
Numerix

Big integer library

Michel Quercia
michel.quercia@prepas.org

version 0.21, March 18, 2005

Contents

1 Presentation 2

2 Use with Ocaml 4
2.1 Interface . 4
2.2 The Int type signature . 13
2.3 The functors using the Int type signature 19
2.4 Use . 24

3 Use with Camllight 27
3.1 Interface . 27
3.2 Use . 28

4 Use with C 31
4.1 Interface . 31
4.2 Use . 38

5 Use with Pascal 40
5.1 Interface . 40
5.2 Use . 45

6 Installation 47
6.1 Downloading . 47
6.2 Configuration . 48
6.3 Compilation . 52
6.4 Description of the examples . 53

1

Chapter 1

Presentation

Numerix is a library implementing arbitrary long signed integers and the usual
arithmetic operations between those numbers. Designed for a use with the Ob-
jective-Caml language, it is also available with reduced functionalities for the
Camllight, C and Pascal languages on 32 or 64 bit Unix-type computers. It is
shipped in three different versions:

Clong:

written in standard C. The basic object is a “digit”, the length of which
is half of a machine word. So, elementary operations giving a two digit
result are implemented with ordinary C operations on long variables, and
this library should be portable to every computer with a binary arithmetic
and words of even bit-length not fewer than 32 bits.

Dlong:

also written in C, but a digit is a whole machine word. Operations between
digits are handled with the long long datatype (a gcc feature) which for
now restricts this library to 32 bit computers (on the 64 bit computers
at the Inria, a long long is of the same size as a long and there are no
double-precision operations).

Slong :

written partly in assembly language for Intel x86 processors and partly
in C, a digit is a 32 bit word. Two different implementations of the
Slong module are available : one using the standard arithmetic operations
available on every processor belonging to the x86 family, and one using
the SSE2 instruction set available on recent Pentium processors, starting
at Pentium-4.

Concerning the speed, Numerix compares well to the other multi-precision
libraries commonly available, especially Big int (the adaptation of BigNum for
Camllight/Ocaml) and GMP. Below are the computing times for the n first deci-
mal digits of π on a Linux PC with a Pentium-4-2.8Ghz processor and a 512Mb
random access memory:

2

Slong Slong Dlong Clong GMP Big int
n SSE2 x86 4.1.4

104 0.01s 0.01s 0.04s 0.06s 0.01s 0.30s
Numerix-0.21 105 0.23s 0.46s 0.99s 1.25s 0.47s 29.75s

106 4.24s 9.23s 18.91s 24.31s 11.33s 2830s
104 0.03s 0.08s 0.08s

Numerix-0.19 105 0.80s 1.92s 2.09s
106 16.24s 42.32s 47.91s

The same algorithm is used in the five cases, derived from a series expansion
from Ramanujan, and only the big integer implementation differs. The Slong,
Clong, Dlong and GMP libraries were used with a main program in C, whereas
Big int was with a main program in Ocaml. However, the influence of the main
language on the running time is negligible for this kind of program for which
the main part of the computing time is spent with the operations on several-
million-bit-long numbers; the running times are similar when all the libraries
are used with an Ocaml main program.

The table above also shows the computing times for the same program on
the same computer with the previous Numerix version, released in 2002. For the
new version the C kernel code was entirely rewritten with more sophisticated
algorithms especially for the multiplication and the division of very big integers,
resulting in a speedup by a factor of 2 for such numbers. Also, the use of
the SSE2 instruction set for the Slong module results in another speedup by a
factor of 2 when compared to the standard arithmetic instruction set of Pentium
processors. Therefore, the fastest version of Numerix-0.21 is 4 times faster than
the fastest version of Numerix-0.19 for this test.

3

Chapter 2

Use with Ocaml

Contents

2.1 Interface . 4

2.2 The Int type signature 13

2.2.1 Integers and references 13

2.2.2 Various versions of an operation 13

2.2.3 Rounding mode . 14

2.2.4 Arithmetic operations 14

2.2.5 Comparisons . 15

2.2.6 Conversions . 16

2.2.7 Pseudo-random numbers 16

2.2.8 Access to the binary representation 17

2.2.9 Hashing, serialization and de-serialization 18

2.2.10 Errors . 18

2.3 The functors using the Int type signature 19

2.3.1 Infix symbols . 19

2.3.2 Comparison between two modules 19

2.3.3 Statistics . 19

2.3.4 Approximation of the usual functions 20

2.3.5 Run-time selection of a module 23

2.3.6 Timing . 24

2.4 Use . 24

2.4.1 Compilation . 24

2.4.2 Example . 24

2.4.3 Toplevel . 25

2.1 Interface

Numerix-0.21 was developed with Ocaml-3.08. A few tests with Ocaml-3.06,
Ocaml-3.07 and Ocaml-3.09-dev have not shown any problem. Thus, Numerix
is likely to run with any version of Ocaml between 3.06 and 3.09 inclusive. The
Numerix module contains:

4

• an abstract description (Int type signature) common to all available big
integer implementations;

• the concrete descriptions of the Clong, Dlong, Slong, GMP and Big sub-
modules compatible with the Int type signature;

• an Infixes functor allowing one to use the most common operations on
big integers with the infix notation;

• a Cmp functor returning an implementation compatible with the Int type
signature from two such implementations A and B, and enabling one to
check that a same computation yields identical results with A and with B;

• a Count functor returning a new implementation compatible with the
Int type signature from such an implementation A, and providing statis-
tics on the number of operations done on big integers as well as on the
average and maximum operand sizes;

• a Rfuns functor implementing approximation algorithms for the usual
mathematical real-valued functions;

• a Start functor enabling one to choose at run time through the use of a
command line option which big integer implementation to use;

• a timing function.

Below is the public interface from the numerix.mli file:

(* +-------------------------+

| Abstract description |

+-------------------------+ *)

(* rounding mode *)
type round_mode = Floor | Nearest_up | Ceil | Nearest_down

module type Int_type = sig

type t (* integer *)
type tref (* mutable integer *)
val name : unit -> string (* module name *)
val zero : t (* the number 0 *)
val one : t (* the number 1 *)

(* reference --- *)
(* mode r s a b c res *)
val make_ref : t -> tref
val copy_in : tref -> t -> unit

5

val copy_out : tref -> t
val look : tref -> t

(* addition --- *)
(* mode r s a b c res *)
val add : t -> t -> t
val add_1 : t -> int -> t
val add_in : tref -> t -> t -> unit
val add_1_in : tref -> t -> int -> unit

(* subtraction -- *)
(* mode r s a b c res *)
val sub : t -> t -> t
val sub_1 : t -> int -> t
val sub_in : tref -> t -> t -> unit
val sub_1_in : tref -> t -> int -> unit

(* multiplication --- *)
(* mode r s a b c res *)
val mul : t -> t -> t
val mul_1 : t -> int -> t
val mul_in : tref -> t -> t -> unit
val mul_1_in : tref -> t -> int -> unit

(* division --- *)
(* mode r s a b c res *)
val quomod : t -> t -> t*t
val quo : t -> t -> t
val modulo : t -> t -> t
val gquomod : round_mode -> t -> t -> t*t
val gquo : round_mode -> t -> t -> t
val gmod : round_mode -> t -> t -> t

val quomod_in : tref -> tref -> t -> t -> unit
val quo_in : tref -> t -> t -> unit
val mod_in : tref -> t -> t -> unit
val gquomod_in : round_mode -> tref -> tref -> t -> t -> unit
val gquo_in : round_mode -> tref -> t -> t -> unit
val gmod_in : round_mode -> tref -> t -> t -> unit

val quomod_1 : t -> int -> t*int
val quo_1 : t -> int -> t
val mod_1 : t -> int -> int
val gquomod_1 : round_mode -> t -> int -> t*int
val gquo_1 : round_mode -> t -> int -> t
val gmod_1 : round_mode -> t -> int -> int

val quomod_1_in : tref -> t -> int -> int
val quo_1_in : tref -> t -> int -> unit
val gquomod_1_in: round_mode -> tref -> t -> int -> int

6

val gquo_1_in : round_mode -> tref -> t -> int -> unit

(* absolute value --- *)
(* mode r s a b c res *)
val abs : t -> t
val abs_in : tref -> t -> unit

(* opposite --- *)
(* mode r s a b c res *)
val neg : t -> t
val neg_in : tref -> t -> unit

(* p-th power --- *)
(* mode r s a b c res *)
val sqr : t -> t
val pow : t -> int -> t
val pow_1 : int -> int -> t
val powmod : t -> t -> t -> t
val gpowmod : round_mode -> t -> t -> t -> t
val sqr_in : tref -> t -> unit
val pow_in : tref -> t -> int -> unit
val pow_1_in : tref -> int -> int -> unit
val powmod_in : tref -> t -> t -> t -> unit
val gpowmod_in : round_mode -> tref -> t -> t -> t -> unit

(* p-th root --- *)
(* mode r s a b c res *)
val sqrt : t -> t
val root : t -> int -> t
val gsqrt : round_mode -> t -> t
val groot : round_mode -> t -> int -> t
val sqrt_in : tref -> t -> unit
val root_in : tref -> t -> int -> unit
val gsqrt_in : round_mode -> tref -> t -> unit
val groot_in : round_mode -> tref -> t -> int -> unit

(* factorial --- *)
(* mode r s a b c res *)
val fact : int -> t
val fact_in : tref -> int -> unit

(* gcd --- *)
(* d u v p q a b c res *)
val gcd : t -> t -> t
val gcd_ex : t -> t -> t*t*t
val cfrac : t -> t -> t*t*t*t*t
val gcd_in : tref-> t -> t -> unit
val gcd_ex_in : tref->tref->tref-> t -> t -> unit
val cfrac_in : tref->tref->tref->tref->tref->t -> t -> unit

7

(* comparison --- *)
(* mode r s a b c res *)
val sgn : t -> int
val cmp : t -> t -> int
val cmp_1 : t -> int -> int
val eq : t -> t -> bool
val eq_1 : t -> int -> bool
val neq : t -> t -> bool
val neq_1 : t -> int -> bool
val inf : t -> t -> bool
val inf_1 : t -> int -> bool
val infeq : t -> t -> bool
val infeq_1 : t -> int -> bool
val sup : t -> t -> bool
val sup_1 : t -> int -> bool
val supeq : t -> t -> bool
val supeq_1 : t -> int -> bool

(* conversion --- *)
(* mode r s a b c res *)
val of_int : int -> t
val of_string : string -> t
val of_int_in : tref -> int -> unit
val of_string_in: tref -> string -> unit
val int_of : t -> int
val string_of : t -> string
val bstring_of : t -> string
val hstring_of : t -> string
val ostring_of : t -> string

(* random number --- *)
(* mode r s a b c res *)
val nrandom : int-> t
val zrandom : int-> t
val nrandom1 : int-> t
val zrandom1 : int-> t
val nrandom_in : tref -> int-> unit
val zrandom_in : tref -> int-> unit
val nrandom1_in : tref -> int-> unit
val zrandom1_in : tref -> int-> unit
val random_init : int-> unit

(* binary representation --- *)
(* mode r s a b c res *)
val nbits : t -> int
val lowbits : t -> int
val highbits : t -> int
val nth_word : t -> int -> int
val nth_bit : t -> int -> bool

8

(* shift --- *)
(* mode r s a b c res *)
val shl : t -> int -> t
val shr : t -> int -> t
val split : t -> int -> t*t
val join : t -> t -> int -> t
val shl_in : tref -> t -> int -> unit
val shr_in : tref -> t -> int -> unit
val split_in : tref -> tref -> t -> int -> unit
val join_in : tref -> t -> t -> int -> unit

(* display --- *)
(* mode r s a b c res *)
val toplevel_print : t -> unit
val toplevel_print_tref: tref -> unit

(* exceptions *)
exception Error of string

end (* module type Int_type *)

