
Stani's Python Editor
Python IDE with Blender, Kiki, PyChecker, wxGlade & XRC support

User Manual
22-08-2005

1

Table of Contents
1 Introduction.. 4

1.1 About.. 4
1.2 Plugins... 4
1.3 Internet links.. 4
1.4 Copyright... 4
1.5 License.. 4

2 Installation.. 5
2.1 Requirements... 5
2.2 Windows.. 5
2.3 Unix*: Linux, FreeBSD, ... 6
2.4 Mac Os X.. 7

3 Getting Started.. 8
3.1 Startup.. 8
3.2 Syntax-checking.. 8
3.3 Refreshing.. 8
3.4 Running files... 8
3.5 Separators.. 10
3.6 Remember option.. 10
3.7 Psyco... 10
3.8 Customize.. 10

4 Features... 13
4.1 Sidebar.. 13
4.2 Tools.. 13
4.3 Editor... 14
4.4 Drag&Drop... 14
4.5 General.. 14
4.6 Blender.. 15
4.7 Windows.. 15

5 Tutorial... 16
5.1 Introduction.. 16
5.2 The comments.. 16
5.3 Adding a separator and todo... 17
5.4 Browsing a class.. 19
5.5 Run that py!... 21
5.6 Life is full of colors... 23
5.7 Browsing your files... 24
5.8 The end.. 24

6 wxGlade GUI Designer.. 25
6.1 Introduction.. 25
6.2 Make a layout... 25
6.3 Generate Python Code.. 27
6.4 Event handling.. 28
6.5 Now let's enhance this program a bit! .. 29

7 XRCed GUI Designer... 30
7.1 Introduction.. 30
7.2 Design a layout... 30
7.3 Create your application... 31

8 Debugger.. 34
8.1 Introduction.. 34
8.2 Requirements.. 34
8.3 Launching and Attaching... 35
8.4 GUI control:.. 36
8.5 Embedded Debugging.. 37
8.6 Multiple Threads.. 38

2

8.7 Smart Breakpoints... 39
8.8 Security... 41

9 FAQ.. 43
9.1 Install.. 43
9.2 Editor... 43

10 Contact... 45
10.1 Contribute... 45
10.2 Feedback .. 45
10.3 Contact persons... 45

11 Donations and sponsorship.. 46
11.1 Donations... 46
11.2 Sponsorship.. 47

12 Keyboard shortcuts... 48
13 Credits.. 51

3

1 Introduction

1.1 About
Stani's Python Editor

SPE is a cross-platform python IDE with auto indentation, auto completion, call tips,
syntax coloring, syntax highlighting, uml viewer, class explorer, source index,

automatic todo list, sticky notes, integrated pycrust shell, python file browser, recent file
browser, drag&drop, context help, ... Special is its Blender support with a Blender 3d object
browser and its ability to run interactively inside Blender.

SPE runs on Windows, Linux and Mac OS X.

SPE is extensible with wxGlade.

1.2 Plugins
SPE ships with
• wxGlade (gui designer)

• PyChecker (source code doctor)

• Kiki (regular expression console)

SPE also integrates with
• XRCed (gui designer)

1.3 Internet links
• Homepage: http://SPE.pycs.net

• Website: http://projects.blender.org/projects/SPE

• Screenshots: http://SPE.pycs.net/pictures/index.html

• Forum: http://projects.blender.org/forum/?groupid=30

• RSS feed: http://SPE.pycs.net/weblog/rss.xml

1.4 Copyright
©2003-2005 www.stani.be

1.5 License
SPE is released under the GPL. If you need SPE under another license, contact the author.

Introduction 4

http://spe.pycs.net/
http://www.stani.be/
http://spe.pycs.net/weblog/rss.xml
http://projects.blender.org/forum/?group_id=30
http://spe.pycs.net/pictures/index.html
http://projects.blender.org/projects/spe

2 Installation
If you encounter any problems during or after installation, be sure to also read the FAQ.

2.1 Requirements
• Python 2.3+

We recommend ActivePython distribution because of its excellent help files:
http://www.activestate.com/Products/ActivePython/index.html

• wxPython 2.6+
SPE follows the wxPython releases. Always use the latest wxPython release.

➢ Optional:

• Blender 2.37
Cross-platform 3D software solution from modeling, animation, rendering and post-
production to interactive creation and playback.

• Win32 extensions (Windows only)
This module is needed to create shortcuts on Desktop and Start Menu during
installation. This module is standard included in ActivePython

2.2 Windows

Install
Use the win32 installer (SPE-*-wx*-bl*.exe). Do not use the script spe_wininst.py, it will be
called by the win32 installer automatically.

Installation 5

This will create icons on desktop & start menu and register SPE in the context menu of
Windows Explorer:

Uninstall
Uninstall SPE with Add/Remove Progams in the Windows control panel. SPE should be
mentioned as 'Python x.x SPE-x.x.x.x' If you don't find this entry, than do the action (Unix*)
below.

2.3 Unix*: Linux, FreeBSD, ...

Install
Run the 'setup.py' script:
>python setup.py install

If you have any problems with permissions:
>sudo python setup.py install

 This will install SPE in the standard library directory of python:
/usr/local/lib/pythonX.X/site-packages

A wrapper script called 'SPE' will be installed to PREFIX/bin. If necessary add PREFIX/bin to
your PATH environment variable. PREFIX is determined by the install location of the modules,
i.e. for the above PREFIX=/usr/local.

When SPE is launched in Blender, what might be missing in the PYTHONPATH, is
/usr/local/lib/python2.3/site-packages. If you add this one in your .bashrc/.tcshrc/... to the
PYTHONPATH variable everything should be fine (the subdirs SPE,sm,etc. aren't needed).
Though you must start Blender from a bash – e.g. desktop menus usually don't read the
.bashrc/.tcshrc/... and therefore Blender does not know about your user defined environment
variables. If you set the PYTHONPATH in /etc/profile instead of .bashrc/.tcshrc/... then starting
SPE/SPE from Blender will work also from menus.

Uninstall
Remove any '_spe' and 'sm' folders from your python site-packages directory.:

/usr/local/lib/pythonX.X/site-packages

One needs also to remove /usr/local/bin/SPE manually.

Installation 6

2.4 Mac Os X
Please follow same instructions as Unix*

So, why there is no specific Mac installer?

This can be solved easily. If you would donate a little more, I could buy a
Mac Mini. This will not help only to release, but also to optimize SPE for
Mac. A lot of money is there already, so please help to fill the last gap (or
donate your old mac). Read more about this fund raising on the SPE
homepage.

Installation 7

http://pythonide.stani.be/
http://pythonide.stani.be/

3 Getting Started

3.1 Startup

Normal mode

Windows
Open the SPE folder and type 'python SPE.py' at the command prompt or make a shortcut to
your desktop.

Linux, FreeBSD, Mac Os X, ...
Type 'SPE' on the command line (assuming PREFIX/bin is on your PATH)

Debugging mode
If you have problems starting up SPE, type at the command prompt:

> python SPE.py --debug

or if you want to report:

> python SPE.py --debug > debug.txt 2>&1

and send me the error message (debug.txt).

Blender mode
Open SPE.blend and press Alt+P in the corresponding text window.

When SPE is active, the Blender screen will always be redrawn automatically. So the results of
any command you type in the interactive shell or of any program you run within SPE, will be
visible in the Blender window. Unfortunately it is not possible to interact with Blender directly
when SPE is active. So it is impossible to rotate for example the view with the mouse.

3.2 Syntax-checking
Every time you save SPE does syntax checking. If there is any error, SPE will jump to the line
in the source code and try to highlight the error.

3.3 Refreshing
SPE has a lot of features like explore tree, index, todo list, and so on... This gets updated
every time the file is saved or every time the refresh command is given. This can be done by
pressing F5 on the keyboard, the refresh toolbar button or clicking the View>Refresh menu.

3.4 Running files
Warning:

SPE doesn't require you to save your files before running. However it is
recommended to do so not to loose source code if your program makes SPE
hang.

Getting Started 8

SPE provides many ways to run files:

Run (F9)
Use this by default, unless you have specific reasons to use the other ones. It will run in the
namespace of the interactive shell. So all the objects and functions of your program become
available in the shell and in the locals browser (the tab next to the shell).

Run with profile (Ctrl-P)
Same as above but with a profile added. A profile is a report of the program execution which
shows which processes or functions are time consuming. So if you want to speed up your code,
you can define the priorities based on this report.

