Stealth V.1.47.2

Frank B. Brokken
Center for Information Technology, University of Groningen

2005-2008

Contents

1 Introduction

1.1 What’s
1.2 Stealth
1.2.1

new in Stealth V.1.47.2

2 Installation

2.1 Compiling and installing Stealth

3 The ‘policy’ file

3.1 DEFINE directives

3.2 USE directives

3.3 Commands

3.3.1
3.3.2
3.3.3

3.34

LABEL commands
LOCAL commands
REMOTE commands

Preventing Controller Denial of Service (—max-size)

4 Granting access

4.0.5

4.0.6

4.0.7
4.0.8

The controller’s user: creating an ssh-key

The client’s account: accepting ssh from the controller’s
USET . v v e e e e e e e e e e e e

Logging into the account@client account

Using the propershell

10
15
15
15
17

20

23

5 Running ‘stealth’

5.1

5.2

5.3

5.4
5.5
5.6
5.7
5.8

Installing ‘stealth’
Construct one or more policy files.
5.2.1 the DEFINE directives.
5.2.2 the USE directives
5.2.3 thecommands
5.2.4 The complete ‘policy’ file
Running ‘stealth’ for the first time
5.3.1 The mailed report
5.3.2 Files under /root/stealth/client
Running ‘stealth’ again: all files unaltered
Running ‘stealth’ again: modifications have occurred
Failing LOCAL commands
Automating ‘stealth’ runs using ‘cron”
Report File Rotation
5.8.1 Status file cleanup Lo

5.8.2 Using ‘logrotate’ to control report- and status files

6 Kick starting ‘stealth’

7 Usage info

8 Errormessages

26
26
27
27
27
28
30
31
32
32
34
35
37
37
39
41
43

44

46

48

Chapter 1

Introduction

1.1 What’s new in Stealth V.1.47.2

e Since the MD5 hash is no longer considered to be cryptographically secure,
stealth(1) should now use an alternative way to compute hash-values. In
this manual it is suggested to switch to SHA1 hash computations.

e The -max-size option was implement to restrict the maximum sizes of
files that are downloaded from clients. By default it is 10M.

1.2 Stealth

Welcome to stealth. The program stealth implements a file integrity scanner.
The acronym stealth can be expanded to

SSH-based Trust Enforcement Acquired through
a Locally Trusted Host.

This expansion contains the following key terms:

e SSH-based: The file integrity scan is (usually) performed over an ssh-
connection. Usually the computer being scanned (called the client) and
the computer initiating the scan (called the controller) are different
computers.

e The client should accept incoming ssh-connections from the initiating com-
puter. The controller doesn’t have to (and shouldn’t, probably).

e Trust Enforcement: following the scan, ‘trust’ is enforced in the client,
due to the integrity of its files.

e Locally Trusted Host: the client apparently trusts the controller to use
an ssh-connection to perform commands on it. The client therefore locally
trusts the controller. Hence, locally trusted host.

stealth is based on an idea by Hans Gankema and Kees Visser, both at the
Center for Information Technology of the University of Groningen.

stealth’s main task is to perform file integrity tests. However, the testing will
leave no sediments on the tested computer. Therefore, stealth has stealthy char-
acteristics. I consider this an important security improving feature of stealth.

The controller itself only needs two kinds of outgoing services: ssh(1) to reach
its clients, and some mail transport agent (e.g., sendmail(1)) to forward its
outgoing mail to some mail-hub.

Here is what happens when stealth is run:

e First, a policy file is read. This determines actions to be performed, and
values of several variables used by stealth.

o If the command-line option -keep-alive or -repeat <seconds> is given,
stealth will run as a backgrond process, displaying the process ID of
the background process. With -repeat <seconds> the scan will be rerun
every <seconds> seconds. The number of seconds until the next rerun will
be at least 60. However, using the -rerun option a background stealth
process may always be goated into its next scan. When -keep-alive is
specified the scan will be performed just once, whereafter stealth will wait
until it is reactivated by another run of stealth, called using the -rerun
<pid> command-line option.

e Then, the controller opens a command shell on the client using ssh(1),
and a command shell on the controller itself using sh(1).

e Next, commands defined in the policy file are executed in their order
of appearance. Examples are given below. Normally, return values of
the programs are tested. Non-zero return values will terminate stealth
prematurely.

e In most cases, integrity tests can be controlled by the find(1) program,
calling programs like 1s(1), shalsum(1) or its own -printf method to
produce file-integrity related statistics. Most of these programs write file
names at the end of generated lines. This characteristic is used by an
internal routine of stealth to detect changes in the generated output,
which could indicate some harmful intent, like an installed root-kit.

e When changes are detected, they are logged on a report file, to which
information is always appended. stealth never reduces or rewrites the
report file. When information is added to the report file the newly written
information is emailed to a configurable email address for further (human)
processing. Usually this will be the systems manager of the tested client.
stealth follows the ‘dark cockpit’ approach in that no mail is sent when
no changes were detected.

Alternatively, the command-line options -rerun and -terminate may be pro-
vided to communicate with a stealth process started earlier using either the
-keep-alive or -repeat option. In this case,

e When started using the -terminate <pid> command-line option, the
stealth process running at process-ID <pid> is terminated. Note that
no check is performed as to whether the process associated with <pid> is
truly a stealth process. It is the responsibility of the user to make sure
that the process-ID of the intended process is specified.

e When started using the -rerun <pid> command-line option, the stealth
process running at process-ID <pid> will perform another scan. Again,
no check is performed as to whether the process associated with <pid> is
truly a stealth process. It is the responsibility of the user to make sure
that the process-ID of the intended process is specified.

The options -suppress and -rerun (see section 5.8) were implemented to allow
safe rotations of stealth’s report file.

1.2.1 The integrity of the stealth distribution

The integrity of the archive stealth-1.47.2.tar.gz can be verified as follows:

e At the location where you found this archive, you should also find a file
named stealth-1.47.2.dsc. This file contains a PGP signed shalsum(1)
signature of the tar.gz archive. The PGP sigature was provided by me

using gpg(1) (pgp(1))-

e Compute the SHA1 checksum of the stealth-1.47.2.tar.gz archive.
Its value should match the SHA1 checksum that is mentioned in the
stealth-1.47.2.dsc file. If not, the stealth-1.47.2.tar.gz archive
has been compromised, and should not be used.

e In order to verify the validity of the electronic signature, do as follows:

— Obtain my public key from a public PGP keyserver, e.g.
http://pgp.surfnet.nl:11371/

— Make sure you have the right key. Its fingerprint is
8E36 9FC4 1DAA FCDF 1A0D B19F DAC4 BE50 38C6 6170

and it has been electronically signed by, e.g., the University of Gronin-
gen’s PGP-certificate authority. If in doubt, contact me to verify you
have the right key.

— Once you're sufficiently satisfied that you indeed have obtained my
public PGP key, verify the validity of the signature used for signing
stealth-1.47.2.dsc. With gpg(1) this can be done by the com-
mand

gpg --verify stealth-1.47.2.dsc

This should produce output comparable to:

gpg: Signature made Mon Aug 1 10:57:41 2005 CEST using DSA key ID 38C66170
gpg: Good signature from "Frank B. Brokken <f.b.brokken@rug.nl>"
gpg: aka "Frank B. Brokken <f.b.brokken@rc.rug.nl>"

Chapter 2

Installation

This chapter describes stealth’s compilation and installation.

2.1 Compiling and installing Stealth

After downloading the stealth archive, it should be unpacked. The name of
the archive is of the form stealth-1.47.2.tar.gz, where 1.47.2 is a version
number. Below, 1.47.2 should be altered into the version of the archive that is
actually used.

e First, determine a directory under which the archive’s file should be stored.
E.g., if the files in the archive should be stored under /tmp, and the archive
itself is stored in /tmp as well, do:

cd /tmp
tar xzf stealth-1.47.2.tar.gz

This creates a subdirectory stealth in which the sources are found

e Next, chdir to that directory:
chdir stealth

o Check the contents of the file make/parameters. It should need no mod-
ifications. Among other entries, it contains the entry GCC=g++, indicating
the compiler to use. The compiler should be the GNU g++ compiler version
4.0.2 or above. Also note -1bobcat in the entry

LOPTS="-1bobcat -lstealth -L. -s"

When compiling stealth, the bobcat! library must be available. If you

haven’t installed bobcat yet, download it from http://sourceforge.net/projects/bobcat/,
and follow its installation instructions. Make sure to install both the run-

time (bobcat ...) and the development (bobcat-dev _...) versions.

e Execute the command

make/program

This command (note that it is not make program!) will create the program
./tmp/bin/stealth, which may then be installed in, e.g., /usr/sbin.