(* +-------------------+

| Infix notation |

+-------------------+ *)

module Infixes(E : Int_type) : sig
open E

val (++) : t -> t -> t (* add *)
val (--) : t -> t -> t (* sub *)
val (**) : t -> t -> t (* mul *)
val (//) : t -> t -> t (* div *)
val (%%) : t -> t -> t (* modulo *)
val (/%) : t -> t -> t*t (* quomod *)
val (<<) : t -> int -> t (* shl *)
val (>>) : t -> int -> t (* shr *)
val (^^) : t -> int -> t (* pow *)

val (+=) : tref -> t -> unit (* add_in *)
val (-=) : tref -> t -> unit (* sub_in *)
val (*=) : tref -> t -> unit (* mul_in *)
val (/=) : tref -> t -> unit (* quo_in *)
val (%=) : tref -> t -> unit (* mod_in *)

val (+.) : t -> int -> t (* add_1 *)
val (-.) : t -> int -> t (* sub_1 *)
val (*.) : t -> int -> t (* mul_1 *)
val (/.) : t -> int -> t (* quo_1 *)
val (%.) : t -> int -> int (* mod_1 *)
val (/%.) : t -> int -> t*int (* quomod_1 *)

9

val (^.) : int -> int -> t (* pow_1 *)

val (+=.) : tref -> int -> unit (* add_1_in *)
val (-=.) : tref -> int -> unit (* sub_1_in *)
val (*=.) : tref -> int -> unit (* mul_1_in *)
val (/=.) : tref -> int -> unit (* quo_1_in *)

val (=.) : t -> int -> bool (* eq_1 *)
val (<>.) : t -> int -> bool (* neq_1 *)
val (<.) : t -> int -> bool (* inf_1 *)
val (<=.) : t -> int -> bool (* infeq_1 *)
val (>.) : t -> int -> bool (* sup_1 *)
val (>=.) : t -> int -> bool (* supeq_1 *)

val (~~) : tref -> t (* look *)

end (* Infixes functor *)

(* +-----------------------+

| Available modules |

+-----------------------+ *)

(* All the following modules implement the Int_type signature.

A module may be missing on a particular computer when the hardware

or software available does not permit the compilation of this module.

*)

module Big : Int_type
module Clong : sig ... end (* concrete descriptions *)
module Dlong : sig ... end (* conforming to the *)
module Slong : sig ... end (* Int_type signature *)
module Gmp : sig ... end

(* comparison between two modules *)
module Cmp(A:Int_type)(B:Int_type) : Int_type

(* statistics *)
module Count(A:Int_type) : sig

type statelt = {
mutable n:float; (* number of calls *)
mutable s:float; (* sum of sizes *)
mutable m:int (* maximal size *)

}

val cadd : statelt (* add sub *)
val cmul : statelt (* mul sqr *)
val cquo : statelt (* quo modulo quomod *)
val cpow : statelt (* pow powmod fact *)
val croot : statelt (* sqrt root *)

10

val cgcd : statelt (* gcd gcd_ex cfrac *)
val cbin : statelt (* shr shl split join *)

(* nbits lowbits highbits nth_bit *)
(* nth_word random *)

val cmisc : statelt (* abs neg make_ref copy_in *)
(* copy_out comparisons conversions *)

val clear_stats : unit -> unit (* reset counters *)
val print_stats : unit -> unit (* print counters *)

include Int_type

end (* Count functor *)

(* +--+

| Approximation of the usual real-valued functions |

+--+ *)

module Rfuns(E:Int_type) : sig

exception Error of string

(* [f a b n] returns x such that |2^n*f(a/b) - x| < 1 *)
val arccos : E.t -> E.t -> int -> E.t
val arccosh : E.t -> E.t -> int -> E.t
val arccot : E.t -> E.t -> int -> E.t
val arccoth : E.t -> E.t -> int -> E.t
val arcsin : E.t -> E.t -> int -> E.t
val arcsinh : E.t -> E.t -> int -> E.t
val arctan : E.t -> E.t -> int -> E.t
val arctanh : E.t -> E.t -> int -> E.t
val arg : E.t -> E.t -> int -> E.t
val cos : E.t -> E.t -> int -> E.t
val cosh : E.t -> E.t -> int -> E.t
val cosin : E.t -> E.t -> int -> E.t*E.t
val cosinh : E.t -> E.t -> int -> E.t*E.t
val cot : E.t -> E.t -> int -> E.t
val coth : E.t -> E.t -> int -> E.t
val exp : E.t -> E.t -> int -> E.t
val ln : E.t -> E.t -> int -> E.t
val sin : E.t -> E.t -> int -> E.t
val sinh : E.t -> E.t -> int -> E.t
val tan : E.t -> E.t -> int -> E.t
val tanh : E.t -> E.t -> int -> E.t

(* [r_f r a b c] returns the integer approximating c*f(a/b) according

to round mode r *)
val r_arccos : round_mode -> E.t -> E.t -> E.t -> E.t
val r_arccosh : round_mode -> E.t -> E.t -> E.t -> E.t
val r_arccot : round_mode -> E.t -> E.t -> E.t -> E.t

11

val r_arccoth : round_mode -> E.t -> E.t -> E.t -> E.t
val r_arcsin : round_mode -> E.t -> E.t -> E.t -> E.t
val r_arcsinh : round_mode -> E.t -> E.t -> E.t -> E.t
val r_arctan : round_mode -> E.t -> E.t -> E.t -> E.t
val r_arctanh : round_mode -> E.t -> E.t -> E.t -> E.t
val r_arg : round_mode -> E.t -> E.t -> E.t -> E.t
val r_cos : round_mode -> E.t -> E.t -> E.t -> E.t
val r_cosh : round_mode -> E.t -> E.t -> E.t -> E.t
val r_cosin : round_mode -> E.t -> E.t -> E.t -> E.t*E.t
val r_cosinh : round_mode -> E.t -> E.t -> E.t -> E.t*E.t
val r_cot : round_mode -> E.t -> E.t -> E.t -> E.t
val r_coth : round_mode -> E.t -> E.t -> E.t -> E.t
val r_exp : round_mode -> E.t -> E.t -> E.t -> E.t
val r_ln : round_mode -> E.t -> E.t -> E.t -> E.t
val r_sin : round_mode -> E.t -> E.t -> E.t -> E.t
val r_sinh : round_mode -> E.t -> E.t -> E.t -> E.t
val r_tan : round_mode -> E.t -> E.t -> E.t -> E.t
val r_tanh : round_mode -> E.t -> E.t -> E.t -> E.t

(* creation of a r_function *)
val round : (int -> E.t) -> round_mode -> E.t -> E.t

(* cache management *)
val cache_bits : unit -> int
val clear_cache : unit -> unit

end (* Rfuns functor *)

(* +----------------------+

| Run-time selection |

+----------------------+ *)

module type Main_type = sig
val main : string list -> unit

end

module Start(Main : functor(E:Int_type) -> Main_type) : sig
val start : unit -> unit

end

(* +----------+

| Timing |

+----------+ *)

external chrono : string -> unit = "chrono"

12

2.2 The Int type signature

2.2.1 Integers and references

An implementation compatible with the Int type signature provides two data-
types:

• The t datatype represents a signed integer. The bit length of such an
integer is limited only by the amount of available memory, and in the case
of the Clong, Dlong, Slong and Big modules, by the maximal size of an
Ocaml data (227 bits on a 32 bit computer, 260 bits on a 64 bit computer).

• The tref datatype represents a mutable and extensible memory block
containing a value of type t. This memory block is enlarged on a double
the size policy when its current capacity is too short for the data to be
stored into. A tref memory block in never shrunk.

One creates a reference of type tref with the make ref function which makes
a physical copy of its argument and returns the pointer to the memory block
allocated to the copy. One stores a new integer into a reference of type tref
with the xxx in functions which do the computation designated by xxx and
store the result into the tref argument given to xxx in. When a xxx function
computes several results of type t, the xxx in associated function receives as
additional arguments as many references as there are results to be stored; these
arguments must designate distinct memory blocks.

On can retrieve the integer of type t stored into a reference of type tref
with the copy out and look functions:

• copy out makes a physical copy of the integer to be retrieved and returns
a pointer to this copy. Any subsequent action on the reference is without
any effect on the copy returned.

• look makes no copy and returns a pointer to the memory block associated
with the reference. The integer returned by look r is volatile, that is
to say that its value may change when a new integer is stored into the
r reference (the value may also not change if the store results in the
reallocation of the memory block).

The user is advised to use look only in intermediate computations when he
wants to avoid a copy for performance reasons. Read-modify-write operations,
for instance xxx in r (look r) z, are handled correctly.

2.2.2 Various versions of an operation

As a general rule an operation between big integers is available in four versions:

• xxx : t -> t -> t : computes a result of type t from two operands of
type t.

13

• xxx 1 : t -> int -> t : computes a result of type t from an operand
of type t and an operand of type int. xxx 1 a b is formally equivalent
to xxx 1 a (of int b), but is in general implemented more efficiently, so
as to avoid the intermediate result allocation overhead and to reduce the
Ocaml garbage collector work.

• xxx in : tref -> t -> t -> unit : computes a result of type t from
two operands of type t, and stores this result into the memory block des-
ignated by the reference of type tref. xxx in r a b if formally equivalent
to copy in r (xxx a b), but in general the result is computed directly into
the memory block designated by r, so as to avoid the result allocation and
the copy overhead, and to reduce the Ocaml garbage collector work.

• xxx 1 in : tref -> t -> int -> unit : computes a result of type t
from two operands of type t and int, and stores this result into the
memory block designated by the operand of type tref. xxx 1 in r a b
is formally equivalent to copy in r (xxx a (of int b)), with the same
overhead reductions as xxx 1 and xxx in.

2.2.3 Rounding mode

Operations returning an integer approximation of a real number a (division,
square and p-th root) are available in five versions:

xxx args computes bac
gxxx Floor args computes bac
gxxx Ceil args computes dae
gxxx Nearest up args computes ba + 1/2c
gxxx Nearest down args computes da− 1/2e

Note that the Nearest up and Nearest down rounding modes return differ-
ent results only when a = k + 1

2 for some integer k: Nearest up returns k + 1
whereas Nearest down returns k.

2.2.4 Arithmetic operations

The table below shows the mathematical descriptions of the arithmetic opera-
tions implemented in a module compatible with the Int type signature. The
letters a, b, c denote values of type t or int, the letter n denotes an operand of
type int. When a xxx operation returns several results, the xxx in associated
operation stores the results into the references received as additional arguments
with the same ordering.

14

operation arguments results
add a b a + b
sub a b a− b
mul a b ab
quomod a b (ba/bc, a− ba/bcb)
quo a b ba/bc
modulo a b a− ba/bcb
abs a |a|
neg a −a
sqr a a2

pow a n an

powmod a b c ab − bab/ccc
sqrt a b

√
ac

root a n b n
√

ac
fact n n!
gcd a b d
gcd ex a b (d, u, v)
cfrac a b (d, u, v, p, q)

cfrac a b returns a (d, u, v, p, q) tuple such that d is the non negative gcd of a
and b, ua− vb = d, pu− qv = 1, pa = qb is the lcm of a and b with the sign of
ab. These conditions are sufficient for ensuring the uniqueness of p, q, d when a
or b is non null, but the u and v coefficients are not unique and may differ for
each of the Int type signature implementations. gcd ex a b returns the (d, u, v)
tuple, gcd a b returns d. Note that the result ordering has been reversed with
respect to Numerix-0.19, for compatibility with the C and Pascal interfaces.

2.2.5 Comparisons

sgn a returns 1 if a > 0, 0 if a = 0 and −1 if a < 0. cmp a b is formally
equivalent to sgn(a − b), but the subtraction is not really done: a and b are
compared bit for bit starting with the most significant ones until the sign of the
difference can be determined.

The boolean valued comparison operations are available with the names
shown in the Int type signature. The Clong, Dlong, Slong and GMP modules
also enable one to compare two values of type t with the polymorphic infix
comparison symbols of Ocaml:

eq = inf < sup >
neq <> infeq <= supeq >=

The Big module does not provide polymorphic comparison operations, there-
fore one can use only the eq, . . . , supeq prefix names with this module. Note
that the optional patch included in Numerix-0.19 to implement polymorphic
comparisons for the Big module has been removed in Numerix-0.21. This patch
was returning wrong results when comparing two negative integers and there is
no possibility to work around this problem with the current implementation of
Big int.