Run in separate namespace (Ctrl-R):
Like run, but all the objects and functions defined by the program will not become available in
the namespace of the interactive shell. Instead they will be defined in the dictionary
'namespace' of the interactive shell. So if the file 'script.py' is run in this way, type
namespace['script.py'] in the shell, to access this dictionary, or namespace['script.py'].keys()
to get a list of all defined names, or namespace['script.py'].items() to get tuples of all the
names and their values. More easy is to just browse 'namespace' in the locals browser.

Run verbose (Alt-R)
This is for very simple programs, which do not indent more than once. It will send all source
lines, as if they were typed in the interactive shell. It is probably a good learning tool for
beginners.

Import (F10)
Imports the source file as a module. For running files, they don't have to be saved. For
importing files, it is recommended to save them first.

Getting Started 9

3.5 Separators
A separator is a label which appears in the explore tree of the sidebar to help structuring the
script. An easy way to add separators is to use the 'Edit'>'Insert colored separator'wizard from
the menu.

Syntax:
• normal: #---label
• colored: #---label---#foreground color#background color
• highlighted: ####label

Foreground and background color are in html notation, eg.:
• red on blue label: #---red on blue---#FF0000#0000FF

3.6 Remember option
This can be activated by checking File>Remember or by pressing the heart toolbar button. It
will open automatically the scripts which were open in the last session. Useful for Blender if
you have to switch continously between Blender and SPE.

3.7 Psyco
If you don't know the python psyco module, you can ignore this item, as it won't have any
effect for you. Psyco programs can't run in SPE, as they disable the 'locals()' function. Of
course you can edit programs using psyco in SPE, but if you want to run them, comment the
psyco activation code out.

3.8 Customize

Keyboard shortcuts
If you want to change the default keyboard shortcuts, open a shortcut file (*.py)
_spe/shortcuts/shortcuts.py and adapt it to your own taste. Save it with another name and fill
in the name in preferences dialog box, of course without the '.py' extension.

Menus and toolbar (deprecated)
You can define your own menus and toolbar buttons, which can execute any python code and
also external files. Look at 'framework/menus/Extra.py' for an example.

Instructions:

1. Suppose you want to add a new menu with the name 'XXX' to the menubar. Create a new
file with the name XXX.py in the 'framework/menus/' directory

Getting Started 10

2. Import or define some actions, with the following structure:

def action(script,app,event):
...

The arguments of the function are:
• script: current script window

• app: application window

• event: event

Some usefull stuff:
• script.fileName
• script.source

• script.source.GetText()
• script.source.SetText(text)
• script.source.GetSelectedText()
• script.source.ReplaceSelection(text)

• app.run(fileName)
runs an external file

• app.new()
creates a new file

• app.open(fileName,lineno,col)
opens a file at given position

• app.message(text)
shows a dialog window with the text

• app.messageEntry(text)
shows a dialog prompting an entry

• app.messageError(text)
shows an error dialog window with the text

• app.SetStatus(text)
sets the status text

Getting Started 11

3. Define the 'main' function:

def main(app):
menu(app,

item(label=<str:label that will appear in menu>,
action=<function:that will be called>),

item(...),
SEPARATOR,
item(...),
item(...),
...
SEPARATOR,
item(...),
...)

If you want this menu item also to have a toolbar button, than make a 16x16pixels png
image (transparency is allowed). The image has to be located in the menu folder. Pass
the the fileName with the toolbar keyword:

item(label=<str:label that will appear in menu>,
action=<function:that will be called>,
toolbar=<str:fileName of the toolbar image (optional)>)

Getting Started 12

4 Features

4.1 Sidebar
• Class browser

• File browser

• Automatic todo list, highlighting the most important ones

• Automatic alphabetic source index of classes and methods

• Sticky notes

4.2 Tools
These tools appear as tabs down.

Shell
Interactive PyCrust shell
• Double mouse click to jump to error source code

Locals
Local object browser
• Left mouse click to open

• Right mouse click to run

Session
Separate session recorder

Find
Find recursively text in files

• Leave the 'Path' field empty to search in all open files

Browser
Quick access to python files in specified folders and their sub folders
• Left mouse click to open

Recent
Unlimited recent file list
• Left mouse click to open

• Right mouse click to run

Todo
Automatic todo list of all open files, highlighting the most important ones (jump to source)
• Left mouse click to jump to source

Features 13

Index
Automatic alphabetic index of all open files (jump to source)

Notes
Sticky note for general development comments

Blender
Blender object browser. It is only working when SPE is launched in Blender mode.

Donate
If you like SPE, please consider to give a donation

4.3 Editor
As you type:
• Syntax-coloring

• Auto-indentation

• Auto-completion

• Call-tips

When you save a file:
• Syntax-checking

Uml view
• Graphical layout of class hierarchy

Special keyboard shortcuts
• Ctrl+Enter: browse source of module

4.4 Drag&Drop
Drag&drop any amount of files or folders on ...
• main frame to open them

• shell to run them

• recent files to add them

• browser to add folders

4.5 General
• Context help defined everywhere

• Add your own menus and toolbar buttons

• Exit & remember:all open files will next time automatically be loaded

• handy for Blender sessions

• heart icon on toolbar

• Scripts can be executed in different ways: run, run verbose and import

Features 14

4.6 Blender
• Redraw the Blender screen on idle (no blackout)

• Blender object tree browser (cameras,objects,lamps,...)

• Add your favorite scripts to the menu

• 100% Blender compatible: can run within Blender, so all previous described features are
available within Blender

4.7 Windows
• SPE registers itself in the windows explorer context menu

• optional creation of desktop and quick launch shortcuts

Features 15

5 Tutorial

5.1 Introduction
This excellent tutorial was written by Dimitri from www. serpia .com Please visit his website for
more Python tutorials.

The tutorial will focus primarily on the functionality of SPE's sidebar. SPE allows you, amongst
many other things like syntax coloring, to create seperators which makes it very easy to keep
your code structured. This results in a clear and fast way to maintain your code more easily.
So I won't tell you anything about SPE's blender support, if there is anyone who wants to write
a tutorial on that subject (or any other subject regarding SPE), I'd be more than happy to add
it to this webpage.

5.2 The comments
Let's start SPE and study the screen. SPE's main window is roughly divided into four parts. The
upper part is where the filemenu and toolbar resides, beneath it you will see two vertical
windows, the left one is the sidebar and on the right you'll see the editor itself. On the bottom
of the main window is the Python shell and clicking on one of the tabs will give you another
view of you code. Some of these tabs are common to the one in the sidebar, but here you will
find some extra functionality like a search function and an interface to Blender. As I said
earlier, we will primarily focus on the sidebar.

First, add some comments for your source (something you should always do) starting on the
first line of the editor. Something like depicted below:

Tutorial 16

http://www.serpia.com/
http://www.serpia.com/
http://www.serpia.com/

code:

"""SPE tutorial
In this tutorial we will learn how to:
- add seperators
 for easy source browsing
- add TODO lines
 all those things you still have to do
- browsing your code
 very convenient, you can even use colors
- use the browser tab
 browse files using SPE
"""

It is very convenient that the text can be placed inside a tree hierarchy, you can expand the
text using '+' and vice versa. To give a line a lower hierarchy, press the <tab> key.

5.3 Adding a separator and todo
Adding a separator is a convenient way to structure your code, thus simpler to maintain. This
is not only important for large files, you will find that it is also a great feature for smaller files
(small files tend to grow bigger). You can add a separator using different methods: just type
"#---some text" on an empty line in the editor, select it from the Edit menu or use the Alt+i
shortcut. The newly created separator will appear in the explore tab of the sidebars.
Rightclicking on the reference to the separator in the explore tab will locate it in your code.
This allows you to quickly find chunks of code in your source without having to scroll up and
down and staring at the screen. This is, from a view of usability, something that can actually
increase your productivity.

Another handy feature is the auto creation of a todo list. Just add '# TODO:sometext' to your
code and the todo tab of the sidebar will store the text following the '#TODO:' tag. A very easy
way to keep track of the inevitable todo's! But of course, you can store all sorts of other
information here for future references (e.g. 'this code fragment is from Harry's webtutorial'). A
cool feature of the todo tag is that you can determine its priority by the amount of exclamation
marks ("!"). The one with the most exclamation marks will be highlighted. As this you don't
have to think any more about the order in which you insert your todo's. There is a special tab
dedicated to the todo's on the sidebar, here you can see the priorities of your todo's.

In the next picture you can see that I also added a function definition, this will also appear in
the sidebar. The reference for this function in the sidebar uses a blue font and you can use it
to jump to the location in your source code. SPE's author was smart enough to add an icon
also, human beings are visually orientated and icons work very well in this regard.