Thttp://bobcat.sourceforge.net/

Chapter 3

The ‘policy’ file

stealth reads a policy file defining the actions that must be performed. Each
policy file is uniquely associated with a host to be tested. There may be multiple
policy files for a host, though. In that case, each policy file will define a certain
set of checks to be performed.

Below, the term controller is used for the computer where stealth is started,
while the term client is used for the computer that is scanned by stealth. The
controller and the client could be the same computer, but normally they are
different.

The policy file consists of three sets of data: define directives (starting with
the keyword DEFINE), use directives (starting with the keyword USE) and
commands.

Directives are written in capitals, and should appear exactly as written below:
letter casing is preserved.

Blank lines and information beyond hash-marks (#) are ignored, while lines
following lines terminating in backslashes (\) will be concatenated (en passant
removing the backslashes). Initial white space on lines of the policy file is
ignored.

3.1 DEFINE directives

DEFINE directives can be used to define symbols for longer strings. A DEFINE
directive is constructed as follows:

DEFINE name that what is defined by ‘name’

Here,

e the name following DEFINE is the symbol that may be used in USE directives
(see below) and commands (see below).

e DEFINE symbols can be used in other DEFINE symbols. However, it is the
responsibility of the author of the policy file to make sure that (indirect)
circular definitions are avoided. E.g., after:

DEFINE A ${B}
DEFINE B ${A}
DEFINE C ${C}

USE MATLARGS ${A} ${B} ${C}

MAILARGS will be expanded to

${A} ${A} ${C}

e The text following DEFINE name is then inserted literally into the USE
directive or command.

Example:
DEFINE SSH /usr/bin/ssh frankbash@localhost -q
DEFINE EXECSHA1 -xdev -perm +111 -type f -exec /usr/bin/shalsum {} \;

The symbols defined by DEFINE directives may consist of letters, digits
and the underscore character (_). In the definition of the symbol any

character can be used. The definition is, however, trimmed of initial or
trailing blanks.

To insert a definition into a USE directive or command use the

${name}

form. E.g., ${EXECSHA1}. Concrete examples will be given below.

3.2 USE directives

USE directives provide stealth with arguments which may be conditional to a
certain installation. The following USE directives may be specified:

10

e USE BASE basedirectory

BASE defines the directory from where stealth operates. All relative
path specifications are interpreted relative to BASE. By default this is
the directory where stealth was started.

BASE and all other directories that are used below BASE are created by
stealth if not yet existing.

Example:

USE BASE /root/client

All information generated by stealth is written in or below the directory
/root/client.

e USE DD <dad>
The DD specification uses /bin/dd as default, and defines the location
of the dd(1) program, both on the server and on the client. The bin(1)
program is used to copy files between the client and the controller without
opening separate ssh-connections. The program specified here is only used
by stealth for the PUT and GET commands, described below.

Example showing the default:

USE DD /bin/dd

e USE DIFF path-to-diff

The DIFF specification uses /usr/bin/diff as default, and defines the
location of the diff (1) program. The diff (1) program is used to compare
a formerly created logfile of an integrity check to a newly created logfile.

Example showing the default:

USE DIFF /usr/bin/diff

e USE EMAIL address

The EMAIL specification defines the email-address to e-mail the client’s
integrity scan report to. Mail is only sent when information has changed.

Example showing the default:

USE EMAIL root

e USE MAILER mailer

The MAILER specification defines the program that is used to send the
mail to the EM AIL-address. By default this is /usr/bin/mail(1). The
MAILER program is called as follows:

11

MAILER MAILARGS EMAIL

(MATILARGS: see below). The information to be mailed is read from MAILER’s
standard input stream.

Example showing the default:
USE MAILER /usr/bin/mail

USE MAILARGS arguments The MAILARGS specification defines
the arguments to be to be passed to the MAILER program. By default this
is

USE MAILARGS -s "STEALTH scan report"

Note that blanks may be used in the subject specification: use double or
single quotes to define elements containing blanks. Use \" to use a double
quote in a string that is itself delimited by double quotes, use \’ to use a
single quote in a string that is itself delimited by single quotes.

Subtle note: in a construction like
USE MAILARGS " ’t was brillig " and ’t went well

the following arguments are passed to MAILER:

— " ’t was brillig "

— and

— 7t

— went

— well
So, when single- and double-quoted strings overlap, the first string is taken
as a string, and the information beyond the first string is thereupon in-
terpreted.
USE REPORT reportfile

REPORT defines the name of the reportfile. Information is always ap-
pended to this file. For each run of stealth a time marker line is written
to the report file. Such a marker line looks like this:

STEALTH (1.11) started at Mon Jun 16 12:57:26 2003

12

Only when (in addition to the marker line) additional information was
appended to the report file, the added contents of the report file are mailed
to the mail address specified in the USE EMAIL specification.

Example showing the default:

USE REPORT report

USE ROTATE interval: number interval-name[,][count: number],]
[, zip: number [zip-program-pathl]]

ROTATE defines the parameters stealth will use to rotate its report
file. This USE specification supports three elements, the first of which
is obligatory when USE ROTATE is specified. Note that the square
brackets are not used in the specification, and indicate optional elements,
which may or may not be specified:

— interval: number interval-name defines the time interval until
the report file is rotated. Rotation can be specified using an inte-
gral, positive number, followed by hour or hours for hours, day or
days for days, week or weeks for weeks and month or months for
months. By default no rotation takes place. If rotation is requested,
the current report file is moved to the file reportfile.l, while exist-
ing numbered reportfiles are moved to higher ordered numbers first
(so, before moving the current reportfile to reportfile.l, an existing
reportfile.l is first moved to reportfile.2, etc.).

— count: number defines the number of report files stealth will even-
tually use. By default, if USE ROTATE is specified, there is no
practical limit to the number of report files stealth will create (in
these cases, another program supposedly controls the number of re-
port files that will eventually be used). External programs may freely
manipulate all report files that have been rotated by stealth, but
they should not modify the active report file (specified using the
USE REPORT specification).

— zip: number zip-program-path defines the first of the rotated
files that should be compressed, using zip-program-path to com-
press the report files. By default, no compression is used, but if zip:
is specified, the default program that will be used to compress a re-
port file is /bin/gzip. If another program is used, it should expect
a filename as its first argument, which will then be zipped to a new
file receiving the extension .gz, appended to the name that was pro-
vided as its first argument. The original file is removed during the
Zipping-process.

Example showing a report interval of one week, using a total of 12
report files, compressing all report files but the actual report file and
its predecessor (having filename reportfile.l):

USE ROTATE interval: 1 week, count: 12, zip: 2 /bin/gzip

13

e USE SH sh-specification

The SH specification uses /bin/sh as default, and defines the command
shell used by the controller to execute local commands.

Example showing the default:

USE SH /bin/sh

e USE SSH ssh-specification

The SSH specification has no default, and must be specified. Assum-
ing the client trusts the controller (which is, after all, what this program is
all about; so this should not be a very strong assumption), preferably the
public ssh-identity key of the controller should be placed in the client’s
root .ssh/authorized_keys file, granting the controller root access to
the client. Root access is normally needed to gain access to all directories
and files of the client’s file system.

In practice, connecting to a account using the sh(1l) shell is preferred.
When another shell is already used by that account, one should make sure
that that shell doesn’t setup its own redirections for standard input and
standard output. One way to accomplish that is for force the execution
of /bin/sh in the USE SSH specification.

An example of an SSH specification to scan a localhost is:

USE SSH root@localhost -T -q # root’s shell is /bin/sh

The same, now explicitly using /bin/bash:

USE SSH root@localhost -T -q exec /bin/bash # root uses another shell

Alternatively, -profile can be specified to prevent any profile-initialization:

USE SSH root@localhost -T -q exec /bin/bash --noprofile

Note, however, that using stealth to inspect localhost is not recommended,
as it counters one of the main reasons for stealth’s existence.

