CustomKernel.h

Go to the documentation of this file.
00001 /*
00002  * This program is free software; you can redistribute it and/or modify
00003  * it under the terms of the GNU General Public License as published by
00004  * the Free Software Foundation; either version 3 of the License, or
00005  * (at your option) any later version.
00006  *
00007  * Written (W) 1999-2008 Soeren Sonnenburg
00008  * Copyright (C) 1999-2008 Fraunhofer Institute FIRST and Max-Planck-Society
00009  */
00010 
00011 #ifndef _CUSTOMKERNEL_H___
00012 #define _CUSTOMKERNEL_H___
00013 
00014 #include "lib/Mathematics.h"
00015 #include "lib/common.h"
00016 #include "kernel/Kernel.h"
00017 #include "features/Features.h"
00018 
00028 class CCustomKernel: public CKernel
00029 {
00030     public:
00032         CCustomKernel();
00033 
00039         CCustomKernel(CKernel* k);
00040 
00041         virtual ~CCustomKernel();
00042 
00050         virtual float32_t* get_kernel_matrix_shortreal(
00051             int32_t &m, int32_t &n, float32_t* target=NULL);
00052 
00063         virtual bool dummy_init(int32_t rows, int32_t cols);
00064 
00071         virtual bool init(CFeatures* l, CFeatures* r);
00072 
00074         virtual void cleanup();
00075 
00081         virtual bool load_init(FILE* src);
00082 
00088         virtual bool save_init(FILE* dest);
00089 
00094         inline virtual EKernelType get_kernel_type() { return K_CUSTOM; }
00095 
00100         inline virtual EFeatureType get_feature_type() { return F_ANY; }
00101 
00106         inline virtual EFeatureClass get_feature_class() { return C_ANY; }
00107 
00112         virtual const char* get_name() { return "Custom"; }
00113 
00122         bool set_triangle_kernel_matrix_from_triangle(
00123             const float64_t* km, int32_t len);
00124 
00133         bool set_triangle_kernel_matrix_from_full(
00134             const float64_t* km, int32_t rows, int32_t cols);
00135 
00143         bool set_full_kernel_matrix_from_full(
00144             const float64_t* km, int32_t rows, int32_t cols);
00145 
00146     protected:
00153         inline virtual float64_t compute(int32_t row, int32_t col)
00154         {
00155             ASSERT(row<num_rows);
00156             ASSERT(col<num_cols);
00157             ASSERT(kmatrix);
00158 
00159             if (upper_diagonal)
00160             {
00161                 if (row <= col)
00162                     return kmatrix[row*num_cols - row*(row+1)/2 + col];
00163                 else
00164                     return kmatrix[col*num_cols - col*(col+1)/2 + row];
00165             }
00166             else
00167                 return kmatrix[row*num_cols+col];
00168         }
00169 
00170     private:
00172         void cleanup_custom();
00173 
00174     protected:
00176         float32_t* kmatrix;
00178         int32_t num_rows;
00180         int32_t num_cols;
00182         bool upper_diagonal;
00183 };
00184 #endif /* _CUSTOMKERNEL_H__ */

SHOGUN Machine Learning Toolbox - Documentation