Tutorial 17

http://www.stani.be/

code: function1

"""SPE tutorial
In this tutorial we will learn how to:
- add seperators
 for easy source browsing
- add TODO lines
 all those things you still have to do
- browsing your code
 very convenient, you can even use colors
- use the browser tab
 browse files using SPE
"""

#---a, b, c constants---#000000#FFFFFF------------------------------------
a = 4
b = 6
c = 9

TODO: also add the constants d, e, f

#---functions---#000000#FFFFFF--
def displayConstants():
 print 'a =', a, 'b =', b, 'c =', c

Tutorial 18

5.4 Browsing a class
The next thing we'll do is to add a class to our program, but first let's create another separator
named "classes". By doing so, it will be easier to identify the location of your classes.
Beneath this separator we will create a class named SpeTut, this class contains two methods,
__init__ (aka the constructor) and the method hello. As you can see in the picture below, the
class browser SpeTut will be visible in the explore tab, including the aforementioned methods.
Use the little triangle on the leftside to expand the tree and vice versa. The reference to the
class in the explore tab has a red font and a unique icon (click on it to expand the tree!).
You can also add a separator inside a class, a nice feature for larger classes with many
methods.

One note though, after you have added a separator, a function or the like you have to refresh
the tree by returning it to the highest hierarchy using the triangle.

Tutorial 19

code: 2func_class

"""SPE tutorial
In this tutorial we will learn how to:
- add seperators
 for easy source browsing
- add TODO lines
 all those things you still have to do
- browsing your code
 very convenient, you can even use colors
- use the browser tab
 browse files using SPE
"""

#---a, b, c constants---#000000#FFFFFF--
a = 4
b = 6
c = 9

TODO: also add the constants d, e, f

#---functions---#000000#FFFFFF--
def displayConstants():
 print 'a =', a, 'b =', b, 'c =', c
def doSum():
 sum = a + b + c
 print 'sum =', sum
#---classes---#000000#FFFFFF--
class SpeTut:
 def __init__(self, spe):
 self.spe = spe
 def hello(self):
 print 'Hello, ', self.spe
TODO: add a subclass of class SpeTut

Tutorial 20

5.5 Run that py!
Now it's time to run our little program, so add:
• displayConstant() [this runs the function definition]

• doSum() [this runs the function definition]

• say = SpeTut('Stani') [this creates an instance with an argument]

• say.hello() [this runs the method from the class]
to the source code

Use F9 or use the icon on the toolbar and the code will be executed. You can see the output in
the Python shell in the lower area of SPE's main window. It's a good practice to do this often
as you're building your code. Another nice feature of the sidebar is the source code checker
(PyChecker). You can use it by clicking on the appropriate tab located in the sidebar.

Tutorial 21

code: running1

"""SPE tutorial
In this tutorial we will learn how to:
- add seperators
 for easy source browsing
- add TODO lines
 all those things you still have to do
- browsing your code
 very convenient, you can even use colors
- use the browser tab
 browse files using SPE
"""

#---a, b, c constants---#000000#FFFFFF--
a = 4
b = 6
c = 9

TODO: also add the constants d, e, f

#---functions---#000000#FFFFFF--
def displayConstants():
 print 'a =', a, 'b =', b, 'c =', c
def doSum():
 sum = a + b + c
 print 'sum =', sum
#---classes---#000000#FFFFFF--
class SpeTut:
 def __init__(self, spe):
 self.spe = spe
 def hello(self):
 print 'Hello, ', self.spe
TODO: add a subclass of class SpeTut

displayConstants()
doSum()
say = SpeTut('Stani')
say.hello()

Tutorial 22

javascript:openWindow('./srcexm/running1.html', 'serpia',500,500)

5.6 Life is full of colors
Adding colors to the separator makes it even easier to keep track of your code (as long as you
don't turn it into a Christmas tree...). There are two ways to add colors to the separator, a
convenient way is to use filemenu --> edit, another way is to type the colorcode (Hex, e.g.
#7F7F7F). Use whatever suits you best.

code: sepcolors

"""SPE tutorial
In this tutorial we will learn how to:
- add seperators
 for easy source browsing
- add TODO lines
 all those things you still have to do
- browsing your code
 very convenient, you can even use colors
- use the browser tab
 browse files using SPE
"""

#---a, b, c constants---#FFFFFF#000000------------------------------------
a = 4
b = 6
c = 9

TODO: also add the constants d, e, f

#---functions---#0000FF#FFFF00--
def displayConstants():
 print 'a =', a, 'b =', b, 'c =', c
def doSum():
 sum = a + b + c
 print 'sum =', sum
#---classes---#7F7F7F#90EE90--
class SpeTut:
 def __init__(self, spe):
 self.spe = spe
 def hello(self):
 print 'Hello, ', self.spe
TODO: add a subclass of class SpeTut

displayConstants()
doSum()
say = SpeTut('Stani')
say.hello()

Tutorial 23

5.7 Browsing your files
Working on a project often means that you have a lot of files that you have keep track of. A
recent feature makes it quite easy to do this. Just click on the browser tab and the files of your
current directory will be displayed, right-click on a file and it is opened in SPE and you can edit
the file. This works for Python files (yeah, right...), but you can also edit html files.

One last feature I will mention in this tutorial is the ability to create sticky notes. Just click on
the notes tab located in the sidebar and type some notes about your program. Making notes
about your program is more important then you might think, an idea you have today may be
forgotten the next day (or the next hour), it's just a small effort to make notes and SPE makes
this very easy for you. The notes will be saved as an external '.txt' file and has the same name
as your file. Another simple but effective way to keep track of your coding. Once you make this
empty, the external file will also disappear.

5.8 The end
Here is where my little tutorial ends (the second version anyway) and I just barely scratched
the surface of SPE's functionality. If you are looking for a free Python IDE, you owe it to
yourself to try SPE and I think you won't be disappointed. Okay, it lacks a full blown debugger
that some commercial IDE's have, but the dynamic nature of Python makes it quite easy to do
your "own" debugging. Oh, did I tell you that SPE includes wxGlade? You can find a tutorial on
wxGlade here!

If you have found any errors or want some extra stuff explained in this tutorial (this is the
second version after all), please contact me.

Tutorial 24

mailto:webadmin@serpia.com?subject=SPE
http://www.serpia.com/page3.php
http://www.serpia.com/page3.php

6 wxGlade GUI Designer

6.1 Introduction
This excellent tutorial was written by Dimitri from www. serpia .com Please visit his website for
more Python tutorials.

First, what is wxPython?
wxPython is a toolkit for creating graphical user interfaces (GUI) for the programming
language Python. One of the great things about wxPython is the cross platform compatibility.
This means that the same code runs on your Linux, Unix, Windows and Mac OSX box without
any problems, and it still has a native look to it. You can find more information about
wxPython and download it here. And like all good things in this world, it is Open Source.

What is wxGlade?
wxGlade is a GUI designer for wxPython. It makes it very easy to create a user interface using
drag and drop techniques without writing a single line of code. Anyone who has ever written
wxPython code will understand that you can save a lot of time using a GUI designer such as
wxGlade. wxGlade also generates C++, Perl and XRC (wxWidgets' XML resources) code. More
information about this great piece of software here.

6.2 Design a layout
I assume you had no problems installing wxPython and/or wxGlade, so now it's time to start
wxGlade. Click on the button "Add a frame" in the wxGlade's main window and choose for
wxFrame, as a result a Frame will be created. wxGlade automatically adds a sizer to the frame,
a sizer is a container for our widgets like buttons, etcetera.

wxGlade GUI Designer 25

http://www.serpia.com/
http://www.serpia.com/
http://www.serpia.com/
http://wxglade.sourceforge.net/

It is very important to add a panel to the sizer, otherwise your application will look funny in
Windows. So please add a sizer with 3 rows. Now we will add two buttons and one text field to
the frame. Just click on the "Add TextCtrl" in the main window and than click on the upper row
in your panel. Repeat this for both buttons. Now you should have something like this:

Time to save our work! Saving is done by "File" --> "Save as..." in the main window, should
not be difficult if you've come this far.

When you click on a widget (e.g. text_ctrl_1) in your frame, its properties will be displayed in
the "Properties" window. Now edit the properties of you widgets like I did and you should have
something like this:

Hey, did you notice that I added a status bar? Find out how I did it yourself...

wxGlade GUI Designer 26

6.3 Generate Python Code

Generating Python code is also easy, just keep some things in mind. Click on "Application" in
the "Tree" window and the "Properties" window appears. Now, look at the picture below and I'll
explain it to you.