15

2.2.6 Conversions

of int converts a value of type int into the corresponding value of type t.
int of makes the inverse conversion when the integer to be converted has an
absolute value not greater than 230, otherwise an exception is raised. Note that
the limit 230 is independent of the machine word size.

of string s returns the integer of type t represented by the s string with
respect to the following syntax:

• An optional leading + or - sign.

• A 0x, 0X, 0o, 0O, 0b or 0B prefix after the optional sign, specifying base
16, 8 or 2. Base 10 is used when there is no such prefix.

• A non empty digit sequence, valid for the base specified, with no space
and no underscore. When base 16 is used the letters a,b,c,d,e,f and
A,B,C,D,E,F are accepted.

The conversion of a value of type t into a string is done with one of the follow-
ing functions: string of (base 10), hstring of (base 16), ostring of (base
8), bstring of (base 2). The returned string is compatible with the syntax of
of string. This enables one to convert a value a of type A.t into the corre-
sponding value b of type B.t, A and B denoting two implementations compatible
with the Int type signature, with the instruction:

let b = B.of string(A.hstring of a)

The programmer is advised to use base 16 conversion for this purpose, because
it is the conversion that returns the shortest string and its complexity is linear
in the bit size of a. Note that this method of conversion does not work when the
hexadecimal representation of a exceeds the maximal size of an Ocaml string
(that is to say |a| ≥ 16224−4 on a 32 bit computer and |a| ≥ 16257−4 on a 64 bit
computer). In such a case, A.hstring of a returns the "<very long number>"
string and this string will be rejected by B.of string.

The toplevel print and toplevel print tref functions convert a value
of type t or tref into its decimal string representation and display the string
with the Format module printing functions. When the string to be displayed
has more than 1000 characters, only the first 200 ones are displayed followed by
the number of characters removed and followed by the 200 last characters.

2.2.7 Pseudo-random numbers

The nrandom, nrandom1, zrandom and zrandom1 functions return n bit pseudo-
random integers where n is a non negative argument. The result returned by
nrandom and nrandom1 is non negative and not greater than 2n− 1. The result
returned by zrandom and zrandom1 is not smaller than −2n +1 and not greater
than 2n − 1. The result returned by nrandom1 and zrandom1 has its n-th bit
set, that is to say that its absolute value is not smaller than 2n−1. Note that

16

the random bits function from Numerix-0.19 has been replaced by nrandom in
Numerix-0.21.

The pseudo-random generator used depends on the module and the com-
puter. Therefore the results obtained by a program using these functions
is not reproducible from one (module,computer) pair to another one. The
random init function enables one to initialize the pseudo-random generator
of the module and the one of Ocaml from a seed of type int. When this seed is
null, it is replaced by the date, expressed in seconds, at which the random init
function is called. The sequence obtained from a non null seed is reproducible for
a given (module,computer) pair. One only has to reinitialize the pseudo-random
generator with the same seed.

2.2.8 Access to the binary representation

If a and b denote values of type t then:

• nbits a returns the number of bits of |a|, that is to say 0 when a = 0 and
dlog2 |a|e when a 6= 0.

• lowbits a returns the 31 least significant bits of |a|, that is to say |a| mod
231.

• highbits a returns the 31 most significant bits of |a|, that is to say
b|a|/231−nbits(a)c. Note that when a 6= 0 the number returned is con-
sidered as a negative number by Ocaml on a 32 bit computer.

• nth word a returns the number formed from the bits of |a| with rank
between 16n and 16n + 15, that is to say b|a|/216nc mod 216. If n < 0 or
n > nbits(a)/16, the result is null.

• nth bit a returns the n-th bit of |a|, that is to say true if b|a|/2nc is an
odd number, and false otherwise. If n < 0 or n > nbits(a), the result
is false.

• shl a n returns the number having same sign as a and formed by left
shifting |a| by n bits when n ≥ 0 or right shifting |a| by −n bits when
n < 0, that is to say sgn(a)b2n|a|c in both cases.

• shr a n returns the number having same sign as a and formed by right
shifting |a| by n bits when n ≥ 0 or left shifting |a| by −n bits when n < 0,
that is to say sgn(a)b|a|/2nc in both cases.

• split a n returns the (q, r) pair such that |q| = b|a|/2nc, |r| = |a| mod 2n,
qa ≥ 0 and ra ≥ 0. n must be a non negative integer.

• join a b n returns the number a + 2nb, n must be non negative.

17

2.2.9 Hashing, serialization and de-serialization

The Clong, Dlong, Slong and GMP modules come with interfaces with the generic
hashing function of Ocaml. The hash key of a big integer from one of these
modules is computed from the internal representation of the number, therefore
it may depend on the module used. The Big int module comes with a minimal
interface with the generic hashing function: only the sign of a number is taken
into account when computing the hash key. Therefore, big integers from these
five modules can be stored into hash tables using the Hashtbl.hash function.
Note that the collision ratio will be high when the Big module is used.

Concerning serialization and de-serialization, all the five modules come with
interfaces with the serialization and de-serialization functions of Ocaml. There-
fore the big integers from these modules can be exported or imported with the
output value and input value functions and can be converted into and from
byte sequences with the functions of the Marshal module. Note that the typ-
ing must be preserved between the exportation or the conversion into a byte
sequence and the importation or the conversion from a byte sequence. In other
words, it is impossible to convert a big integer from one module into a big integer
from another module with these functions.

2.2.10 Errors

The Clong, Dlong, Slong and GMP modules check the validity of the arguments
of their functions and raise in case of an invalid argument one of the following
Error msg exceptions:

msg reason
integer overflow int of a with |a| ≥ 230

invalid string of string with an invalid string
multiple result xxx in with several identical references
negative base fact n with n < 0,

sqrt a with a < 0,
root a n with a < 0 and n even

negative exponent pow and powmod when the exponent is negative
root when the exponent is not positive

negative index split, join with n < 0
negative size xrandom, xrandom1 with n < 0
number too big the result is too big to be stored in an Ocaml value
division by zero quoxxx, modxxx, powmod when the divisor is null

Concerning the Big module, an invalid argument may raise an exception at
the Numerix interface layer, or from within the Ocaml Big int module. In the
first case, the exception raised is the appropriate one according to the table
above; in the last case, the exception raised is a Big int specific one not listed
in the table above.

The C Numerix kernel which implements the Clong, Dlong and Slong mod-
ules may raise one of the following uncatchable exceptions:

18

"Numerix kernel: out of memory": a computation cannot be finished be-
cause there is not enough available memory.

"Numerix kernel: number too big": a computation cannot be finished
because it needs a too big intermediate result.

"Numerix kernel: xxx": The C code detected an internal Numerix bug.
This should not happen in the user version of Numerix because the internal bug
checks are deactivated by default. If you encounter such an error, please let me
know.

2.3 The functors using the Int type signature

2.3.1 Infix symbols

The Infixes functor receives as argument a module compatible with the Int
type signature and defines infix equivalents for the most common operations
of this module. The infix operations between a reference of type tref and a
value of type t or int follow the C syntax. For instance r -= a should be read
as sub in r (look r) a. Note that the Infixes functor from Numerix-0.21
is incompatible with the one from Numerix-0.19: the later was overloading the
usual operations between values of type int, resulting in an uneasy use of this
functor.

2.3.2 Comparison between two modules

The Cmp functor receives as arguments two modules A and B compatible with
the Int type signature and returns a C module compatible with this signature.
In C each operation op is done with a call to A.op and B.op followed by a
semantical comparison of the results. When a comparison fails, that is to say
when A.op and B.op return semantically different results while their arguments
are supposed semantically identical, an exception is raised showing in a textual
form the function called and the arguments and results from both modules.
This functor was used to debug the modules being developed by comparing
them with a reliable module. The use of this functor in other situations is not
recommended because doing twice the computations and comparing the results
takes a lot of time. Concerning the gcd ex, gcd ex in, cfrac and cfrac in
operations, the Bézout coefficients are not compared, those returned by A are
converted into values of type B.t to build results of type C.t. Also, the pseudo-
random generator of C is built from the one of A only.

2.3.3 Statistics

The Count functor receives as argument a module A compatible with the Int
type signature and returns a module B compatible with this signature in which
each operation op is done with a call to A.op and with an update of a counter
depending on the operation. The purpose of this functor is to provide statistics
on the number of big integer operations done in a program. These operations
are merged into eight categories, each category being associated with a different
counter:

19

cadd counts additions and subtractions;
cmul counts multiplications and squares;
cquo counts divisions;
cpow counts exponentiations and factorials;
croot counts square roots and p-th roots;
cgcd counts greatest common divisor and associated operations;
cbin counts operations on the binary representations;
cmisc counts all other operations except look, random init,

toplevel print and toplevel print tref.

Each cxxx counter has three fields:

cxxx.n number of calls to one of the functions associated with cxxx;
cxxx.s sum of the bit sizes of the arguments for all calls;
cxxx.m maximum of the bit sizes of the arguments for all calls.

For each call to a function of B, field n of the associated counter is increased
by one, field s is increased by the average bit size of big integer operands and
field m is updated so as to hold the maximum bit size of an operand for any
function associated with this counter. Operands of type tref, int or string
are not taken into account in size computations.

One can read the values of the counters and modify them at will, so as
to determine how many operations of each category have been done since the
last reset. The clear stats function resets all counters and the print stats
function displays the statistics relative to each counter (number of calls, average
operand bit size, maximum operand bit size).

2.3.4 Approximation of the usual functions

The Rfuns functor receives as argument a module E compatible with the Int
type signature and returns a module implementing approximation algorithms
for the usual mathematical functions:

arccos arccosh arccot arccoth arcsin arcsinh
arctan arctanh cos cosh cot coth
exp ln sin sinh tan tanh

Appart from arccot, the mathematical definitions of all the functions above
are supposed to be well known and without ambiguity. The arccot function
implemented in Numerix is mathematically defined by:

(arccot x = θ) ⇐⇒ (cot θ = x and 0 < θ < π).

Most mathematical software use another definition with −π/2 < θ < π/2,
but this results in an artificial discontinuity at 0 and I do consider my own
definition as better.

f denoting one of the functions above, two interfaces to the approximating
algorithm of f are available:

f : E.t -> E.t -> int -> E.t
r_f : round_mode -> E.t -> E.t -> E.t -> E.t

20

f a b n returns an integer x such that x− 1 < 2nf(a/b) < x + 1, that is to
say one of the two numbers x1 = b2nf(a/b)c and x2 = d2nf(a/b)e. Negative
values for n are accepted. The integers a and b may not be both null, and a/b
must belong to the domain of f . The quotient a/0 is considered as being equal
to +∞ or −∞ depending on the sign of a, it is accepted when f has a finite
limit at this point. When x1 6= x2, one cannot tell which of x1 or x2 will be
returned: this depends on a and b as well as on the state of the cache used by
the algorithm approximating f .

r f Floor a b c returns bcf(a/b)c,
r f Ceil a b c returns dcf(a/b)e,
r f Nearest up a b c returns bcf(a/b) + 1/2c,
r f Nearest down a b c returns dcf(a/b)− 1/2e.

The a and b arguments must obey the same rules as for f. The value to be
returned is defined in a unique way, therefore it does not depend on the state
of the cache used by the algorithm approximating f . Note that the Nearest up
and Nearest down rounding modes are equivalent with the functions f available
because cf(a/b) cannot be equal to k+ 1

2 for some integer k with these functions.

From a performance viewpoint, one is advised to use the first interface (func-
tion f), because apart from the cot and tan functions, the computation of f
a b n has complexity O(M(k) ln k) where M(k) denotes the complexity of a
multiplication of two integers the product of which fits into k bits, and

k = max(nbits(a), nbits(b), nbits(b2nf(a/b)c)),

whereas the computation of r f r a b c has an unbounded complexity (the
algorithm implementing r f consists in computing f a b n with increasing values
for n until having a result suitable for determining the correct rounding of
cf(a/b)). The complexities of cot and tan are unbounded for the same reason:
one may have to compute arbitrary precise values of cos(a/b) and sin(a/b) when
a/b is close to a multiple of π/2.

