR FAIL The inequality constraints were violated and the solver was un-
able to recover.

IDA REP RES ERR The user’s residual function repeatedly returned a recoverable
error flag, but the solver was unable to recover.

IDA RES FAIL The user’s residual function returned a nonrecoverable error flag.

Notes The vector yret can occupy the same space as the y0 vector of initial conditions that
was passed to IDAMalloc, while the vector ypret can occupy the same space as the
yp0.

In the IDA ONE STEP mode, tout is used on the first call only, to get the direction and
rough scale of the independent variable.

All failure return values are negative and therefore a test flag < 0 will trap all
IDASolve failures.

5.4.5 Optional input functions

ida provides an extensive list of functions that can be used to change various optional input param-
eters that control the behavior of the ida solver from their default values. Table 5.1 lists all optional
input functions in ida which are then described in detail in the remainder of this section. For the
most casual use of ida, the reader can skip to §5.5.

We note that, on error return, all these functions also print an error message to stderr (or to the
file pointed to by errfp if already specified). We also note that all error return values are negative,
so a test flag < 0 will catch any error.

Main solver optional input functions

The calls listed here can be executed in any order. However, if IDASetErrFile is to be called, that
call should be first, in order to take effect for any later error message.

IDASetErrFile

Call flag = IDASetErrFile(ida mem, errfp);

Description The function IDASetErrFile specifies the pointer to the file where all ida messages
should be directed.

Arguments ida mem (void *) pointer to the ida memory block.

errfp (FILE *) pointer to output file.

26 Using IDA

Table 5.1: Optional inputs for ida, idadense, idaband, and idaspgmr

Optional input Function name Default
IDA main solver

Pointer to an error file IDASetErrFile stderr

Data for residual function IDASetRdata NULL

Maximum order for BDF method IDASetMaxOrd 5
Maximum no. of internal steps before tout IDASetMaxNumSteps 500
Initial step size IDASetInitStep estimated
Maximum absolute step size IDASetMaxStep ∞
Value of tstop IDASetStopTime ∞
Maximum no. of error test failures IDASetMaxErrTestFails 10
Maximum no. of nonlinear iterations IDASetMaxNonlinIters 4
Maximum no. of convergence failures IDASetMaxConvFails 10
Maximum no. of error test failures IDASetMaxErrTestFails 7
Coeff. in the nonlinear convergence test IDASetNonlinConvCoef 0.33
Suppress alg. vars. from error test IDASetSuppressAlg FALSE

Variable types (differential/algebraic) IDASetId NULL

Inequality constraints on solution IDASetConstraints NULL

Integration tolerances IDASetTolerances none
IDA initial conditions calculation

Coeff. in the nonlinear convergence test IDASetNonlinConvCoefIC 0.0033
Maximum no. of steps IDASetMaxNumStepsIC 5
Maximum no. of Jacobian/precond. evals. IDASetMaxNumJacsIC 4
Maximum no. of Newton iterations IDASetMaxNumItersIC 10
Turn off linesearch IDASetLineSearchOffIC FALSE

Lower bound on Newton step IDASetStepToleranceIC (2/3)uround
IDADENSE linear solver

Dense Jacobian function and data IDADenseSetJacFn internal DQ, NULL
IDABAND linear solver

Band Jacobian function and data IDABandSetJacFn internal DQ, NULL
IDASPGMR linear solver

Preconditioner functions and data IDASpgmrSetPreconditioner NULL, NULL, NULL
Jacobian times vector function and data IDASpgmrSetJacTimesVecFn internal DQ, NULL
Type of Gram-Schmidt orthogonalization IDASpgmrSetGSType classical GS
Maximum no. of restarts IDASpgmrSetMaxRestarts 5
Factor in linear convergence test IDASpgmrSetEpsLin 0.05
Factor in DQ increment calculation IDASpgmrSetIncrementFactor 1.0

5.4 User-callable functions 27

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value for errfp is stderr.

Passing a value NULL disables all future error message output (except for the case in
which the ida memory pointer is NULL).

! If IDASetErrFile is to be called, it should be called before any other optional
input functions, in order to take effect for any later error message.

IDASetRdata

Call flag = IDASetRdata(ida mem, res data);

Description The function IDASetRdata specifies the user data block res data and attaches it to
the main ida memory block.

Arguments ida mem (void *) pointer to the ida memory block.

res data (void *) pointer to the user data.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes If res data is not specified, a NULL pointer is passed to all user functions that have it
as an argument.

IDASetMaxOrd

Call flag = IDASetMaxOrd(ida mem, maxord);

Description The function IDASetMaxOrd specifies the maximum order of the linear multistep
method.

Arguments ida mem (void *) pointer to the ida memory block.

maxord (int) value of the maximum method order.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The specified value maxord is negative, or larger than its previous
value.

Notes The default value is 5. Since maxord affects the memory requirements for the internal
ida memory block, its value can not be increased past its previous value.

IDASetMaxNumSteps

Call flag = IDASetMaxNumSteps(ida mem, mxsteps);

Description The function IDASetMaxNumSteps specifies the maximum number of steps to be taken
by the solver in its attempt to reach the next output time.

Arguments ida mem (void *) pointer to the ida memory block.

mxsteps (long int) maximum allowed number of steps.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

28 Using IDA

IDA ILL INPUT mxsteps is non-positive.

Notes Passing mxsteps= 0 results in ida using the default value (500).

IDASetInitStep

Call flag = IDASetInitStep(ida mem, hin);

Description The function IDASetInitStep specifies the initial step size.

Arguments ida mem (void *) pointer to the ida memory block.

hin (realtype) value of the initial step size.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes By default, ida estimates the initial step as the solution of ‖hy′‖WRMS = 1/2, with
an added restriction that |h| ≤ .001|tout - t0|.

IDASetMaxStep

Call flag = IDASetMaxStep(ida mem, hmax);

Description The function IDASetMaxStep specifies the maximum absolute value of the step size.

Arguments ida mem (void *) pointer to the ida memory block.

hmax (realtype) maximum absolute value of the step size.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT Either hmax is not positive or it is smaller than the minimum allowable
step.

Notes Pass hmax= 0 to obtain the default value ∞.

IDASetStopTime

Call flag = IDASetStopTime(ida mem, tstop);

Description The function IDASetStopTime specifies the value of the independent variable t past
which the solution is not to proceed.

Arguments ida mem (void *) pointer to the ida memory block.

tstop (realtype) value of the independent variable past which the solution should
not proceed.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default, if this routine is not called, is that no stop time is imposed.

IDASetMaxErrTestFails

Call flag = IDASetMaxErrTestFails(ida mem, maxnef);

Description The function IDASetMaxErrTestFails specifies the maximum number of error test
failures in attempting one step.

Arguments ida mem (void *) pointer to the ida memory block.

5.4 User-callable functions 29

maxnef (int) maximum number of error test failures allowed on one step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is 7.

IDASetMaxNonlinIters

Call flag = IDASetMaxNonlinIters(ida mem, maxcor);

Description The function IDASetMaxNonlinIters specifies the maximum number of nonlinear
solver iterations at one step.

Arguments ida mem (void *) pointer to the ida memory block.

maxcor (int) maximum number of nonlinear solver iterations allowed on one step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is 3.

IDASetMaxConvFails

Call flag = IDASetMaxConvFails(ida mem, maxncf);

Description The function IDASetMaxConvFails specifies the maximum number of nonlinear solver
convergence failures at one step.

Arguments ida mem (void *) pointer to the ida memory block.

maxncf (int) maximum number of allowable nonlinear solver convergence failures on
one step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is 10.

IDASetNonlinConvCoef

Call flag = IDASetNonlinConvCoef(ida mem, nlscoef);

Description The function IDASetNonlinConvCoef specifies the safety factor in the nonlinear con-
vergence test; see Chapter 3, Eq. (3.7).

Arguments ida mem (void *) pointer to the ida memory block.

nlscoef (realtype) coefficient in nonlinear convergence test.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is 0.33.

30 Using IDA

IDASetSuppressAlg

Call flag = IDASetSuppressAlg(ida mem, suppressalg);

Description The function IDASetSuppressAlg indicates whether or not to suppress algebraic vari-
ables in the local error test.

Arguments ida mem (void *) pointer to the ida memory block.

suppresslag (booleantype) indicates whether to suppress (TRUE) or not (FALSE) the
algebraic variables in the local error test.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is FALSE.

If suppresslag=TRUE is selected, then the id vector must be set (through IDASetId)
to specify the algebraic components.

IDASetId

Call flag = IDASetId(ida mem, id);

Description The function IDASetId specifies algebraic/differential components in the y vector.

Arguments ida mem (void *) pointer to the ida memory block.

id (N Vector) state vector. A value of 1.0 indicates a differential variable, while
0.0 indicates an algebraic variable.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The vector id is required if the algebraic variables are to be suppressed from the local
error test (see IDASetSuppressAlg) or if IDACalcIC is to be called with icopt =
IDA YA YDP INIT (see §5.4.3).

IDASetConstraints

Call flag = IDASetConstraints(ida mem, constraints);

Description The function IDASetConstraints specifies a vector defining inequality constraints for
each component of the solution vector y.

Arguments ida mem (void *) pointer to the ida memory block.

constraints (N Vector) vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on yi.

1.0 then yi will be constrained to be yi ≥ 0.0.

−1.0 then yi will be constrained to be yi ≤ 0.0.

2.0 then yi will be constrained to be yi > 0.0.

−2.0 then yi will be constrained to be yi < 0.0.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The constraints vector contains illegal values.

Notes The presence of a non-NULL constraints vector that is not 0.0 in all components will
cause constraint checking to be performed.

5.4 User-callable functions 31

IDASetTolerances

Call flag = IDASetTolerances(ida mem, itol, reltol, abstol);

Description The function IDASetTolerances resets the integration tolerances.

Arguments ida mem (void *) pointer to the ida memory block.

itol (int) is either IDA SS or IDA SV, where itol=IDA SS indicates scalar rela-
tive error tolerance and scalar absolute error tolerance, while itol=IDA SV

indicates scalar relative error tolerance and vector absolute error tolerance.
The latter choice is important when the absolute error tolerance needs to be
different for each component of the DAE.

reltol (realtype) is the relative error tolerance.

abstol (void *) is a pointer to the absolute error tolerance. If itol=IDA SS, abstol
must be a pointer to a realtype variable. If itol=IDA SV, abstol must be
an N Vector variable.

Return value The return value flag (of type int) is one of

IDA SUCCESS The tolerances have been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT An input argument has an illegal value.

Notes The integration tolerances are initially specified in the call to IDAMalloc (see §5.4.1).
This function call to IDASetTolerances is needed only if the tolerances are being
changed from their values between successive calls to IDASolve.

! It is the user’s responsibility to provide compatible itol and abstol arguments.

! It is illegal to call IDASetTolerances before a call to IDAMalloc.

IDASetEwtFn

Call flag = IDASetEwtFn(ida mem, efun, edata);

Description The function IDASetEwtFn specifies the user-defined function to be used in computing
the error weight vector W in (3.6).

Arguments ida mem (void *) pointer to the ida memory block.

efun (IDAEwtFn) is the C function which defines the ewt vector (see §5.5.2).
edata (void *) pointer to user data passed to efun every time it is called.

Return value The return value flag (of type int) is one of

IDA SUCCESS The function efun and data pointer edata have been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes This function can be called between successive calls to IDASolve.

If not needed, pass NULL for edata.

! It is illegal to call IDASetEwtFn before a call to IDAMalloc.

Linear solver optional input functions

The linear solver modules allow for various optional inputs, which are described here.

32 Using IDA

Dense Linear solver. The idadense solver needs a function to compute a dense approxima-
tion to the Jacobian matrix J(t, y, y′). This function must be of type IDADenseJacFn. The user
can supply his/her own dense Jacobian function, or use the default difference quotient function
IDADenseDQJac that comes with the idadense solver. To specify a user-supplied Jacobian function
djac and associated user data jac data, idadense provides the function IDADenseSetJacFn. The
idadense solver passes the pointer jac data to its dense Jacobian function. This allows the user to
create an arbitrary structure with relevant problem data and access it during the execution of the
user-supplied Jacobian function, without using global data in the program. The pointer jac data

may be identical to f data, if the latter was specified through IDASetFdata.

IDADenseSetJacFn

Call flag = IDADenseSetJacFn(ida mem, djac, jac data);

Description The function IDADenseSetJacFn specifies the dense Jacobian approximation function
to be used and the pointer to user data.

Arguments ida mem (void *) pointer to the ida memory block.

djac (IDADenseJacFn) user-defined dense Jacobian approximation function.

jac data (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of

IDADENSE SUCCESS The optional value has been successfully set.

IDADENSE MEM NULL The ida mem pointer is NULL.

IDADENSE LMEM NULL The idadense linear solver has not been initialized.

Notes By default, idadense uses the difference quotient function IDADenseDQJac. If NULL
is passed to djac, this default function is used.

The function type IDADenseJacFn is described in §5.5.3.

Band Linear solver. The idaband solver needs a function to compute a banded approximation
to the Jacobian matrix J(t, y, y′). This function must be of type IDABandJacFn. The user can supply
his/her own banded Jacobian approximation function, or use the default difference quotient function
IDABandDQJac that comes with the idaband solver. To specify a user-supplied Jacobian function
bjac and associated user data jac data, idaband provides the function IDABandSetJacFn. The
idaband solver passes the pointer jac data to its banded Jacobian approximation function. This
allows the user to create an arbitrary structure with relevant problem data and access it during the
execution of the user-supplied Jacobian function, without using global data in the program. The
pointer jac data may be identical to f data, if the latter was specified through IDAodeSetFdata.

IDABandSetJacFn

Call flag = IDABandSetJacFn(ida mem, bjac, jac data);

Description The function IDABandSetJacFn specifies the banded Jacobian approximation function
to be used and the pointer to user data.

Arguments ida mem (void *) pointer to the ida memory block.

bjac (IDABandJacFn) user-defined banded Jacobian approximation function.

jac data (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of

IDABAND SUCCESS The optional value has been successfully set.

IDABAND MEM NULL The ida mem pointer is NULL.

IDABAND LMEM NULL The idaband linear solver has not been initialized.

Notes By default, idaband uses the difference quotient function IDABandDQJac. If NULL is
passed to bjac, this default function is used.

The function type IDABandJacFn is described in §5.5.4.

5.4 User-callable functions 33

SPGMR Linear solver. If preconditioning is to be done within the spgmr method, then the
user must supply a preconditioner solve function, psolve, and specify its name through a call
to IDASpgmrSetPreconditioner. The evaluation and preprocessing of any Jacobian-related data
needed by the user’s preconditioner solve function is done in the optional user-supplied function
psetup. Both of these functions are fully specified in §5.5. If used, the psetup function should also
be specified in the call to IDASpgmrSetPreconditioner. Optionally, the idaspgmr solver passes
the pointer it receives through IDASpgmrSetPreconditioner to the preconditioner setup and solve
functions. This allows the user to create an arbitrary structure with relevant problem data and access
it during the execution of the user-supplied preconditioner functions without using global data in the
program. The pointer prec data may be identical to res data, if the latter was specified through
IDASetRdata.

The idaspgmr solver requires a function to compute an approximation to the product between
the Jacobian matrix J(t, y) and a vector v. The user can supply his/her own Jacobian times vector
approximation function, or use the difference quotient function IDASpgmrDQJtimes that comes with
the idaspgmr solver. A user-defined Jacobian-vector function must be of type IDASpgmrJtimesFn

and can be specified through a call to IDASpgmrSetJacTimesVecFn (see §5.5 for specification details).
As with the preconditioner user data structure p data, the user can also specify int the call to
IDASpgmrSetJacFn, a pointer to a user-defined data structure, jac data, which the idaspgmr

solver passes to the Jacobian times vector function jtimes each time it is called. The pointer
jac data may be identical to P data and/or f data.

IDASpgmrSetPreconditioner

Call flag = IDASpgmrSetPrecSolveFn(ida mem, psolve, psetup, p data);

Description The function IDASpgmrSet specifies the preconditioner setup and solve functions and
the pointer to user data.