As yet another alternative, applicable only to localhost, ssh could be avoided
altogether. In that case /bin/bash or a comparable shell may be specified with
USE SSH. For example:

For stealth inspecting localhost:
USE SSH /bin/bash --noprofile

14

3.3 Commands

Following the USE specifications, commands can be specified. The commands
are executed in their order of appearance in the policy file. Processing continues
until the last command has been processed or until a tested command (see
below) returns a non-zero return value.

3.3.1 LABEL commands

The following LABEL commands are available:

o LABEL text

This defines a text-label which is written to the REPORT file, just be-
fore the output generated by the next CHECK-command. If the next
CHECK-command generates no output, the label is not written to the
REPORT-file. Once a LABEL has been defined, it is used until it is re-
defined by the next LABEL command. Use an empty LABEL command
to suppress the printing of labels.

The text may contain \n characters (two characters) which are trans-
formed to a newline character.

¢ LABEL

As noted, this clears a previously defined LABEL command.

Examples:

LABEL Inspecting files in /etc\nIncluding subdirectories
LABEL

The second LABEL command clears the first label.

3.3.2 LOCAL commands

LOCAL commands can be used to specify commands that are executed on the
controller itself. The following LOCAL commands are available:

e LOCAL command

Execute command on the controller, using the SH command shell. The
command must succeed (i.e., must return a zero exit value). Example:

LOCAL mkdir /tmp/client

15

This command will create the directory /tmp/client on the controller.

LOCAL NOTEST command

Execute command on the controller, using the SH command shell. The
command may or may not succeed. Example:

LOCAL NOTEST mkdir /tmp/subdir

This command will create /tmp/subdir on the controller. The command
will fail if the directory cannot be created, but this will not terminate
stealth.

LOCAL CHECK [LOG =| logfile command

Execute command on the controller, using the SH command shell. The
phrase ‘LOG =’ is optional. If the command does not succeed a warning
message is written to the report file. The warning message informs the
reader that ‘remaining results might be forged:

*%%x BE CAREFUL *** REMAINING RESULTS MAY BE FORGED

This situation may occur, e.g., if an essential program (like shalsum) was
transferred to the controller, and it was apparently modified since the
previous check. Processing continues, but remaining checks performed at
the client computer should be interpreted with extreme caution.

The output of this command is compared to the output of this command

generated during the previous run of stealth. Any differences are written
to REPORT.

If differences were found, the existing logfile name is renamed to logfile.YYYYMMDD-HHMMSS,
with YYYYMMDD-HHMMSS the datetime-stamp at the time stealth was run.

Over time, many logfile.YYMMDD-HHMMSS files could be accumulated. It
is up to the controller’s systems manager to decide what to do with old
datetime-stamped logfiles. For instance, the following script will remove
all stealth reports below the current directory that are older than 30 days:

#/bin/sh
FILES=‘find ./ -path ’*[0-9]’ -mtime +30 -type f‘
if ["$FILES" != ""] ; then

rm -f $FILES
fi

The logfile specifications may use relative and absolute paths. When
relative paths are used, these paths are relative to BASE. When the

16

directories implied by the logfile specifications do not yet exist, they
are created first.

Example:

LOCAL CHECK LOG = local/shalsum shalsum /tmp/shalsum

This command will check the SHA1 sum of the /tmp/shalsum program.
The resulting output is saved at BASE/local/shalsum. The program
must succeed (i.e., shalsum must return a zero exit-value).

¢ LOCAL NOTEST CHECK [LOG =] logfile command

Execute command on the controller, using the SH command shell. The
phrase ‘LOG =’ is optional. The command may or may not succeed.
Otherwise, the program acts identically as the LOCAL CHECK ...
command, discussed previously.

Example:

LOCAL NOTEST CHECK L0OG=local/shalsum shalsum /tmp/shalsum

This command will check the SHA1 sum of the /tmp/shalsum program.
The resulting output is saved at BASE/local/shalsum. The program
may or may not succeed (i.e., shalsum may or may not return a zero
exit-value).

3.3.3 REMOTE commands

Plain commands can be executed on the client computer by merely specifying
them. Of course, this means that programs called LABEL, LOCAL USE or DEFINE,
cannot be executed, since these names are interpreted otherwise by stealth.
It’s unlikely that this will cause problems. Remote commands must succeed
(i.e., their return codes must be 0).

Remote commands are commands executed on the client using the SSH shell.
These commands are executed using the standard PATH set for the SSH shell.
However, it is advised to specify the full pathname to the programs to be ex-
ecuted, to prevent “trojan approaches” where a trojan horse is installed in an
‘earlier’ directory of the PATH-specification than the intended program.

Two special remote commands are GET and PUT, which can be used to copy files
between the client and the controller. Internally, GET and PUT use the DD use-
specification. If a non-default specification is used, one should ensure that the
alternate program accepts dd(1)’s if=, of=, bs= and count= options. With
GET the options bs=, count= and of= are used, with PUT the options bs=,
count=and if= are used. Normally there should be no need to alter the default
DD specification.

17

The GET command may be used as follows:

o GET <client-path> <local-path>
Copy the file indicated by client-path at the client to local-path at
the controller. client-path must be the full path of an existing file on
the client, local-path may either be a local directory, in which case the
client’s file name is used, or another file name may be specified, in which
case the client’s file is copied to the specified local filename. If the local
file already exists, it is overwritten by the copy-procedure.

Example:

GET /usr/bin/shalsum /tmp

The program /usr/bin/shalsum, available at the client, is copied to the
controller’s /tmp directory. If the copying fails for some reason, any sub-
sequent commands are skipped, and stealth terminates.

e GET NOTEST <client-path> <local-path>
Copy the file indicated by client-path at the client to local-path at
the controller. client-path must be the full path of an existing file on
the client, local-path may either be a local directory, in which case the
client’s file name is used, or another file name may be specified, in which
case the client’s file is copied to the specified local filename. If the local
file already exists, it is overwritten by the copy-procedure.

Example:

GET NOTEST /usr/bin/shalsum /tmp

The program /usr/bin/shalsum, available at the client, is copied to the
controller’s /tmp directory. Remaining commands in the policy file are
executed, even if the copying process wasn’t successful.

The PUT command may be used as follows:

e PUT <local-path> <remote-path>
Copy the file indicated by local-path at the controller to remote-path at
the client. The argument local-path must be the full path of an existing
file on the controller. The argument remote-path must be the full path
to a file on the client. If the remote file already exists, it is overwritten by
PUT.

Example:

PUT /tmp/shalsum /usr/bin/shalsum

The program /tmp/shalsum, available at the controller, is copied to the
client as usr/bin/shalsum. If the copying fails for some reason, any
subsequent commands are skipped, and stealth terminates.

e PUT NOTEST <local-path> <remote-path>
Copy the file indicated by local-path at the controller to remote-path at
the client. The argument local-path must be the full path of an existing
file on the controller. The argument remote-path must be the full path
to a file on the client. If the remote file already exists, it is overwritten by
PUT.

18

Example:

PUT NOTEST /tmp/shalsum /usr/bin/shalsum

Copy the file indicated by local-path at the controller to remote-path at
the client. The argument local-path must be the full path of an existing
file on the controller. The argument remote-path must be the full path
to a file on the client. If the remote file already exists, it is overwritten
by PUT. Remaining commands in the policy file are executed, even if the
copying process wasn’t successful.

Other commands to be executed on the client can be specified as follows:

e command

Execute ‘command’ on the client, using the SSH command shell. The
command must succeed (i.e., must return a zero exit value). However,
any output generated by the command is ignored. Example:

/usr/bin/find /tmp -type f -exec /bin/rm {} \;

This command will remove all ordinary files at and below the client’s /tmp
directory.

e NOTEST command

Execute command on the client, using the SSH command shell. The com-
mand may or may not succeed.

Example:

NOTEST /usr/bin/find /tmp -type f -exec /bin/rm {} \;

Same as the previous command, but this time the exit value of /usr/bin/find
is not interpreted.

¢ CHECK [LOG =] logfile command

Execute command on the client, using the SSH command shell. The
phrase ‘LOG =’ is optional. The command must succeed. The output
of this command is compared to the output of this command generated
during the previous run of stealth. Any differences are written to RE-
PORT. If differences were found, the existing logfile name is renamed to
logfile.YYYYMMDD-HHMMSS, with YYYYMMDD-HHMMSS the datetime-stamp
at the time stealth was run.