The following functions are also available with both interfaces:

arg: (arg(x, y) = θ) ⇐⇒ (x + iy = eiθ
√

x2 + y2 and −π < θ ≤ π).
cosin: cosinx = (cos x, sinx),
cosinh: cosinhx = (coshx, sinhx),

Formally, cosin a b n returns the (cos a b n, sin a b n) pair, and one is
advised to use the cosin function rather that to call cos and sin separately
when one wants approximations for the cosine and the sine of a same angle.
Similar advices hold for the r cosin, cosinh and r cosinh functions.

Concerning the arg and r arg functions, their use is to be preferred to the
use of arccos, arcsin, r arccos and r arcsin because these four functions
are actually implemented with a call to arg or r arg after the computation of a
potentially expensive square root. The arctan, r arctan, arccot and r arccot
functions also call arg or r arg, but they don’t make any preliminary expensive
computation, therefore their use is not inefficient.

21

The iterative precision increase mechanism implemented into the r xxx func-
tions is available for the user with the round function: let t be an irrational real
number and f : int -> E.t a function approximating t such that for all inte-
ger n, f n returns an integer x such that x−1 < 2nt < x+1. Then round f re-
turns a function r f : round mode -> E.t -> E.t such that r f r c returns
the integer approximating ct with respect to the rounding mode r. Note that
the computation of r f r c cannot loop, even when t is rational. In the worst
case, the computation will end with an error because of insufficient memory or
because of a number too big to be computed.

The approximating algorithms implemented in the Rfuns functor use a cache
memory where the approximations of some frequently used constants are stored.
When one of these approximations happens to be insufficient for the current
computation, a new approximation with a suitable precision is computed and
this new approximation replaces the old one in the cache memory. The constants
stored in the cache memory have been chosen so as to be able to retrieve at low
cost (a few additions and a shift) the approximations for the following numbers:

ln(2) exp(1) arctan(1)
ln(3) exp(−1) arctan(1/2)
ln(5) cos(1) arctan(1/3)

sin(1) arctan(1/5)

The cache bits function returns the sum of the bit sizes of the approxima-
tions currently stored in the cache memory: the total size of the cache memory
is approximately twice the number returned by cache bits. The clear cache
function restores the initial approximations with 100 bit precision, so as to en-
able the memory manager of Ocaml to reclaim the memory used by the cache.

The use of this cache memory results in a speedup of the computations, but
it has the drawback of making not reproducible any computation of the form
f a b n: the return value may vary depending on the precision with which the
constants used by f are known. However, the cache management mechanism
is designed so as to grant coherence with the past: if a computation f a b n
returned once a value x then any subsequent computation with the same argu-
ments will return the same value x, even if the precision of the cached constants
was increased meanwhile. Of course, the coherence with the past warranty
will cease as soon as one resets the cache memory by calling the clear cache
function.

Functions from the Rfuns(E) module may raise in case of trouble the fol-
lowing Rfuns(E).Error msg exceptions:

22

msg reason
0/0 a = b = 0
number too big see below
arcsinh
cos
cosin a/b = ±∞
sin
tan
arccos |a/b| > 1
arcsin
arccosh a/b = +∞ or a/b < 1
arctanh |a/b| ≥ 1
cot a/b = 0 or a/b = ±∞
coth a/b = 0
exp a/b = +∞
ln a/b ≤ 0 or a/b = +∞

When the computation of an intermediate result is impossible because this
intermediate result is too big, one of the following exceptions is raised:

• Rfuns(E).Error "number too big" : the impossibility was detected by
a function from Rfuns.

• E.Error "number too big" : the impossibility was detected by a func-
tion from E.

• "Numerix kernel: number too big" : the impossibility was detected by
the Numerix C kernel. In this last case, the exception cannot be caught.

2.3.5 Run-time selection of a module

The Start functor enables one to select at run-time which big integer implemen-
tation to use. The argument of Start is a functor Main receiving as argument a
big integer implementation compatible with the Int type signature and provid-
ing an implementation of the function main : string list -> unit which
constitutes the entry point of the program.

Start(Main).start parses the command line, selects a module E compati-
ble with the Int type signature from the -e xxx and -count options found and
then calls Main(E).main with the list of the remaining command line parame-
ters as argument. The command line parameter number zero, which generally
denotes the program name is included in this list (it wasn’t with Numerix-0.19).

The -e xxx option selects a module among Clong, Dlong, Slong, GMP, Big
where xxx is the lowercase name of this module. When several -e xxx options
are found on the command line, only the last two ones are taken into account
and they select the Cmp(A)(B) module, A being the module designated by the
last-but-one option and B the module designated by the last option. When no

23

-e xxx option is found on the command line, the module selected is the first
one available in the list Clong, Dlong, Slong, GMP, Big.

The -count option selects the Count(E) module where E is the module
selected by the -e xxx options.

2.3.6 Timing

chrono msg prints on the standard output stream the CPU time in seconds
since the beginning of the process, the difference with the previous time and the
msg string. The inclusion of a few calls to chrono within a program informs the
user of the approximate running times of the various phases in this program.
Note that Numerix-0.19 used the standard error stream for this purpose; with
Numerix-0.21 all outputs, including the internal error messages, are done on the
standard output stream.

2.4 Use

2.4.1 Compilation

The Ocaml programs using Numerix must be compiled with the following com-
mands:

ocamlc options nums.cma numerix.cma source files
ocamlopt options nums.cmxa numerix.cmxa source files

The nums.cma, nums.cmxa, numerix.cma and numerix.cmxa files contain in
a compiled form the Big int and Numerix libraries. One may have to tell the
compilers where to search for these files with the help of a -I path option.

2.4.2 Example

(* file simple.ml: simple demo of Numerix

compute (sqrt(3) + sqrt(2))/(sqrt(3)-sqrt(2)) with n digits *)

open Numerix
module Main(E:Int_type) = struct
module I = Infixes(E)
open E
open I

let main arglist =

let n = match arglist with
| _::"-n"::x::_ -> int_of_string x
| _ -> 30
in

(* d <- 10^n, d2 <- 10^(2n) *)
let d = (5 ^. n) << n in

24

let d2 = sqr d in

(* a <- round(sqrt(2*10^(2n+2))), b <- round(sqrt(3*10^(2n+2))) *)
let a = gsqrt Nearest_up (d2 *. 200) in
let b = gsqrt Nearest_up (d2 *. 300) in

(* r <- round(10^n*(b+a)/(b-a)) *)
let r = gquo Nearest_up (d**(b++a)) (b--a) in
Printf.printf "r=%s\n" (string_of r);
flush stdout

end
let _ = let module S = Start(Main) in S.start()

Compilation and execution:

> ocamlc -I ~/lib -o simple-byte nums.cma numerix.cma simple.ml
> ./simple-byte -e slong
r=9898979485566356196394568149411
> ocamlopt -I ~/lib -o simple-opt nums.cmxa numerix.cmxa simple.ml
> ./simple-opt -e gmp -n 50 -count
r=989897948556635619639456814941178278393189496131333

op count avg.size max.size
add 2 170 171
mul 4 250 333
quo 1 253 338
pow 1 0 0

root 2 340 341
gcd 0 - -
bin 1 117 117

misc 1 170 170
>

2.4.3 Toplevel

ocamlnumx is a customized Ocaml toplevel linked with the numerix.cma and
nums.cma object files. It enables one to use all the Numerix modules, the choice
of a big integer implementation being done through an appropriate open direc-
tive.

> ocamlnumx
ocamlnumx : Ocaml toplevel with big integer libraries
Numerix submodules : Clong Dlong Slong Big Gmp
Numerix version : 0.21

Objective Caml version 3.08.0

open Numerix;;
module I = Infixes(Slong);; (* output deleted *)
module R = Rfuns(Slong);; (* output deleted *)

25

open Slong open I open R;;
let a = r_exp Floor one one (10^.50);;
val a : Numerix.Slong.t = 271828182845904523536028747135266249775724709369995
#quit;;
>

If your Ocaml version supports loadable modules then it is also possible
to use the standard Ocaml toplevel by loading manually the nums.cma and
numerix.cma files. Note that in this case it may be necessary to tell ocaml
where to find the numerix.cma file with a -I path option. Note also that the
toplevel print and toplevel print tref functions must be manually acti-
vated with the #install printer directive.

> ocaml -I ~/lib
Objective Caml version 3.08.0

#load "nums.cma";;
#load "numerix.cma";;
open Numerix;;
module I = Infixes(Slong);; (* output deleted *)
module R = Rfuns(Slong);; (* output deleted *)
open Slong open I open R;;
let a = r_exp Floor one one (10^.50);;
val a : Numerix.Slong.t = <abstr>
#install_printer toplevel_print;;
a;;
- : Numerix.Slong.t = 271828182845904523536028747135266249775724709369995
#quit;;
>

26

Chapter 3

Use with Camllight

Contents

3.1 Interface . 27

3.1.1 Modules . 27

3.1.2 Functions . 28

3.2 Use . 28

3.2.1 Compilation . 28

3.2.2 Example . 28

3.2.3 Toplevel . 29

The Numerix Camllight interface was derived from the Ocaml one by remov-
ing or adapting the functionalities specific to the Ocaml language. Please refer
to the previous chapter to see the list of available functions, only the differences
with the Ocaml version are mentioned here. This interface was successfully
tested with Camllight-0.74 and Camllight-0.75.

3.1 Interface

3.1.1 Modules

Camllight has a limited module system and provides neither sub-modules nor
functors. However, it is possible to write implementation independent code by
using the short functions names, the long ones are inferred by the compiler with
the help of #open directives in the source file. One only needs to modify these
directives (possibly in an automatic way with a preprocessor) and to recompile
the source code in order to change the big integer implementation used.

The available modules have the same names as those of Ocaml in lowercase:
clong, dlong, slong, gmp and big. There is no equivalent to the modules
built with the Ocaml functors Cmp, Count and Rfuns. The infix notations are
available by opening the infxxx module where xxx is the name of the module
implementing big integers.

27

3.1.2 Functions

The functions described in the Int type Ocaml signature are available with
Camllight with only three differences:

• The division without remainder is named quo in Ocaml and div in Cam-
llight. The reason for this difference is that the quo identifier has an infix
status in Camllight. The other names derived from quo: quomod, quo 1,
gquo, etc. are the same as those in Ocaml.

• Accessing the value held by a reference is written look or ~~ in Ocaml,
whereas it is written look or ? in Camllight. There are two reasons for
this difference: the ? identifier is reserved in Ocaml and the ~~ identifier
has a prefix status in Ocaml and an infix one in Camllight.

• The run-time errors raise an Error msg exception in Ocaml and a Failure
"Numerix kernel: msg" exception in Camllight. This is a result of
the impossibility in Camllight to raise any exception except Failure and
Invalid argument from within a C function.

3.2 Use

3.2.1 Compilation

The Caml programs using Numerix must be compiled with the following com-
mand:

camlc -custom options nums.zo numerix.zo source files \
-lnumerix-caml -lnums -lgmp

The nums.zo and numerix.zo files contain in a compiled form the Caml part
of the Big int and Numerix libraries. It may be necessary to tell the compiler
where to find the numerix.zo file with a -I path option.

The -lnumerix-caml, -lnums and -lgmp options ask the linker to look for
the required C primitives in the libnumerix-caml, libnums and libgmp li-
braries. It may be necessary to tell the linker where to find these libraries with
-ccopt -Lpath options. If GMP is not installed or if its Camllight interface is not
included in Numerix, Then the -lgmp option must be omitted. Similarly, the
nums.zo and -lnums parameters must be omitted if the big module is not in-
cluded in Numerix. Note that the libclnumx library used with Numerix-0.19 has
been renamed libnumerix-caml in Numerix-0.21, the latter name was judged
more informative.

