LinearKernel.h

Go to the documentation of this file.
00001 /*
00002  * This program is free software; you can redistribute it and/or modify
00003  * it under the terms of the GNU General Public License as published by
00004  * the Free Software Foundation; either version 3 of the License, or
00005  * (at your option) any later version.
00006  *
00007  * Written (W) 1999-2008 Soeren Sonnenburg
00008  * Copyright (C) 1999-2008 Fraunhofer Institute FIRST and Max-Planck-Society
00009  */
00010 
00011 #ifndef _LINEARKERNEL_H___
00012 #define _LINEARKERNEL_H___
00013 
00014 #include "lib/common.h"
00015 #include "kernel/SimpleKernel.h"
00016 #include "features/RealFeatures.h"
00017 
00023 class CLinearKernel: public CSimpleKernel<float64_t>
00024 {
00025     public:
00028         CLinearKernel();
00029 
00035         CLinearKernel(CRealFeatures* l, CRealFeatures* r);
00036 
00037         virtual ~CLinearKernel();
00038 
00045         virtual bool init(CFeatures* l, CFeatures* r);
00046 
00048         virtual void cleanup();
00049 
00055         virtual bool load_init(FILE* src);
00056 
00062         virtual bool save_init(FILE* dest);
00063 
00068         virtual EKernelType get_kernel_type() { return K_LINEAR; }
00069 
00074         virtual const char* get_name() { return "Linear"; }
00075 
00084         virtual bool init_optimization(
00085             int32_t num_suppvec, int32_t* sv_idx, float64_t* alphas);
00086 
00091         virtual bool delete_optimization();
00092 
00098         virtual float64_t compute_optimized(int32_t idx);
00099 
00101         virtual void clear_normal();
00102 
00108         virtual void add_to_normal(int32_t idx, float64_t weight);
00109 
00115         inline const float64_t* get_normal(int32_t& len)
00116         {
00117             if (lhs && normal)
00118             {
00119                 len = ((CRealFeatures*) lhs)->get_num_features();
00120                 return normal;
00121             }
00122             else
00123             {
00124                 len = 0;
00125                 return NULL;
00126             }
00127         }
00128 
00134         inline void get_w(float64_t** dst_w, int32_t* dst_dims)
00135         {
00136             ASSERT(lhs && normal);
00137             int32_t len = ((CRealFeatures*) lhs)->get_num_features();
00138             ASSERT(dst_w && dst_dims);
00139             *dst_dims=len;
00140             *dst_w=(float64_t*) malloc(sizeof(float64_t)*(*dst_dims));
00141             ASSERT(*dst_w);
00142             memcpy(*dst_w, normal, sizeof(float64_t) * (*dst_dims));
00143         }
00144 
00150         inline void set_w(float64_t* src_w, int32_t src_w_dim)
00151         {
00152             ASSERT(lhs && src_w_dim==((CRealFeatures*) lhs)->get_num_features());
00153             clear_normal();
00154             memcpy(normal, src_w, sizeof(float64_t) * src_w_dim);
00155         }
00156 
00157     protected:
00166         virtual float64_t compute(int32_t idx_a, int32_t idx_b);
00167 
00168     protected:
00170         float64_t* normal;
00172         int32_t normal_length;
00173 };
00174 
00175 #endif /* _LINEARKERNEL_H__ */

SHOGUN Machine Learning Toolbox - Documentation