Arguments ida mem (void *) pointer to the ida memory block.

psolve (IDASpgmrPrecSolveFn) user-defined preconditioner solve function.

psetup (IDASpgmrPrecSetupFn) user-defined preconditioner setup function.

p data (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of

IDASPGMR SUCCESS The optional value has been successfully set.

IDASPGMR MEM NULL The ida mem pointer is NULL.

IDASPGMR LMEM NULL The idaspgmr linear solver has not been initialized.

Notes The function type IDASpgmrPrecSolveFn is described in §5.5.6. The function type
IDASpgmrPrecSetupFn is described in §5.5.7.

IDASpgmrSetJacTimesVecFn

Call flag = IDASpgmrSetJacTimesVecFn(ida mem, jtimes, jac data);

Description The function IDASpgmrSetJacTimesFn specifies the Jacobian-vector function to be
used and the pointer to user data.

Arguments ida mem (void *) pointer to the ida memory block.

jtimes (IDASpgmrJacTimesVecFn) user-defined Jacobian-vector product function.

jac data (void *) pointer to the user-defined data structure.

Return value The return value flag (of type int) is one of

IDASPGMR SUCCESS The optional value has been successfully set.

IDASPGMR MEM NULL The ida mem pointer is NULL.

IDASPGMR LMEM NULL The idaspgmr linear solver has not been initialized.

34 Using IDA

Notes By default, idaspgmr uses the difference quotient function IDASpgmrDQJtimes. If
NULL is passed to jtimes, this default function is used.

The function type IDASpgmrJacTimesVecFn is described in §5.5.5.

IDASpgmrSetGSType

Call flag = IDASpgmrSetGSType(ida mem, gstype);

Description The function IDASpgmrSetGSType specifies the Gram-Schmidt orthogonalization to be
used. This must be one of the enumeration constants MODIFIED GS or CLASSICAL GS.
These correspond to using modified Gram-Schmidt and classical Gram-Schmidt, re-
spectively.

Arguments ida mem (void *) pointer to the ida memory block.

gstype (int) type of Gram-Schmidt orthogonalization.

Return value The return value flag (of type int) is one of

IDASPGMR SUCCESS The optional value has been successfuly set.

IDASPGMR MEM NULL The ida mem pointer is NULL.

IDASPGMR LMEM NULL The idaspgmr linear solver has not been initialized.

IDASPGMR ILL INPUT The Gram-Schmidt orthogonalization type gstype is not valid.

Notes The default value is MODIFIED GS.

IDASpgmrSetMaxRestarts

Call flag = IDASpgmrSetMaxRestarts(ida mem, maxrs);

Description The function IDASpgmrSetMaxRestarts specifies the maximum number of restarts to
be used in the GMRES algorithm.

Arguments ida mem (void *) pointer to the ida memory block.

maxrs (int) maximum number of restarts.

Return value The return value flag (of type int) is one of

IDASPGMR SUCCESS The optional value has been successfuly set.

IDASPGMR MEM NULL The ida mem pointer is NULL.

IDASPGMR LMEM NULL The idaspgmr linear solver has not been initialized.

IDASPGMR ILL INPUT The maxrs argument is negative.

Notes The default value is 5. Pass maxrs = 0 to specify no restarts.

IDASpgmrSetEpsLin

Call flag = IDASpgmrSetEpsLin(ida mem, eplifac);

Description The function IDASpgmrSetEpsLin specifies the factor by which the GMRES conver-
gence test constant is reduced from the Newton iteration test constant. (See §3).

Arguments ida mem (void *) pointer to the ida memory block.

eplifac (realtype)

Return value The return value flag (of type int) is one of

IDASPGMR SUCCESS The optional value has been successfuly set.

IDASPGMR MEM NULL The ida mem pointer is NULL.

IDASPGMR LMEM NULL The idaspgmr linear solver has not been initialized.

IDASPGMR ILL INPUT The factor eplifac is negative.

Notes The default value is 0.05.

Passing a value eplifac= 0.0 also indicates using the default value.

5.4 User-callable functions 35

IDASpgmrSetIncrementFactor

Call flag = IDASpgmrSetIncrementFactor(ida mem, dqincfac);

Description The function IDASpgmrSetIncrementFactor specifies a factor in the increments to y
used in the difference quotient approximations to the Jacobian-vector products. (See
§3).

Arguments ida mem (void *) pointer to the ida memory block.

dqincfac (realtype) difference quotient increment factor.

Return value The return value flag (of type int) is one of

IDASPGMR SUCCESS The optional value has been successfuly set.

IDASPGMR MEM NULL The ida mem pointer is NULL.

IDASPGMR LMEM NULL The idaspgmr linear solver has not been initialized.

IDASPGMR ILL INPUT The increment factor was non-positive.

Notes The default value is dqincfac = 1.0.

Initial condition calculation optional input functions

The following functions can be called to set optional inputs to control the initial conditions calcula-
tions.

IDASetNonlinConvCoefIC

Call flag = IDASetNonlinConvCoefIC(ida mem, epiccon);

Description The function IDASetNonlinConvCoefIC specifies the positive constant in the Newton
iteration convergence test within the initial condition calculation.

Arguments ida mem (void *) pointer to the ida memory block.

epiccon (realtype) coefficient in the Newton convergence test.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The epiccon factor is negative (illegal).

Notes The default value is 0.01 · 0.33.
This test uses a weighted RMS norm (with weights defined by the tolerances). For
new initial value vectors y and y′ to be accepted, the norm of J−1F (t0, y, y

′) must be
≤ epiccon, where J is the system Jacobian.

IDASetMaxNumStepsIC

Call flag = IDASetMaxNumStepsIC(ida mem, maxnh);

Description The function IDASetMaxNumStepsIC specifies the maximum number of steps allowed
when icopt=IDA YA YDP INIT in IDACalcIC, where h appears in the system Jacobian,
J = ∂F/∂y + (1/h)∂F/∂y′.

Arguments ida mem (void *) pointer to the ida memory block.

maxnh (int) maximum allowed number of values for h.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT maxnh is non-positive.

Notes The default value is 5.

36 Using IDA

IDASetMaxNumJacsIC

Call flag = IDASetMaxNumJacsIC(ida mem, maxnj);

Description The function IDASetMaxNumJacsIC specifies the maximum number of the approximate
Jacobian or preconditioner evaluations allowed when the Newton iteration appears to
be slowly converging.

Arguments ida mem (void *) pointer to the ida memory block.

maxnj (int) maximum allowed number of Jacobian or preconditioner evaluations.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT maxnj is non-positive.

Notes The default value is 4.

IDASetMaxNumItersIC

Call flag = IDASetMaxNumItersIC(ida mem, maxnit);

Description The function IDASetMaxNumItersIC specifies the maximum number of Newton itera-
tions allowed in any one attempt to solve the initial conditions calculation problem.

Arguments ida mem (void *) pointer to the ida memory block.

maxnit (int) maximum number of Newton iterations.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT maxnit is non-positive.

Notes The default value is 10.

IDASetLineSearchOffIC

Call flag = IDASetLineSearchOffIC(ida mem, lsoff);

Description The function IDASetLineSearchOffIC specifies whether to turn on or off the line-
search algorithm.

Arguments ida mem (void *) pointer to the ida memory block.

lsoff (booleantype) a flag to turn off (TRUE) or keep (FALSE) the linesearch algo-
rithm.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is FALSE.

IDASetStepToleranceIC

Call flag = IDASetStepToleranceIC(ida mem, steptol);

Description The function IDASetStepToleranceIC specifies a positive lower bound on the Newton
step.

Arguments ida mem (void *) pointer to the ida memory block.

steptol (int) Newton step tolerance.

Return value The return value flag (of type int) is one of

5.4 User-callable functions 37

IDA SUCCESS The optional value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The steptol tolerance is negative (illegal).

Notes The default value is (unit roundoff)2/3.

5.4.6 Interpolated output function

An optional function IDAGetSolution is available to obtain additional output values. This function
must be called after a successful return from IDASolve and provides interpolated values of y and y ′

for any value of t in the last internal step taken by ida.
The call to the IDAGetSolution function has the following form:

IDAGetSolution

Call flag = IDAGetSolution(ida mem, t, yret, ypret);

Description The function IDAGetSolution computes the interpolated values of y and y ′ for any
value of t in the last internal step taken by ida. The value of t must satisfy tn−hu ≤
t ≤ tn, where tn denotes the current internal time reached, and hu is the last internal
step size used successfully.

Arguments ida mem (void *) pointer to the ida memory block.

t (realtype)

yret (N Vector) vector containing the interpolated y(t).

ypret (N Vector) vector containing the interpolated y′(t).

Return value The return value flag (of type int) is one of

IDA SUCCESS IDAGetSolution succeeded.

IDA MEM NULL The ida mem argument was NULL.

IDA BAD T t is not in the interval [tn − hu, tn].

Notes It is only legal to call the function IDAGetSolution after a successful return from
IDASolve. See IDAGetCurrentTime and IDAGetLastStep for access to tn and hu.

5.4.7 Optional output functions

ida provides an extensive list of functions that can be used to obtain solver performance information.
Table 5.2 lists all optional output functions in ida, which are then described in detail in the remainder
of this section.

Main solver optional output functions

ida provides several user-callable functions that can be used to obtain different quantities that may
be of interest to the user, such as solver workspace requirements, solver performance statistics, as well
as additional data from the ida memory block (a suggested tolerance scaling factor, the error weight
vector, and the vector of estimated local errors). Also provided are functions to extract statistics
related to the performance of the ida nonlinear solver being used. As a convenience, additional
extraction functions provide the optional outputs in groups. These optional output functions are
described next.

IDAGetWorkSpace

Call flag = IDAGetWorkSpace(ida mem, &lenrw, &leniw);

Description The function IDAGetWorkSpace returns the ida real and integer workspace sizes.

Arguments ida mem (void *) pointer to the ida memory block.

38 Using IDA

Table 5.2: Optional outputs from ida, idadense, idaband, and idaspgmr

Optional output Function name
IDA main solver

Size of ida real and integer workspace IDAGetWorkSpace

Cumulative number of internal steps IDAGetNumSteps

No. of calls to residual function IDAGetNumResEvals

No. of calls to linear solver setup function IDAGetNumLinSolvSetups

No. of local error test failures that have occurred IDAGetNumErrTestFails

Order used during the last step IDAGetLastOrder

Order to be attempted on the next step IDAGetCurrentOrder

Order reductions due to stability limit detection IDAGetNumStabLimOrderReds

Actual initial step size used IDAGetActualInitStep

Step size used for the last step IDAGetLastStep

Step size to be attempted on the next step IDAGetCurrentStep

Current internal time reached by the solver IDAGetCurrentTime

Suggested factor for tolerance scaling IDAGetTolScaleFactor

Error weight vector for state variables IDAGetErrWeights

No. of nonlinear solver iterations IDAGetNumNonlinSolvIters

No. of nonlinear convergence failures IDAGetNumNonlinSolvConvFails

IDADENSE linear solver
Size of idadense real and integer workspace IDADenseGetWorkSpace

No. of Jacobian evaluations IDADenseGetNumJacEvals

No. of residual calls for finite diff. Jacobian evals. IDADenseGetNumResEvals

Last return from a idadense function IDADenseGetLastFlag

IDABAND linear solver
Size of idaband real and integer workspace IDABandGetWorkSpace

No. of Jacobian evaluations IDABandGetNumJacEvals

No. of residual calls for finite diff. Jacobian evals. IDABandGetNumResEvals

Last return from a idaband function IDABandGetLastFlag

IDASPGMR linear solver
Size of idaspgmr real and integer workspace IDASpgmrGetWorkSpace

No. of linear iterations IDASpgmrGetNumLinIters

No. of linear convergence failures IDASpgmrGetNumConvFails

No. of preconditioner evaluations IDASpgmrGetNumPrecEvals

No. of preconditioner solves IDASpgmrGetNumPrecSolves

No. of Jacobian-vector product evaluations IDASpgmrGetNumJtimesEvals

No. of residual calls for finite diff. Jacobian-vector evals. IDASpgmrGetNumResEvals

Last return from a idaspgmr function IDASpgmrGetLastFlag

5.4 User-callable functions 39

lenrw (long int) number of real values in the ida workspace.

leniw (long int) number of integer values in the ida workspace.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

Notes In terms of the problem size N and maximum method order maxord, the actual size
of the real workspace given in realtype words is:

• Base value: lenrw = 55 + (m+ 6)N

• With itol = IDA SV: lenrw = lenrw +N

• With constraint checking (see IDASetConstraints): lenrw = lenrw +N

• With id specified (see IDASetId): lenrw = lenrw +N

Here m = max(3,maxord).

The size of the integer workspace (without distinction between int and long int) is:

• Base value: leniw = 38 + (m+ 6)N

• With itol = IDA SV: leniw = leniw +N

• With constraint checking: lenrw = lenrw +N

• With id specified: lenrw = lenrw +N

For the default value of maxord, the base values are lenrw = 55 + 11N and leniw

= 38 + 11N

IDAGetNumSteps

Call flag = IDAGetNumSteps(ida mem, &nsteps);

Description The function IDAGetNumSteps returns the cumulative number of internal steps taken
by the solver (total so far).

Arguments ida mem (void *) pointer to the ida memory block.

nsteps (long int) number of steps taken by ida.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetNumResEvals

Call flag = IDAGetNumResEvals(ida mem, &nrevals);

Description The function IDAGetNumResEvals returns the number of calls to the user’s residual
evaluation function.

Arguments ida mem (void *) pointer to the ida memory block.

nrevals (long int) number of calls to the user’s res function.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The nrevals value returned by IDAGetNumResEvals does not account for calls made
to res from a linear solver or preconditioner module.

40 Using IDA

IDAGetNumLinSolvSetups

Call flag = IDAGetNumLinSolvSetups(ida mem, &nlinsetups);

Description The function IDAGetNumLinSolvSetups returns the cumulative number of calls made
to the linear solver’s setup function (total so far).

Arguments ida mem (void *) pointer to the ida memory block.

nlinsetups (long int) number of calls made to the linear solver setup function.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetNumErrTestFails

Call flag = IDAGetNumErrTestFails(ida mem, &netfails);

Description The function IDAGetNumErrTestFails returns the cumulative number of local error
test failures that have occurred (total so far).

Arguments ida mem (void *) pointer to the ida memory block.

netfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetLastOrder

Call flag = IDAGetLastOrder(ida mem, &qlast);

Description The function IDAGetLastOrder returns the integration method order used during the
last internal step.

Arguments ida mem (void *) pointer to the ida memory block.

qlast (int) method order used on the last internal step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetCurrentOrder

Call flag = IDAGetCurrentOrder(ida mem, &qcur);

Description The function IDAGetCurrentOrder returns the integration method order to be used
on the next internal step.

Arguments ida mem (void *) pointer to the ida memory block.

qcur (int) method order to be used on the next internal step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

5.4 User-callable functions 41

IDAGetLastStep

Call flag = IDAGetLastStep(ida mem, &hlast);

Description The function IDAGetLastStep returns the integration step size taken on the last in-
ternal step.

Arguments ida mem (void *) pointer to the ida memory block.

hlast (realtype) step size taken on the last internal step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetCurrentStep

Call flag = IDAGetCurrentStep(ida mem, &hcur);

Description The function IDAGetCurrentStep returns the integration step size to be attempted
on the next internal step.

Arguments ida mem (void *) pointer to the ida memory block.

hcur (realtype) step size to be attempted on the next internal step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetActualInitStep

Call flag = IDAGetActualInitStep(ida mem, &hinused);

Description The function IDAGetActualInitStep returns the value of the integration step size
used on the first step.

Arguments ida mem (void *) pointer to the ida memory block.

hinused (realtype) actual value of initial step size.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

Notes Even if the value of the initial integration step size was specified by the user through
a call to IDASetInitStep, this value might have been changed by ida to ensure that
the step size is within the prescribed bounds (hmin ≤ h0 ≤ hmax), or to meet the local
error test.