Check "Name" and "App" to create a class and mainloop in your code. Select "frame_1" as the
Top window. Generate a single file for this application, a more complex application would
require separate files, at least this would be recommendable. Check the "Python" radiobutton,
select "wx namespace" and do NOT overwrite existing sources (I'll explain this later). Set the
output path and filename and "Generate code".

Open this file in your favorite editor and examine the code. It should run now, your wxPython
program without having to write a single line of code. Isn't it amazing?

But if you click the buttons, nothing happens. That's because there are no events in this
program yet. I will explain below how to add events to this little application. Adding events
Adding events should be done "by hand", wxGlade cannot do this because it is a GUI builder
and not an IDE. So you will need an editor or IDE, such as WingIDE, to add events and other
lines of code. It is VERY important to add your code outside the # begin wxGlade # end
wxGlade section! That is because whenever wxGlade (re)generates a new version (because
you have added another button, for example) it leaves your code outside the # begin wxGlade
end wxGlade section intact. And that's why you have to uncheck "Overwrite existing
sources" in the properties window!

wxGlade GUI Designer 27

6.4 Event handling
Now fire up your editor and look for the # end wxGlade line in the def __init__ section ot he
class MyFrame. Below this line you should add:

wx.EVT_BUTTON(self,self.button_1.GetId(), self.pushA)
wx.EVT_BUTTON(self,self.button_2.GetId(), self.pushB)

This is where the events bindings to the buttons 1 and 2 take place. The self.button_1.GetId()
code sees to it that each buttons has a unique ID (well, actually it is a bit more complicated).
The self.pushA code is there to let the button know what event should be executed. When you
run this code, you will get an error message like "AttributeError: MyFrame has no attribute
pushA". That is because we haven't defined the pushA and pushB definitions yet. So let's add
the following outside the def __init__:

def pushA(self, event):
 self.text_ctrl_1.WriteText("You pressed A\n")
def pushB(self, event):
 self.text_ctrl_1.WriteText("You pressed B\n")

Both function definitions (def) are very simple and a good example of the straightforward logic
of wxPython. The text "You pressed ..." is written to (WriteText) the text_ctrl_1 widget we
created earlier. By the way, \n is a special character and it means newline. And yes, it creates
a new line after the text that's been written. Run the program and see what happens.
Something like this should be the result:

wxGlade GUI Designer 28

6.5 Now let's enhance this program a bit!
We will add another button and another text_ctrl. First we need to add two extra rows to the
grid sizer. To do this right click on grid_sizer_1 in the Tree window and add two rows, one by
one. After that's done add a button to the fourth row and a textctrl to the fifth as depicted in
the illustrations below.

Add the following event for the new button:

wx.EVT_BUTTON(self, self.button_3.GetId(), self.doSilly)

Also, add the following function definition:

def doSilly(self, event):
 n = list(self.text_ctrl_1.GetValue())
 n.reverse()
 n = ''.join(n)
 self.text_ctrl_2.WriteText(n)

This function reads the content from text_ctrl_1 (GetValue()), turns it into a list, reverses the
string and joins the characters. The output is then sent to text_ctrl_2. Pretty silly, but hey,
this tutorial is for demonstration purposes only.

Try to understand the code, add more functionality as you learn more. And study the excellent
examples that come with the wxPython package. You can view the source code of this tutorial
here.
Here is another excellent site on wxPython.

If you have found any errors or want some extra stuff explained in this tutorial (this is the first
version after all), please contact me.

wxGlade GUI Designer 29

mailto:webadmin@serpia.com?subject=wxGlade
http://wiki.wxpython.org/
javascript:openWindow('./srcexm/wxtutsrce.html', 'serpia',500,500)

7 XRCed GUI Designer

7.1 Introduction
This excellent tutorial was written by Dimitri from www. serpia .com Please visit his website for
more Python tutorials.

First, what is XRC?
XRC stands for XML Resource Code and it describes the attributes of the widgets used in
wxPython. So instead of writing code that builds the widgets, the XML resource file is loaded
into the application. There are several advantages to this approach, but the most prominent is
the strict seperation between gui design and the functionality of your program.

What is XRCed?
XRCed is is a simple resource editor for wxWindows/wxPython GUI development which
supports creating and editing files in XRC format. It is written in Python and uses wxPython
GUI toolkit. More information about XRCed here.

7.2 Design a layout
Lets start. I assume you had no problems installing XRCed, so now it's time to run the
program. XRCed is also included in SPE (a free, powerful Python IDE), you can find a tutorial
on SPE here. The main window of XRCed is depicted below.

XRCed GUI Designer 30

http://www.serpia.com/
http://www.serpia.com/
http://www.serpia.com/
http://www.serpia.com/page5.php
http://xrced.sourceforge.net/
http://www.serpia.com/page5.php
http://xrced.sourceforge.net/

Right click on XML-tree and a menu appears, choose "Append child" --> "Frame". After you
have added the frame, you can edit the properties and the style of this particular widget. Or
any other widget after you have added them. One property of the Frame is very important, the
"XML ID". As you will see later in this tutorial, wxPython needs this ID to make it all work. We
will name it "MainFrame". Now add a panel the same way as we added the frame and name
this panel "MainPanel". After you have added the panel, add a gridsizer, a gridsizer can contain
widgets in wxPython and keeps your interface nice and tidy. Try to add more widgets:

view the xml code here and open it in XRCed to see how things work.

As you are building you graphical user interface, you can preview it by double clicking on the
MainFrame or by using the icon in the toolbar.
Time to save our work! Save your file as gui.rpc.

7.3 Create your application

Now it's time to embed the xml resource file in your Python code. Start your editor and add
the following code:

import wx
import wx.xrc as xrc

GUI_FILE_NAME = 'gui.xrc'
GUI_MAINFRAME_NAME = "MainFrame"
GUI_MAINPANEL_NAME = "MainPanel"
GUI_TEXTOUT_NAME = "TextOut"
GUI_TEXTREV_NAME = "TextReverse"
GUI_BUTTONA_NAME = "ButtonA"
GUI_BUTTONB_NAME = "ButtonB"
GUI_BUTTONSR_NAME = "ButtonSR"

XRCed GUI Designer 31

javascript:openWindow('./srcexm/xml_resource.html', 'serpia',500,500)
javascript:openWindow('./srcexm/xml_resource.html', 'serpia',500,500)

First, we import wxPython. Next we assign names to the variables GUI_FILE_NAME etc. You
seen how they correspond with the XML ID's we created earlier in XRCed? By the way you
don't have to create this variables, but it sure makes your code easier to maintain. You can
even put them in a seperate file. Now add this:

class MyApp(wx.App):
 def OnInit(self):

 self.res = xrc.XmlResource(GUI_FILE_NAME)

 self.frame = self.res.LoadFrame(None, "MainFrame")
 self.panel = xrc.XRCCTRL(self.frame, GUI_MAINPANEL_NAME)
 self.textOut = xrc.XRCCTRL(self.panel, GUI_TEXTOUT_NAME)
 self.textRev = xrc.XRCCTRL(self.panel, GUI_TEXTREV_NAME)

 self.frame.Show(True)
 self.InitMenu()
 return True

We create the class MyApp, the 'wxXmlResource' loads the XML resource file that we have
created earlier. The 'XRCCTRL' command calls the names from the panel and the textboxes
from the XML resource file. We will need them later when we create the events.

 def InitMenu(self):
 wx.EVT_BUTTON(self, xrc.XRCID(GUI_BUTTONA_NAME), self.pushA)
 wx.EVT_BUTTON(self, xrc.XRCID(GUI_BUTTONB_NAME), self.pushB)
 wx.EVT_BUTTON(self, xrc.XRCID(GUI_BUTTONSR_NAME), self.doSilly)

This is where the events bindings to the buttons place. The XRCID(GUI_BUTTONA_NAME) code
sees to it that the properties are loaded from the XML resource file. The self.pushA code is
there to let the button know what event should be executed. When you run this code, you will
get an error message like "AttributeError: MyFrame has no attribute pushA". That is because
we haven't defined the pushA and pushB definitions yet. So let's add the following:

 def pushA(self, event):
 self.textOut.WriteText("You pressed A\n")

 def pushB(self, event):
 self.textOut.WriteText("You pressed B\n")

 def doSilly(self, event):
 n = list(self.textOut.GetValue())
 n.reverse()
 n = ''.join(n)
 self.textRev.WriteText(n)

Both function definitions (def) are very simple and a good example of the straightforward logic
of wxPython. The text "You pressed ..." is written to (WriteText) thetextOut and textRev
widgets we created earlier. By the way, \n is a special character and it means newline. And
yes, it creates a new line after the text that's been written.