Note that the command is executed on the client, but the logfile is kept
on the controller. This command represents the core of the method im-
plemented by stealth: there will be no residues of the actions performed
by stealth on the client computers.

Several examples (note the use of the backslash as line continuation char-
acters):

19

CHECK LOG = remote/ls.root /usr/bin/find / \
-xdev -perm +6111 -type f -exec /bin/ls -1 {} \;

All suid/gid/executable files on the same device as the root-directory (/)
on the client computer are listed with their permissions, owner and size in-
formation. The resulting listing is written on the file BASE/remote/1ls.root.

This long command could be formulated shorter using a DEFINE:

DEFINE LSFIND -xdev -perm +6111 -type f -exec /bin/ls -1 {} \;
CHECK remote/ls.root /usr/bin/find / ${LSFIND}

Another example:

DEFINE SHA1SUM -xdev -perm +6111 -type f -exec /usr/bin/shalsum {} \;
CHECK remote/shal.root /usr/bin/find / ${SHA1SUM}

The SHA1 checksums of all suid/gid/executable files on the same device
as the root-directory (/) on the client computer are determined. The
resulting listing is written on the file BASE/remote/shal.root.

¢ NOTEST CHECK [LOG =] logfile command

Execute command on the client, using the SSH command shell. The phrase
‘LOG =’ is optional. The command may or may not succeed. Otherwise,
the program acts identically as the CHECK ... command, discussed
previously. Example (using the same ${SHA1SUM})definition:

NOTEST CHECK LOG = remote/shal.root /usr/bin/find / ${SHA1SUM}

The SHA1 checksums of all suid/gid/executable files on the same device
as the root-directory (/) on the client computer are determined. The
resulting listing is written on the file BASE/remote/shal.root. stealth
will not terminate if the /usr/bin/find program returns a non-zero exit
value.

3.3.4 Preventing Controller Denial of Service (—max-size)

Either by malicious intent or by accendent (as happened to me) the controller
may be a victim of a Denial of Service (DOS) attack. This DOS attack may
happen when the client (apparently) sends a never ending stream of bytes in
response to a GET or REMOTE command. One of my controllers once fell victim to

20

this attack when a client’s power went down and the controller kept on trying
to read bytes from that client filling up the controllers disk....

This problem was of course caused by a programming error: while reading infor-
mation from a client stealth failed to check whether the reading had actually
succeeded. This bug has now been fixed, but an intentional DOS attack could
still be staged along this line by a hacker who manages to replace, e.g., the
find(1) command by a manipulated version which would continue to write in-
formation to its standard output stream. Without further precaution stealth
would receive a never ending stream of bytes as its ‘report’ thus causing its disk
to fill.

To prevent this from happening stealth now offers the -max-size command
line option allowing the specification of the maximum size of a stream of bytes
received by stealth (e.g., a report or downloaded file). The maximum is used
for each individual download and can be specified in bytes (using no suffix or
the B suffix), kilo-bytes (using K), mega-bytes (using M) or giga-bytes (using
G). The default is set at 10M, equivalent to the command line specification of
-max-size 10M.

If a file or report received from the client exceeds its maximum allowed size then
stealth terminates after writing the following message to the report file (which
is sent to the configured mail address):

STEALTH - CAN’T CONTINUE: ‘<name of offending file>’ EXCEEDS MAX.
DOWNLOAD SIZE (<size shown>)

STEALTH - THIS COULD SIGNAL A SERIOUS PROBLEM WITH THE CLIENT

STEALTH ONE OR MORE LOG FILES MAY BE INVALID AS A RESULT

STEALTH - #*** INVESTIGATE x**x

Since a -max-size specification may cause stealth to terminate while receiving
the output of a (remotely run) command, an empty or partial log file will be the
result. Of course this partial result is spurious as it is a direct result of stealth
terminating due to a size violation.

After investigating (and removing) the reasons for the size violation a new
stealth run using the previous log file as the latest baseline should show only
expected changes.

For example, assume the following situation represents a (valid) state of logfiles:

etc stealth
setuid stealth.20080316-105756

Now stealth is run with -max-size 20, prematurely terminating stealth. This
results in the following set of logfiles:

21

etc stealth
setuid stealth.20080316-105756
stealth.20080316-110215

The file stealth now contains incomplete data with the (latest) file stealth.20080316-110215
containing its previous contents.

Now the reasons for the size-violation should be investigated and removed. It
is suggested to move the file last saved (stealth.20080316-110215) to the file
stealth, as it represents the state before the size violation was encountered.
Following this stealth should operate normally again.

22

Chapter 4

Granting access

Access is granted via the ssh protocol.

The client must allow the controller to connect using ssh. Since normally no
username and password can be given, the client must allow the controller to
connect without specifying a password.

This is realized using public key technology, assuming open-SSH is available on
both computers, with the client running an sshd daemon.

4.0.5 The controller’s user: creating an ssh-key
The user on the controller who will call stealth to scan the client, now generates
an ssh-keypair:

ssh-keygen -t rsh

This will generate a public/private ssh key pair in .ssh in the user’s home
directory. The program asks for a passphrase which should, for the purpose of
stealth be empty: just pressing Enter as a response to the question

Enter passphrase (empty for no passphrase):

will do the trick (a confirmation is requested: press Enter again). The program
returns a key fingerprint, e.g.,

03:96:49:63:8a:64:33:45:79:ab:ca:de:c8:c8:4f:e9 user@controller

23

which may be saved and used for future reference.

In the directory user’s .ssh directory the files id_rsa and id_rsa.pub are now
created.

This completes the actions on the controller.

4.0.6 The client’s account: accepting ssh from the con-
troller’s user

Next, the account on the client where the ssh command connects to (using a
specification in the policy file like

USE SSH /usr/bin/ssh -q account@client

must now grant access to the controller’s user. In order to do so, the file
id_rsa.pub of the user at the controller is added to the file authorized_keys
in the .ssh directory of the account on the client:

transfer user@controller’s file id_rsa.pub to the client’s /tmp
directory. Then do:

cat /tmp/id_rsa.pub >> /home/account/.ssh/authorized_keys

Now user@controller may login at acount@client without specifying a password.

4.0.7 Logging into the account@client account

When user@controller now issues the command

ssh account@controller

Ssh responds as follows:

The authenticity of host ’controller (xxx.yyy.aaa.bbb)’ can’t be
established.

24

RSA key fingerprint is c4:52:d6:a3:d4:65:0d:5e:2e:66:d8:ab:de:ad:12:be.
Are you sure you want to continue connecting (yes/no)?

Answering yes results in the message:

Warning: Permanently added ’controller,xxx.yyy.aaa.bbb’ (RSA) to the
list of known hosts.

The next time a login is attempted, the authenticity question isn’t asked any-
ore. However, the proper value of the host’s RSA key fingerprint (i.e., the key
fingerprint of the client computer) should always be verified to prevent man in
the middle attacks. The proper value may be obtained at the client computer
by issuing the command

ssh-keygen -1 -f /etc/ssh/ssh_host_rsa_key.pub

This should result in the same value as the fingerprint shown when the first ssh
connection was made. E.g.,

1024 c4:52:d6:a3:d4:65:0d:5e:2e:66:d8:ab:de:ad:12:be ssh_host_rsa_key.pub

4.0.8 Using the proper shell

On order to minimize the amount of clutter and possible complications when
only a simple command-shell is required for executing commands, it is suggested
to use a bash or sh shell when logging into the account@client’s account.

When another shell is already used for account@client, then an extra account
(optionally using the same UID as the original account, but using sh(1) as the
shell), could be used.

In the passwd(5) file this could be realized for root as rootsh as follows:

rootsh:x:0:0:root:/root:/bin/sh

If shadow passwording is used, an appropriate entry in the /etc/shadow file is
required as well.

25

Chapter 5

Running ‘stealth’

Now that stealth has been compiled, the construction of a policy file has been
covered, and a service-account on the client has been defined, what must be
done to run stealth in practice?

Here’s what remains to be done:

e Install stealth at a proper location
e Construct one or more policy files

e Learn to interpret stealth’s output.