IDAGetCurrentTime

Call flag = IDAGetCurrentTime(ida mem, &tcur);

Description The function IDAGetCurrentTime returns the current internal time reached by the
solver.

Arguments ida mem (void *) pointer to the ida memory block.

tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

42 Using IDA

IDAGetTolScaleFactor

Call flag = IDAGetTolScaleFactor(ida mem, &tolsfac);

Description The function IDAGetTolScaleFactor returns a suggested factor by which the user’s
tolerances should be scaled when too much accuracy has been requested for some
internal step.

Arguments ida mem (void *) pointer to the ida memory block.

tolsfac (realtype) suggested scaling factor for user tolerances.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetErrWeights

Call flag = IDAGetErrWeights(ida mem, eweight);

Description The function IDAGetErrWeights returns the solution error weights at the current
time. These are the reciprocals of the Wi of (3.6).

Arguments ida mem (void *) pointer to the ida memory block.

eweight (N Vector) solution error weights at the current time.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

Notes ! The user must allocate space for eweight.

IDAGetIntegratorStats

Call flag = IDAGetIntegratorStats(ida mem, &nsteps, &nrevals, &nlinsetups,

&netfails, &qlast, &qcur, &hinused,

&hlast, &hcur, &tcur);

Description The function IDAGetIntegratorStats returns the ida integrator statistics as a group.

Arguments ida mem (void *) pointer to the ida memory block.

nsteps (long int) cumulative number of steps taken by ida.

nrevals (long int) cumulative number of calls to the user’s res function.

nlinsetups (long int) cumulative number of calls made to the linear solver setup
function.

netfails (long int) cumulative number of error test failures.

qlast (int) method order used on the last internal step.

qcur (int) method order to be used on the next internal step.

hinused (realtype) actual value of initial step size.

hlast (realtype) step size taken on the last internal step.

hcur (realtype) step size to be attempted on the next internal step.

tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

IDA SUCCESS the optional output values have been successfuly set.

IDA MEM NULL the ida mem pointer is NULL.

5.4 User-callable functions 43

IDAGetNumNonlinSolvIters

Call flag = IDAGetNumNonlinSolvIters(ida mem, &nniters);

Description The function IDAGetNumNonlinSolvIters returns the cumulative number of nonlinear
(functional or Newton) iterations performed.

Arguments ida mem (void *) pointer to the ida memory block.

nniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetNumNonlinSolvConvFails

Call flag = IDAGetNumNonlinSolvConvFails(ida mem, &nncfails);

Description The function IDAGetNumNonlinSolvConvFails returns the cumulative number of non-
linear convergence failures that have occurred.

Arguments ida mem (void *) pointer to the ida memory block.

nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetNonlinSolvStats

Call flag = IDAGetNonlinSolvStats(ida mem, &nniters, &nncfails);

Description The function IDAGetNonlinSolvStats returns the ida nonlinear solver statistics as a
group.

Arguments ida mem (void *) pointer to the ida memory block.

nniters (long int) cumulative number of nonlinear iterations performed.

nncfails (long int) cumulative number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

Linear solver optional output functions

For each of the linear system solver modules, there are various optional outputs that describe the
performance of the module. The functions available to access these are described below.

Dense Linear solver. The following optional outputs are available from the idadense module:
workspace requirements, number of calls to the Jacobian routine, number of calls to the residual
routine for finite-difference Jacobian approximation, and last return value from a idadense func-
tion.

IDADenseGetWorkSpace

Call flag = IDADenseGetWorkSpace(ida mem, &lenrwD, &leniwD);

Description The function IDADenseGetWorkSpace returns the sizes of the idadense real and in-
teger workspaces.

Arguments ida mem (void *) pointer to the ida memory block.

44 Using IDA

lenrwD (long int) the number of real values in the idadense workspace.

leniwD (long int) the number of integer values in the idadense workspace.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA MEM NULL The ida mem pointer is NULL.

IDA MEM NULL The idadense linear solver has not been initialized.

Notes In terms of the problem size N , the actual size of the real workspace is 2N 2 realtype

words.

In terms of the problem size N , the actual size of the integer workspace is N integer
words.

IDADenseGetNumJacEvals

Call flag = IDADenseGetNumJacEvals(ida mem, &njevalsD);

Description The function IDADenseGetNumJacEvals returns the cumulative number of calls to the
dense Jacobian approximation function.

Arguments ida mem (void *) pointer to the ida memory block.

njevalsD (long int) the cumulative number of calls to the Jacobian function (total
so far).

Return value The return value flag (of type int) is one of

IDADENSE SUCCESS The optional output value has been successfuly set.

IDADENSE MEM NULL The ida mem pointer is NULL.

IDADENSE LMEM NULL The idadense linear solver has not been initialized.

IDADenseGetNumResEvals

Call flag = IDADenseGetNumResEvals(ida mem, &nrevalsD);

Description The function IDADenseGetNumResEvals returns the cumulative number of calls to the
user residual function due to the finite difference dense Jacobian approximation.

Arguments ida mem (void *) pointer to the ida memory block.

nrevalsD (long int) the cumulative number of calls to the user residual function.

Return value The return value flag (of type int) is one of

IDADENSE SUCCESS The optional output value has been successfuly set.

IDADENSE MEM NULL The ida mem pointer is NULL.

IDADENSE LMEM NULL The idadense linear solver has not been initialized.

Notes The value nrevalsD is incremented only if the default IDADenseDQJac difference quo-
tient function is used.

IDADenseGetLastFlag

Call flag = IDADenseGetLastFlag(ida mem, &flag);

Description The function IDADenseGetLastFlag returns the last return value from an idadense

routine.

Arguments ida mem (void *) pointer to the ida memory block.

flag (int) the value of the last return flag from an idadense function.

Return value The return value flag (of type int) is one of

IDADENSE SUCCESS The optional output value has been successfully set.

5.4 User-callable functions 45

IDADENSE MEM NULL The ida mem pointer is NULL.

IDADENSE LMEM NULL The idadense linear solver has not been initialized.

Notes If the idadense setup function failed (IDASolve returned IDA LSETUP FAIL), the value
flag is equal to the column index (numbered from one) at which a zero diagonal
element was encountered during the LU factorization of the dense Jacobian matrix.

Band Linear solver. The following optional outputs are available from the idaband module:
workspace requirements, number of calls to the Jacobian routine, number of calls to the residual
routine for finite-difference Jacobian approximation, and last return value from a idaband function.

IDABandGetWorkSpace

Call flag = IDABandGetWorkSpace(ida mem, &lenrwB, &leniwB);

Description The function IDABandGetWorkSpace returns the sizes of the idaband real and integer
workspaces.

Arguments ida mem (void *) pointer to the ida memory block.

lenrwB (long int) the number of real values in the idaband workspace.

leniwB (long int) the number of integer values in the idaband workspace.

Return value The return value flag (of type int) is one of

IDABAND SUCCESS The optional output value has been successfuly set.

IDABAND MEM NULL The ida mem pointer is NULL.

IDABAND LMEM NULL The idaband linear solver has not been initialized.

Notes In terms of the problem size N and Jacobian half-bandwidths, the actual size of the
real workspace is N (2 mupper+3 mlower +2) realtype words.

In terms of the problem size N , the actual size of the integer workspace is N integer
words.

IDABandGetNumJacEvals

Call flag = IDABandGetNumJacEvals(ida mem, &njevalsB);

Description The function IDABandGetNumJacEvals returns the cumulative number of calls to the
banded Jacobian approximation function.

Arguments ida mem (void *) pointer to the ida memory block.

njevalsB (long int) the cumulative number of calls to the Jacobian function.

Return value The return value flag (of type int) is one of

IDABAND SUCCESS The optional output value has been successfuly set.

IDABAND MEM NULL The ida mem pointer is NULL.

IDABAND LMEM NULL The idaband linear solver has not been initialized.

IDABandGetNumResEvals

Call flag = IDABandGetNumResEvals(ida mem, &nrevalsB);

Description The function IDABandGetNumResEvals returns the cumulative number of calls to the
user residual function due to the finite difference banded Jacobian approximation.

Arguments ida mem (void *) pointer to the ida memory block.

nrevalsB (long int) the cumulative number of calls to the user residual function.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

46 Using IDA

IDABAND MEM NULL The ida mem pointer is NULL.

IDABAND LMEM NULL The idaband linear solver has not been initialized.

Notes The value nrevalsB is incremented only if the default IDABandDQJac difference quo-
tient function is used.

IDABandGetLastFlag

Call flag = IDABandGetLastFlag(ida mem, &flag);

Description The function IDABandGetLastFlag returns the last return value from an idaband

routine.

Arguments ida mem (void *) pointer to the ida memory block.

flag (int) the value of the last return flag from an idaband function.

Return value The return value flag (of type int) is one of

IDABAND SUCCESS The optional output value has been successfully set.

IDABAND MEM NULL The ida mem pointer is NULL.

IDABAND LMEM NULL The idaband linear solver has not been initialized.

Notes If the idaband setup function failed (IDASolve returned IDA LSETUP FAIL), the value
flag is equal to the column index (numbered from one) at which a zero diagonal
element was encountered during the LU factorization of the banded Jacobian matrix.

SPGMR Linear solver. The following optional outputs are available from the idaspgmr mod-
ule: workspace requirements, number of linear iterations, number of linear convergence failures,
number of calls to the preconditioner setup and solve routines, number of calls to the Jacobian-
vector product routine, number of calls to the residual routine for finite-difference Jacobian-vector
product approximation, and last return value from an idaspgmr function.

IDASpgmrGetWorkSpace

Call flag = IDASpgmrGetWorkSpace(ida mem, &lenrwSG, &leniwSG);

Description The function IDASpgmrGetWorkSpace returns the global sizes of the idaspgmr real
and integer workspaces.

Arguments ida mem (void *) pointer to the ida memory block.

lenrwSG (long int) global number of real values in the idaspgmr workspace.

leniwSG (long int) global number of integer values in the idaspgmr workspace.

Return value The return value flag (of type int) is one of

IDASPGMR SUCCESS The optional output value has been successfuly set.

IDASPGMR MEM NULL The ida mem pointer is NULL.

IDASPGMR LMEM NULL The idaspgmr linear solver has not been initialized.

Notes In terms of the problem size N and maximum subspace size maxl, the actual size of
the real workspace is N ∗ (maxl +5)+ maxl ∗(maxl +4) + 1 realtype words.

IDASpgmrGetNumLinIters

Call flag = IDASpgmrGetNumLinIters(ida mem, &nliters);

Description The function IDASpgmrGetNumLinIters returns the cumulative number of linear iter-
ations.

Arguments ida mem (void *) pointer to the ida memory block.

nliters (long int) the current number of linear iterations.

5.4 User-callable functions 47

Return value The return value flag (of type int) is one of

IDASPGMR SUCCESS The optional output value has been successfuly set.

IDASPGMR MEM NULL The ida mem pointer is NULL.

IDASPGMR LMEM NULL The idaspgmr linear solver has not been initialized.

IDASpgmrGetNumConvFails

Call flag = IDASpgmrGetNumConvFails(ida mem, &nlcfails);

Description The function IDASpgmrGetNumConvFails returns the cumulative number of linear
convergence failures.

Arguments ida mem (void *) pointer to the ida memory block.

nlcfails (long int) the current number of linear convergence failures.

Return value The return value flag (of type int) is one of

IDASPGMR SUCCESS The optional output value has been successfuly set.

IDASPGMR MEM NULL The ida mem pointer is NULL.

IDASPGMR LMEM NULL The idaspgmr linear solver has not been initialized.

IDASpgmrGetNumPrecEvals

Call flag = IDASpgmrGetNumPrecEvals(ida mem, &npevals);

Description The function IDASpgmrGetNumPrecEvals returns the cumulative number of precondi-
tioner evaluations, i.e., the number of calls made to psetup with jok=FALSE.

Arguments ida mem (void *) pointer to the ida memory block.

npevals (long int) the cumulative number of calls to psetup.

Return value The return value flag (of type int) is one of

IDASPGMR SUCCESS The optional output value has been successfuly set.

IDASPGMR MEM NULL The ida mem pointer is NULL.

IDASPGMR LMEM NULL The idaspgmr linear solver has not been initialized.

IDASpgmrGetNumPrecSolves

Call flag = IDASpgmrGetNumPrecSolves(ida mem, &npsolves);

Description The function IDASpgmrGetNumPrecSolves returns the cumulative number of calls
made to the preconditioner solve function, psolve.

Arguments ida mem (void *) pointer to the ida memory block.

npsolves (long int) the cumulative number of calls to psolve.

Return value The return value flag (of type int) is one of

IDASPGMR SUCCESS The optional output value has been successfuly set.

IDASPGMR MEM NULL The ida mem pointer is NULL.

IDASPGMR LMEM NULL The idaspgmr linear solver has not been initialized.

IDASpgmrGetNumJtimesEvals

Call flag = IDASpgmrGetNumJtimesEvals(ida mem, &njvevals);

Description The function IDASpgmrGetNumJtimesEvals returns the cumulative number of calls
made to the Jacobian-vector function, jtimes.

Arguments ida mem (void *) pointer to the ida memory block.

njvevals (long int) the cumulative number of calls to jtimes.

48 Using IDA

Return value The return value flag (of type int) is one of

IDASPGMR SUCCESS The optional output value has been successfuly set.

IDASPGMR MEM NULL The ida mem pointer is NULL.

IDASPGMR LMEM NULL The idaspgmr linear solver has not been initialized.

IDASpgmrGetNumResEvals

Call flag = IDASpgmrGetNumResEvals(ida mem, &nrevalsSG);

Description The function IDASpgmrGetNumResEvals returns the cumulative number of calls to the
user residual function for finite difference Jacobian-vector product approximation.

Arguments ida mem (void *) pointer to the ida memory block.

nrevalsSG (long int) the cumulative number of calls to the user residual function.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDASPGMR MEM NULL The ida mem pointer is NULL.

IDASPGMR LMEM NULL The idaspgmr linear solver has not been initialized.

Notes The value nrevalsSG is incremented only if the default IDASpgmrDQJtimes difference
quotient function is used.

IDASpgmrGetLastFlag

Call flag = IDASpgmrGetLastFlag(ida mem, &flag);

Description The function IDASpgmrGetLastFlag returns the last return value from an idaspgmr

routine.

Arguments ida mem (void *) pointer to the ida memory block.

flag (int) the value of the last return flag from an idaspgmr function.

Return value The return value flag (of type int) is one of

IDASPGMR SUCCESS The optional output value has been successfully set.

IDASPGMR MEM NULL The ida mem pointer is NULL.

IDASPGMR LMEM NULL The idaspgmr linear solver has not been initialized.

Notes If the idaspgmr setup function failed (IDASolve returned IDA LSETUP FAIL), flag
contains the return value of the preconditioner setup function psetup.

If the idaspgmr solve function failed (IDASolve returned IDA LSETUP FAIL), flag
contains the error return flag from SpgmrSolve and will be one of: SPGMR CONV FAIL,
indicating a failure to converge; SPGMR QRFACT FAIL, indicating a singular matrix
found during the QR factorization; SPGMR PSOLVE FAIL REC, indicating that the pre-
conditioner solve function psolve failed recoverably; SPGMR MEM NULL, indicating that
the spgmr memory is NULL; SPGMR ATIMES FAIL, indicating a failure in the Jacobian
times vector function; SPGMR PSOLVE FAIL UNREC, indicating that the preconditioner
solve function psolve failed unrecoverably; SPGMR GS FAIL, indicating a failure in the
Gram-Schmidt procedure; or SPGMR QRSOL FAIL, indicating that the matrix R was
found to be singular during the QR solve phase.

5.4.8 IDA reinitialization function

The function IDAReInit reinitializes the main ida solver for the solution of a problem, where a prior
call to IDAMalloc has been made. The new problem must have the same size as the previous one.
IDAReInit performs the same input checking and initializations that IDAMalloc does, but does no
memory allocation, assuming that the existing internal memory is sufficient for the new problem.