To be able to run the program and add:

app = MyApp(0)
app.MainLoop()

XRCed GUI Designer 32

and see what happens. Something like this should be the result:

Try to understand the code, add more functionality as you learn more. And study the excellent
examples that come with the wxPython package. You can view the source code of this tutorial
here .

Also, compare this tutorial with the wxGlade tutorial on this website and examine the
differences between using a XML resource file and writing the code for the gui inside a Python
file.

Here is another excellent resource on XRC .

If you have found any errors or want some extra stuff explained in this tutorial (this is the first
version after all), please contact me.

XRCed GUI Designer 33

mailto:webadmin@serpia.com?subject=XRCed
http://wiki.wxpython.org/index.cgi/UsingXmlResources
http://www.serpia.com/wxGlade_tutorial/wxGlade_tutorial.htm
javascript:openWindow('./srcexm/xrc_py.html', 'serpia',500,500)

8 Debugger

8.1 Introduction

SPE & Debugger
To launch the debugger from SPE, choose “Debug” from the Tools menu in SPE. The python
files of the debugger can be found in the “site-packages/_spe/plugins/winpdb” folder. The
following documentation is general information about the Python Debugger. For further
questions about the debugger, please use its source-forge project page for support requests,
bug reports, and forum: http://sourceforge.net/projects/winpdb/

Copyright Notice
Copyright (C) 2005 Nir Aides.
This documentation is copyrighted. Please don't copy it without permission.

Reminder
Except for GUI documentation, whatever is written about Winpdb applies to rpdb2 too.
Specifically, whenever _winpdb.py is used in the docs, it can be substituted with _rpdb2.py

8.2 Requirements

wxPython
To use the Winpdb GUI you need to install wxPython 2.6.x
You can still use _rpdb2.py which is the console version of the debugger even without
wxPython.
http://www.wxpython.org/

Python Cryptography Toolkit
Winpdb uses the Python Cryptography Toolkit to encrypt its socket communication. You can
still use Winpdb without the toolkit, but then connections will be authenticated only.
http://www.amk.ca/python/code/crypto

Firewalls
You may experience connectivity problems that stem from firewall protection. Winpdb
communicates with debugees over sockets. These sockets require that TCP ports 51000 to
51019 be unblocked to outgoing connections on the debugger machine and to incoming
connections on the debugee machine. Usually unblocking TCP port 51000 alone will be enough,
unless more than one active debugee is present or port 51000 is occupied by another process.

Multiple Threading
Winpdb requires the presence of the thread module.

Debugger 34

http://www.amk.ca/python/code/crypto
http://www.digitalpeers.com/pythondebugger/security.htm
http://www.wxpython.org/
http://sourceforge.net/projects/winpdb/
http://sourceforge.net/forum/?group_id=145018
http://sourceforge.net/tracker/?group_id=145018
http://sourceforge.net/tracker/?group_id=145018

8.3 Launching and Attaching

So, you have installed Winpdb, what now?
To start the debugger on UNIX systems, open a console and type:

_winpdb.py

On Windows systems you start the debugger with:

python %PYTHONHOME%\Scripts_winpdb.py

Use the -h flag for command line help. A common flag at this point is -t which allows Winpdb
to start even if the Crypto package is not installed.

The above technique starts the debugger, without starting a debug session, in the DETACHED
state. You can start a debug session from the command line by appending the debug script
name and its command line arguments to the command line of the debugger. For example:

_winpdb.py myscript.py myscript_arg1 myscript_arg2 ...

This will automatically launch the debugged script when the debugger starts. During this phase
the debugger will move from the DETACHED state, through the LAUNCHING, ATTACHING, and
BROKEN states. Once the debugger reaches the BROKEN state, it is ready for further
commands.

Another option is to start the debugger and launch the script from the debugger console with
the launch command.

launch myscript.py myscript_arg1 myscript_arg2 ...

Attaching to a Running Script
Launching starts the debugged script on the local host. What if you want to debug a script on a
remote machine? To do that you need to start the debugger on the remote machine in
"debugee" mode with the -d flag. Example:

_winpdb.py -d -r -p"mypassword" myscript.py myscript_arg1 myscript_arg2 ...

This will start the debugged script and break into it. At that point the debugged script
(debugee) remains frozen until a debugger attaches to it. The -p flag sets the connection
password and the -r flag allows connections from remote machines.

To attach to the debugee start the debugger as follows:

_winpdb.py -p"mypassword" -ohostname -a myscript.py

This will start the debugger and initiate an attachment attempt to the script myscript.py on
host hostname. Another option is to start the debugger and attach from the debugger console
with the password, host, and attach commands as follows:

password mypassword
host hostname
attach myscript.py

Using the attach command without argument will list all scripts available for attachment on the
given host.

Debugger 35

http://www.digitalpeers.com/pythondebugger/security.htm
http://www.digitalpeers.com/pythondebugger/security.htm
http://www.digitalpeers.com/pythondebugger/security.htm
http://www.digitalpeers.com/pythondebugger/security.htm

8.4 GUI control:

Setting a Password
To set the connection password click File->Password. This option is available only when the
debugger is in the detached state.

Attaching to a Script
To attach to a script click File->Attach. This option is available only when the debugger is in
the detached state. If the attach option is selected without a password having been set, the
password dialog will pop up automatically, requesting for a password. To attach to a script on
a remote machine, type the machine hostname in the Host edit box and click the Refresh
button. Only scripts that match the password will show up in the dialog. Also, note that
connectivity issues such as firewall protection may prevent scripts from being detected.

Debugger 36

8.5 Embedded Debugging
Normally you would start a debug session by launching a script from the debugger. However,
in some scenarios this is not possible. For example python scripts that are embedded in other
programs. You can still debug embedded scripts by using the following technique:

Add the following line to any script you wish to debug with the embedded debugging
technique:

import rpdb2; rpdb2.start_embedded_debugger(password)

Once this line is invoked, the script will freeze for a default period of 5 minutes, waiting for a
debugger to attach. The password is used to secure client/server (debugger/debugee)
communication. Naturally, the debugger has to use the same password in order to successfully
attach.

Interactive Passwords
It is recommended not to use a hard coded password in a script, since anyone with read
access rights to the script may read the password and compromise your system security.
Instead it is preferable to query the password interactively. If applicable you can use the
following line as an alternative to the one suggested above:

import rpdb2; rpdb2.start_embedded_debugger_interactive_password()

A common flag for both functions is fAllowUnencrypted, which allows unencrypted connections
in case the crypto package is not installed.

Embedded Timeout
What if for any reason you fail to attach to the frozen script? The frozen script waits for you to
attach for a default period of 5 minutes, and when this timeout expires it will resume
execution. This prevents the need to terminate the server hosting the python script or all kinds
of other desperate attempts in the hope of terminating the frozen script.

The functions are brought here for your convenience:

def start_embedded_debugger(
 pwd,
 fAllowUnencrypted = False,
 fRemote = False,
 timeout = TIMEOUT_FIVE_MINUTES,
 fDebug = False
):

 """
 pwd - The password that governs security of client/server communication
 fAllowUnencrypted - Allow unencrypted communications. Communication will
 be authenticated but encrypted only if possible.
 fRemote - Allow debugger consoles on remote machines to connect.
 timeout - Seconds to wait for attachment before giving up. If None,
 never give up. Once the timeout period expires, the debugee will
 resume execution.
 fDebug - debug output.
 """

 return __start_embedded_debugger(pwd, fAllowUnencrypted, fRemote, timeout,
fDebug)

Debugger 37

http://www.digitalpeers.com/pythondebugger/security.htm

def start_embedded_debugger_interactive_password(
 fAllowUnencrypted = False,
 fRemote = False,
 timeout = TIMEOUT_FIVE_MINUTES,
 fDebug = False,
 stdin = sys.stdin,
 stdout = sys.stdout
):

 if g_server != None:
 return

 if stdout != None:
 stdout.write('Please type password:')

 pwd = stdin.readline()[:-1]

 return __start_embedded_debugger(pwd, fAllowUnencrypted, fRemote, timeout,
fDebug)

8.6 Multiple Threads

Unique Little Beings
While few python debuggers support threading, Winpdb may be the first Python debugger to
do it right. Winpdb uses a novel approach to handling threads in the context of a debugger.
Python threads are unique little beings. Unlike C++, you can't always break into them (make
them stop), since they are not always doing Python code, and may actually be blocked
indefinitely in some C++ code. And yet, even more peculiar is the fact that a Python session
may exist without any threads of execution at all, for example, think of the python interactive
interpreter.