3.2.2 Example

(* file simple.ml: simple demo of Numerix

compute (sqrt(3) + sqrt(2))/(sqrt(3)-sqrt(2)) with n digits *)

28

#open "clong";;
#open "infclong";;

let main arglist =

let n = match arglist with
| _::"-n"::x::_ -> int_of_string x
| _ -> 30
in

(* d <- 10^n, d2 <- 10^(2n) *)
let d = (5 ^. n) << n in
let d2 = sqr d in

(* a <- round(sqrt(2*10^(2n+2))), b <- round(sqrt(3*10^(2n+2))) *)
let a = gsqrt Nearest_up (d2 *. 200) in
let b = gsqrt Nearest_up (d2 *. 300) in

(* r <- round(10^n*(b+a)/(b-a)) *)
let r = gquo Nearest_up (d**(b++a)) (b--a) in
printf__printf "r=%s\n" (string_of r);
flush stdout

in
main (list_of_vect sys__command_line);;

Compilation and execution:

> camlc -custom -I ~/lib -o simple nums.zo numerix.zo simple.ml \
-lnumerix-caml -lnums -lgmp -ccopt -L/home/quercia/lib

> ./simple
r=9898979485566356196394568149411
>

Note that the three libnumerix-caml, libnums and libgmp libraries must
be given to the linker even if the clong module is the only one used, because the
other modules are included in numerix.zo and contain references to functions
from these three libraries.

3.2.3 Toplevel

A customized toplevel is available in Camllight for doing Numerix computations:

> camllight ~/lib/camlnumx
> Caml Light version 0.75

camlnumx : Caml toplevel with big integer libraries
Numerix submodules : clong dlong slong big gmp
Numerix version : 0.21

29

##open "slong";;
##open "infslong";;
#fact 30;;
- : t = 265252859812191058636308480000000
#one << 100;;
- : t = 1267650600228229401496703205376
#quit();;
>

30

Chapter 4

Use with C

Contents

4.1 Interface . 31

4.1.1 Conventions . 31

4.1.2 The numerix.h file 33

4.1.3 Memory management 36

4.1.4 Rounding mode . 37

4.1.5 Description of the functions 37

4.2 Use . 38

4.2.1 Compilation . 38

4.2.2 Example . 38

4.1 Interface

The Numerix C interface was derived from the Ocaml one by adding a simple
memory manager in order to cope with the lack of Ocaml GC, and by restricting
the interface to the operations implemented in the C kernel of Numerix. The
main purpose of this interface is to allow a fair comparison between Numerix
and GMP (designed to be used with C), and to allow the compilation and the
execution of test programs on computers where Ocaml is not installed. The
Numerix C interface was successfully tested with the gcc-3.3.3, gcc-2.95.3,
gcc-2.7.2.3 compilers and the Linux, OpenBSD and Digital Unix operating
systems.

4.1.1 Conventions

The three clong, dlong and slong modules are available, as far as the C com-
piler and the computer hardware allow compilation. The choice of the module
to be used is done at compile-time with the help of a #define use xxx directive
where xxx is the name of the module. This directive can be included in each
source file or it can be given to the preprocessor with a -Duse xxx option. Note
the following differences with respect to Numerix-0.19:

31

• it is no longer necessary to specify the machine word size;

• there is no default module;

• the header file describing Numerix-0.19 was called c-long int.h, the one
describing Numerix-0.21 is called numerix.h.

The numerix.h file defines the xint datatype representing a big integer and
gives prototypes for the functions operating on these big integers. The function
names are prefixed with a three character string identifying the module to which
they belong: cx for the clong module, dx for dlong and sx for slong. In order
to allow the programmer to write big integer implementation independent code,
the numerix.h file defines a xx macro which catenates its argument with the
cx , dx or sx prefix depending on which use clong, use dlong or use slong
symbol is defined. One will write:

xx(add)(&x,a,b);

to add a and b into x, this code being transformed by the preprocessor into:

cx_add(&x,a,b); or dx_add(&x,a,b); or sx_add(&x,a,b);

The user is advised to use systematically the xx macro rather than to use the
expanded identifiers. Doing this this way, he can recompile his program with
another big integer implementation by only modifying the #define use xxx
directive. Anyway the functions of one module cannot operate on the data of
another module and there is no mechanism for distinguishing the xint datatype
according to a specific module.

As a general rule, a function computing a result a of type xint is available
in two versions differing by their calling convention:

xint xx(func)(xint *_a, args)
xint xx(f_func)(args)

In both cases, the return value is the computed result a. Moreover, if
a != NULL, then the result is copied into the memory location designated

by a. There are two exceptions to this naming convention: copy int and
copy string have as associated functions the of int and of string functions
instead of f copy int and f copy string for the sake of compatibility with
Numerix-0.19. A function computing several results a, b,. . . of type xint is
available in only one version:

void xx(func)(xint *_a, xint *_b,..., args)

The results a, b,. . . computed are stored in the memory locations designated
by the pointers a, b,. . . If one of these pointers is NULL, the corresponding
result is not copied and is not accessible to the caller.

32

4.1.2 The numerix.h file

Below is a part of numerix.h giving the prototypes of the public functions:

typedef struct {...} *xint;

/*-------------------- creation/destruction */
xint xx(new)();
void xx(free)(xint *_x);

xint xx(copy) (xint *_b, xint a);
xint xx(f_copy) (xint a);

/*-------------------- addition/subtraction */
xint xx(add) (xint *_c, xint a, xint b);
xint xx(sub) (xint *_c, xint a, xint b);
xint xx(add_1) (xint *_c, xint a, long b);
xint xx(sub_1) (xint *_c, xint a, long b);

xint xx(f_add) (xint a, xint b);
xint xx(f_sub) (xint a, xint b);
xint xx(f_add_1)(xint a, long b);
xint xx(f_sub_1)(xint a, long b);

/*-------------------- multiplication/square */
xint xx(mul) (xint *_c, xint a, xint b);
xint xx(mul_1) (xint *_c, xint a, long b);
xint xx(sqr) (xint *_b, xint a);

xint xx(f_mul) (xint a, xint b);
xint xx(f_mul_1)(xint a, long b);
xint xx(f_sqr) (xint a);

/*-------------------- division */
void xx(quomod) (xint *_c, xint *_d, xint a, xint b);
xint xx(quo) (xint *_c, xint a, xint b);
xint xx(mod) (xint *_d, xint a, xint b);
long xx(quomod_1) (xint *_c, xint a, long b);
xint xx(quo_1) (xint *_c, xint a, long b);
long xx(mod_1) (xint a, long b);
void xx(gquomod) (xint *_c, xint *_d, xint a, xint b, long mode);
xint xx(gquo) (xint *_c, xint a, xint b, long mode);
xint xx(gmod) (xint *_d, xint a, xint b, long mode);
long xx(gquomod_1)(xint *_c, xint a, long b, long mode);
xint xx(gquo_1) (xint *_c, xint a, long b, long mode);
long xx(gmod_1) (xint a, long b, long mode);

xint xx(f_quo) (xint a, xint b);
xint xx(f_mod) (xint a, xint b);
xint xx(f_quo_1) (xint a, long b);
long xx(f_mod_1) (xint a, long b);

33

xint xx(f_gquo) (xint a, xint b, long mode);
xint xx(f_gmod) (xint a, xint b, long mode);
xint xx(f_gquo_1) (xint a, long b, long mode);
long xx(f_gmod_1) (xint a, long b, long mode);

/*-------------------- absolute value, opposite */
xint xx(abs) (xint *_b, xint a);
xint xx(neg) (xint *_b, xint a);
xint xx(f_abs) (xint a);
xint xx(f_neg) (xint a);

/*-------------------- exponentiation */
xint xx(pow) (xint *_b, xint a, long p);
xint xx(pow_1) (xint *_b, long a, long p);
xint xx(powmod) (xint *_d, xint a, xint b, xint c);
xint xx(gpowmod) (xint *_d, xint a, xint b, xint c, long mode);

xint xx(f_pow) (xint a, long p);
xint xx(f_pow_1) (long a, long p);
xint xx(f_powmod) (xint a, xint b, xint c);
xint xx(f_gpowmod)(xint a, xint b, xint c, long mode);

/*-------------------- roots */
xint xx(sqrt) (xint *_b, xint a);
xint xx(root) (xint *_b, xint a, long p);
xint xx(gsqrt) (xint *_b, xint a, long mode);
xint xx(groot) (xint *_b, xint a, long p, long mode);

xint xx(f_sqrt) (xint a);
xint xx(f_root) (xint a, long p);
xint xx(f_gsqrt)(xint a, long mode);
xint xx(f_groot)(xint a, long p, long mode);

/*-------------------- factorial */
xint xx(fact) (xint *_a, long n);
xint xx(f_fact)(long n);

/*-------------------- Greatest common divisor */
xint xx(gcd) (xint *_d, xint a, xint b);
void xx(gcd_ex)(xint *_d, xint *_u, xint *_v, xint a, xint b);
void xx(cfrac) (xint *_d, xint *_u, xint *_v, xint *_p, xint *_q, xint a, xint b);
xint xx(f_gcd) (xint a, xint b);

/*-------------------- comparison */
long xx(sgn) (xint a);
long xx(cmp) (xint a, xint b);
long xx(cmp_1) (xint a, long b);

long xx(eq) (xint a,xint b);
long xx(neq) (xint a,xint b);

34

long xx(inf) (xint a,xint b);
long xx(infeq) (xint a,xint b);
long xx(sup) (xint a,xint b);
long xx(supeq) (xint a,xint b);

long xx(eq_1) (xint a,long b);
long xx(neq_1) (xint a,long b);
long xx(inf_1) (xint a,long b);
long xx(infeq_1)(xint a,long b);
long xx(sup_1) (xint a,long b);
long xx(supeq_1)(xint a,long b);

/*-------------------- conversion */
xint xx(copy_int) (xint *_b, long a);
xint xx(of_int) (long a);
long xx(int_of) (xint a);
xint xx(copy_string)(xint *_a, char *s);
xint xx(of_string) (char *s);

char *xx(string_of) (xint a);
char *xx(hstring_of)(xint a);
char *xx(ostring_of)(xint a);
char *xx(bstring_of)(xint a);

/*-------------------- random integers */
void xx(random_init)(long n);
xint xx(nrandom) (xint *_a, long n);
xint xx(zrandom) (xint *_a, long n);
xint xx(nrandom1)(xint *_a, long n);
xint xx(zrandom1)(xint *_a, long n);

xint xx(f_nrandom) (long n);
xint xx(f_zrandom) (long n);
xint xx(f_nrandom1)(long n);
xint xx(f_zrandom1)(long n);

/*-------------------- binary representation */
long xx(nbits) (xint a);
long xx(lowbits) (xint a);
long xx(highbits)(xint a);
long xx(nth_word)(xint a, long n);
long xx(nth_bit) (xint a, long n);

/*-------------------- shifts */
xint xx(shl) (xint *_b, xint a, long n);
xint xx(shr) (xint *_b, xint a, long n);
void xx(split)(xint *_b, xint *_c, xint a, long n);
xint xx(join) (xint *_c, xint a, xint b, long n);

xint xx(f_shl) (xint a, long n);

35

xint xx(f_shr) (xint a, long n);
xint xx(f_join)(xint a, xint b, long n);

/*-------------------- timing facility */
void chrono(char *msg);

4.1.3 Memory management

A a variable of type xint is a pointer to a data structure managed by the
memory manager included in the C version of Numerix. The initialization of a
is normally done in two steps:

• initialization of the a pointer;

• assignment of a value by giving the &a address as a result parameter of a
computation.