5.5 User-supplied functions 49

The use of IDAReInit requires that the maximum method order, maxord, is no larger for the
new problem than for the problem specified in the last call to IDAMalloc. In addition, the same
nvector module set for the previous problem will be reused for the new problem.

If there are changes to the linear solver specifications, make the appropriate Set calls, as described
in §5.4.2.

IDAReInit

Call flag = IDAReInit(ida mem, res, t0, y0, yp0, itol, reltol, abstol);

Description The function IDAReInit provides required problem specifications and reinitializes ida.

Arguments ida mem (void *) pointer to the ida memory block.

res (IDAResFn) is the C function which computes F . This function has the form
f(t, y, yp, r, res data) (for full details see §5.5).

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

yp0 (N Vector) is the initial value of y′.

itol (int) is one of IDA SS, IDA SV, or IDA WF, where IDA SS indicates scalar
relative error tolerance and scalar absolute error tolerance, while IDA SV

indicates scalar relative error tolerance and vector absolute error tolerance.
The latter choice is important when the absolute error tolerance needs to
be different for each component of the DAE. If itol=IDA WF, the arguments
reltol and abstol are ignored and the user is expected to provide a function
to evaluate the error weight vectorW from (3.6). See IDASetEwtFn in §5.4.5.

reltol (realtype) is the relative error tolerance.

abstol (void *) is a pointer to the absolute error tolerance. If itol=IDA SS, abstol
must be a pointer to a realtype variable. If itol=IDA SV, abstol must be
an N Vector variable.

Return value The return flag flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAReInit was successful.

IDA MEM NULL The ida memory block was not initialized through a previous call to
IDACreate.

IDA NO MALLOC Memory space for the ida memory block was not allocated through a
previous call to IDAMalloc.

IDA ILL INPUT An input argument to IDAReInit has an illegal value.

Notes If an error occurred, IDAReInit also prints an error message to the file specified by
the optional input errfp.

! It is the user’s responsibility to provide compatible itol and abstol arguments.

5.5 User-supplied functions

The user-supplied functions consist of one function defining the DAE residual, (optionally) a func-
tion that provides the error weight vector, (optionally) a function that provides Jacobian related
information for the linear solver (if Newton iteration is chosen), and (optionally) one or two functions
that define the preconditioner for use in the spgmr algorithm.

5.5.1 Residual function

The user must provide a function of type IDAResFn defined as follows:

50 Using IDA

IDAResFn

Definition typedef int (*IDAResFn)(realtype tt, N Vector yy, N Vector yp,

N Vector rr, void *res data);

Purpose This function computes the problem residual for given values of the independent vari-
able t, state vector y, and derivative y′.

Arguments tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of y′(t).

rr is the output vector F (t, y, y′).

res data is a pointer to user data - the same as the res data parameter passed to
IDASetRdata.

Return value An IDAResFn function type should return a value of 0 if successful, a positive value
if a recoverable error occured (e.g. yy has an illegal value), or a negative value if a
nonrecoverable error occured.

In the latter case, the integrator halts. If a recoverable error occured, the integrator
will attempt to correct and retry.

Notes Allocation of memory for yp is handled within ida.

5.5.2 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function
of type IDAEwtFn to compute a vector ewt containing the weights in the WRMS norm ‖ v‖WRMS =
√

(1/N)
∑N

1 Wi · vi. The function type IDAEwtFn is defined as follows:

IDAEwtFn

Definition typedef int (*IDAEwtFn)(N Vector y, N Vector ewt, void *e data);

Purpose This function computes the WRMS error weights for the vector y.

Arguments y is the value of the vector for which the WRMS norm must be computed.

ewt is the output vector containing the error weights.

e data is a pointer to user data — the same as the e data parameter passed to
IDASetEwtFn.

Return value An IDAEwtFn function type must return 0 if it successfuly set the error weights and
−1 otherwise. In case of failure, a message is printed and the integration stops.

Notes Allocation of memory for ewt is handled within ida.

! The error weight vector must have all components positive. It is the user’s
responsiblity to perform this test and return −1 if it is not satisfied.

5.5.3 Jacobian information (direct method with dense Jacobian)

If the direct linear solver with dense treatment of the Jacobian is used (i.e. IDADense is called in
Step 7 of §5.3), the user may provide a function of type IDADenseJacFn defined by

IDADenseJacFn

Definition typedef int (*IDADenseJacFn)(long int Neq, realtype tt,

N Vector yy, N Vector yp, N Vector rr,

realtype c j, void *jac data,

DenseMat Jac,

N Vector tmp1, N Vector tmp2,

N Vector tmp3);

5.5 User-supplied functions 51

Purpose This function computes the dense Jacobian (or an approximation to it) of the DAE
system.

Arguments Neq is the problem size (number of equations).

tt is the current value of the independent variable t.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of y′(t).

rr is the current value of the vector F (t, y, y′).

c j is the scalar in the system Jacobian, proportional to the inverse of the step
size.

jac data is a pointer to user data - the same as the jac data parameter passed to
IDADenseSetJacData.

Jac is the output Jacobian matrix.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by IDADenseJacFn as temporary storage or work space.

Return value An IDADenseJacFn function type should return 0 if successful, a positive value if a
recoverable error occured, or a negative value if a nonrecoverable error occured.

In the case of a recoverable eror return, the integrator will attempt to recover by
reducing the stepsize, and hence changing α in (3.5).

Notes A user-supplied dense Jacobian function must load the Neq × Neq dense matrix Jac

with an approximation to the Jacobian matrix J at the point (tt, yy, yp). Only
nonzero elements need to be loaded into Jac because Jac is set to the zero matrix
before the call to the Jacobian function. The type of Jac is DenseMat (described below
and in §8.1).
The accessor macros DENSE ELEM and DENSE COL allow the user to read and write dense
matrix elements without making explicit references to the underlying representation
of the DenseMat type. DENSE ELEM(Jac, i, j) references the (i, j)-th element of
the dense matrix Jac (i, j= 0 . . . Neq−1). This macro is for use in small problems in
which efficiency of access is not a major concern. Thus, in terms of indices m and n
running from 1 to Neq, the Jacobian element Jm,n can be loaded with the statement
DENSE ELEM(Jac, m-1, n-1) = Jm,n. Alternatively, DENSE COL(Jac, j) returns a
pointer to the storage for the jth column of Jac (j= 0 . . . Neq−1), and the elements
of the j-th column are then accessed via ordinary array indexing. Thus Jm,n can be
loaded with the statements col n = DENSE COL(Jac, n-1); col n[m-1] = Jm,n. For
large problems, it is more efficient to use DENSE COL than to use DENSE ELEM. Note
that both of these macros number rows and columns starting from 0, not 1.

The DenseMat type and the accessor macros DENSE ELEM and DENSE COL are docu-
mented in §8.1.
If the user’s IDADenseJacFn function uses difference quotient approximations, it may
need to access quantities not in the call list. These include the current stepsize, the
error weights, etc. To obtain these, use the IDAGet* functions described in §5.4.7.
The unit roundoff can be accessed as UNIT ROUNDOFF defined in sundialstypes.h.

5.5.4 Jacobian information (direct method with banded Jacobian)

If the direct linear solver with banded treatment of the Jacobian is used (i.e. IDABand is called in
Step 7 of §5.3), the user may provide a function of type IDABandJacFn defined as follows:

52 Using IDA

IDABandJacFn

Definition typedef int (*IDABandJacFn)(long int Neq, long int mupper,

long int mlower, realtype tt,

N Vector yy, N Vector yp, N Vector rr,

realtype c j, void *jac data,

BandMat Jac,

N Vector tmp1, N Vector tmp2,

N Vector tmp3);

Purpose This function computes the banded Jacobian (or a banded approximation to it).

Arguments Neq is the problem size.

mlower

mupper are the lower and upper half bandwidth of the Jacobian.

tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of y′(t).

rr is the current value of the vector F (t, y, y′).

c j is the scalar in the system Jacobian, proportional to the inverse of the step
size.

jac data is a pointer to user data - the same as the jac data parameter passed to
IDABandSetJacData.

Jac is the output Jacobian matrix.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by IDABandJacFn as temporary storage or work space.

Return value A IDABandJacFn function type should return 0 if successful, a positive value if a
recoverable error occured, or a negative value if a nonrecoverable error occured.

In the case of a recoverable eror return, the integrator will attempt to recover by
reducing the stepsize, and hence changing α in (3.5).

Notes A user-supplied band Jacobian function must load the band matrix Jac of type
BandMat with the elements of the Jacobian J(t, y, y′) at the point (tt, yy, yp). Only
nonzero elements need to be loaded into Jac because Jac is preset to zero before the
call to the Jacobian function.

The accessor macros BAND ELEM, BAND COL, and BAND COL ELEM allow the user to read
and write band matrix elements without making specific references to the underlying
representation of the BandMat type. BAND ELEM(Jac, i, j) references the (i, j)th
element of the band matrix Jac, counting from 0. This macro is for use in small
problems in which efficiency of access is not a major concern. Thus, in terms of indices
m and n running from 1 to Neq with (m,n) within the band defined by mupper and
mlower, the Jacobian element Jm,n can be loaded with the statement BAND ELEM(Jac,

m-1, n-1) = Jm,n. The elements within the band are those with -mupper ≤ m-n ≤
mlower. Alternatively, BAND COL(Jac, j) returns a pointer to the diagonal element
of the jth column of Jac, and if we assign this address to realtype *col j, then the
ith element of the jth column is given by BAND COL ELEM(col j, i, j), counting
from 0. Thus for (m,n) within the band, Jm,n can be loaded by setting col n =

BAND COL(Jac, n-1); BAND COL ELEM(col n, m-1, n-1) = Jm,n. The elements of
the jth column can also be accessed via ordinary array indexing, but this approach
requires knowledge of the underlying storage for a band matrix of type BandMat.
The array col n can be indexed from −mupper to mlower. For large problems, it is
more efficient to use the combination of BAND COL and BAND COL ELEM than to use the

5.5 User-supplied functions 53

BAND ELEM. As in the dense case, these macros all number rows and columns starting
from 0, not 1.

The BandMat type and the accessor macros BAND ELEM, BAND COL, and BAND COL ELEM

are documented in §8.2.
If the user’s IDABandJacFn function uses difference quotient approximations, it may
need to access quantities not in the call list. These include the current stepsize, the
error weights, etc. To obtain these, use the IDAGet* functions described in §5.4.7.
The unit roundoff can be accessed as UNIT ROUNDOFF defined in sundialstypes.h.

5.5.5 Jacobian information (SPGMR matrix-vector product)

If an iterative spgmr linear solver is selected (IDASpgmr is called in step 7 of §5.3) the user may
provide a function of type IDASpgmrJacTimesVecFn in the following form:

IDASpgmrJacTimesVecFn

Definition typedef int (*IDASpgmrJacTimesVecFn)(realtype tt,

N Vector yy, N Vector yp, N Vector rr,

N Vector v, N Vector Jv,

realtype c j, void *jac data,

N Vector tmp1, N Vector tmp2);

Purpose This function computes the product of the problem Jacobian and the vector v (or an
approximation to it).

Arguments tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of y′(t).

rr is the current value of the vector F (t, y, y′).

v is the vector by which the Jacobian must be multiplied to the right.

Jv is the output vector computed.

c j is the scalar in the system Jacobian, proportional to the inverse of the step
size.

jac data is a pointer to user data - the same as the jac data parameter passed to
IDASpgmrSetJacData.

tmp1

tmp2 are pointers to memory allocated for variables of type N Vector which can
be used by IDASpgmrJacTimesVecFn as temporary storage or work space.

Return value The value to be returned by the Jacobian times vector function should be 0 if success-
ful. A nonzero value indicates that a nonrecoverable error occurred.

If the user’s IDASpgmrJacTimesVecFn function uses difference quotient approxima-
tions, it may need to access quantities not in the call list. These include the cur-
rent stepsize, the error weights, etc. To obtain these, use the IDAGet* functions
described in §5.4.7. The unit roundoff can be accessed as UNIT ROUNDOFF defined in
sundialstypes.h.

5.5.6 Preconditioning (SPGMR linear system solution)

If preconditioning is used, then the user must provide a C function to solve the linear system
Pz = r where P may be either a left or a right preconditioner matrix. This function must be of
type IDASpgmrPrecSolveFn, defined as follows:

54 Using IDA

IDASpgmrPrecSolveFn

Definition typedef int (*IDASpgmrPrecSolveFn)(realtype tt,

N Vector yy, N Vector yp, N Vector rr,

N Vector rvec, N Vector zvec,

realtype c j, realtype delta,

void *prec data, N Vector tmp);

Purpose This function solves the preconditioning system Pz = r.

Arguments tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of y′(t).

rr is the current value of the vector F (t, y, y′).

rvec is the right-hand side vector of the linear system.

zvec is the output vector computed.

c j is the scalar in the system Jacobian, proportional to the inverse of the step
size.

delta is an input tolerance to be used if an iterative method is employed in the so-
lution. In that case, the residual vector Res = r−Pz of the system should
be made less than delta in weighted l2 norm, i.e.,

√
∑

i(Resi · ewti)2 <
delta. To obtain the N Vector ewt, call IDAGetErrWeights (see §5.4.7).

prec data is a pointer to user data - the same as the prec data parameter passed to
the function IDASpgmrSetPrecData.

tmp is a pointer to memory allocated for a variable of type N Vector which can
be used for work space.

Return value The value to be returned by the preconditioner solve function is a flag indicating
whether it was successful. This value should be 0 if successful, positive for a recoverable
error (in which case the step will be retried), negative for an unrecoverable error (in
which case the integration is halted).

5.5.7 Preconditioning (SPGMR Jacobian data)

If the user’s preconditioner requires that any Jacobian related data be evaluated or preprocessed,
then this needs to be done in a user-supplied C function of type IDASpgmrPrecSetupFn, defined as
follows:

IDASpgmrPrecSetupFn

Definition typedef int (*IDASpgmrPrecSetupFn)(realtype tt,

N Vector yy, N Vector yp, N Vector rr,

realtype c j, void *prec data,

N Vector tmp1, N Vector tmp2,

N Vector tmp3);

Purpose This function evaluates and/or preprocesses Jacobian related data needed by the pre-
conditioner.

Arguments The arguments of an IDASpgmrPrecSetupFn are as follows:

tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of y′(t).

rr is the current value of the vector F (t, y, y′).

c j is the scalar in the system Jacobian, proportional to the inverse of the step
size.

5.6 A parallel band-block-diagonal preconditioner module 55

prec data is a pointer to user data, the same as the prec data parameter passed to
IDASpgmrSetPrecData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by IDASpgmrPrecSetupFn as temporary storage or work space.

Return value The value to be returned by the preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, positive for a recoverable
error (in which case the step will be retried), negative for an unrecoverable error (in
which case the integration is halted).

Notes The operations performed by this function might include forming a crude approximate
Jacobian, and performing an LU factorization on the resulting approximation.

Each call to the preconditioner setup function is preceded by a call to the IDAResFn

user function with the same (tt, yy, yp) arguments. Thus the preconditioner setup
function can use any auxiliary data that is computed and saved during the evaluation
of the DAE residual.

This function is not called in advance of every call to the preconditioner solve function,
but rather is called only as often as needed to achieve convergence in the Newton
iteration.

If the user’s IDASpgmrPrecSetupFn function uses difference quotient approximations,
it may need to access quantities not in the call list. These include the current stepsize,
the error weights, etc. To obtain these, use the IDAGet* functions described in §5.4.7.
The unit roundoff can be accessed as UNIT ROUNDOFF defined in sundialstypes.h.

5.6 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel DAE solver such as ida lies in the solution of partial differential
equations (PDEs). Moreover, the use of a Krylov iterative method for the solution of many such
problems is motivated by the nature of the underlying linear system of equations (3.4) that must be
solved at each time step. The linear algebraic system is large, sparse, and structured. However, if a
Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner needs to
be used. Otherwise, the rate of convergence of the Krylov iterative method is usually unacceptably
slow. Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-
based problems. It has been successfully used for several realistic, large-scale problems [12] and
is included in a software module within the ida package. This module works with the parallel
vector module nvector parallel and generates a preconditioner that is a block-diagonal ma-
trix with each block being a band matrix. The blocks need not have the same number of super-
and sub-diagonals and these numbers may vary from block to block. This Band-Block-Diagonal
Preconditioner module is called idabbdpre.