Optionally, automate the removal of old log-files.

e Determine a schedule for running stealth automatically, e.g. using cron(1)

In this chapter, these topics will be discussed.

5.1 Installing ‘stealth’

As stealth is mainly a system administrator’s tool, it could be installed in
/usr/local/sbin. In that case, do (as root) from the directory where stealth
was compiled /unpacked:

install stealth /usr/local/sbin

options given to install(1) may restrict further use of stealth.

26

5.2 Construct one or more policy files

Here we assume that stealth is run by root, and that root wants to store infor-
mation about the host client under the subdirectory /root/stealth/client.

Stealth reports should be sent to the user admin@elsewhere, who is only inter-
ested in a short notice of changes, as the full report can always be read else-
where. So, a support-script is developed to further filter the report generated
by stealth.

As the shalsum program on the client may be hacked, it is a good idea to
transfer the client’s shalsum program to the controller first, in order to check
that program locally, before trusting it to compute the shalsums of the client’s
files. The same holds true for any libraries and support programs (like £ind)
that are used intensively during integrity scans

Shalsum checks should be performed on all setuid and setgid files on the client,
and in order to be able reach all files on client, root@controller is allowed
to login to the root@client account using a password-less ssh connection.

Furthermore, shalsum checks should be performed on all configuration files,
living under /etc and on the file /usr/bin/find which is used intensively to
perform the checks.

The required policy file is constructed as follows, per section:

5.2.1 the DEFINE directives

DEFINE SSHCMD /usr/bin/ssh root@client -T -q exec /bin/bash --noprofile
DEFINE EXECSHA1 -xdev -perm +uts,g+s \(-user root -or -group root \) \
-type f -exec /usr/bin/shalsum {} \;

The first DEFINE defines the ssh command to use: an ssh-connection will be
made to the root account at the client.

The second DEFINE shows the arguments for find(1) when looking for all root
setuid or setgid normal files. For all these files the shalsum(1) program should
be run.

5.2.2 the USE directives

USE BASE /root/stealth/client
USE EMAIL admin@elswhere

USE MAILER /root/bin/stealthmail
USE MAILARGS "Client STEALTH report"

27

USE SSH ${SSHCMD}

e All output will be written under the /root/stealth/client directory.
e Mail will be sent to the user admin@elsewhere.
e The mail program will be a script (stealthmail), living in /root/bin.

e The script handles its own argument. As it can be used for other stealth-
scans as well, it is given an argument which can be used as the subject
when sending mail, identifying the computer that has been scanned.

e The ssh-command is defined by the SSH-DEFINE.

e the default values of all remaining USE directives can be used, and were
therefore not specified. They are:

USE DD /bin/dd

USE DIFF /usr/bin/diff
USE PIDFILE /var/run/stealth-
USE REPORT report

USE SH /bin/sh

5.2.3 the commands

First, we’ll copy the client’s shalsum program to the controller. In practice,
this should also include the shared object libraries that are used by shalsum,
as they might have become corrupted as well.

Obtain the client’s shalsum program

First, the shalsum program is copied to a local directory

GET /usr/bin/shalsum /root/tmp

This command must succeed.

Check the integrity of the client’s shalsum program

Next, we’ll check the received shalsum program, using our own:

28

LABEL \nCheck the client’s shalsum program
LOCAL CHECK LOG = local/shal /usr/bin/shalsum /root/tmp/shalsum

The LABEL command will write the label to the report file just before the output
of the shalsum program is generated.

The LOCAL command will check the shalsum of the program copied from the
client. The report is written on the file /root/stealth/client/local/shal.
If this fails, the program will not continue, but will alert admin@elsewhere that
the check failed. This is of course rather serious, as it indicates that either
the controller’s shalsum is behaving unexpectedly or that the client’s shalsum
program has changed.

The shalsum program may have changed due to a normal upgrade. If so,
admin@elsewhere will know this, and can (probably) ignore the warning. The
next time stealth is run, the (now updated) SHA1 value is used, and it should
again match the obtained SHA1 value from the copied shalsum program.

Check the client’s /usr/bin/find command

The client will use it’s find command intensively: find is a great tool for
producing files having almost any conceivable combination of characteristics.
Of course, the client’s find command itself must be ok, as well as the client’s
shalsum program. Now that we know that the client’s shalsum program is ok,
we can use it to check the client’s /usr/bin/find program.

Note that the controller itself will not suffer any processing load here: only the
client itself is taxed for checking the intergrity of its own files:

LABEL \nchecking the client’s /usr/bin/find program
CHECK LOG = remote/binfind /usr/bin/shalsum /usr/bin/find

Check the client’s setuid/setgid files

Having checked the client’s shalsum and find programs, shal checksum checks
should be performed on all setuid and setgid files on the client. For this we
activate the shalsum program on the client. In order to check the setuid/setgid
files, the following command is added to the policy file:

LABEL \nsuid/sgid/executable files uid or gid root on the / partition
CHECK LOG = remote/setuidgid /usr/bin/find / ${EXECSHA1}

29

Check the configuration files in the client’s /etc/ directory

Finally, the client’s configuration files are checked. Some of these files change
so frequently that we don’t want them to be checked. E.g., /etc/adjtime,
/etc/mtab. To check the configuration file, do:

LABEL \nconfiguration files under /etc

CHECK LOG = remote/etcfiles \
/usr/bin/find /etc -type f -not -perm +6111 \
-not -regex "/etc/\(adjtime\|mtab\)" \

-exec /usr/bin/shalsum {} \;

5.2.4 The complete ‘policy’ file
Here is the complete policy file that we’ve constructed so far:

DEFINE SSHCMD /usr/bin/ssh root@client -T -q exec /bin/bash --noprofile
DEFINE EXECSHA1l -xdev -perm +uts,g+s \(-user root -or -group root \) \
-type f -exec /usr/bin/shalsum {} \;

USE BASE /root/stealth/client
USE EMAIL admin@elswhere

USE MAILER /root/bin/stealthmail
USE MAILARGS "Client STEALTH report"
USE SSH ${SSHCMD}

USE DD /bin/dd

USE DIFF /usr/bin/diff

USE PIDFILE /var/run/stealth-

USE REPORT report

USE SH /bin/sh

GET /usr/bin/shalsum /root/tmp

LABEL \nCheck the client’s shalsum program
LOCAL CHECK LOG = local/shal /usr/bin/shalsum /root/tmp/shalsum

LABEL \nchecking the client’s /usr/bin/find program
CHECK LOG = remote/binfind /usr/bin/shalsum /usr/bin/find

LABEL \nsuid/sgid/executable files uid or gid root on the / partition
CHECK LOG = remote/setuidgid /usr/bin/find / ${EXECSHA1}

LABEL \nconfiguration files under /etc

CHECK LOG = remote/etcfiles \
/usr/bin/find /etc -type f -not -perm +6111 \

30

-not -regex "/etc/\(adjtime\|mtab\)" \
-exec /usr/bin/shalsum {} \;

5.3 Running ‘stealth’ for the first time

When stealth is now run, it will create its initial report files under root/stealth/client.