It is possible to merge these two steps into a single one by assigning to a the
result of type xint returned by a computation. Therefore, the following se-
quences where a denotes a variable of type xint not initialized and b,c denote
variables of type xint initialized having been assigned the values b and c are
equivalent: their common effect is to allocate a memory block, to copy into this
block the internal representation of the number b + c, and to copy the address
of the block into a.

a = xx(new)(); xx(add)(&a,b,c);
a = xx(f_add)(b,c);
a = xx(add)(NULL,b,c);

Once the a pointer is initialized, the &a address can be given as a result
parameter to a computation. For instance:

xx(mul)(&a,b,c);

has for effect to compute the product bc and to copy into a the address
of the memory block where this product has been stored. It is not necessary
for a to have been assigned a value prior to this operation. If it is the case,
then the memory block containing this value is overwritten with the internal
representation of bc if the block is large enough, otherwise a new memory block
is allocated to store the result, a is modified in order to point to the new block
and the old block is reclaimed. The read-modify-write operations where the
same variable is given both as an operand and as a result are handled correctly.
On the other way, concerning the operations computing several results (quomod,
gquomod, gcd ex, cfrac and split) one variable cannot be given more than one
time as a result. Therefore the following instruction is illegal:

xx(quomod)(&a,&a,b,c); /* illegal */

The xx(free) function enables one to return a memory block to the memory
manager when the value stored in this memory block is no longer useful. The
instruction:

36

xx(free)(&a);

has for effect to free the memory block designated by a if there is one and to
reinitialize the a pointer. After this instruction, the a variable is still operational
and can be assigned a new value.

4.1.4 Rounding mode

The operations computing an integer approximation of a real number a (division,
square root and p-th root) are available in two versions:

xx(func) (args)
xx(gfunc)(args, long mode)

The mode parameter of xx(gfunc) specifies in which way the number a is
to be rounded:

if mode & 3 = 0 : compute bac ;
if mode & 3 = 1 : compute ba + 1/2c ;
if mode & 3 = 2 : compute dae ;
if mode & 3 = 3 : compute da− 1/2e.

xx(func) is equivalent to xx(gfunc) with mode = 0.

4.1.5 Description of the functions

The operations implemented in the C interface of Numerix are identical to the
ones implemented in the Ocaml interface and described in sections 2.2.4 Arith-
metic operations to 2.2.8 Access to the binary representation, pages 14
and following, and in section 2.3.6 Timing, page 24. Below are mentioned the
particularities of the C interface.

• When an Ocaml function returns a boolean result, the equivalent C func-
tion returns an integer of type long the value of which is 0 for false and
1 for true.

• The C functions converting a big integer into a character string return a
pointer to a string allocated on the heap. This string must be released
after use by calling the free function. Note that Numerix-0.19 provided
a xx(free string) function for this purpose: this function does not exist
anymore in Numerix-0.21.

• The xx(lowbits) and xx(highbits) functions return respectively the 31
least significant bits and the 31 most significant bits of their argument,
regardless of the machine word size. Also, the xx(int of) function raises
systematically an error when the absolute value of its argument is greater
than 230.

37

4.2 Use

4.2.1 Compilation

The C programs using Numerix must be compiled with the following command:

gcc options -Duse_xxx source files -lnumerix-c

-Duse xxx specifies which module to use, clong or dlong or slong.

-lnumerix-c asks the linker to search in the libnumerix-c library the re-
quired compiled functions. It may be necessary to tell the linker where to
find this library with a -Lpath option. Similarly it may be necessary to tell
the preprocessor where to find the numerix.h header file with a -Ipath op-
tion. Note that the libcnumx library used with Numerix-0.19 has been renamed
libnumerix-c in Numerix-0.21, the latter name being judged more informative.

4.2.2 Example

/* file simple.c: simple demo of Numerix

compute (sqrt(3) + sqrt(2))/(sqrt(3)-sqrt(2)) with n digits */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "numerix.h"

int main(int argc, char **argv) {

xint a,b,d,d2,x,y;
char *s;
long n;

/* number of digits */
if ((argc > 2) && (strcmp(argv[1],"-n") == 0)) n = atol(argv[2]);
else n = 30;

/* d <- 10^n, d2 <- 10^(2n) */
d = xx(f_pow_1)(5,n); xx(shl)(&d,d,n);
d2 = xx(f_sqr)(d);

/* a <- round(sqrt(2*10^(2n+2))), b <- round(sqrt(3*10^(2n+2))) */
a = xx(f_mul_1)(d2,200); xx(gsqrt)(&a,a,1);
b = xx(f_mul_1)(d2,300); xx(gsqrt)(&b,b,1);

/* x <- round(10^n*(b+a)/(b-a)) */
x = xx(f_add)(b,a); xx(mul)(&x,x,d);
y = xx(f_sub)(b,a);
xx(gquo)(&x,x,y,1);

38

/* print x */
s = xx(string_of)(x); printf("x=%s\n",s); free(s);

/* free temporary memory */
xx(free)(&d); xx(free)(&d2);
xx(free)(&a); xx(free)(&b);
xx(free)(&x); xx(free)(&y);

return(0);
}

Compilation and execution:

> gcc -O2 -Wall -I/home/quercia/include -Duse_slong \
-o simple simple.c -lnumerix-c -L/home/quercia/lib

> ./simple -n 20
x=989897948556635619642
>

39

Chapter 5

Use with Pascal

Contents

5.1 Interface . 40

5.1.1 Units . 40

5.1.2 Memory management 44

5.1.3 Rounding mode . 45

5.1.4 Description of the functions 45

5.2 Use . 45

5.2.1 Compilation . 45

5.2.2 Example . 45

The Numerix Pascal interface was derived from the C one and provides the
same functionalities. It was developed on a Linux PC with the Free Pascal
version 1.0.10 compiler.

5.1 Interface

5.1.1 Units

Three units are defined: clong, dlong and slong. Each unit contains the
declaration of the corresponding big integer datatype and the declarations of
the associated procedures and functions. The exported identifiers are the same
in each unit, this allows one to write unit-independent programs, one only needs
to change the uses clause in order to change the big integer implementation
used.

Below is a part of the clong.p file describing the clong unit:

unit clong;
interface

type xint = ...;

(* creation/destruction *)
function xnew : xint;

40

procedure xfree(var x : xint);

procedure copy (var b:xint; a:xint);
function f_copy(a:xint):xint;

(* addition/subtraction *)
procedure add (var c:xint; a:xint; b:xint);
procedure sub (var c:xint; a:xint; b:xint);
procedure add_1(var c:xint; a:xint; b:longint);
procedure sub_1(var c:xint; a:xint; b:longint);

function f_add (a:xint; b:xint):xint;
function f_sub (a:xint; b:xint):xint;
function f_add_1(a:xint; b:longint):xint;
function f_sub_1(a:xint; b:longint):xint;

(* multiplication *)
procedure mul (var c:xint; a:xint; b:xint);
procedure mul_1(var c:xint; a:xint; b:longint);
procedure sqr (var b:xint; a:xint);

function f_mul (a:xint; b:xint):xint;
function f_mul_1(a:xint; b:longint):xint;
function f_sqr (a:xint):xint;

(* division *)
procedure quomod (var c,d:xint; a:xint; b:xint);
procedure quo (var c :xint; a:xint; b:xint);
procedure modulo (var d :xint; a:xint; b:xint);
procedure quomod_1 (var c :xint; a:xint; b:longint);
procedure quo_1 (var c :xint; a:xint; b:longint);
function mod_1 (a:xint; b:longint):longint;
procedure gquomod (var c,d:xint; a:xint; b:xint; mode:longint);
procedure gquo (var c :xint; a:xint; b:xint; mode:longint);
procedure gmod (var d :xint; a:xint; b:xint; mode:longint);
function gquomod_1(var c :xint; a:xint; b:longint; mode:longint):longint;
procedure gquo_1 (var c :xint; a:xint; b:longint; mode:longint);
function gmod_1 (a:xint; b:longint; mode:longint):longint;

function f_quo (a:xint; b:xint):xint;
function f_mod (a:xint; b:xint):xint;
function f_quo_1 (a:xint; b:longint):xint;
function f_mod_1 (a:xint; b:longint):longint;
function f_gquo (a:xint; b:xint; mode:longint):xint;
function f_gmod (a:xint; b:xint; mode:longint):xint;
function f_gquo_1 (a:xint; b:longint; mode:longint):xint;
function f_gmod_1 (a:xint; b:longint; mode:longint):longint;

(* absolute value/opposite *)
procedure abs (var b:xint; a:xint);

41

procedure neg (var b:xint; a:xint);

function f_abs (a:xint):xint;
function f_neg (a:xint):xint;

(* exponentiation *)
procedure pow (var b:xint; a:xint; p:longint);
procedure pow_1 (var b:xint; a:longint; p:longint);
procedure powmod (var d:xint; a:xint; b:xint; c:xint);
procedure gpowmod(var d:xint; a:xint; b:xint; c:xint; mode:longint);

function f_pow (a:xint; p:longint):xint;
function f_pow_1 (a:longint; p:longint):xint;
function f_powmod (a:xint; b:xint; c:xint):xint;
function f_gpowmod(a:xint; b:xint; c:xint; mode:longint):xint;

(* roots *)
procedure sqrt (var b:xint; a:xint);
procedure gsqrt(var b:xint; a:xint; mode:longint);
procedure root (var b:xint; a:xint; p:longint);
procedure groot(var b:xint; a:xint; p:longint; mode:longint);

function f_sqrt (a:xint):xint;
function f_gsqrt(a:xint; mode: longint):xint;
function f_root (a:xint; p: longint):xint;
function f_groot(a:xint; p,mode:longint):xint;

(* factorial *)
procedure fact(var a:xint; n:longint);
function f_fact(n:longint):xint;

(* gcd *)
procedure gcd (var d:xint; a,b:xint);
procedure gcd_ex(var d,u,v:xint; a,b:xint);
procedure cfrac (var d,u,v,p,q:xint; a,b:xint);

function f_gcd(a,b:xint):xint;

(* comparison *)
function cmp (a:xint; b:xint):longint;
function cmp_1 (a:xint; b:longint):longint;
function sgn (a:xint):longint;
function eq (a:xint; b:xint):boolean;
function neq (a:xint; b:xint):boolean;
function inf (a:xint; b:xint):boolean;
function infeq (a:xint; b:xint):boolean;
function sup (a:xint; b:xint):boolean;
function supeq (a:xint; b:xint):boolean;
function eq_1 (a:xint; b:longint):boolean;
function neq_1 (a:xint; b:longint):boolean;

42

function inf_1 (a:xint; b:longint):boolean;
function infeq_1(a:xint; b:longint):boolean;
function sup_1 (a:xint; b:longint):boolean;
function supeq_1(a:xint; b:longint):boolean;

(* conversions *)
procedure copy_int(var b:xint; a:longint);
procedure copy_string(var a:xint; s:pchar);

function of_int(a:longint):xint;
function of_string(s:pchar):xint;

function string_of (a:xint):ansistring;
function hstring_of(a:xint):ansistring;
function ostring_of(a:xint):ansistring;
function bstring_of(a:xint):ansistring;

(* random numbers *)
procedure random_init(n:longint);

procedure nrandom (var a:xint; n:longint);
procedure zrandom (var a:xint; n:longint);
procedure nrandom1(var a:xint; n:longint);
procedure zrandom1(var a:xint; n:longint);

function f_nrandom (n:longint):xint;
function f_zrandom (n:longint):xint;
function f_nrandom1(n:longint):xint;
function f_zrandom1(n:longint):xint;

(* binary representation *)
function int_of (a:xint):longint;
function nbits (a:xint):longint;
function lowbits (a:xint):longint;
function highbits(a:xint):longint;;
function nth_word(a:xint; n:longint):longint;;
function nth_bit (a:xint; n:longint):boolean;

(* shifts *)
procedure shiftl(var b:xint; a:xint; n:longint);
procedure shiftr(var b:xint; a:xint; n:longint);
procedure split(var b,c:xint; a:xint; n:longint);
procedure join(var c:xint; a:xint; b:xint; n:longint);

function f_shl(a:xint; n:longint):xint;
function f_shr(a:xint; n:longint):xint;
function f_join(a:xint; b:xint; n:longint):xint;

(* timing *)
procedure chrono(msg:pchar);

43

5.1.2 Memory management

A a variable of type xint is a pointer to a record managed by the memory
manager included in the Pascal version of Numerix. The initialization of a is
normally done in two steps:

• initialization of the a pointer;

• assignment of a value by giving a as a result parameter to a computation.