One way to envision these preconditioners is to think of the domain of the computational PDE
problem as being subdivided into M non-overlapping sub-domains. Each of these sub-domains is
then assigned to one of the M processors to be used to solve the DAE system. The basic idea
is to isolate the preconditioning so that it is local to each processor, and also to use a (possibly
cheaper) approximate residual function. This requires the definition of a new function G(t, y, y ′)
which approximates the function F (t, y, y′) in the definition of the DAE system (3.1). However,
the user may set G = F . Corresponding to the domain decomposition, there is a decomposition of
the solution vector y into M disjoint blocks ym, and a decomposition of G into blocks Gm. The
block Gm depends on ym and also on components of ym′ associated with neighboring sub-domains
(so-called ghost-cell data). Let ȳm denote ym augmented with those other components on which Gm

56 Using IDA

depends. Then we have

G(t, y) = [G1(t, ȳ1), G2(t, ȳ2), . . . , GM (t, ȳM)]T (5.1)

and each of the blocks Gm(t, ȳm) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

P = diag[P1, P2, . . . , PM] (5.2)

where
Pm ≈ ∂Gm/∂ym + α∂Gm/∂y

′
m (5.3)

This matrix is taken to be banded, with upper and lower half-bandwidths mudq and mldq defined as
the number of non-zero diagonals above and below the main diagonal, respectively. The difference
quotient approximation is computed using mudq + mldq +2 evaluations of Gm, but only a matrix of
bandwidth mukeep + mlkeep +1 is retained.

Neither pair of parameters need be the true half-bandwidths of the Jacobians of the local block
of G, if smaller values provide a more efficient preconditioner. Such an efficiency gain may occur if
the couplings in the DAE system outside a certain bandwidth are considerably weaker than those
within the band. Reducing mukeep and mlkeep while keeping mudq and mldq at their true values,
discards the elements outside the narrower band. Reducing both pairs has the additional effect of
lumping the outer Jacobian elements into the computed elements within the band, and requires
more caution and experimentation.

The solution of the complete linear system

Px = b (5.4)

reduces to solving each of the equations

Pmxm = bm (5.5)

and this is done by banded LU factorization of Pm followed by a banded backsolve.
Similar block-diagonal preconditioners could be considered with different treatment of the blocks

Pm. For example, incomplete LU factorization or an iterative method could be used instead of
banded LU factorization.

The idabbdpre module calls two user-provided functions to construct P : a required function
Gres (of type IDABBDLocalFn) which approximates the residual function G(t, y) ≈ F (t, y) and which
is computed locally, and an optional function Gcomm (of type IDABBDCommFn) which performs all inter-
process communication necessary to evaluate the approximate residual G. These are in addition to
the user-supplied residual function res. Both functions take as input the same pointer res data

as passed by the user to IDASetRdata and passed to the user’s function res, and neither function
has a return value. The user is responsible for providing space (presumably within res data) for
components of yy and yp that are communicated by Gcomm from the other processors, and that are
then used by Gres, which is not expected to do any communication.

IDABBDLocalFn

Definition typedef void (*IDABBDLocalFn)(long int Nlocal, realtype tt,

N Vector yy, N Vector yp, N Vector gval,

void *res data);

Purpose This function computes G(t, y, y′). It loads the vector gval as a function of tt, yy,
and yp.

Arguments Nlocal is the local vector length.

tt is the value of the independent variable.

yy is the dependent variable.

yp is the derivative of the dependent variable.

5.6 A parallel band-block-diagonal preconditioner module 57

gval is the output vector.

res data is a pointer to user data - the same as the res data parameter passed to
IDASetRdata.

Return value An IDABBDLocalFn function type does not have a return value.

Notes This function assumes that all inter-processor communication of data needed to cal-
culate gval has already been done, and this data is accessible within res data.

The case where G is mathematically identical to F is allowed.

IDABBDCommFn

Definition typedef void (*IDABBDCommFn)(long int Nlocal, realtype tt,

N Vector yy, N Vector yp, void *res data);

Purpose This function performs all inter-processor communications necessary for the execution
of the Gres function above, using the input vectors yy and yp.

Arguments Nlocal is the local vector length.

tt is the value of the independent variable.

yy is the dependent variable.

yp is the derivative of the dependent variable.

res data is a pointer to user data - the same as the res data parameter passed to
IDASetRdata.

Return value An IDABBDCommFn function type does not have a return value.

Notes The Gcomm function is expected to save communicated data in space defined within
the structure res data.

Each call to the Gcomm function is preceded by a call to the residual function res with
the same (tt, yy, yp) arguments. Thus Gcomm can omit any communications done by
res if relevant to the evaluation of Gres. If all necessary comunication was done in
res, then Gcomm = NULL can be passed in the call to IDABBDPrecAlloc (see below).

Besides the header files required for the integration of the DAE problem (see §5.2), to use the
idabbdpre module, the main program must include the header file idabbdpre.h which declares the
needed function prototypes.

The following is a summary of the usage of this module and describes the sequence of calls in
the user main program. Steps that are unchanged from the user main program presented in §5.3 are
grayed-out.

1. Initialize MPI

2. Set problem dimensions

3. Set vector of initial values

4. Create ida object

5. Set optional inputs

6. Allocate internal memory

7. Initialize the idabbdpre preconditioner module

Specify the upper and lower bandwidths mudq, mldq and mukeep, mlkeep and call

bbd data = IDABBDPrecAlloc(ida mem, Nlocal, mudq, mldq,

mukeep, mlkeep, dq rel yy, Gres, Gcomm);

to allocate memory for and initialize a data structure bbd data to be passed to the idaspgmr

linear solver. The last two arguments of IDABBDPrecAlloc are the two user-supplied functions
described above.

58 Using IDA

8. Attach the idaspgmr linear solver

flag = IDABBDSpgmr(ida mem, maxl, bbd data);

The function IDABBDSpgmr is a wrapper around the idaspgmr specification function IDASpgmr

and performs the following actions:

•Attaches the idaspgmr linear solver to the main ida solver memory;

•Sets the preconditioner data structure for idabbdpre;

•Sets the preconditioner setup function for idabbdpre;

•Sets the preconditioner solve function for idabbdpre;

9. Set linear solver optional inputs

Note that the user should not overwrite the preconditioner data, setup function, or solve function
through calls to idaspgmr optional input functions.

10. Advance solution in time

11. Deallocate memory for solution vector

12. Free the idabbdpre data structure

IDABBDPrecFree(bbd data);

13. Free solver memory

14. Finalize MPI

The three user-callable functions that initialize, attach, and deallocate the idabbdpre preconditioner
module (steps 7, 8, and 12 above) are described next.

IDABBDPrecAlloc

Call bbd data = IDABBDPrecAlloc(ida mem, Nlocal, mudq, mldq,

mukeep, mlkeep, dq rel yy, Gres, Gcomm);

Description The function IDABBDPrecAlloc initializes and allocates memory for the idabbdpre

preconditioner.

Arguments ida mem (void *) pointer to the ida memory block.

Nlocal (long int) local vector dimension.

mudq (long int) upper half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mldq (long int) lower half-bandwidth to be used in the difference-quotient Ja-
cobian approximation.

mukeep (long int) upper half-bandwidth of the retained banded approximate Ja-
cobian block.

mlkeep (long int) lower half-bandwidth of the retained banded approximate Ja-
cobian block.

dq rel yy (realtype) the relative increment in components of y used in the differ-
ence quotient approximations. The default is dq rel yy=

√
unit roundoff,

which can be specified by passing dq rel yy= 0.0.

Gres (IDABBDLocalFn) the C function which computes the local residual ap-
proximation G(t, y, y′).

Gcomm (IDABBDCommFn) the optional C function which performs all inter-process
communication required for the computation of G(t, y, y′).

5.6 A parallel band-block-diagonal preconditioner module 59

Return value If successful, IDABBDPrecAlloc returns a pointer to the newly created idabbdpre

memory block (of type void *). If an error occurred, IDABBDPrecAlloc returns NULL.

Notes If one of the half-bandwidths mudq or mldq to be used in the difference-quotient cal-
culation of the approximate Jacobian is negative or exceeds the value Nlocal−1, it is
replaced by 0 or Nlocal−1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the
Jacobian of the local block of G, when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computation costs further.

For all four half-bandwidths, the values need not be the same on every processor.

IDABBDSpgmr

Call flag = IDABBDSpgmr(ida mem, maxl, bbd data);

Description The function IDABBDSpgmr links the idabbdpre data to the idaspgmr linear solver
and attaches the latter to the ida memory block.

Arguments ida mem (void *) pointer to the ida memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to
use the default value IDASPGMR MAXL= 5.

bbd data (void *) pointer to the idabbdpre data structure.

Return value The return value flag (of type int) is one of

IDASPGMR SUCCESS The idaspgmr initialization was successful.

IDASPGMR MEM NULL The ida mem pointer is NULL.

IDASPGMR MEM FAIL A memory allocation request failed.

IDA PDATA NULL The idabbdpre preconditioner has not been initialized.

IDABBDPrecFree

Call IDABBDPrecFree(bbd data);

Description The function IDABBDPrecFree frees the pointer allocated by IDABBDPrecAlloc.

Arguments The only argument of IDABBDPrecFree is the pointer to the idabbdpre data structure
(of type void *).

Return value The function IDABBDPrecFree has no return value.

The idabbdpre module also provides a reinitialization function to allow solving a sequence of
problems of the same size with idaspgmr/idabbdpre, provided there is no change in local N,
mukeep, or mlkeep. After solving one problem, and after calling IDAReInit to re-initialize ida for
a subsequent problem, a call to IDABBDPrecReInit can be made to change any of the following:
the half-bandwidths mudq and mldq used in the difference-quotient Jacobian approximations, the
relative increment dq rel yy, or one of the user-supplied functions Gres and Gcomm.

IDABBDPrecReInit

Call flag = IDABBDPrecReInit(bbd data, mudq, mldq, dq rel yy, Gres, Gcomm);

Description The function IDABBDPrecReInit reinitializes the idabbdpre preconditioner.

Arguments bbd data (void *) pointer to the idabbdpre data structure.

mudq (long int) upper half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mldq (long int) lower half-bandwidth to be used in the difference-quotient Ja-
cobian approximation.

60 Using IDA

dq rel yy (realtype) the relative increment in components of y used in the differ-
ence quotient approximations. The default is dq rel yy =

√
unit roundoff,

which can be specified by passing dq rel yy = 0.0.

Gres (IDABBDLocalFn) the C function which computes the local residual ap-
proximation G(t, y, y′).

Gcomm (IDABBDCommFn) the optional C function which performs all inter-process
communication required for the computation of G(t, y, y′).

Return value The return value of IDABBDPrecReInit is always IDA SUCCESS.

Notes If one of the half-bandwidths mudq or mldq is negative or exceeds the value Nlocal−1,
it is replaced by 0 or Nlocal−1, accordingly.

The following two optional output functions are available for use with the idabbdpre module:

IDABBDPrecGetWorkSpace

Call flag = IDABBDPrecGetWorkSpace(bbd data, &lenrwBBDP, &leniwBBDP);

Description The function IDABBDPrecGetWorkSpace returns the local sizes of the idabbdpre real
and integer workspaces.

Arguments bbd data (void *) pointer to the idabbdpre data structure.

lenrwBBDP (long int) local number of real values in the idabbdpre workspace.

leniwBBDP (long int) local number of integer values in the idabbdpre workspace.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA PDATA NULL The idabbdpre preconditioner has not been initialized.

Notes In terms of the local vector dimension Nl, the actual size of the real workspace is Nl (2
mlkeep + mukeep + smu +2) realtype words, where smu = min(Nl − 1, mukeep +
mlkeep).

The actual size of the integer workspace is Nl integer words.

IDABBDPrecGetNumGfnEvals

Call flag = IDABBDPrecGetNumGfnEvals(bbd data, &ngevalsBBDP);

Description The function IDABBDPrecGetNumGfnEvals returns the cumulative number of calls to
the user Gres function due to the finite difference approximation of the Jacobian blocks
used within idabbdpre’s preconditioner setup function.

Arguments bbd data (void *) pointer to the idabbdpre data structure.

ngevalsBBDP (long int) the cumulative number of calls to the user Gres function.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfuly set.

IDA PDATA NULL The idabbdpre preconditioner has not been initialized.

The costs associated with idabbdpre also include nlinsetups LU factorizations, nlinsetups
calls to Gcomm, and npsolves banded backsolve calls, where nlinsetups and npsolves are optional
ida outputs (see §5.4.7).

Chapter 6

Description of the NVECTOR
module

The sundials solvers are written in a data-independent manner. They all operate on generic vectors
(of type N Vector) through a set of operations defined by the particular nvector implementation.
Users can provide their own specific implementation of the nvector module or use one of two
provided within sundials, a serial and an MPI parallel implementations.

The generic N Vector type is a pointer to a structure that has an implementation-dependent
content field containing the description and actual data of the vector, and an ops field pointing to a
structure with generic vector operations. The type N Vector is defined as

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {

void *content;

struct _generic_N_Vector_Ops *ops;

};

The generic N Vector Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {

N_Vector (*nvclone)(N_Vector);

N_Vector (*nvcloneempty)(N_Vector);

void (*nvdestroy)(N_Vector);

void (*nvspace)(N_Vector, long int *, long int *);

realtype* (*nvgetarraypointer)(N_Vector);

void (*nvsetarraypointer)(realtype *, N_Vector);

void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);

void (*nvconst)(realtype, N_Vector);

void (*nvprod)(N_Vector, N_Vector, N_Vector);

void (*nvdiv)(N_Vector, N_Vector, N_Vector);

void (*nvscale)(realtype, N_Vector, N_Vector);

void (*nvabs)(N_Vector, N_Vector);

void (*nvinv)(N_Vector, N_Vector);

void (*nvaddconst)(N_Vector, realtype, N_Vector);

realtype (*nvdotprod)(N_Vector, N_Vector);

realtype (*nvmaxnorm)(N_Vector);

realtype (*nvwrmsnorm)(N_Vector, N_Vector);

realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvmin)(N_Vector);

62 Description of the NVECTOR module

realtype (*nvwl2norm)(N_Vector, N_Vector);

realtype (*nvl1norm)(N_Vector);

void (*nvcompare)(realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);

booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient)(N_Vector, N_Vector);

};

The generic nvector module also defines and implements the vector operations acting on
N Vector. These routines are nothing but wrappers for the vector operations defined by a particular
nvector implementation, which are accessed through the ops field of the N Vector structure. To
illustrate this point we show below the implementation of a typical vector operation from the generic
nvector module, namely N VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)

{

z->ops->nvscale(c, x, z);

}

Table 6.1 contains a complete list of all vector operations defined by the generic nvector module.
Finally, note that the generic nvector module defines the functions N VCloneVectorArray and

N VCloneEmptyVectorArray. Both functions create (by cloning) an array of count variables of type
N Vector, each of the same type as an existing N Vector. Their prototypes are

N_Vector *N_VCloneVectorArray(int count, N_Vector w);

N_Vector *N_VCloneEmptyVectorArray(int count, N_Vector w);

and their definitions are based on the implementation-specific N VClone and N VCloneEmpty opera-
tions, respectively. An array of variables of type N Vector can be destroyed by calling N VDestroyVectorArray,
whose prototype is

void N_VDestroyVectorArray(N_Vector *vs, int count);

and whose definition is based on the implementation-specific N VDestroy operation.
A particular implementation of the nvector module must:

• Specify the content field of N Vector.

• Define and implement the vector operations. Note that the names of these routines should
be unique to that implementation in order to permit using more than one nvector module
(each with different N Vector internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an
N Vector with the new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
N Vector (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used
to access different parts in the content field of the newly defined N Vector.