Breaking Into the Debugger
In debugger lingo "breaking into the debugger" means requesting the debugee to pause for
our inspection. In Winpdb this is nothing more than a polite request. Individual threads will
break at their leisure, and until they do their state is reported as running. The cool thing about
the Winpdb model is that we can still control the debugee in this half broken state as if it was
completely broken.

The second scenario, in which no threads exist at all when the break is requested, is only
relevant to embedded debugging. In that case we can do very little until the first thread shows
up on the radar and the debugger finally really breaks.

Threads of the thread module
There are three kinds of threads in Python. The main thread, threads created through the
threading module, and threads created via the thread module. The first two types of threads
are traced by Winpdb automatically. However threads created via the threads module are born
invisible to Winpdb. To make Winpdb trace a thread created with the thread module, add the
following line to the thread's function:

rpdb2.settrace()

Debugger 38

Again, this line is only needed for threads created with thread.start_new_thread() and is
ignored for other kind of threads.

8.7 Smart Breakpoints

Valid Line Breakpoints
Winpdb is the first python debugger that allows you to set breakpoints to valid lines only. In
python, some source lines are never executed, so setting a breakpoint to such lines results in
the debugger ignoring them. With Winpdb you don’t have to guess which lines are valid since
the debugger knows that for you, and sets the breakpoint to the nearest previous valid line.

Persistent Breakpoints
Winpdb automatically saves breakpoints when you end a debug session. Next time you start a
debug session to the same script, you can load the saved breakpoints. You can even save and
load breakpoints manually and have more than one set of breakpoints by specifying a
breakpoints file name.

Sticky Breakpoints
Winpdb is the first python debugger that uses truly sticky breakpoints. You can change a script
considerably, and yet, next time you debug it and load the saved breakpoints, they will remain
in the correct source lines.

Console Commands:
bp – Set a breakpoint.
bl, bd, be, bc – List, disable, enable, and clear breakpoints respectively.
load, save – Load and save breakpoints respectively.

Examples
bp 28 - Set a breakpoint to line 28 in the current file.
bp myscript.py:28 - Set to line 28 in file myscript.py.
bp myscript.py:CMyClass.my_method - Set to first line of method my_method of
class CMyClass
bp foo, i > 100 - Set a conditional breakpoint to first line of function foo.
bd * - Disable all breakpoints.
save - Save breakpoints to the default session file.
save my_breakpoint_file - Save breakpoints to a file named
'ny_breakpoint_file.bpl'.

Debugger 39

GUI control:

Toggle a Breakpoint
To toggle a breakpoint in the current line in the current file, click Breakpoints->Toggle or F9
Another option is to click the left margin of a source line in the source viewer.

Breakpoint Color
Breakpoints are represented in the source viewer as a colored background for a line with a
breakpoint. The colors are RED for an enabled breakpoint and YELLOW for a disable
breakpoint. When a breakpoint is hit its color is LIGHT BLUE.

Debugger 40

8.8 Security

Authenticated Communication
As a remote debugger Winpdb uses sockets to communicate between the debugger and the
debugged script (debugee). This communication is password authenticated, so that an intruder
will not be able to control the debugee.

Encrypted Communication
By default the socket communication is also encrypted. Winpdb uses the Python Cryptographic
Toolkit (http://www.amk.ca/python/code/crypto) for encryption. Encryption can be allowed off
(example: if the Crypto module is not present) with the -t flag.

Automatic Passwords
If a debug session is launched from Winpdb without having set a password, a pseudo random
password will be generated transparently, without interrupting the user.

Remote Connections Denial
By default, the debugee denies remote connections, and only accepts debugger connections
from the local host. However, the debugee can be set to accept connections from remote
machines with the -r flag.

Command Line Flags:
-t - Allow unencrypted connections
-p <password> - Set communication password
-r - Allow connections from remote machines.

Examples
Start Winpdb in allow unencrypted connections mode. This flag must be set if the Crypto
toolkit is NOT installed, either on the debugger or on the debugee machine:

_winpdb.py -t

Console Commands:
remote - Get or set the allow remote connections mode.
password - Get or set the password that governs connections.

Debugger 41

http://www.amk.ca/python/code/crypto

GUI control:

Set Password
To set the password, click File->Password
If a password has not been set when the attach command is first invoked, the password dialog
will pop up automatically.

Debugger 42

9 FAQ

9.1 Install

Encoding Error
Q

I'm trying to install SPE 0.7.4.z on my Linux (Ubuntu) box.

I start Python and type "import _spe", but then it tells me:

"/usr/lib/python2.4/site-packages/_spe/info.py", line 96, in ?
 INFO['encoding'] = wx.GetDefaultPyEncoding()

What more do I need to do to get your IDE up and running?

A

Your version of wxPython is out of date, you need at least wxPython 2.5.4.1 Please upgrade
and if you don't know how, trial and error an old version of SPE:

http://projects.blender.org/frs/?group_id=30&release_id=209

Don't ask which one, for sure one will work. You can always try to send an email to your linux
distibution to ask to make a new wxPython package available or that they upgrade wxPython
in next release.

Ogl Missing
Q

During install I get this ogl missing error....

 File "C:\Progs\Python23\Lib\site-packages\sm\uml.py", line 3, in ?
 import wx, wx.lib.ogl as ogl
ImportError: No module named ogl

A

Your version of wxPython is not built with ogl support. Again you need at least wxPython
2.5.4.1 with ogl support enabled. The ogl demo in the wxPython demo also won't work for you.
This has nothing to do with SPE, so please, if you have further questions about these, please
post them on the wxPython-user list:

http://www.wxpython.org/maillist.php

9.2 Editor

Find & Replace Dialog
Q

I have to press twice the “Find Next” button to find the next occurrence of a word.

A

Unfortunately this is a bug in wxPython with unicode support. It also happens in the wxPython
demo. It is not related to SPE. If you don't really need unicode support, you could install the
ansi version of wxPython as a solution.

FAQ 43

http://www.wxpython.org/maillist.php
http://projects.blender.org/frs/?group_id=30&release_id=209

Opening Files
Q

When opening an existing file, the X close-button for that file (at the extreme right, on the
menu "bar") as well as the minimise/maximise buttons for that file/window disappear.
If many files are open, and one closes one using the round X-button (fifth gui button from the
left), the other buttons reappear. This is mainly a cosmetic bug.

A

This is a wxPython bug. It also happens in the wxPython demo. It is not related to SPE.

Saving files
Q

Save a source with special characters like "á" fails. Is this a bug?

A

This is not a bug, your encoding is wrongly configured. Start SPE in debugging mode and
check your encoding:

>>> python SPE.py --debug
Spe is running in debugging mode with this configuration:
- platform : win32
- python : 2.3.2
- wxPython : 2.6.1.0.
- interface : <default>
- encoding : ascii

If it's ascii, you should change it in the preferences dialog box to 'latin_1'. When you restart
SPE now in debugging mode, it should display:

>>> python SPE.py --debug
Spe is running in debugging mode with this configuration:
- platform : win32
- python : 2.3.2
- wxPython : 2.6.1.0.
- interface : <default>
- encoding : latin_1

FAQ 44

10 Contact

10.1 Contribute
If you would like to contribute to SPE in any way, send me an email with your skills
• programming

• graphics

• icons

• 3d

• html
We are sure you can help us.

10.2 Feedback
SPE is still under development. If you use SPE, please post a message on the appropiate
forum on http://projects.blender.org/forum/?groupid=30 describing the platform, the
problems that occur and possible solutions if you know.

If SPE runs without any problems, I'm also interested to get a notice.

We develop SPE under Windows XP and have no access to Linux, Mac, FreeBsd or any other
platform. So any help for these platforms is highly appreciated.

10.3 Contact persons
These people are contact persons for (replace $ with @):

• Project leader: Stani (spe.stani.be@gmail.com)

• SVN and bugfixes: Sam Widmer (rigel$asylumwear.com)

Contact 45

http://projects.blender.org/forum/?groupid=30

11 Donations and sponsorship

11.1 Donations
Please donate if you enjoy using SPE and would like to help support it. Your donation will go
directly towards helping this project. Any donation starting from 5 euro/dollar is welcome. If
you know any fund which would be helpful, please let me know. Large donations can be
rewarded with a link on the SPE website or name mentioning in SPE documentation.