The first time stealth is run, it is usually run ‘by hand’:

stealth policy

this will show all executed commands on the standard output, and will initialize
the reports. Running stealth this way for the just constructed policy file
results in the following output (lines were wrapped to improve readability):

GET /usr/bin/shalsum /root/tmp

LABEL \nCheck the client’s shalsum program

LOCAL CHECK LOG = local/shal /usr/bin/shalsum /root/tmp/shalsum

LABEL \nchecking the client’s /usr/bin/find program

CHECK LOG = remote/binfind /usr/bin/shalsum /usr/bin/find

LABEL \nsuid/sgid/executable files uid or gid root on the / partition

CHECK LOG = remote/setuidgid /usr/bin/find / -xdev -perm +u+s,g+s
\(-user root -or -group root \) -type f
-exec /usr/bin/shalsum {} \;

LABEL \nconfiguration files under /etc

CHECK LOG = remote/etcfiles /usr/bin/find /etc
-type f -not -perm +6111 -not -regex "/etc/\(adjtime\|mtab\)"
-exec /usr/bin/shalsum {} \;

LOCAL /usr/bin/scp -q root@client:/usr/bin/shalsum /root/tmp

LABEL \nCheck the client’s shalsum program

LOCAL CHECK LOG = local/shal /usr/bin/shalsum /root/tmp/shalsum

LABEL \nchecking the client’s /usr/bin/find program

CHECK LOG = remote/binfind /usr/bin/shalsum /usr/bin/find

LABEL \nsuid/sgid/executable files uid or gid root on the / partition

CHECK LOG = remote/setuidgid /usr/bin/find / -xdev -perm +ut+s,g+s
\(-user root -or -group root \) -type f
-exec /usr/bin/shalsum {} \;

LABEL \nconfiguration files under /etc

CHECK LOG = remote/etcfiles /usr/bin/find /etc
-type f -not -perm +6111 -not -regex "/etc/\(adjtime\|mtab\)"

31

-exec /usr/bin/shalsum {} \;

This all produces the following output:

5.3.1 The mailed report

The /root/bin/stealthmail is called with the following arguments:

"Client STEALTH report" admin@elswhere

The contents of the mailed report now is (the date will of course change, the
next time stealth is run):

STEALTH (1.21) started at Mon Nov 24 10:50:30 2003

Check the client’s shalsum program
Initialized report on local/shal

checking the client’s /usr/bin/find program
Initialized report on remote/binfind

suid/sgid/executable files uid or gid root on the / partition
Initialized report on remote/setuidgid

configuration files under /etc
Initialized report on remote/etcfiles

5.3.2 Files under /root/stealth/client
Under /root/stealth/client the following entries are now available:

e local: below this directory the reports of the locally performed checks are
found. Using our demo policy file, only one logfile is found here: shal,
containing the client’s SHA1 checksum of its /usr/bin/shalsum program:

45251e259bfaf1951658a7b66c328c52 /root/tmp/shalsum

e remote: at this directory the reports of the remotely performed checks are
found. Using our demo policy file, three files were created:

32

The file binfind, containing the checksum of the client’s /usr/bin/find
program:

fc62fc77499958411e29e0£94279a652 /usr/bin/find

The file etcfiles, containing the checksums of the client’s configuration
files under /etc (shown only partially):

ced739ecb2c43a20053a9f0eb308b2b0 /etc/modutils/aliases
a2322d7e2f95317b2ddf3543eb4c74cO0 /etc/modutils/paths
f9e3eac60200d41dd5569eeabbdeddff /etc/modutils/arch/i386
£07da2ebf00c6ed6649baeb501b84c4f /etc/modutils/arch/mé8k.amiga
2893201cc7£f7556160falcd1fbbbabba /etc/modutils/arch/m68k.atari

bf73b4e76066381cd3caf80369celdle /etc/deluser.conf
4cd70d9aee333307a09caa4ef003501d /etc/adduser.conf.dpkg-save
8c749353¢c5027d0065359562d4383b8d /etc/gimp/1.2/gtkrc_user
3ec404ecb97e£5460600cccf0192f4d6 /etc/gimp/1.2/unitrc
8c740345b891179228e3d1066291167b /etc/gimp/1.2/gtkrc

The file setuidgid, containing the checksums of the client’s setuid/setgid
root files (shown only partially):

030f3f84ec76a8181ccal87c4bab5bea /bin/login
b6c0209547d88928£391d2bf88af34aa /bin/ping
5d324ad212b2f£f8£767637ac1a8071lec /bin/su
344dbedc398d5114966914419ef53fcc /usr/bin/wall
27b045bd7306001f9ea31bc18712d8b7 /usr/bin/rxvt-xpm

3567b18ffc39c2dcBec0c0d0fc483f4f /usr/lib/ssh-keysign
3383a7955ac2406311e9aab1c6ac9c2c /usr/X11R6/bin/X
3c99ea0425c6e0278039e16478d2fb57 /usr/X11R6/bin/xterm
d590f7f5b4d6ae61680692a52235d342 /usr/local/bin/setuidcall
4c17203d7d91ec4946dea2f0ae365d5b /sbin/unix_chkpwd

Of course, the checksums and the filenames shown are only for documen-
tation purposes. At other systems this will show different files and/or
checksums, no doubt.

e Thefile /root/client/report New lines are always appended to the
/root/client/report file. It will never shorten, unless shorten by
the systems administrator at ‘controller’.

This file contains the following:

33

STEALTH (1.21) started at Mon Nov 24 10:50:30 2003

Check the client’s shalsum program
Initialized report on local/shal

checking the client’s /usr/bin/find program
Initialized report on remote/binfind

suid/sgid/executable files uid or gid root on the / partition
Initialized report on remote/setuidgid

configuration files under /etc
Initialized report on remote/etcfiles

This completes the information created by stealth during its first run.

5.4 Running ‘stealth’ again: all files unaltered

When stealth is run again, it will update its report files under root/stealth/client.
If nothing has changed, the log-files will remain unaltered. The new run will,
however, produce some new info on the file /root/client/report:

STEALTH (1.21) started at Mon Nov 24 10:50:30 2003

Check the client’s shalsum program
Initialized report on local/shal

checking the client’s /usr/bin/find program
Initialized report on remote/binfind

suid/sgid/executable files uid or gid root on the / partition
Initialized report on remote/setuidgid

configuration files under /etc
Initialized report on remote/etcfiles

STEALTH (1.21) started at Mon Nov 24 10:54:35 2003

Note that just one extra line was added: a timestamp showing the date/time
of the last run. The systems administrator may reduce/remove the report file
every once in a while to reclaim some disk space.

34

5.5 Running ‘stealth’ again: modifications have
occurred

Basically, three kinds of modifications are possible: additions, modifications,
and removals. Here we’ll show the effect all these changes have on stealth’s
output.

For the example, the following changes were made to the client’s files:

e /etc/motd was changed
e the file timezone™ was removed

o the file /etc/motd.org was created
Next, stealth was once again run, producing the following output:

e The following new info is now added to file /root/client/report:

STEALTH (1.21) started at Mon Nov 24 10:54:35 2003

configuration files under /etc
ADDED: /etc/motd.org

< 945d40b8208e9861b8f9f2de155e619f9 /etc/motd.org
MODIFIED: /etc/motd

< 7f96195d5f051375fe7b523d29e379c1 /etc/motd

> 945d0b8208e9861b8f9f2de155e619f9 /etc/motd
REMOVED: /etc/timezone”

> 6322bc8cb3ecb3f5eeal33201b434b74b /etc/timezone”

Note that all changes were properly detected and logged in the file /root/client/report.

e Furthermore, a matching report was sent by mail:
STEALTH (0.90) started at Mon Oct 28 11:28:43 2002

configuration files under /etc
ADDED: /etc/motd.org

< 945d0b8208e9861b8f9f2de155e619f9 /etc/motd.org
MODIFIED: /etc/motd

< 7£96195d5f051375fe7b523d29e379c1 /etc/motd

> 945d0b8208e9861b8f9f2de155e619f9 /etc/motd
REMOVED: /etc/timezone”

> 6322bc8cb3ec53f5eea33201b434b74b /etc/timezone™

35

Note that the report only shows the info that was added to the /root/client/report
file.

The report itself could be beautified further. I myself use the following
script to mail the report to the addressee:

#!/bin/bash
NAME=‘basename $0°¢

tee /root/stealth/lastreport/$NAME | egrep -v ’~([[:space:]1]|[[:space:]]1*$)’ |
sort | uniq | mail -s $1 $2

For the client computer, this little script will write the mailed report on
a file /root/stealth/lastreport/client, overwriting its previous con-
tents, will remove all lines beginning with blanks (thus trimming away
the diff-generated lines), and will mail the sorted and uniqed lines us-
ing mail. The addressee (admin@elsewhere) will receive the following
information:

ADDED: /etc/motd.org

MODIFIED: /etc/motd

REMOVED: /etc/timezone”

STEALTH (0.90) started at Mon Oct 28 11:28:43 2002
configuration files under /etc

In practice this suffices to have me take action if something out of the
ordinary has happened.

Finally, the file

/root/stealth/client/remote/etcfiles

was recreated, saving the old file as

/root/stealth/client/remote/etcfiles.20021028-112851

As remarked earlier (see section 3.3), many logfile.YYMMDD-HHMMSS files
could eventually accumulate. As discussed in section 3.3, it might be
considered to remove old log files every now and then.