63

Table 6.1: Description of the NVECTOR operations

Name Usage and Description

N VClone v = N VClone(w);

Creates a new N Vector of the same type as an existing vector w and
sets the ops field. It does not copy the vector, but rather allocates
storage for the new vector.

N VCloneEmpty v = N VCloneEmpty(w);

Creates a new N Vector of the same type as an existing vector w and
sets the ops field. It does not allocate storage for the data array.

N VDestroy N VDestroy(v);

Destroys the N Vector v and frees memory allocated for its internal
data.

N VSpace N VSpace(nvSpec, &lrw, &liw);

Returns storage requirements for one N Vector. lrw contains the num-
ber of realtype words and liw contains the number of integer words.

N VGetArrayPointer vdata = N VGetArrayPointer(v);

Returns a pointer to a realtype array from the N Vector v. Note that
this assumes that the internal data in N Vector is a contiguous array
of realtype. This routine is only used in the solver-specific interfaces
to the dense and banded linear solvers, as well as the interfaces to the
banded preconditioners provided with sundials.

N VSetArrayPointer N VSetArrayPointer(vdata, v);

Overwrites the data in an N Vector with a given array of realtype.
Note that this assumes that the internal data in N Vector is a con-
tiguous array of realtype. This routine is only used in the interfaces
to the dense linear solver.

N VLinearSum N VLinearSum(a, x, b, y, z);

Performs the operation z = ax + by, where a and b are scalars and x
and y are of type N Vector: zi = axi + byi, i = 0, . . . , n− 1.

N VConst N VConst(c, z);

Sets all components of the N Vector z to c: zi = c, i = 0, . . . , n− 1.

N VProd N VProd(x, y, z);

Sets the N Vector z to be the component-wise product of the N Vector

inputs x and y: zi = xiyi, i = 0, . . . , n− 1.

N VDiv N VDiv(x, y, z);

Sets the N Vector z to be the component-wise ratio of the N Vector

inputs x and y: zi = xi/yi, i = 0, . . . , n− 1. The yi may not be tested
for 0 values. It should only be called with an x that is guaranteed to
have all nonzero components.

continued on next page

64 Description of the NVECTOR module

continued from last page

Name Usage and Description

N VScale N VScale(c, x, z);

Scales the N Vector x by the scalar c and returns the result in z:
zi = cxi, i = 0, . . . , n− 1.

N VAbs N VAbs(x, y);

Sets the components of the N Vector y to be the absolute values of
the components of the N Vector x: yi = |xi|, i = 0, . . . , n− 1.

N VInv N VInv(x, z);

Sets the components of the N Vector z to be the inverses of the com-
ponents of the N Vector x: zi = 1.0/xi, i = 0, . . . , n− 1. This routine
may not check for division by 0. It should be called only with an x

which is guaranteed to have all nonzero components.

N VAddConst N VAddConst(x, b, z);

Adds the scalar b to all components of x and returns the result in the
N Vector z: zi = xi + b, i = 0, . . . , n− 1.

N VDotProd d = N VDotProd(x, y);

Returns the value of the ordinary dot product of x and y: d =
∑n−1

i=0 xiyi.

N VMaxNorm m = N VMaxNorm(x);

Returns the maximum norm of the N Vector x: m = maxi |xi|.

N VWrmsNorm m = N VWrmsNorm(x, w)

Returns the weighted root-mean-square norm of the N Vector x with

weight vector w: m =

√

(

∑n−1
i=0 (xiwi)2

)

/n.

N VWrmsNormMask m = N VWrmsNormMask(x, w, id);

Returns the weighted root mean square norm of the N Vector x with
weight vector w built using only the elements of x corresponding to
nonzero elements of the N Vector id:

m =

√

(

∑n−1
i=0 (xiwisign(idi))2

)

/n.

N VMin m = N VMin(x);

Returns the smallest element of the N Vector x: m = mini xi.

N VWL2Norm m = N VWL2Norm(x, w);

Returns the weighted Euclidean `2 norm of the N Vector x with weight

vector w: m =
√

∑n−1
i=0 (xiwi)2.

N VL1Norm m = N VL1Norm(x);

Returns the `1 norm of the N Vector x: m =
∑n−1

i=0 |xi|.
continued on next page

6.1 The NVECTOR SERIAL implementation 65

continued from last page

Name Usage and Description

N VCompare N VCompare(c, x, z);

Compares the components of the N Vector x to the scalar c and returns
an N Vector z such that: zi = 1.0 if |xi| ≥ c and zi = 0.0 otherwise.

N VInvTest t = N VInvTest(x, z);

Sets the components of the N Vector z to be the inverses of the
components of the N Vector x, with prior testing for zero values:
zi = 1.0/xi, i = 0, . . . , n − 1. This routine returns TRUE if all com-
ponents of x are nonzero (successful inversion) and returns FALSE oth-
erwise.

N VConstrMask t = N VConstrMask(c, x, m);

Performs the following constraint tests: xi > 0 if ci = 2, xi ≥ 0 if
ci = 1, xi ≤ 0 if ci = −1, xi < 0 if ci = −2. There is no constraint
on xi if ci = 0. This routine returns FALSE if any element failed the
constraint test, TRUE if all passed. It also sets a mask vector m, with
elements equal to 1.0 where the constraint test failed, and 0.0 where
the test passed. This routine is used only for constraint checking.

N VMinQuotient minq = N VMinQuotient(num, denom);

This routine returns the minimum of the quotients obtained by term-
wise dividing numi by denomi. A zero element in denom will be skipped.
If no such quotients are found, then the large value BIG REAL (defined
in the header file sundialstypes.h) is returned.

6.1 The NVECTOR SERIAL implementation

The serial implementation of the nvector module provided with sundials, nvector serial,
defines the content field of N Vector to be a structure containing the length of the vector, a pointer
to the beginning of a contiguous data array, and a boolean flag own data which specifies the ownership
of data.

struct _N_VectorContent_Serial {

long int length;

booleantype own_data;

realtype *data;

};

The following five macros are provided to access the content of an nvector serial vector. The
suffix S in the names denotes serial version.

• NV CONTENT S

This routine gives access to the contents of the serial vector N Vector.

The assignment v cont = NV CONTENT S(v) sets v cont to be a pointer to the serial N Vector

content structure.

Implementation:

#define NV_CONTENT_S(v) ((N_VectorContent_Serial)(v->content))

66 Description of the NVECTOR module

• NV OWN DATA S, NV DATA S, NV LENGTH S

These macros give individual access to the parts of the content of a serial N Vector.

The assignment v data = NV DATA S(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA S(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH S(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH S(v) = len v sets the length of v to be len v.

Implementation:

#define NV_OWN_DATA_S(v) (NV_CONTENT_S(v)->own_data)

#define NV_DATA_S(v) (NV_CONTENT_S(v)->data)

#define NV_LENGTH_S(v) (NV_CONTENT_S(v)->length)

• NV Ith S

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) (NV_DATA_S(v)[i])

The nvector serial module defines serial implementations of all vector operations listed in Table
6.1 and provides the following user-callable routines:

• N VNew Serial

This function creates and allocates memory for a serial N Vector. Its only argument is the
vector length.

N_Vector N_VNew_Serial(long int vec_length);

• N VNewEmpty Serial

This function creates a new serial N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Serial(long int vec_length);

• N VMake Serial

This function creates and allocates memory for a serial vector with user-provided data array.

N_Vector N_VMake_Serial(long int vec_length, realtype *v_data);

• N VNewVectorArray Serial

This function creates an array of count serial vectors.

N_Vector *N_VNewVectorArray_Serial(int count, long int vec_length);

• N VNewVectorArrayEmpty Serial

This function creates an array of count serial vectors, each with an empty (NULL) data array.

N_Vector *N_VNewVectorArrayEmpty_Serial(int count, long int vec_length);

• N VDestroyVectorArray Serial

This function frees memory allocated for the array of count variables of type N Vector created
with N VNewVectorArray Serial or with N VNewVectorArrayEmpty Serial.

void N_VDestroyVectorArray_Serial(N_Vector *vs, int count);

• N VPrint Serial

This function prints the content of a serial vector to stdout.

void N_VPrint_Serial(N_Vector v);

6.2 The NVECTOR PARALLEL implementation 67

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA S(v) and then access v data[i] within the loop than
it is to use NV Ith S(v,i) within the loop.

• ! The nvector serial constructor functions N VNewEmpty Serial, N VMake Serial, and
N VNewVectorArrayEmpty Serial set the field own data= FALSE. The functions N VDestroy Serial

and N VDestroyVectorArray Serial will not attempt to free the pointer data for any N Vector

with own data set to FALSE. In such a case, it is the user’s responsibility to deallocate the data
pointer.

• ! To maximize efficiency, vector operations in the nvector serial implementation that
have more than one N Vector argument do not check for consistent internal representation
of these vectors. It is the user’s responsibility to ensure that such routines are called with
N Vector arguments that were all created with the same internal representations.

6.2 The NVECTOR PARALLEL implementation

The parallel implementation of the nvector module provided with sundials, nvector parallel,
defines the content field of N Vector to be a structure containing the global and local lengths of the
vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, an a
boolean flag own data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {

long int local_length;

long int global_length;

booleantype own_data;

realtype *data;

MPI_Comm comm;

};

The following seven macros are provided to access the content of a nvector parallel vector. The
suffix P in the names denotes parallel version.

• NV CONTENT P

This macro gives access to the contents of the parallel vector N Vector.

The assignment v cont = NV CONTENT P(v) sets v cont to be a pointer to the N Vector con-
tent structure of type struct N VectorParallelContent.

Implementation:

#define NV_CONTENT_P(v) ((N_VectorContent_Parallel)(v->content))

• NV OWN DATA P, NV DATA P, NV LOCLENGTH P, NV GLOBLENGTH P

These macros give individual access to the parts of the content of a parallel N Vector.

The assignment v data = NV DATA P(v) sets v data to be a pointer to the first component of
the local data for the N Vector v. The assignment NV DATA P(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v llen = NV LOCLENGTH P(v) sets v llen to be the length of the local part
of v. The call NV LENGTH P(v) = llen v sets the local length of v to be llen v.

The assignment v glen = NV GLOBLENGTH P(v) sets v glen to be the global length of the
vector v. The call NV GLOBLENGTH P(v) = glen v sets the global length of v to be glen v.

Implementation:

68 Description of the NVECTOR module

#define NV_OWN_DATA_P(v) (NV_CONTENT_P(v)->own_data)

#define NV_DATA_P(v) (NV_CONTENT_P(v)->data)

#define NV_LOCLENGTH_P(v) (NV_CONTENT_P(v)->local_length)

#define NV_GLOBLENGTH_P(v) (NV_CONTENT_P(v)->global_length)

• NV COMM P

This macro provides access to the MPI communicator used by the nvector parallel vec-
tors.

Implementation:

#define NV_COMM_P(v) (NV_CONTENT_P(v)->comm)

• NV Ith P

This macro gives access to the individual components of the local data array of an N Vector.

The assignment r = NV Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV Ith P(v,i) = r sets the value of the i-th component of the
local part of v to be r.

Here i ranges from 0 to n− 1, where n is the local length.

Implementation:

#define NV_Ith_P(v,i) (NV_DATA_P(v)[i])

The nvector parallel module defines parallel implementations of all vector operations listed in
Table 6.1 and provides the following user-callable routines:

• N VNew Parallel

This function creates and allocates memory for a parallel vector.

N_Vector N_VNew_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

• N VNewEmpty Parallel

This function creates a new parallel N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

• N VMake Parallel

This function creates and allocates memory for a parallel vector with user-provided data array.

N_Vector N_VMake_Parallel(MPI_Comm comm,

long int local_length,

long int global_length,

realtype *v_data);

• N VNewVectorArray Parallel

This function creates an array of count parallel vectors.

N_Vector *N_VNewVectorArray_Parallel(int count,

MPI_Comm comm,

long int local_length,

long int global_length);

6.3 NVECTOR functions used by IDA 69

• N VNewVectorArrayEmpty Parallel

This function creates an array of count parallel vectors, each with an empty (NULL) data array.

N_Vector *N_VNewVectorArrayEmpty_Parallel(int count,

MPI_Comm comm,

long int local_length,

long int global_length);

• N VDestroyVectorArray Parallel

This function frees memory allocated for the array of count variables of type N Vector created
with N VNewVectorArray Parallel or with N VNewVectorArrayEmpty Parallel.

void N_VDestroyVectorArray_Parallel(N_Vector *vs, int count);

• N VPrint Parallel

This function prints the content of a parallel vector to stdout.

void N_VPrint_Parallel(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
local component array via v data = NV DATA P(v) and then access v data[i] within the loop
than it is to use NV Ith P(v,i) within the loop.

• ! The nvector parallel constructor functions N VNewEmpty Parallel, N VMake Parallel,
and N VNewVectorArrayEmpty Parallel set the field own data= FALSE. The functions N VDestroy Parallel

and N VDestroyVectorArray Parallel will not attempt to free the pointer data for any
N Vector with own data set to FALSE. In such a case, it is the user’s responsibility to deallocate
the data pointer.

• ! To maximize efficiency, vector operations in the nvector parallel implementation
that have more than one N Vector argument do not check for consistent internal representation
of these vectors. It is the user’s responsability to ensure that such routines are called with
N Vector arguments that were all created with the same internal representations.

6.3 NVECTOR functions used by IDA

In Table 6.2 below, we list the vector functions in the nvector module used by the ida package.
The table also shows, for each function, which of the code modules uses the function. The ida

column shows function usage within the main integrator module, while the remaining four columns
show function usage within each of the three ida linear solvers and the idabbdpre preconditioner
module.

There is one subtlety in the idaspgmr column hidden by the table. The N VDotProd function is
called both within the implementation file idaspgmr.c for the idaspgmr solver and within the im-
plementation files spgmr.c and iterative.c for the generic spgmr solver upon which the idaspgmr

solver is implemented. Also, although N VDiv and N VProd are not called within the implementation
file idaspgmr.c, they are called within the implementation file spgmr.c and so are required by the
idaspgmr solver module. This issue does not arise for the other two ida linear solvers because the
generic dense and band solvers (used in the implementation of idadense and idaband) do not
make calls to any vector functions.

Four of the functions listed in Table 6.1, N VWL2Norm, N VL1Norm, N VCloneEmpty, and N VInvTest

are not used by ida. Therefore a user-supplied nvector module for ida could omit these three
functions.

70 Description of the NVECTOR module

Table 6.2: List of vector functions usage by ida code modules

id
a

id
a
d
e
n
se

id
a
b
a
n
d

id
a
sp

g
m
r

id
a
b
b
d
p
r
e

N VClone X X X

N VDestroy X X X

N VSpace X

N VGetArrayPointer X X X

N VSetArrayPointer X

N VLinearSum X X X

N VConst X X

N VProd X X

N VDiv X X

N VScale X X X X X

N VAbs X

N VInv X

N VAddConst X

N VDotProd X

N VMaxNorm X

N VWrmsNorm X

N VMin X

N VMinQuotient X

N VConstrMask X

N VWrmsNormMask X

N VCompare X

Chapter 7

Providing Alternate Linear Solver
Modules

The central ida module interfaces with the linear solver module to be used by way of calls to five
routines. These are denoted here by linit, lsetup, lsolve, lperf, and lfree. Briefly, their
purposes are as follows:

• linit: initialize and allocate memory specific to the linear solver;

• lsetup: evaluate and preprocess the Jacobian or preconditioner;

• lsolve: solve the linear system;

• lperf: monitor performance and issue warnings;

• lfree: free the linear solver memory.

A linear solver module must also provide a user-callable specification routine (like those described
in §5.4.2) which will attach the above five routines to the main ida memory block. The return value
of the specification routine should be: SUCCESS = 0 if the routine was successful, LMEM FAIL = -1 if
a memory allocation failed, or LIN ILL INPUT = -2 if some input was illegal.

These five routines, which interface between ida and the linear solver module, necessarily have
fixed call sequences. Thus a user wishing to implement another linear solver within the ida package
must adhere to this set of interfaces. The following is a complete description of the call list for each
of these routines. Note that the call list of each routine includes a pointer to the main ida memory
block, by which the routine can access various data related to the ida solution. The contents of this
memory block are given in the file ida.h (but not reproduced here, for the sake of space).