It is possible to merge these two steps into a single one by assigning to a the re-
sult of type xint returned by a computation. Therefore, the following sequences
where a denotes a variable of type xint not initialized and b,c denote variables
of type xint initialized having been assigned the values b and c are equivalent:
their common effect is to allocate a memory block, to copy the internal repre-
sentation of the number b + c into this block, and to copy the address of this
block into a.

a := xnew(); add(a,b,c);
a := f_add(b,c);

Once the a pointer is initialized, a can be given as a result parameter of a
computation. For instance:

mul(a,b,c);

has for effect to compute the product bc and to copy into a the address
of the memory block where this product has been stored. It is not necessary
for a to have been assigned a value prior to this operation. If it is the case,
then the memory block containing this value is overwritten with the internal
representation of bc if the block is large enough, otherwise a new memory block
is allocated to store the result, a is modified in order to point to the new block
and the old block is reclaimed. The read-modify-write operations where the
same variable is given both as an operand and as a result are handled correctly.
On the other way, concerning the operations computing several results (quomod,
gquomod, gcd ex, cfrac and split) one variable cannot be given more than one
time as a result. Therefore the following instruction is illegal:

quomod(a,a,b,c); (* illegal *)

The xfree procedure enables one to return a memory block to the memory
manager when the value stored in this memory block is no longer useful. The
instruction:

xfree(a);

has for effect to free the memory block designated by a if there is one and to
reinitialize the a pointer. After this instruction, the a variable is still operational
and can be assigned a new value.

44

5.1.3 Rounding mode

The operations computing an integer approximation of a real number a (division,
square root and p-th root) are available in two versions:

func (args)
gfunc(args; mode:longint)

The mode parameter of gfunc specifies in which way the number a is to be
rounded:

if mode and 3 = 0 : compute bac ;
if mode and 3 = 1 : compute ba + 1/2c ;
if mode and 3 = 2 : compute dae ;
if mode and 3 = 3 : compute da− 1/2e.

func is equivalent to gfunc with mode = 0.

5.1.4 Description of the functions

The operations implemented in the Pascal interface of Numerix are identical to
the ones implemented in the Ocaml interface and described in sections 2.2.4
Arithmetic operations to 2.2.8 Access to the binary representation,
pages 14 and following, and in section 2.3.6 Timing, page 24. Below are
mentioned the particularities of the Pascal interface.

• The lowbits and highbits functions return respectively the 31 least sig-
nificant bits and the 31 most significant bits of their argument, regardless
of the machine word size. Also, the xx(int of) function raises systemati-
cally an error when the absolute value of its argument is greater than 230.

5.2 Use

5.2.1 Compilation

The Pascal programs using Numerix must be compiled with the following com-
mand:

fpc options -Fuppu path -Fllib path source files

-Fuppu path designates the directory containing the clong.ppu, clong.o,
dlong.ppu, dlong.o, slong.ppu and slong.o compiled files. -Fllib path desig-
nates the directory containing the libnumerix-c library. These directives can
be omitted if these files are stored in directories normally scanned by the Pas-
cal compiler. Note that the libcnumx library used with Numerix-0.19 has been
renamed libnumerix-c in Numerix-0.21, the latter name being judged more
informative.

5.2.2 Example

program simple;

45

(* file exemples/pascal/simple.p: simple demo of Numerix

compute (sqrt(3) + sqrt(2))/(sqrt(3)-sqrt(2)) with n digits *)

uses clong;

var a,b,d,d2,x,y:xint;
n : longint;
c : word;

begin

(* number of digits *)
if (paramcount >= 2) and (paramstr(1) = ’-n’)

then val(paramstr(2),n,c)
else n := 30;

(* d <- 10^n, d2 <- 10^(2n) *)
d := f_pow_1(5,n); shiftl(d,d,n);
d2 := f_sqr(d);

(* a <- round(sqrt(2*10^(2n+2))), b <- round(sqrt(3*10^(2n+2))) *)
a := f_mul_1(d2,200); gsqrt(a,a,1);
b := f_mul_1(d2,300); gsqrt(b,b,1);

(* x <- round(10^n*(b+a)/(b-a)) *)
x := f_add(b,a); mul(x,x,d);
y := f_sub(b,a);
gquo(x,x,y,1);

(* print x *)
writeln(’x=’,string_of(x));

(* free temporary memory *)
xfree(d); xfree(d2);
xfree(a); xfree(b);
xfree(x); xfree(y);

end.

Compilation and execution:

> fpc -Fu/home/quercia/lib -Fl/home/quercia/lib simple.p
Free Pascal Compiler version 1.0.10 [2003/06/26] for i386
Copyright (c) 1993-2003 by Florian Klaempfl
Target OS: Linux for i386
Compiling simple.p
Assembling simple
Linking simple
38 Lines compiled, 0.0 sec
> ./simple -n 50
x=989897948556635619639456814941178278393189496131333
>

46

Chapter 6

Installation

Contents

6.1 Downloading . 47

6.2 Configuration . 48

6.2.1 Automatic configuration 48

6.2.2 Manual configuration 50

6.2.3 Editing the Makefile 50

6.2.4 Editing the kernel/config.h 52

6.3 Compilation . 52

6.4 Description of the examples 53

6.4.1 chrono . 55

6.4.2 digits . 55

6.4.3 pi . 56

6.4.4 shanks . 56

6.4.5 simple . 57

6.4.6 sqrt-163 . 57

6.4.7 cmp, rcheck . 57

6.1 Downloading

Numerix is available at the following URL:

http://pauillac.inria.fr/~quercia/cdrom/bibs/numerix.tar.gz

You will need the gcc C compiler to compile the C and assembly parts of the
library, any recent version of gcc should fit for that. The library was successfully
compiled on a Linux PC with gcc-3.3.3 as well as on a Dec workstation with
gcc 2.7.2.3 for the Clong module only.

For Ocaml you need a not less than 3.06 version and for Camllight a not
less than 0.74 version. Ocaml and Camllight are available at the URL:

http://pauillac.inria.fr/caml/index-eng.html

47

If you want to include the Gmp module in the interfaces for Ocaml and Camllight
then you need GMP installed on your computer. GMP is available at the URL:

http://www.swox.com/gmp/

The Pascal interface can be compiled only on a Linux PC with the Free
Pascal compiler which is available at the URL:

http://www.freepascal.org/

6.2 Configuration

6.2.1 Automatic configuration

Extract the numerix.tar.gz archive in a temporary directory and run the con-
figuration script at the root.

On a Linux PC with the bash shell launch:

./configure 2>&1 | tee conflog

On a Dec workstation with the csh shell launch:

./configure |& tee conflog

This script checks which parts of Numerix can be compiled on your computer
and creates a Makefile file suited for your configuration. The configure script
accepts the following options:

--prefix=dir

Set the common root for installation directories:

INSTALL_LIB = dir/lib,

INSTALL_BIN = dir/bin,

INSTALL_INCLUDE = dir/include.

dir must be an absolute path. The default prefix is $HOME.

--libdir=dir, --bindir=dir, --includedir=dir

Set one of INSTALL_LIB, INSTALL_BIN and INSTALL_INCLUDE directory
regardless of the others. dir must be an absolute path.

--enable-c, --disable-c

Select or un-select the C interface. The default is to select it.

--enable-caml, --disable-caml

Select or un-select the Camllight interface. The default is to select it when
Camllight is found on the computer.

--enable-ocaml, --disable-ocaml

Select or un-select the Ocaml interface. The default is to select it when
Ocaml is found on the computer.

48

--enable-pascal, --disable-pascal

Select or un-select the Pascal interface. The default is to select it when
Free Pascal is found on the computer.

--enable-clong, --disable-clong

Select or un-select the Clong module. The default is to select it.

--enable-dlong, --disable-dlong

Select or un-select the Dlong module. The default is to select it when the
C compiler supports the double precision integer datatype (long long)
and when this datatype length is twice the length of a long.

--enable-slong, --disable-slong

Select or un-select the Slong module. The default is to select it when the
processor is an Intel x86 one and when the C compiler correctly supports
the double precision integer datatype.

--enable-gmp, --disable-gmp

Select or un-select the Gmp module. The default is to select it when the
GMP library is found on the computer.

--enable-caml bignum, --disable-caml bignum

--enable-ocaml bignum, --disable-ocaml bignum

Select or un-select the Big module independently for Camllight and for
Ocaml. The default is to select it when the corresponding libnums library
is found on the computer.

--disable-lang

Un-select all the languages not explicitely selected with a --enable-xxx
option.

--disable-modules

Un-select all the modules not explicitely selected with a --enable-xxx
option.

--disable-all

Un-select all the module/language combinations not explicitely selected
with a --enable-xxx option.

--enable-x86, --disable-x86

Tell if the processor is x86 compatible. By default the processor is sup-
posed x86 compatible if the canonical operating system name contains the
i*86 pattern.

--enable-sse2, --disable-sse2

Tell if the processor, which must be x86 compatible, supports the SSE2
instruction set. By default, if the processor is x86 compatible and if the
operating system name contains the Linux string, the configure program
reads the /proc/cpuinfo file in order to get this information.

49

--enable-alloca, --disable-alloca

Tell if the alloca temporary allocation function can be used in lieu of
malloc. The default is to enable the use of alloca when configure finds
a correct interface for this function.

6.2.2 Manual configuration

Normally the configure script described in the previous section should create
suitable Makefile, kernel/*/makefile and kernel/config.h files. In case of
trouble, edit the Makefile and kernel/config.h files in order to fix the val-
ues written by configure when they are wrong. After correction, you must
re-create the kernel/*/makefile auxiliary files in order to take into account
the modifications and you must delete the files created during a preceding com-
pilation. To do this, launch:

make makefiles
make clean

6.2.3 Editing the Makefile

Use the values 0 or 1 for boolean parameters (1 = true).

PROCESSOR = x86-sse2

Specify the processor type: x86-sse2 for a processor of type x86 supporting
the SSE2 instruction set, x86 for a processor of type x86 not supporting this
instruction set, and generic for any other processor.

MAKE_C_LIB = 1
MAKE_OCAML_LIB = 1
MAKE_CAML_LIB = 1
MAKE_PASCAL_LIB = 1

Specify which interfaces you want.

USE_CLONG = 1
USE_DLONG = 1
USE_SLONG = 1
USE_GMP = 1
USE_CAML_BIGNUM = 1
USE_OCAML_BIGNUM = 1

Specify the modules to be compiled: severals modules can be specified. The
Dlong and Slong modules can be compiled only on computers with a x86 com-
patible processor. The Gmp and Big modules can be compiled only if you have
GMP and Big int.

GCC = gcc -O2 -Wall
AR = ar -rc
RANLIB = ranlib

50

Specify the commands to launch to call the C compiler and the librarian. You
can add -Ixxx and -Lxxx directives if the compiler or the linker fail to find
some header files or libraries.

CAML_LIBDIR = /usr/local/lib/caml-light
CAMLC = camlc
CAMLLIBR = camllibr
CAMLMKTOP = camlmktop

Specify the Camllight directory and the commands to launch to call the Caml-
light compiler, the Camllight archiver and the Camllight toplevel compiler.

OCAML_LIBDIR = /usr/local/lib/ocaml
OCAMLC = ocamlc
OCAMLOPT = ocamlopt
OCAMLMKTOP = ocamlmktop
OCAMLMKLIB = ocamlmklib

Specify the Ocaml directory and the commands to launch to call the Ocaml
compiler, the Ocaml optimizing compiler, the Ocaml toplevel compiler and the
Ocaml library generator.

FPC = fpc -v0 -k-lgcc_s

Specify the command to launch the Pascal compiler.

INSTALL_LIB = $(HOME)/lib
INSTALL_INCLUDE = $(HOME)/include
INSTALL_BIN = $(HOME)/bin

Specify in which directories the compiled libraries, the header files and the
binaries should be installed.