36

5.6 Failing LOCAL commands

If the client’s shalsum program itself is altered, a serious situation has developed.
In that case, further actions by stealth would be suspect, as their results might
easily be currupted. Checks will proceed, but a warning is generated on the
report file (and in the mail sent to admin@elsewhere:

STEALTH (1.21) started at Mon Nov 24 10:54:35 2003

Check the client’s shalsum program

MODIFIED: /root/tmp/shalsum
< fc62fc774999584f1e29e0£94279a652 /root/tmp/shalsum
> 45251e259bfaf1951658a7b66c328c52 /root/tmp/shalsum

*%x% BE CAREFUL *** REMAINING RESULTS MAY BE FORGED

configuration files under /etc
REMOVED: /etc/motd.org

> 945d0b8208e9861b8f9f2de155e619f9 /etc/motd.org
MODIFIED: /etc/motd

< 945d0b8208e9861b8f9f2de155e619f9 /etc/motd

> 7£96195d5£051375fe7b523d29e379¢c1 /etc/motd

(The report shows the removal of the previously added file motd.org, and the
modification of motd. These are real, as the original motd file, modified earlier,
was restored at this point).

5.7 Automating ‘stealth’ runs using ‘cron’

In order to automate the execution of stealth, a file /etc/cron.d/stealth
could be created, containing a line like (assuming stealth lives in /usr/sbin):

2,17,32,47 * * * * root test -x /usr/sbin/stealth && \
/usr/sbin/stealth -q /root/stealth/client.pol

This will start stealth 2 minutes after every hour. Alternate schemes are left
to the reader to design.

In general, randomizing events makes it harder to notice them. stealth may
start its tasks at a random point in time if its -i flag (for random interval) is
used. This flag expects an argument in seconds (or in minutes, if at least an m is
appended to the interval specification). Somewhere between the time stealth

37

starts and the specified interval the scan will commence. For example, the
following two commands have identical effects: the scan is started somewhere
between the moment stealth was started and 5 minutes:

stealth -i 5min -q /root/stealth/client.pol
stealth -i 300 -q /root/stealth/client.pol

When the -d flag is given, the -i flag has no effect.

As another alternative, stealth my be started specifying the -keep-alive
pidfile option. Here, pidfile is the name of a file that will contain the
process id of the stealth process running in the background. For example:

stealth --keep-alive /var/run/stealth -i 300 -q /root/stealth/client.pol

Now, cron(1) may be used to restart this process at indicated times:

2,17,32,47 * * * * root test -x /usr/sbin/stealth && \
/usr/sbin/stealth --rerun /var/run/stealth

As yet another alternative, the cron-job may activate a script performing stealth’s
rerun, starting another stealth run if necessary. The advantage of such an ap-
proach is that stealth is automatically started after, e.g., a reboot. The fol-
lowing script expects two arguments (both of which must be absolute paths).
The first argument is the path to the pidfile to use, the second argument is the
path to the policy file to use. The script is found in the distribution package as
/usr/share/doc/stealth/usr/sbin/stealthcron:

#!/bin/bash

PROG=‘basename $0°¢
STEALTH=/usr/sbin/stealth

testAbsolute()

{
echo $1 | grep "~/" > /dev/null 2>&1 && return
echo "\‘$1’ must be absolute path"

exit 1

case $# in

38

(2)
testAbsolute $1
testAbsolute $2

if [-x ${STEALTH}] ; then

${STEALTH} --rerun $1

[$7 -eq 0 1 || ${STEALTH} --keep-alive $1 -q $2
fi

E]

()
echo
$PROG by Frank B. Brokken (f.b.brokken@rug.nl)
Usage: $PROG [sleep] pidfile configfile
where:
pidfile: absolute path to pidfile to be used by ${STEALTH}
configfile: absolute path to configuration file to be used by ${STEALTH}

calls $STEALTH} --rerun pidfile.
If that fails, ${STEALTH} --keep-alive pidfile -q configfile is started.

exit 1
55
esac

The script could be called from /etc/cron.d/stealth using a line like

22 8 * % * root test -x /usr/sbin/stealthcron && /usr/sbin/stealthcron
/var/run/stealth.target /usr/share/stealth/target.pol

Note that the command should be on a single line. It was spread out here over
two lines to enhance readability.

5.8 Report File Rotation

When stealth performs integrity scans it will append information to the report
file. This file will therefore eventually grow to a large size, and the systems
manager controlling stealth might want to rotate the report file every once in
a while (e.g., using a program like logrotate(1), also see the upcoming section
5.8.2). In order to ensure that no log-rotation takes place while stealth is
busy performing integrity scans (thus modifying the report file) the options —
suppress and -resume were implemented. Both options require the process-1D
file of currently active stealth process as their argument.

For example, if a stealth process was once started using the command

39

stealth -q --keep-alive /var/run/stealth.small --repeat 900 \
/var/stealth/policies/small.pol

then the -suppress and -resume commands for this process should be formu-
lated as:

stealth --suppress /var/run/stealth.small
stealth --resume /var/run/stealth.small

The stealth process identified in the files provided as arguments to the -suppress
and -resume options is called the targeted stealth process below.

The -suppress option has the following effect:
o If the targeted stealth process is currently processing its policy file, per-
forming a (new) integrity scan, then the currently executing policy file

command is completed, whereafter further commands are ignored, except
for -resume (see below) and -terminate.

e Any scheduled integrity scans following the -suppress command are ig-
nored for the targeted stealth process;

e The targeted stealth process will write a message that it is being sup-
pressed to the report file and will then process the report file as usual;

e The targeted stealth process relinquishes its control over the report file;
e The command ‘stealth -suppress pidfile’ terminates.
Now that the report file will no longer be affected by the targeted stealth
process, log-rotation may take place. E.g., a program like logrotate(1) allows
its users to specify a command or script just before log-rotation takes place, and

‘stealth -suppress pidfile’ could be specified nicely in such a pre-rotation
section.

The -resume option has the following effect:
e The targeted stealth process resumes its activities by performing another
integrity scan. Thus, -resume implies -rerun.

e Any scheduled integrity scans following the -resume command are again
honored by the targeted stealth process, following the completion of the
-resume command.

e The command ‘stealth -resume pidfile’ terminates.

40

Note that, once -suppress has been issued, all commands except -resume and
-terminate are ignored by the targeted stealth process. While suppressed, the
-terminate command is acknowledged as a ‘emergency exit’ which may or may
not interfere with, e.g., an ongoing log-rotation process. The targeted stealth
process should not normally be terminated while it is in its suppressed mode.
The normal way to terminate a stealth process running in the background is:

e Wait for the targeted stealth process to complete a series of integrity
scans;

o Issue the ‘stealth -terminate pidfile’ command.

5.8.1 Status file cleanup

Whenever stealth is run and it encounters a modified situation the already
existing status file that is used to summarize that particular situation is saved
and a new status file is created. Eventually, this will result in many status files.
While report files can be rotated, it is pointless to rotate old status files, since
they never are modified. Instead status files exceeding a certain age could be re-
moved and more recent files might be zipped to conserve space. In stealth’s bi-
nary distribution the file /usr/share/doc/stealth/usr/sbin/stealthcleanup
is provided which can be used to perform this cleanup. The script expects one
argument: a resource file defining the following shell variables:

e directories: the directories below which the status files are found;

e gzdays: the number of days a status file must exist before it is compressed
using gzip(1);

e rmdays: the maximum age (in days) of compressed status files. Files
exceeding this age are removed using rm(1).

Here is the stealthcleanup script as it is found in the binary distribution’s
/usr/share/doc/stealth/usr/sbin directory:

#!/bin/bash

usage ()
{
echo "
Usage: $0 rc-file
Where:
rc-file: resource file defining:

\¢directories’ - one or more directories containing status files
\ ‘gzdays’ - number of days status files may exist before they

are compressed

\ ‘rmdays’ - number of days gzipped status files may exist

before they are removed.