Initialization routine. The type definition of linit is

linit

Definition int (*linit)(IDAMem IDA mem);

Purpose The purpose of linit is to complete initializations for a specific linear solver, such as
counters and statistics.

Arguments IDA mem is the ida memory pointer of type IDAMem.

Return value An linit function should return 0 if it has successfully initialized the ida linear solver
and a negative value otherwise.

Notes If an error does occur, an appropriate message should be sent to IDA mem->ida errfp.

Setup routine. The type definition of lsetup is

72 Providing Alternate Linear Solver Modules

lsetup

Definition int (*lsetup)(IDAMem IDA mem, N Vector yyp, N Vector ypp,

N Vector resp,

N Vector vtemp1, N Vector vtemp2, N Vector vtemp3);

Purpose The job of lsetup is to prepare the linear solver for subsequent calls to lsolve. It
may re-compute Jacobian-related data if it deems necessary.

Arguments IDA mem is the ida memory pointer of type IDAMem.

yyp is the predicted y vector for the current ida internal step.

ypp is the predicted y′ vector for the current ida internal step.

resp is the value of the residual function at yyp and ypp, i.e. F (tn, ypred, y
′
pred).

vtemp1

vtemp2

vtemp3 are temporary variables of type N Vector provided for use by lsetup.

Return value The lsetup routine should return 0 if successful, a positive value for a recoverable
error, and a negative value for an unrecoverable error.

Solve routine. The type definition of lsolve is

lsolve

Definition int (*lsolve)(IDAMem IDA mem, N Vector b, N Vector weight,

N Vector ycur, N Vector ypcur, N Vector rescur);

Purpose The routine lsolve must solve the linear equation Mx = b, where M is some approx-
imation to J = dF/dy + cjdF/dy

′ and the right-hand side vector b is input.

Arguments IDA mem is the ida memory pointer of type IDAMem.

b is the right-hand side vector b. The solution is to be returned in the vector
b.

weight is a vector that contains the error weights. These are the reciprocals of the
Wi of (3.6).

ycur is a vector that contains the solver’s current approximation to y(tn).

ypcur is a vector that contains the solver’s current approximation to y′(tn).

rescur is a vector that contains F (tn, ycur, y
′
cur).

Return value lsolve returns a positive value for a recoverable error and a negative value for an
unrecoverable error. Success is indicated by a 0 return value.

Performance monitoring routine. The type definition of lperf is

lperf

Definition int (*lperf)(IDAMem IDA mem, int perftask);

Purpose The routine lperf is to monitor the performance of the linear solver.

Arguments IDA mem is the ida memory pointer of type IDAMem.

perftask is a task flag. perftask = 0 means initialize needed counters. perftask =
1 means evaluate performance and issue warnings if needed.

Return value The lperf return value is ignored.

Memory deallocation routine. The type definition of lfree is

73

lfree

Definition void (*lfree)(IDAMem IDA mem);

Purpose The routine lfree should free up any memory allocated by the linear solver.

Arguments The argument IDa mem is the ida memory pointer of type IDAMem.

Return value This routine has no return value.

Notes This routine is called once a problem has been completed and the linear solver is no
longer needed.

Chapter 8

Generic Linear Solvers in
SUNDIALS

In this section, we describe three generic linear solver code modules that are included in ida, but
which are of potential use as generic packages in themselves, either in conjunction with the use of
ida or separately. These modules are:

• The dense matrix package, which includes the matrix type DenseMat, macros and functions
for DenseMat matrices, and functions for small dense matrices treated as simple array types.

• The band matrix package, which includes the matrix type BandMat, macros and functions for
BandMat matrices, and functions for small band matrices treated as simple array types.

• The spgmr package, which includes a solver for the scaled preconditioned GMRES method.

For the sake of space, the functions for DenseMat and BandMat matrices and the functions in
spgmr are only summarized briefly, since they are less likely to be of direct use in connection with
ida. The functions for small dense matrices are fully described, because we expect that they will be
useful in the implementation of preconditioners used with the combination of ida and the idaspgmr

solver.

8.1 The DENSE module

8.1.1 Type DenseMat

The type DenseMat is defined to be a pointer to a structure with a size and a data field:

typedef struct {

long int size;

realtype **data;

} *DenseMat;

The size field indicates the number of columns (which is the same as the number of rows) of a
dense matrix, while the data field is a two dimensional array used for component storage. The
elements of a dense matrix are stored columnwise (i.e columns are stored one on top of the other in
memory). If A is of type DenseMat, then the (i,j)-th element of A (with 0 ≤ i, j ≤ size−1) is given
by the expression (A->data)[j][i] or by the expression (A->data)[0][j*size+i]. The macros
below allow a user to efficiently access individual matrix elements without writing out explicit data
structure references and without knowing too much about the underlying element storage. The
only storage assumption needed is that elements are stored columnwise and that a pointer to the
j-th column of elements can be obtained via the DENSE COL macro. Users should use these macros
whenever possible.

76 Generic Linear Solvers in SUNDIALS

8.1.2 Accessor Macros

The following two macros are defined by the dense module to provide access to data in the DenseMat
type:

• DENSE ELEM

Usage : DENSE ELEM(A,i,j) = a ij; or a ij = DENSE ELEM(A,i,j);

DENSE ELEM references the (i,j)-th element of the N ×N DenseMat A, 0 ≤ i, j ≤ N − 1.

• DENSE COL

Usage : col j = DENSE COL(A,j);

DENSE COL references the j-th column of the N × N DenseMat A, 0 ≤ j ≤ N − 1. The type
of the expression DENSE COL(A,j) is realtype * . After the assignment in the usage above,
col j may be treated as an array indexed from 0 to N − 1. The (i, j)-th element of A is
referenced by col j[i].

8.1.3 Functions

The following functions for DenseMat matrices are available in the dense package. For full details,
see the header file dense.h.

• DenseAllocMat: allocation of a DenseMat matrix;

• DenseAllocPiv: allocation of a pivot array for use with DenseFactor/DenseBacksolve;

• DenseFactor: LU factorization with partial pivoting;

• DenseBacksolve: solution of Ax = b using LU factorization;

• DenseZero: load a matrix with zeros;

• DenseCopy: copy one matrix to another;

• DenseScale: scale a matrix by a scalar;

• DenseAddI: increment a matrix by the identity matrix;

• DenseFreeMat: free memory for a DenseMat matrix;

• DenseFreePiv: free memory for a pivot array;

• DensePrint: print a DenseMat matrix to standard output.

8.1.4 Small Dense Matrix Functions

The following functions for small dense matrices are available in the dense package:

• denalloc

denalloc(n) allocates storage for an n by n dense matrix. It returns a pointer to the newly
allocated storage if successful. If the memory request cannot be satisfied, then denalloc

returns NULL. The underlying type of the dense matrix returned is realtype**. If we allocate
a dense matrix realtype** a by a = denalloc(n), then a[j][i] references the (i,j)-th
element of the matrix a, 0 ≤ i, j ≤ n−1, and a[j] is a pointer to the first element in the j-th
column of a. The location a[0] contains a pointer to n2 contiguous locations which contain
the elements of a.

8.1 The DENSE module 77

• denallocpiv

denallocpiv(n) allocates an array of n integers. It returns a pointer to the first element in
the array if successful. It returns NULL if the memory request could not be satisfied.

• gefa

gefa(a,n,p) factors the n by n dense matrix a. It overwrites the elements of a with its LU
factors and keeps track of the pivot rows chosen in the pivot array p.

A successful LU factorization leaves the matrix a and the pivot array p with the following
information:

1. p[k] contains the row number of the pivot element chosen at the beginning of elimination
step k, k = 0, 1, ...,n−1.

2. If the unique LU factorization of a is given by Pa = LU , where P is a permutation
matrix, L is a lower triangular matrix with all 1’s on the diagonal, and U is an upper
triangular matrix, then the upper triangular part of a (including its diagonal) contains U
and the strictly lower triangular part of a contains the multipliers, I − L.

gefa returns 0 if successful. Otherwise it encountered a zero diagonal element during the
factorization. In this case it returns the column index (numbered from one) at which it
encountered the zero.

• gesl

gesl(a,n,p,b) solves the n by n linear system ax = b. It assumes that a has been LU-
factored and the pivot array p has been set by a successful call to gefa(a,n,p). The solution
x is written into the b array.

• denzero

denzero(a,n) sets all the elements of the n by n dense matrix a to be 0.0;

• dencopy

dencopy(a,b,n) copies the n by n dense matrix a into the n by n dense matrix b;

• denscale

denscale(c,a,n) scales every element in the n by n dense matrix a by c;

• denaddI

denaddI(a,n) increments the n by n dense matrix a by the identity matrix;

• denfreepiv

denfreepiv(p) frees the pivot array p allocated by denallocpiv;

• denfree

denfree(a) frees the dense matrix a allocated by denalloc;

• denprint

denprint(a,n) prints the n by n dense matrix a to standard output as it would normally
appear on paper. It is intended as a debugging tool with small values of n. The elements are
printed using the %g option. A blank line is printed before and after the matrix.

78 Generic Linear Solvers in SUNDIALS

8.2 The BAND module

8.2.1 Type BandMat

The type BandMat is the type of a large band matrix A (possibly distributed). It is defined to be a
pointer to a structure defined by:

typedef struct {

long int size;

long int mu, ml, smu;

realtype **data;

} *BandMat;

The fields in the above structure are:

• size is the number of columns (which is the same as the number of rows);

• mu is the upper half-bandwidth, 0 ≤ mu ≤ size−1;

• ml is the lower half-bandwidth, 0 ≤ ml ≤ size−1;

• smu is the storage upper half-bandwidth, mu ≤ smu ≤ size−1. The BandFactor routine writes
the LU factors into the storage for A. The upper triangular factor U, however, may have an
upper half-bandwidth as big as min(size−1,mu+ml) because of partial pivoting. The smu field
holds the upper half-bandwidth allocated for A.

• data is a two dimensional array used for component storage. The elements of a band matrix
of type BandMat are stored columnwise (i.e. columns are stored one on top of the other in
memory). Only elements within the specified half-bandwidths are stored.

If we number rows and columns in the band matrix starting from 0, then

– data[0] is a pointer to (smu+ml+1)*size contiguous locations which hold the elements
within the band of A

– data[j] is a pointer to the uppermost element within the band in the j-th column. This
pointer may be treated as an array indexed from smu−mu (to access the uppermost
element within the band in the j-th column) to smu+ml (to access the lowest element
within the band in the j-th column). Indices from 0 to smu−mu−1 give access to extra
storage elements required by BandFactor.

– data[j][i-j+smu] is the (i, j)-th element, j−mu ≤ i ≤ j+ml.

The macros below allow a user to access individual matrix elements without writing out explicit
data structure references and without knowing too much about the underlying element storage. The
only storage assumption needed is that elements are stored columnwise and that a pointer into the
j-th column of elements can be obtained via the BAND COL macro. Users should use these macros
whenever possible.

See Figure 8.1 for a diagram of the BandMat type.

8.2.2 Accessor Macros

The following three macros are defined by the band module to provide access to data in the BandMat
type:

• BAND ELEM

Usage : BAND ELEM(A,i,j) = a ij; or a ij = BAND ELEM(A,i,j);

BAND ELEM references the (i,j)-th element of the N×N band matrix A, where 0 ≤ i, j ≤ N−1.
The location (i,j) should further satisfy j−(A->mu) ≤ i ≤ j+(A->ml).

8.2 The BAND module 79

A (type BandMat)

size data

N

mu ml smu

data[0]

data[1]

data[j]

data[j+1]

data[N−1]

data[j][smu−mu]

data[j][smu]

data[j][smu+ml]

mu+ml+1

smu−mu

A(j−mu−1,j)

A(j−mu,j)

A(j,j)

A(j+ml,j)

Figure 8.1: Diagram of the storage for a band matrix of type BandMat. Here A is an N × N
band matrix of type BandMat with upper and lower half-bandwidths mu and ml, respectively. The
rows and columns of A are numbered from 0 to N − 1 and the (i, j)-th element of A is denoted
A(i,j). The greyed out areas of the underlying component storage are used by the BandFactor

and BandBacksolve routines.

80 Generic Linear Solvers in SUNDIALS

• BAND COL

Usage : col j = BAND COL(A,j);

BAND COL references the diagonal element of the j-th column of the N ×N band matrix A, 0 ≤
j ≤ N − 1. The type of the expression BAND COL(A,j) is realtype *. The pointer returned
by the call BAND COL(A,j) can be treated as an array which is indexed from −(A->mu) to
(A->ml).

• BAND COL ELEM

Usage : BAND COL ELEM(col j,i,j) = a ij; or a ij = BAND COL ELEM(col j,i,j);

This macro references the (i,j)-th entry of the band matrix A when used in conjunction
with BAND COL to reference the j-th column through col j. The index (i,j) should satisfy
j−(A->mu) ≤ i ≤ j+(A->ml).

8.2.3 Functions

The following functions for BandMat matrices are available in the band package. For full details, see
the header file band.h.

• BandAllocMat: allocation of a BandMat matrix;

• BandAllocPiv: allocation of a pivot array for use with BandFactor/BandBacksolve;

• BandFactor: LU factorization with partial pivoting;

• BandBacksolve: solution of Ax = b using LU factorization;

• BandZero: load a matrix with zeros;

• BandCopy: copy one matrix to another;

• BandScale: scale a matrix by a scalar;

• BandAddI: increment a matrix by the identity matrix;

• BandFreeMat: free memory for a BandMat matrix;

• BandFreePiv: free memory for a pivot array;

• BandPrint: print a BandMat matrix to standard output.

8.3 The SPGMR module

The spgmr package, in the files spgmr.h and spgmr.c, includes an implementation of the scaled
preconditioned GMRES method. A separate code module, iterative.h and iterative.c, contains
auxiliary functions that support spgmr, and also other Krylov solvers to be added later. For full
details, including usage instructions, see the files spgmr.h and iterative.h.

Functions. The following functions are available in the spgmr package:

• SpgmrMalloc: allocation of memory for SpgmrSolve;

• SpgmrSolve: solution of Ax = b by the spgmr method;

• SpgmrFree: free memory allocated by SpgmrMalloc.

The following functions are available in the support package iterative.h and iterative.c:

8.3 The SPGMR module 81

• ModifiedGS: performs modified Gram-Schmidt procedure;

• ClassicalGS: performs classical Gram-Schmidt procedure;

• QRfact: performs QR factorization of Hessenberg matrix;

• QRsol: solves a least squares problem with a Hessenberg matrix factored by QRfact.

Chapter 9

IDA Constants

Below we list all input and output constants used by the main solver and linear solver modules,
together with their numerical values and a short description of their meaning.

9.1 IDA input constants

ida main solver module

IDA SS 1 Scalar relative tolerance, scalar absolute tolerance.
IDA SV 2 Scalar relative tolerance, vector absolute tolerance.
IDA NORMAL 1 Solver returns at specified output time.
IDA ONE STEP 2 Solver returns after each successful step.
IDA NORMAL TSTOP 3 Solver returns at specified output time, but does not proceed

past the specified stopping time.
IDA ONE STEP TSTOP 4 Solver returns after each successful step, but does not proceed

past the specified stopping time.
IDA YA YDP INIT 1 Compute ya and y′d, given yd.
IDA Y INIT 2 Compute y, given y′.

Iterative linear solver module

PREC NONE 0 No preconditioning
PREC LEFT 1 Preconditioning on the left.
MODIFIED GS 1 Use modified Gram-Schmidt procedure.
CLASSICAL GS 2 Use classical Gram-Schmidt procedure.

9.2 IDA output constants

ida main solver module

IDA SUCCESS 0 Successful function return.
IDA TSTOP RETURN 1 IDASolve succeeded by reaching the specified stopping point.
IDA MEM NULL -1 The ida mem argument was NULL.
IDA ILL INPUT -2 One of the function inputs is illegal.
IDA NO MALLOC -3 The ida memory was not allocated by a call to IDAMalloc.
IDA TOO MUCH WORK -4 The solver took mxstep internal steps but could not reach

tout.