We offer four easy ways to make a donation to SPE:

Bank Transfer (Europe)
We strongly recommended this payment for europe as no payment fees are involved. The
Dutch Rabobank accepts international transfers. Using the IBAN number, this transaction is
free of charge within Europe. So what you donate, is what SPE gets.

at the name of:

S. Michiels, Amsterdam, the Netherlands

Bank: Rabobank

IBAN: NL12 RABO 0393 8648 47 (for euro countries)

Swift/BIC code: RABONL2U (international code)

Account number: 3938.64.847

PayPal (International)
If you have a major credit card (Visa, MasterCard, American Express) or a PayPal account,
donating is easy:

– Just click the button on the SPE website to get started

– You can pay through the PayPal site (http://www.paypal.com) to s_t_a_n_i$yahoo.com
(replace '$' with '@').

Google Adsense
If you have a website, you can put Google ads on your site which will give me some income,
without that you have to pay anything. Please contact me for more information
spe.stani.be@gmail.com.

Donations and sponsorship 46

mailto:spe.stani.be@gmail.com
http://www.paypal.com/

11.2 Sponsorship
Your organisation may sponsor SPE for one or more of the following reasons:

– Helping foster the growth of SPE

– Increasing brand recognition among Python community in specific and open source
community in general

Sponsors

Silver
 http://www.zettai.net

Packages
SPE offers three packages for sponsoring:

Platinum: €2000/year
• One available

• Company logo placement and link on SPE website as platinum sponsor

• Company logo placement and link on SPE documentation as platinum sponsor

• Company link on SPE mailing lists as platinum sponsor

• Company link on SPE release announcements as platinum sponsor (comp.lang.python,
comp.lang.python.announce, pypi, blender.org, ...)

Gold: €1000/year
• Four available

• Company logo placement and link on SPE website as gold sponsor

• Company logo placement and link on SPE documentation as gold sponsor

• Company link on SPE mailing lists as gold sponsor

Silver: €500/year
• Unlimited availability

• Company logo placement and link on SPE website as silver sponsor

• Company logo placement and link on SPE documentation as silver sponsor

How to apply
If you would like to sponsor SPE in one of ways mentioned above, please send an e-mail with
subject “Premium”, “Gold” or “Silver” to spe.stani.be@gmail.com

Donations and sponsorship 47

mailto:spe.stani.be@gmail.com
http://www.zettai.net/
http://zettai.net/

12 Keyboard shortcuts

Key Action Description
ALT '3' Comment
ALT '4' Uncomment
ALT 'D' DEDENT Dedent the lines
ALT 'I' Insert separator
ALT BACK UNDO Undo one action in the undo history
ALT END LINEENDDISPLAY Move caret to last position on display line
ALT F4 Exit
ALT F9 Open terminal emulator
ALT HOME HOMEDISPLAY Move caret to first position on display line
ALT LEFT ARROW WORDPARTLEFT Move to the previous change in

capitalisation
ALT RIGHT ARROW WORDPARTRIGHT Move to the next change in capitalisation
ALT+SHIFT END LINEENDDISPLAYEXTEND Move caret to last position on display line

extending selection to new caret position
ALT+SHIFT HOME HOMEDISPLAYEXTEND Move caret to first position on display line

extending selection to new caret position.
ALT+SHIFT LEFT
ARROW

WORDPARTLEFTEXTEND Move to the previous change in
capitalisation extending selection to new
caret position

ALT+SHIFT RIGHT
ARROW

WORDPARTRIGHTEXTEND Move to the next change in capitalisation
extending selection to new caret position.

BACK DELETEBACK Dedent the selected lines
CTRL 'A' SELECTALL Select all the text in the document
CTRL 'B' Load in Blender
CTRL 'C' COPY Copy the selection to the clipboard
CTRL 'D' DEBUG Debug
CTRL 'F' Find & replace
CTRL 'G' Go to line
CTRL 'K' Test regular expression with Kiki
CTRL 'L' LINECUT Cut the line containing the caret
CTRL 'N' New
CTRL 'O' Open
CTRL 'P' Run with profile
CTRL 'R' Run in separate namespace
CTRL 'S' Save
CTRL 'T' LINETRANSPOSE Switch the current line with the previous
CTRL 'U' LOWERCASE Transform the selection to lower case
CTRL 'V' PASTE Paste the contents of the clipboard into

the document replacing the selection
CTRL 'X' CUT Cut the selection to the clipboard
CTRL 'Y' REDO Redoes the next action on the undo

history
CTRL 'Z' UNDO Undo one action in the undo history
CTRL @ Contact author
CTRL ADD ZOOMIN Magnify the displayed text by increasing

the sizes by 1 point
CTRL BACK DELWORDLEFT Delete the word to the left of the caret
CTRL DELETE DELWORDRIGHT Delete the word to the right of the caret
CTRL DIVIDE SETZOOM Set the zoom level to 0. This returns the

zoom to 'normal,' i.e., no zoom.
CTRL DOWN
ARROW

LINESCROLLDOWN Scroll the document down, keeping the
caret visible

Keyboard shortcuts 48

Key Action Description
CTRL END DOCUMENTEND Move caret to last position in document
CTRL ENTER Browse source
CTRL F4 Close
CTRL F9 Run in terminal emulator
CTRL HOME DOCUMENTSTART Move caret to first position in document
CTRL INSERT COPY Copy the selection to the clipboard
CTRL LEFT ARROW WORDLEFT Move caret left one word
CTRL RIGHT
ARROW

WORDRIGHT Move caret right one word

CTRL SPACE Auto complete
CTRL SUBTRACT ZOOMOUT Make the displayed text smaller by

decreasing the sizes by 1 point
CTRL UP ARROW LINESCROLLUP Scroll the document up, keeping the caret

visible
CTRL+ALT 'B' Reference in Blender
CTRL+ALT 'C' Check source with PyChecker
CTRL+ALT 'F' Browse Object with PyFilling
CTRL+ALT 'G' Design a gui with wxGlade
CTRL+ALT 'P' Preferences
CTRL+ALT 'R' Run Verbose
CTRL+ALT 'X' Design a gui with XRC
CTRL+ALT F9 Run in terminal emulator & exit
CTRL+SHIFT 'L' LINEDELETE Delete the line containing the caret
CTRL+SHIFT 'U' UPPERCASE Transform the selection to upper case
CTRL+SHIFT BACK DELLINELEFT Delete back from the current position to

the start of the line
CTRL+SHIFT
DELETE

DELLINERIGHT Delete forwards from the current position
to the end of the line

CTRL+SHIFT END DOCUMENTENDEXTEND Move caret to last position in document
extending selection to new caret position

CTRL+SHIFT HOME DOCUMENTSTARTEXTEND Move caret to first position in document
extending selection to new caret position

CTRL+SHIFT LEFT
ARROW

WORDLEFTEXTEND Move caret left one word extending
selection to new caret position

CTRL+SHIFT
RIGHT ARROW

WORDRIGHTEXTEND Move caret right one word extending
selection to new caret position

DELETE CLEAR Delete all text in the document
DOWN ARROW LINEDOWN Move caret down one line
END LINEEND Move caret to last position on line
ESCAPE CANCEL Cancel any modes such as call tip or auto-

completion list display
F02 Save
F03 Find next
F05 Refresh
F09 Run
F10 Import
F11 Show/hide sidebar
F12 Show/hide shell
HOME VCHOME Move caret to before first visible character

on line. If already there move to first
character on line

INSERT EDITTOGGLEOVERTYPE Switch from insert to overtype mode or
the reverse

LEFT ARROW CHARLEFT Move caret left one character
NEXT PAGEDOWN Move caret one page down
PRIOR PAGEUP Move caret one page up

Keyboard shortcuts 49

Key Action Description
RETURN NEWLINE Insert a new line, may use a CRLF, CR or

LF depending on EOL mode
RIGHT ARROW CHARRIGHT Move caret right one character
SHIFT BACK BACKTAB Delete the selection or if no selection, the

character before the caret
SHIFT DELETE CUT Cut the selection to the clipboard
SHIFT DOWN
ARROW

LINEDOWNEXTEND Move caret down one line extending
selection to new caret position

SHIFT END LINEENDEXTEND Move caret to last position on line
extending selection to new caret position

SHIFT F9 Browse folder
SHIFT HOME VCHOMEEXTEND Like VCHome but extending selection to

new caret position
SHIFT INSERT PASTE Paste the contents of the clipboard into

the document replacing the selection
SHIFT LEFT
ARROW

CHARLEFTEXTEND Move caret left one character extending
selection to new caret position

SHIFT NEXT SCI_PAGEDOWNEXTEND Move caret one page down extending
selection to new caret position

SHIFT PRIOR PAGEUPEXTEND Move caret one page up extending
selection to new caret position

SHIFT RETURN NEWLINE Insert a new line, may use a CRLF, CR or
LF depending on EOL mode

SHIFT RIGHT
ARROW

CHARRIGHTEXTEND Move caret right one character extending
selection to new caret position

SHIFT UP ARROW LINEUPEXTEND Move caret up one line extending selection
to new caret position

TAB TAB If selection is empty or all on one line
replace the selection with a tab character.
If more than one line selected, indent the
lines.