41

exit 1

}

error ()

{
echo "$x" >&2
exit 1

}

[$# ==11 || usage

now source the configuration file

.81
for x in $directories
do
cd $x || error "\¢$x’ must be a directory"
/usr/bin/find ./ -mtime +$rmdays -type f -regex ’.*[0-9]+-[0-9]+\.gz’> \
-exec /bin/rm {} \;
/usr/bin/find ./ -mtime +$gzdays -type f -regex ’.*[0-9]+-[0-9]+> \
-exec /bin/gzip {} \;
done
exit O

Assuming that the status files are written in /var/stealth/target/local and
/var/stealth/target/remote; that status file should be compressed when
older than 2 days and removed after 30 days, the resource file is:

directories="
/var/stealth/target/local
/var/stealth/target/remote

rmdays=30
gzdays=3

Furthermore assuming that the resourcefile is installed in /etc/stealth/cleanup.rc
and the stealthcleanupscript itselfin /usr/sbin/stealthcleanup, the stealthcleanup
script could be called as follows:

42

/usr/sbin/stealthcleanup /etc/stealth/cleanup.rc

Note that stealthcleanup may be called whether or not there are active
stealth processes, as stealth does not use status files anymore once they have
been written.

5.8.2 Using ‘logrotate’ to control report- and status files

A program like logrotate(1) allows its users to specify a command or script
immediately following log-rotation, and ‘stealth -resume pidfile’ could be
specified nicely in such a post-rotation section.

Here is an example of a specification that can be used with logrotate(1). Logro-
tate (on Debian systems) keeps its configuration files in /etc/logrotate.d, and
assuming there is a host target, whose report file is /var/stealth/target/report,
the required logrotate(1l) specification file (e.g., /etc/logrotate.d/target
could be:

/var/stealth/target/report {
weekly
rotate 12
compress
missingok
prerotate
/usr/sbin/stealth --suppress /var/run/stealth.target
endscript
postrotate
/usr/sbin/stealth --resume /var/run/stealth.target
endscript

Using this specification file, logrotate(1) will

e Perform weekly rotations of the report file;

Keep up to 12 rotated files, compressing them using gzip(1);

Before rotating the report file, stealth’s actions are suppressed;

Following the rotation, stealth’s actions are resumed

Note thet stealth -resume xxx will always start with another file integrity
scan.

43

Chapter 6

Kick starting ‘stealth’

Here are the steps to take to kick-start stealth

e Install the stealth Debian package stealth_1.47.2_1386.deb and thus
accept the provided binary program (skipping the next three steps) or do
not accept the provided binary, and compile stealth yourself, as per the
following steps:

e Unpack stealth_1.47.2.tar.gz: tar xzvf tealth_1.47.2.tar.gz
e cd stealth

e Inspect the values of the variables in the file INSTALL.cf Modify these
values when necessary.

e Make sure the bobcat library has been installed. (http://bobcat.sourceforge.net)
e Run ‘. /make/program’ to compile stealth. Note: it’s not ‘make program’
e Run (probably as root) ‘. /make/install’ to install. Note: it’s not ‘make
install’
Following the installation nothing in the stealth directory tree is required for

stealth’s proper functioning, so consider removing it.

Compiling stealth assumes that g++ version 3.3 (or higher) is available. If not:
install it first.

Next, do:

e cp stealthmail /usr/local/sbin
e mkdir /root/stealth

e cp local.pol /root/stealth

44

ssh and sh should be available. root@localhost should be able to login at
localhost using ssh root@localhost, using the /bin/bash or /bin/sh shell.
Check (as ‘root’) at least

ssh root@localhost

as this might ask you for a confirmation that you’ve got the correct host. Now,
run

stealth /root/stealth/localhost.pol

to initialize the stealth-report files for localhost. This will initialize the report
for:

e all root setuid/setgid executable files on localhost,

e and for all files under /etc/ on localhost.

The mail-report is written on /tmp/stealth-1.47.2.mail

Now change or add or remove one of these files, and rerun stealth. The file
/tmp/stealth-1.47.2.mail should reflect these changes.

45

Chapter 7

Usage info

When stealth is started without arguments, it provides some help about how
to start it. A message like the following is produced:

stealth by Frank B. Brokken (f.b.brokken@rug.nl)

stealth V1.47.2
SSH-based Trust Enhancement Acquired through a Locally Trusted Host
Copyright (c) GPL 2005-2008

Usage 1:
stealth options policy
Where:
options: (long options between parentheses) select from:
-c: (--parse-config-file) process the config file,
no further action, report the results to std output.
-d: (--debug) write debug messages to std error
-e: (--echo-commands) echo commands to std error when they
are processed (implied by -d)
-i <interval>[m]: (--random-interval) start the scan between now and
a random interval of interval seconds, or minutes if an ‘m’ is
appended to the specified interval.
Requires --repeat and --keep-alive.
-n: (--no-child-processes) no child processes are
executed: child actions are faked to be OK.
-0: (--only-stdout) scan report is written to stdout. No mail is sent.
-q: (--quiet) suppress progress messages to stderr.
-r <nr>: (--run-command) only run command <nr> (natural number).
-v: (--version): display version information (and exit).
--keep-alive pidfile: keep running as a daemon, wake up at interrupts.
--max-size <size>[BKMG]: files retrieved by GET may at most
have <size> bytes (B), Kbytes (K), Mbytes (M), Gbytes (G)
default: 10M, default spec. unit: B

46

--repeat <seconds>: keep running as a daemon, wake up at
interrupts. or after <seconds> seconds.
Requires --keep-alive.

--usage: provide this help (and exit)

--help: provide this help (and exit)

policy: path to the policyfile

Usage 2:
stealth [--rerun|--resume|--suppress|--terminate] pidfile
Where:
--rerun: restart a stealth integrity scan
--resume: resume stealth following --suppress
--suppress: suppress stealth activities
--terminate: terminate stealth
pidfile: file containing the pid of the stealth process to rerun or
terminate.

Note that with the second type of usage the policy file is not required: here only
the pidfile must be specified.

47

Chapter 8

Errormessages

/bin/sh: no output from /usr/bin/diff ...

the actual program names appearing here could change due to your
local configuration. The defaults are shown. This indicates that the
/usr/bin/diff program could not be activated on the controller.
Check the correctness of both the shell program (/bin/sh) and the
diff program (/usr/bin/diff): Do they exist? Have their paths
been specfied well? Note that filenames passed to diff might not
exist anymore when the program terminates. This should not be the
cause of the error.

Can’t chdir to ‘path’

the directory path could not be created /used. This may be a permis-
sion problem. Check the permissions of path if path does actually
exist. The problem may be in a path component, not necessarily in
the last element of the path.

Can’t open /dev/null

This message may be generated by a child-process: sh, ssh or diff.
It is generated when the child process could not redirect its standard
error messages to the standard error stream. If it appears then there
is probably something incorrect in your /dev/ directory: check the
availability of /dev/null, check if you can copy a file to /dev/null.

Can’t open ... to write

This message may be generated when the mentioned log-file could
not be written to. Check the permissions of the file, check if the
path to the file exists. The problem may be in a path component,
not necessarily in the last element of the path or in the file itself.

48

Can’t read ...

the mentioned file could not be read. Check if the file exists, and if
you have read permissions for it.

Config line ‘...’ invalid

The mentioned line of the specified policy file was ill-formed. Check
the line’s contents against the description of the policy file.

ConfigSorter file processed

In this case, the -c option has been given. When -c was provided,
stealth stops after having processed the configuration file.

Corrupt line in policy file:

The apparently corrupted line is shown. The line is corrupted if
the line could not be split into an initial word and its remainder.
Normally this should not happen. As the line is mentioned, the
message itself should assist you in your repairs.

Inserting command ‘...’ failed.

the mentioned command could not be sent to a child-process (sh or
ssh). Check the availability of the ssh connection to the client. The
command itself might also be unacceptable.

Invalid interval for -i.
The -i flag was given an invalid (too large or negative) argument.
Non-zero exit value for ‘...°

A local command (not using the CHECK keyword), returned with a
non-zero exit. This will terminate further processing of the policy
file. Inspect and/or rerun the command ‘by hand’ to find indications
about what went wrong. The report file or the standard error stream
may also contain additional information about the reason of the
failure.

Unable to create the logfile ‘...~

the mentioned log file could not be created. Check the permissions
of the file, check if the path to the file exists. The problem may be
in a path component, not necessarily in the last element of the path
or in the file itself.

49

USE SSH ... entry missing in the configuration file

there is no default for the USE SSH specification in the policy file.
The specification could not be found. Provide a specification like:

USE SSH ssh -q root@localhost

50