84 IDA Constants

IDA TOO MUCH ACC -5 The solver could not satisfy the accuracy demanded by the
user for some internal step.

IDA ERR FAIL -6 Error test failures occurred too many times during one internal
time step or minimum step size was reached.

IDA CONV FAIL -7 Convergence test failures occurred too many times during one
internal time step or minimum step size was reached.

IDA LINIT FAIL -8 The linear solver’s initialization function failed.
IDA LSETUP FAIL -9 The linear solver’s setup function failed in an unrecoverable

manner.
IDA LSOLVE FAIL -10 The linear solver’s solve function failed in an unrecoverable

manner.
IDA RES FAIL -11 The user-provided residual function failed in an unrecoverable

manner.
IDA CONSTR FAIL -12 The inequality constraints were violated and the solver was

unable to recover.
IDA REP RES FAIL -13 The user-provided residual function repeatedly returned a re-

coverable error flag, but the solver was unable to recover.
IDA MEM FAIL -14 A memory allocation failed.
IDA BAD T -15 The time t s outside the last step taken.
IDA BAD EWT -16 Zero value of some error weight component.
IDA FIRST RES FAIL -17 The user-provided residual function failed recoverably on the

first call.
IDA LINESEARCH FAIL -18 The line search failed.
IDA NO RECOVERY -19 The residual function, linear solver setup function, or linear

solver solve function had a recoverable failure, but IDACalcIC
could not recover.

IDA PDATA NULL -20 The preconditioner module has not been initialized.

idadense linear solver module

IDADENSE SUCCESS 0 Successful function return.
IDADENSE MEM NULL -1 The ida mem argument was NULL.
IDADENSE LMEM NULL -2 The idadense linear solver has not been initialized.
IDADENSE ILL INPUT -3 The idadense solver is not compatible with the current nvec-

tor module.
IDADENSE MEM FAIL -4 A memory allocation request failed.

idaband linear solver module

IDABAND SUCCESS 0 Successful function return.
IDABAND MEM NULL -1 The ida mem argument was NULL.
IDABAND LMEM NULL -2 The idaband linear solver has not been initialized.
IDABAND ILL INPUT -3 The idaband solver is not compatible with the current nvec-

tor module.
IDABAND MEM FAIL -4 A memory allocation request failed.

idaspgmr linear solver module

IDASPGMR SUCCESS 0 Successful function return.
IDASPGMR MEM NULL -1 The ida mem argument was NULL.
IDASPGMR LMEM NULL -2 The idaspgmr linear solver has not been initialized.
IDASPGMR ILL INPUT -3 The idaspgmr solver is not compatible with the current

nvector module.

9.2 IDA output constants 85

IDASPGMR MEM FAIL -4 A memory allocation request failed.

spgmr generic linear solver module

SPGMR SUCCESS 0 Converged.
SPGMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPGMR CONV FAIL 2 Failure to converge.
SPGMR QRFACT FAIL 3 A singular matrix was found during the QR factorization.
SPGMR PSOLVE FAIL REC 4 The preconditioner solve function failed recoverably.
SPGMR MEM NULL -1 The spgmr memory is NULL
SPGMR ATIMES FAIL -2 The Jacobian tims vector function failed.
SPGMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPGMR GS FAIL -4 Failure in the Gram-Schmidt procedure.
SPGMR QRSOL FAIL -5 The matrix R was found to be singular during the QR solve

phase.

Bibliography

[1] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value Problems
in Differential-Algebraic Equations. SIAM, Philadelphia, Pa, 1996.

[2] P. N. Brown and A. C. Hindmarsh. Reduced Storage Matrix Methods in Stiff ODE Systems.
J. Appl. Math. & Comp., 31:49–91, 1989.

[3] P. N. Brown, A. C. Hindmarsh, and L. R. Petzold. Using Krylov Methods in the Solution of
Large-Scale Differential-Algebraic Systems. SIAM J. Sci. Comput., 15:1467–1488, 1994.

[4] P. N. Brown, A. C. Hindmarsh, and L. R. Petzold. Consistent Initial Condition Calculation for
Differential-Algebraic Systems. SIAM J. Sci. Comput., 19:1495–1512, 1998.

[5] G. D. Byrne. Pragmatic Experiments with Krylov Methods in the Stiff ODE Setting. In J.R.
Cash and I. Gladwell, editors, Computational Ordinary Differential Equations, pages 323–356,
Oxford, 1992. Oxford University Press.

[6] G. D. Byrne and A. C. Hindmarsh. User Documentation for PVODE, An ODE Solver for
Parallel Computers. Technical Report UCRL-ID-130884, LLNL, May 1998.

[7] G. D. Byrne and A. C. Hindmarsh. PVODE, An ODE Solver for Parallel Computers. Intl. J.
High Perf. Comput. Apps., 13(4):254–365, 1999.

[8] S. D. Cohen and A. C. Hindmarsh. CVODE, a Stiff/Nonstiff ODE Solver in C. Computers in
Physics, 10(2):138–143, 1996.

[9] A. M. Collier, A. C. Hindmarsh, R. Serban, and C.S. Woodward. User Documentation for
KINSOL v2.2.0. Technical Report UCRL-SM-208116, LLNL, 2004.

[10] A. C. Hindmarsh and R. Serban. Example Programs for IDA v2.2.0. Technical Report UCRL-
SM-208113, LLNL, 2004.

[11] A. C. Hindmarsh and R. Serban. User Documentation for CVODE v2.2.0. Technical Report
UCRL-SM-208108, LLNL, 2004.

[12] A. C. Hindmarsh and A. G. Taylor. PVODE and KINSOL: Parallel Software for Differential
and Nonlinear Systems. Technical Report UCRL-ID-129739, LLNL, February 1998.

[13] Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comp., 7:856–869, 1986.

Index

band generic linear solver
functions, 80
macros, 78–80
type BandMat, 78

BAND COL, 52, 80
BAND COL ELEM, 52, 80
BAND ELEM, 52, 78
BandMat, 18, 52, 78
BIG REAL, 17, 65

CLASSICAL GS, 34

denaddI, 77
denalloc, 76
denallocpiv, 77
dencopy, 77
denfree, 77
denfreepiv, 77
denprint, 77
denscale, 77
dense generic linear solver

functions
large matrix, 76
small matrix, 76–77

macros, 76
type DenseMat, 75

DENSE COL, 51, 76
DENSE ELEM, 51, 76
DenseMat, 18, 51, 75
denzero, 77

e data, 50
error message, 25

gefa, 77
generic linear solvers

band, 78
dense, 75
spgmr, 80
use in ida, 15

gesl, 77
GMRES method, 34, 80
Gram-Schmidt procedure, 34

half-bandwidths, 22, 51–53, 58
header files, 18, 57

ida

motivation for writing in C, 1
package structure, 13

ida linear solvers
built on generic solvers, 21
header files, 18
idaband, 22
idadense, 21
idaspgmr, 22
implementation details, 15
list of, 13
nvector compatibility, 17
selecting one, 21

ida.h, 18
IDA BAD EWT, 23
IDA BAD T, 37
IDA CONSTR FAIL, 24, 25
IDA CONV FAIL, 24, 25
IDA ERR FAIL, 25
IDA FIRST RES FAIL, 23
IDA ILL INPUT, 21, 23, 24, 27, 28, 30, 31, 35–37,

49
IDA LINESEARCH FAIL, 24
IDA LINIT FAIL, 23, 25
IDA LSETUP FAIL, 23, 25
IDA LSOLVE FAIL, 23, 25
IDA MEM FAIL, 21
IDA MEM NULL, 21, 23, 24, 27–31, 35–37, 39–44,

49
IDA NO MALLOC, 23, 49
IDA NO RECOVERY, 24
IDA NORMAL, 24
IDA NORMAL TSTOP, 24
IDA ONE STEP, 24
IDA ONE STEP TSTOP, 24
IDA PDATA NULL, 59, 60
IDA REP RES ERR, 25
IDA RES FAIL, 23, 25
IDA SS, 21, 31, 49
IDA SUCCESS, 21, 23, 24, 27–31, 35–37, 49, 60
IDA SV, 21, 31, 49
IDA TOO MUCH ACC, 25
IDA TOO MUCH WORK, 25
IDA TSTOP RETURN, 24
IDA WF, 21, 49

90 INDEX

IDA Y INIT, 23
IDA YA YDP INIT, 23
idaband linear solver

Jacobian approximation used by, 32
nvector compatibility, 22
optional input, 32
optional output, 45–46
selection of, 22

idaband linear solver
memory requirements, 45

IDABand, 19, 21, 22, 51
idaband.h, 18
IDABAND ILL INPUT, 22
IDABAND LMEM NULL, 32, 45, 46
IDABAND MEM FAIL, 22
IDABAND MEM NULL, 22, 32, 45, 46
IDABAND SUCCESS, 22, 32, 46
IDABandDQJac, 32
IDABandGetLastFlag, 46
IDABandGetNumJacEvals, 45
IDABandGetNumResEvals, 45
IDABandGetWorkSpace, 45
IDABandJacFn, 51
IDABandSetJacFn, 32
idabbdpre preconditioner

description, 55–56
optional output, 60
usage, 57–58
user-callable functions, 58–60
user-supplied functions, 56–57

IDABBDPrecAlloc, 58
IDABBDPrecFree, 59
IDABBDPrecGetNumGfnEvals, 60
IDABBDPrecGetWorkSpace, 60
IDABBDPrecReInit, 59
IDABBDSpgmr, 58, 59
IDACalcIC, 23
IDACreate, 20
idadense linear solver

Jacobian approximation used by, 32
nvector compatibility, 21
optional input, 32
optional output, 43–45
selection of, 21

idadense linear solver
memory requirements, 44

IDADense, 19, 21, 22, 50
idadense.h, 18
IDADENSE ILL INPUT, 22
IDADENSE LMEM NULL, 32, 44, 45
IDADENSE MEM FAIL, 22
IDADENSE MEM NULL, 22, 32, 44, 45
IDADENSE SUCCESS, 22, 32, 44
IDADenseDQJac, 32

IDADenseGetLastFlag, 44
IDADenseGetNumJacEvals, 44
IDADenseGetNumResEvals, 44
IDADenseGetWorkSpace, 43
IDADenseJacFn, 50
IDADenseSetJacFn, 32
IDAEwtFn, 50
IDAFree, 20, 21
IDAGetActualInitStep, 41
IDAGetCurrentOrder, 40
IDAGetCurrentStep, 41
IDAGetCurrentTime, 41
IDAGetErrWeights, 42
IDAGetIntegratorStats, 42
IDAGetLastOrder, 40
IDAGetLastStep, 41
IDAGetNonlinSolvStats, 43
IDAGetNumErrTestFails, 40
IDAGetNumLinSolvSetups, 40
IDAGetNumNonlinSolvConvFails, 43
IDAGetNumNonlinSolvIters, 43
IDAGetNumResEvals, 39
IDAGetNumSteps, 39
IDAGetSolution, 37
IDAGetTolScaleFactor, 42
IDAGetWorkSpace, 37
IDAMalloc, 20, 48
IDAReInit, 48
IDAResFn, 20, 49, 49
IDASetConstraints, 30
IDASetErrFile, 25
IDASetEwtFn, 31
IDASetId, 30
IDASetInitStep, 28
IDASetLineSearchOffIC, 36
IDASetMaxConvFails, 29
IDASetMaxErrTestFails, 28
IDASetMaxNonlinIters, 29
IDASetMaxNumItersIC, 36
IDASetMaxNumJacsIC, 36
IDASetMaxNumSteps, 27
IDASetMaxNumStepsIC, 35
IDASetMaxOrd, 27
IDASetMaxStep, 28
IDASetNonlinConvCoef, 29
IDASetNonlinConvCoefIC, 35
IDASetRdata, 27
IDASetStepToleranceIC, 36
IDASetStopTime, 28
IDASetSuppressAlg, 30
IDASetTolerances, 31
IDASolve, 19, 24
idaspgmr linear solver

Jacobian approximation used by, 33

INDEX 91

optional input, 33–35
optional output, 46–48
preconditioner setup function, 33, 54
preconditioner solve function, 33, 53
selection of, 22

idaspgmr linear solver
memory requirements, 46

IDASpgmr, 19, 21, 22
idaspgmr.h, 18
IDASPGMR ILL INPUT, 34, 35
IDASPGMR LMEM NULL, 33–35, 46–48
IDASPGMR MEM FAIL, 23, 59
IDASPGMR MEM NULL, 23, 33–35, 46–48, 59
IDASPGMR SUCCESS, 23, 33–35, 48, 59
IDASpgmrDQJtimes, 33
IDASpgmrGetLastFlag, 48
IDASpgmrGetNumConvFails, 47
IDASpgmrGetNumJtimesEvals, 47
IDASpgmrGetNumLinIters, 46
IDASpgmrGetNumPrecEvals, 47
IDASpgmrGetNumPrecSolves, 47
IDASpgmrGetNumResEvals, 48
IDASpgmrGetWorkSpace, 46
IDASpgmrJacTimesVecFn, 53
IDASpgmrPrecSetupFn, 54
IDASpgmrPrecSolveFn, 53
IDASpgmrSet, 33
IDASpgmrSetEpsLin, 34
IDASpgmrSetGSType, 34
IDASpgmrSetIncrementFactor, 35
IDASpgmrSetJacTimesFn, 33
IDASpgmrSetMaxRestarts, 34
itask, 24
itol, 21, 31

Jacobian approximation function
band

difference quotient, 32
user-supplied, 32, 51–53

dense
difference quotient, 32
user-supplied, 32, 50–51

Jacobian times vector
difference quotient, 33
user-supplied, 33, 53

maxl, 22, 59
maxord, 49
memory requirements

ida solver, 39
idaband linear solver, 45
idabbdpre preconditioner, 60
idadense linear solver, 44
idaspgmr linear solver, 46

MODIFIED GS, 34

N VCloneEmptyVectorArray, 62
N VCloneVectorArray, 62
N VDestroyVectorArray, 62
N VDestroyVectorArray Parallel, 69
N VDestroyVectorArray Serial, 66
N Vector, 18, 61, 61
N VMake Parallel, 68
N VMake Serial, 66
N VNew Parallel, 68
N VNew Serial, 66
N VNewEmpty Parallel, 68
N VNewEmpty Serial, 66
N VNewVectorArray Parallel, 68
N VNewVectorArray Serial, 66
N VNewVectorArrayEmpty Parallel, 69
N VNewVectorArrayEmpty Serial, 66
N VPrint Parallel, 69
N VPrint Serial, 66
norm

weighted root-mean-square, 10
NV COMM P, 68
NV CONTENT P, 67
NV CONTENT S, 65
NV DATA P, 67
NV DATA S, 66
NV GLOBLENGTH P, 67
NV Ith P, 68
NV Ith S, 66
NV LENGTH S, 66
NV LOCLENGTH P, 67
NV OWN DATA P, 67
NV OWN DATA S, 66
NVECTOR module, 61
nvector.h, 18
nvector parallel.h, 18
nvector serial.h, 18

optional input
band linear solver, 32
dense linear solver, 32
initial condition calculation, 35–37
iterative linear solver, 33–35
solver, 25–31

optional output
band linear solver, 45–46
band-block-diagonal preconditioner, 60
dense linear solver, 43–45
interpolated solution, 37
iterative linear solver, 46–48
solver, 37–43

portability, 17
preconditioning

92 INDEX

advice on, 15
band-block diagonal, 55
setup and solve phases, 15
user-supplied, 33, 53, 54

RCONST, 17
realtype, 17
reinitialization, 48
res data, 27, 50, 57
residual function, 49

SMALL REAL, 17
spgmr generic linear solver

description of, 80
functions, 80
support functions, 80–81

step size bounds, 28
sundialstypes.h, 17, 18

tolerances, 10, 21, 31, 50

UNIT ROUNDOFF, 17
User main program

ida usage, 18
idabbdpre usage, 57