C_INSTALL_BIN = $(INSTALL_BIN)
C_INSTALL_LIB = $(INSTALL_LIB)
C_INSTALL_INCLUDE = $(INSTALL_INCLUDE)

CAML_INSTALL_BIN = $(INSTALL_BIN)
CAML_INSTALL_LIB = $(INSTALL_LIB)
CAML_INSTALL_INCLUDE = $(INSTALL_INCLUDE)

OCAML_INSTALL_BIN = $(INSTALL_BIN)
OCAML_INSTALL_LIB = $(INSTALL_LIB)
OCAML_INSTALL_INCLUDE = $(INSTALL_INCLUDE)

PASCAL_INSTALL_BIN = $(INSTALL_BIN)
PASCAL_INSTALL_LIB = $(INSTALL_LIB)
PASCAL_INSTALL_INCLUDE = $(INSTALL_INCLUDE)

By default the INSTALL BIN, INSTALL LIB and INSTALL INCLUDE directories
are used for all languages. You can define a different directory set for each

51

language by modifying the corresponding parameters. Note that the values of
OCAML INSTALL LIB and CAML INSTALL LIB are hard-coded into the ocamlnumx
and camlnumx toplevels so that these toplevels can find the numerix.cmi and
numerix.zi compiled interfaces by themselves. Therefore, if you want to move
these directories, you will need to recompile camlnumx and ocamlnumx.

6.2.4 Editing the kernel/config.h

This file contains internal settings for the C/assembly kernel of Numerix. Nor-
mally it is created by the configure script with the help of the informations
given or found on the processor and the possibility to use the alloca func-
tion. When configure detects wrong informations, use the --enable xxx
and --disable xxx options described in section 6.2.1 in order to force cor-
rect values. If configure fails to write a kernel.config.h file, then copy
one of the config/generic.h, config/x86.h or config/x86-sse2.h files onto
kernel/config.h, and edit this last file in order to specify the bit length of a
machine word and if the alloca function can be used:

/* Machine word size */
#define bits_@machine_word_size@

/* Memory allocation strategy */
@use_alloca@

Replace the @machine_word_size@ string with 32 or 64 and the @use_alloca@
string with #define use_alloca or #undef use_alloca.

6.3 Compilation

After the automatic or manual configuration step you can launch the compila-
tion. The targets are:

lib :

compile the libraries and the interface files;

examples :

compile the examples;

test :

execute each example program with the -test option;

install :

copy the libraries, the header files and the binaries in the directories spec-
ified by the INSTALL xxx variables;

clean :

delete all compiled files.

On a Linux PC with the bash shell successively launch:

52

make lib 2>&1 | tee liblog
make exemples 2>&1 | tee exlog
make test 2>&1 | tee testlog

On a Dec workstation with the csh shell successively launch:

make lib |& tee liblog
make exemples |& tee exlog
make test |& tee testlog

There should be neither compile error nor warning. If there are some and if
you cannot solve the problem on your own, please send the conflog, liblog,
exlog and testlog log files to michel.quercia@prepas.org for diagnosis. If
you have faced some problems that you have been able to fix alone, please let
me know so that I may modify the faulty files. The logs/pentium/xxxlog files
shipped with the distribution contain the compilation logs for a Linux PC, have
a look at them in case of trouble.

If the compilation and the tests have been successful, you can install the
Numerix library with one of the commands:

make install 2>&1 | tee inslog
make install |& tee inslog

Refer to page 54 for the list of the files to be installed. The files actually installed
depend on the modules and languages selected and on the static vs. dynamic
choice for the libraries.

Now the installation is finished and you can enjoy the multi-precision pro-
gramming. The user guide that you are presently reading is available in the
doc/english subdirectory in PDF and LATEX formats (files numerix-eng.pdf
and numerix-eng.tex).

6.4 Description of the examples

The c,caml,ocaml and pascal sub-directories of the exemples directory con-
tain various programs using Numerix. To compile these programs launch the
command:

make examples

Concerning the examples in C, Caml and Pascal, a ex.ext source file is
compiled in as many executables as there are available big integer modules for
this language. Each executable is named ex-x where x is the initial letter of the
big integer module used. Concerning the examples in Ocaml, a ex.ml source file
is compiled in two executables: ex with the ocamlc compiler and ex-opt with
the ocamlopt compiler. The choice of a big integer module is done at run-time
with a -e xxx option as described in section 2.3.5 Run-time selection of a
module, page 23.

53

Figure 6.1: list of the Numerix files to install

$(C INSTALL LIB) $(CAML INSTALL LIB) $(OCAML INSTALL LIB) $(PASCAL INSTALL LIB)

libnumerix-c.a libnumerix-caml.a libnumerix-ocaml.a

dllnumerix-ocaml.so

numerix.zo numerix.a clong.o

camlnumx numerix.cma clong.ppu

big.zi numerix.cmi dlong.o

clong.zi numerix.cmxa dlong.ppu

dlong.zi slong.o

gmp.zi slong.ppu

slong.zi

infbig.zi

infclong.zi

infdlong.zi

infgmp.zi

infslong.zi

$(C INSTALL INCLUDE) $(CAML INSTALL INCLUDE) $(OCAML INSTALL INCLUDE) $(PASCAL INSTALL INCLUDE)

numerix.h big.ml numerix.ml clong.p

big.mli numerix.mli dlong.p

clong.ml slong.p

clong.mli

dlong.ml

dlong.mli

gmp.ml

gmp.mli

slong.ml

slong.mli

infbig.ml

infbig.mli

infclong.ml

infclong.mli

infdlong.ml

infdlong.mli

infgmp.ml

infgmp.mli

infslong.ml

infslong.mli

$(C INSTALL BIN) $(CAML INSTALL BIN) $(OCAML INSTALL BIN) $(PASCAL INSTALL BIN)

ocamlnumx

54

6.4.1 chrono

Speed measurement of the different libraries (C interface only). This program
chooses random big integers of sizes n and 2n bits and measures the time of
various operations between these integers:

mul multiplication n bits by n bits;
sqr square of a n bit integer;
quomod division with remainder 2n bits by n bits;
quo division without remainder 2n bits by n bits;
sqrt square root of a 2n bit integer;
gcd gcd of two n bit integers;
gcd_ex gcd and Bézout coefficients of two n bit integers;
all all the operations above.

Specify on the command line a value for n and which operations to do among
mul, sqr, quomod, quo, sqrt, gcd and gcd ex. You can specify a repetition
count with the -r r option, in this case each operation is repeated r times.

> exemples/c/chrono-s -all 1000000 -r 10
0.03 0.03 début
0.33 0.30 mul
0.54 0.21 sqr
1.31 0.77 quomod
1.94 0.63 quo
2.60 0.66 sqrt
9.81 7.21 gcd
20.63 10.82 gcd_ex

> exemples/c/chrono-g -all 1000000 -r 10
0.01 0.01 début
0.57 0.56 mul
0.99 0.42 sqr
3.20 2.21 quomod
5.40 2.20 quo
7.06 1.66 sqrt
60.82 53.76 gcd
176.33 115.51 gcd_ex

>

So on the test computer (Pentium-4-2.8Ghz) with the Slong module, the
time for multiplying two one million bit numbers is 30 milliseconds, the time for
squaring a one million bit number is 21 milliseconds, and so on. The second test
shows the corresponding times for the GMP-4.1.4 library on the same computer.

6.4.2 digits

Search the smallest power of a number a for which the decimal expansion begins
with a given digit sequence (Ocaml interface only). Formally, the program
searches a minimal (x, y) pair of natural integers such that c < ax/10y < c + 1
where c is the number designated by the digit sequence. The search is done with
n bit approximations of ln(a), ln(10) ln(c) and ln(c + 1) where n is determined

55

from a and c. If the search is unsuccessful or if the solution found cannot
be granted minimal then n is doubled and the computation is restarted. The
command line parameters are in this order: the base a, the digit sequence c,
and the maximum number of trials.

> exemples/ocaml/digits 3 1234567890 1
5399108054 2576029200
> exemples/ocaml/digits 3 1234567890 2
2440080224 1164214129 (minimal)
>

So 35399108054 ≈ 1234567890 × 102576029200, solution found in the first trial,
and 32440080224 ≈ 1234567890× 101164214129, solution found in the second trial.
The second solution is minimal.

6.4.3 pi

Compute the n first digits of π (C, Caml, Ocaml and Pascal interfaces). This
program implements the approximate computation of π described in the BigNum
reference manual (The Caml Numbers Reference Manual, Inria, RT-0141) with
a binary summation algorithm. Specify on the command line the number n and
the computation options:

-d print the steps and the computing time for each step.
-noprint do not convert the number into a decimal string.
-skip convert the number into a decimal string, but display only the begin-

ning and the end of the string.
-gcd reduce the fraction returned by the summation step before computing

the quotient (one is advised against this reduction step because it takes longer
than the time saved by doing a shorter division).

> exemples/caml/pi-s 1000000 -d -skip
0.00 0.00 module = Slong
0.05 0.05 puiss-5
0.41 0.36 sqrt
3.04 2.63 série lb=6875847
3.52 0.48 quotient
4.29 0.77 conversion

3.
14159 26535 89793 23846 26433 83279 50288 41971 69399 37510
... (19998 lignes omises)
56787 96130 33116 46283 99634 64604 22090 10610 57794 58151

>

6.4.4 shanks

Compute the modular square root b of a number a modulo an odd prime p. (C,
Caml, Ocaml and Pascal interfaces). Specify on the command line the values for
a and p with -p value and -a value options. If either value is not specified then

56

the corresponding number is chosen at random. In this case, the -bits bits
option specifies the bit size for the random numbers..

> exemples/pascal/shanks-s -bits 200
p = 1005766304904354230760358867719456972987081899952626048942177
a = 970580614050603730359753265239590766882437980714585883439039
b = 159719547119039909103138545846153210093959274914166418914496

6.4.5 simple

Simple demonstration program (C, Caml, Ocaml and Pascal interfaces). This
program shows how to use the various Numerix interfaces. It computes the n
first digits of (

√
3 +

√
2)/(

√
3−

√
2).

6.4.6 sqrt-163

Compute b10neπ
√

163c where n is given on the command line (Ocaml interface
only).

> exemples/ocaml/sqrt-163-opt 10
262537412640768743.9999999999

Note that the result displayed proves that eπ
√

163 is not an integer: if there
was an infinity of 9 after those displayed then the program could not have
determined the floor part it was asked for.

6.4.7 cmp, rcheck

These programs are available with the Ocaml interface only. cmp makes a se-
quence of random operations with random integer operands, so as to detect
Numerix internal bugs. Two big integer modules must be specified on the com-
mand line so as to compare the results returned by each module. The other
command line options are the following:

-n bits specify the bit size for the operands;
-op operation specify one operation to check;
-r count specify the number of trials to do;
-s seed seed for the pseudo-random generator.

> exemples/ocaml/cmp -n 1000 -r 10000 -e clong -e gmp
Cmp(Clong,Gmp)
i=10000
>

10000 operations done without detecting any error.

rcheck is is a test program for the real-valued functions of the Rfuns functor.
The program makes a sequence of computations for each of these functions and
prints on the standard output stream MuPAD instructions to check the results.
The command line options are:

57

-bits p specifies the bit sizes for the a and b operands;
-n n specifies the precision for the xxx functions of Rfuns;
-c c specifies the c coefficient for the r xxx functions;
-niter i specifies the number of trials to do for each function;
-seed s seed for the pseudo-random generator.

> exemples/ocaml/rcheck -niter 100 -bits 200 -c 1000000000000 | mupad -P pe

---- MuPAD 2.5.3 -- The Open Computer Algebra System
/| /|

---- | Copyright (c) 1997 - 2003 by SciFace Software
| *--|-* All rights reserved.
|/ |/
---- Licensed to: Michel Quercia

c = 1000000000000

x = 1

u = 1452379063498458972355530797251267609669641280407182299120931

v = -11946610261415842471497825548686767812337415664907660430492

f = exp

r = ceil
>

Only one error was detected: Numerix returns the result x = 1 for the value
of dc × exp(u/v)e whereas MuPAD finds another result (not displayed). After
verification it turns out that MuPAD was wrong and Numerix was right.

58