UP ARROW LINEUP Move caret up one line

Keyboard shortcuts 50

13 Credits
Thanks to the following components SPE was made possible:

• Blender

• 3D modeling, rendering, animation and game creation package

• Copyright 2003 Blender Foundation - Ton Roosendaal

• http://www.blender.org

• Kiki

• free environment for regular expression testing (ferret)

• Copyright 2003 Project 5 - Andrei

• http://come.to/project5

• PyChecker

• a python source code checking tool

• Copyright (c) 2000-2001, MetaSlash Inc.

• http://pychecker.sourceforge.net

• PyCrust

• The flakiest python shell (Patrick K. O'Brien)

• Sponsored by Orbtech - Your source for python programming expertise.

• http://www.wxPython.org

• Pyframe guide to Wxpython

• Documentation about wxStyledTextCtrl

• Copyright 2003 Jeff Sasmor

• http://www.pyframe.com/wxdocs/

• Pythonwin

• python IDE and GUI Framework for Windows

• Copyright 1994-2003 Mark Hammond

• Scintilla

• Copyright 1998-2001 by Neil Hodgson

• http://www.scintilla.org

• Sky icons

• KDE icon theme made with gimp

• Copyright 2002 David Vignoni

• http://projects.dims.org/%7Edave/iconsky5.html

• WinPdb

• A Remote Debugger for Python

• Copyright 2005 Nir Aides

• http://www.digitalpeers.com/pythondebugger

Credits 51

http://www.digitalpeers.com/pythondebugger
http://projects.dims.org/~dave/iconsky5.html
http://www.scintilla.org/
http://www.pyframe.com/wxdocs/
http://www.wxPython.org/
http://pychecker.sourceforge.net/
http://come.to/project5
http://www.blender.org/

• wxGlade

• wxGlade is a GUI designer written in Python with the popular GUI toolkit wxPython,
that helps you create wxWindows/wxPython user interfaces. At the moment it can
generate Python, C++ and XRC (wxWindows' XML resources) code.

• Copyright 2003 Alberto Griggio, Marco Barisione, Marcello Semboli, Richard Lawson,
D.H.

• http://wxglade.sourceforge.net

• wxPython

• python extension module for wxWindows GUI classes

• Copyright 1997-2003 Robin Dunn and Total Control Software

• http://www.wxPython.org

Special thanks to Tina Hirsch (Linux feedback).

Python is Copyright (c) 2000-2002 ActiveState Corp:

Copyright (c) 2001, 2002 Python Software Foundation.
All Rights Reserved.

Copyright (c) 2000 BeOpen.com.
All Rights Reserved.

Copyright (c) 1995-2001 Corporation for National Research Initiatives.
All Rights Reserved.

Copyright (c) 1991-1995 Stichting Mathematisch Centrum, Amsterdam.
All Rights Reserved.

This program uses IDLE extensions by Guido van Rossum, Tim Peters and others.

Credits 52

http://www.wxPython.org/
http://wxglade.sourceforge.net/

Alphabetical Index
ActivePython... 5
auto-completion...................................... 14
auto-indentation...................................... 14
Blender............................. 5, 8, 10, 14p., 51
breakpoint.. 39
browse source... 14
browser.. 13, 24
call-tips.. 14
class browser..................................... 13, 19
contact... 45
contribute... 45
copyright.. 4
customize... 10
debugger.. 34
debugging mode..8
donate.. 14, 46
drag&drop.. 14
embedded debugging............................... 37
FAQ... 43
find.. 13
FreeBSD... 6, 8
html... 24
import..9
index... 14
keyboard shortcuts............................. 10, 48
Kiki.. 4, 51
license... 4
links.. 4
Linux... 8
local object browser................................. 13

Mac Os X... 7p.
notes... 14
Psyco... 10
PyChecker... 4, 51
PyCrust... 13, 51
recent.. 13
refresh... 8
remember...14
remember ..10
run...9, 21
separator..................................... 10, 17, 23
serpia..16, 25, 30
session recorder...................................... 13
shell...13
shortcuts.. 5
sidebar... 13
syntax checking.. 8
syntax-coloring..14
todo... 13, 17
tools.. 13
tutorial.. 16, 25, 30
uml.. 14
Unix*: Linux... 6
Win32 extensions...................................... 5
Windows... 5, 8, 15
WinPdb...51
wxGlade.. 4, 25, 52
wxPython..52
XRCed.. 4, 30

Credits 53

	1 Introduction
	1.1 About
	1.2 Plugins
	1.3 Internet links
	1.4 Copyright
	1.5 License

	2 Installation
	2.1 Requirements
	2.2 Windows
	Install
	Uninstall

	2.3 Unix*: Linux, FreeBSD, ...
	Install
	Uninstall

	2.4 Mac Os X

	3 Getting Started
	3.1 Startup
	Normal mode
	Windows
	Linux, FreeBSD, Mac Os X, ...

	Debugging mode
	Blender mode

	3.2 Syntax-checking
	3.3 Refreshing
	3.4 Running files
	Run (F9)
	Run with profile (Ctrl-P)
	Run in separate namespace (Ctrl-R):
	Run verbose (Alt-R)
	Import (F10)

	3.5 Separators
	3.6 Remember option
	3.7 Psyco
	3.8 Customize
	Keyboard shortcuts
	Menus and toolbar (deprecated)

	4 Features
	4.1 Sidebar
	4.2 Tools
	Shell
	Locals
	Session
	Find
	Browser
	Recent
	Todo
	Index
	Notes
	Blender
	Donate

	4.3 Editor
	4.4 Drag&Drop
	4.5 General
	4.6 Blender
	4.7 Windows

	5 Tutorial
	5.1 Introduction
	5.2 The comments
	5.3 Adding a separator and todo
	5.4 Browsing a class
	5.5 Run that py!
	5.6 Life is full of colors
	5.7 Browsing your files
	5.8 The end

	6 wxGlade GUI Designer
	6.1 Introduction
	First, what is wxPython?
	What is wxGlade?

	6.2 Design a layout
	6.3 Generate Python Code
	6.4 Event handling
	6.5 Now let's enhance this program a bit!

	7 XRCed GUI Designer
	7.1 Introduction
	First, what is XRC?
	What is XRCed?

	7.2 Design a layout
	7.3 Create your application

	8 Debugger
	8.1 Introduction
	SPE & Debugger
	Copyright Notice
	Reminder

	8.2 Requirements
	wxPython
	Python Cryptography Toolkit
	Firewalls
	Multiple Threading

	8.3 Launching and Attaching
	So, you have installed Winpdb, what now?
	Attaching to a Running Script

	8.4 GUI control:
	Setting a Password
	Attaching to a Script

	8.5 Embedded Debugging
	Interactive Passwords
	Embedded Timeout

	8.6 Multiple Threads
	Unique Little Beings
	Breaking Into the Debugger
	Threads of the thread module

	8.7 Smart Breakpoints
	Valid Line Breakpoints
	Persistent Breakpoints
	Sticky Breakpoints
	Console Commands:
	Examples

	GUI control:
	Toggle a Breakpoint
	Breakpoint Color

	8.8 Security
	Authenticated Communication
	Encrypted Communication
	Automatic Passwords
	Remote Connections Denial
	Command Line Flags:
	Examples

	Console Commands:
	GUI control:
	Set Password

	9 FAQ
	9.1 Install
	Encoding Error
	Ogl Missing

	9.2 Editor
	Find & Replace Dialog
	Opening Files
	Saving files

	10 Contact
	10.1 Contribute
	10.2 Feedback
	10.3 Contact persons

	11 Donations and sponsorship
	11.1 Donations
	Bank Transfer (Europe)
	PayPal (International)
	Google Adsense

	11.2 Sponsorship
	Sponsors
	Silver

	Packages
	Platinum: €2000/year
	Gold: €1000/year
	Silver: €500/year

	How to apply

	12 Keyboard shortcuts
	13 Credits

