
GIT-DPM(1) GIT-DPM GIT-DPM(1)

NAME
git−dpm − debian packages in git manager

SYNOPSIS
git−dpm −−help

git−dpm [options] command[per−command−options and −arguments]

DESCRIPTION
Git−dpm is a tool to handle a debian source package in a git repository.

Each project contains three branches, a debian branch (master/whatever), a patched branch
(patched/patched−whaterver) and an upstream branch (upstream/upstream−whatever) and git−dpm
helps you store the information in there so you have your changes exportable as quilt series.

SHORT EXPLAN ATION OF THE BRANCHES
the upstream branch (upstream|upstream−whatever)

This branch contains the upstream sources. It contents need to be equal enough to the contents in
your upstream tarball.

the patched branch (patched|patched−whaterver)
This branch contains your patches to the upstream source.Every commit will be stored as a single
patch in the resulting package.

To help git generate a linear patch series, this should ideal be a linear chain of commits, whose
description are helpful for other people.

As this branch is regulary rebased, you should not publish it.

the debian branch (master|whaterver)
This is the primary branch.

This branch contains thedebian/directory and has the patched branch merged in.

Every change not indebian/, .git* or deleting files must be done in the patched branch.

EXAMPLES
Let’s start with some examples:

Checking out a project
First get the master branch:
git cloneURL

Then create upstream branch and see if the .orig.tar is ready:
git−dpm prepare

Create the patched branch and check it out:
git−dpm checkout−patched

Do some changes, apply some patches, commit them..
...
git commit

If your modification fixes a previous change (and that is not the last commit, otherwise you could

git−dpm 2009-12-30 1

GIT-DPM(1) GIT-DPM GIT-DPM(1)

have used −−amend), you might want to squash those two commits into one, so use:
git rebase −i upstream

Merge your changes into the debian branch and create patches:
git−dpm update−patches
dch −i
git commit −−amend −a

Perhaps change something with the debian package:
...
git commit −a

Then push the whole thing back:
git push

Switching to a new upstream version
Get a new .orig.tar file. Either upgrade your upstream branch to the contents of that file and call
git−dpm new−upstream ../new−stuff.orig.tar.gz or tell git−dpm to import and record it:
git−dpm import−new−upstream −−rebase ../new−stuff.orig.tar.gz

This will rebase the patched branch to the new upstream branch, perhaps you will need to resolve
some conflicts:
vim ...
git add resolved files
git rebase −−continue

After rebase is run (with some luck even in the first try):
git−dpm update−patches

Record it in debian/changes:
dch −v newupstream−1 "new upstream version"
git commit −−amend −a

Do other debian/ changes:
...
git commit −a

Then push the whole thing back:
git push

Creating a new project
Create anupstream (or upstream−whatever) branch containing the contents of your orig.tar file:
tar −xvf example 0.orig.tar.gz
cd example−0
git init
git add .
git commit −m "import example_0.orig.tar.gz"
git checkout −b upstream−unstable

You might want to use pristine tar to store your tar:
pristine−tar commit ../example_0.orig.tar.gz upstream−unstable

Then let git−dpm know what tarball your upstream branch belongs to:
git−dpm init ../example_0.orig.tar.gz

git−dpm 2009-12-30 2

GIT-DPM(1) GIT-DPM GIT-DPM(1)

Do the rest of the packaging:
vimdebian/control debian/rules
dch −−create −−packageexample−v 0−1
git add debian/control debian/rules debian/changelog
git commit −m "initial packaging"

Then add some patches:
git−dpm checkout−patched
vim ...
git commit −a
git−dpm update−patches
dch "fix ... (Closes: num)"
git commit −−amend −a

Then build your package:
git−dpm status &&
dpkg−buildpackage −rfakeroot −us −uc −I".git*"

Not take a look what happened, perhaps you want to add some files to.gitignore (in theunstable
branch), or remove some files from theunstablebranch becaus your clean rule removes them.

Continue the last few steps until the package is finished. Then push your package:
git−dpm tag
git push −−tagstarget unstable:unstable pristine−tar:pristine−tar

GLOBAL OPTIONS
−−debug

Give verbose output what git−dpm is doing. Mostly only useful for debugging or when preparing
an bug report.

COMMANDS
init [options] tarfile [upstream-commit[preapplied-commit[patched-commit]]]

Create a new project.

The first argument is an upstream tarball.

You also need to have the contents of those (or similar enough sodpkg−sourcewill not know the
difference) as some branch or commit in your git repository. This will be stored in the upstream
branch (calledupstream or upstream−whatever). If the second argument is non-existing or
empty, that branch must already exist, otherwise that branch will be initialized with what that sec-
ond argument. (It’s your responsiblity that the contents match. git−dpm does not know what your
clean rule does, so cannot check (and does not even try to warn yet)).

You can already have an debian branch (calledmaster or whatever). If it does not exist, it will
exist afterwards. Otherwiseit can contain adebian/patches/seriesfile, which git−dpm will
import.

The third argument can be a descendant of your upstream branch, that contains the changes of
your debian branch before any patches are applied (Most people prefer to have none and lintian
warns, but if you have some, commit/cherry pick them in a new branch/detached head on top of
your upstream branch and name them here).Without −−patches−applied, your debian branch may
not have any upstream changes compared to this commit (or if it is not given, the upstream
branch).

git−dpm 2009-12-30 3

GIT-DPM(1) GIT-DPM GIT-DPM(1)

If there is no forth argument, git−dpm will apply possible patches in your debian branch on top of
the third argument or upstream.You can also do so yourself and give that as forth argument.

The contents of this commit/branch given in the forth commit or created by applying patches on
top of the third/your upstream branch is then merged into your debian branch and remembered as
patched branch.

Options:

−−patches−applied
Denote the debian branch already has the patches applied.

Without this git−dpm will check there are no changes in the debian branch outside patch
management before applying the patches but instead check there are no differences after
applying the patches.

−−create−no−patches
Do not create/override debian/patchesdirectory. You will have to call update−patches
yourself. Usefulif you are importing historical data and keep the original patches in the
debian branch.

−−no-commit
Do not commit the new debian/.git−dpm file and possibledebian/patchedchanges, but
only add them to working tree and index.

prepare
Make sure upstream branch and upstream orig.tar ball are there and up to date. (Best called after a
clone or a pull).

status

Check the status of the current project.Returns with non-zero exit code if something to do is
detected.

checkout−patched

Checkout the patched branch (patched|patched−whaterver) after making sure it exists and is one
recorded in thedebian/.git−dpm file.

If the patched branch references an old state (i.e. one that is already ancestor of the current debian
branch), it is changed to the recorded current one.

Otherwise you can reset it to the last recorded state with the−−force option.

update−patches

After callingmerge−patched−into−debianif necessary, update the contents ofdebian/patchesto
the current state of thepatchedbranch.

Also record in debian/.git−dpm which state of the patched branch the patches directory belongs to.

Options:

git−dpm 2009-12-30 4

GIT-DPM(1) GIT-DPM GIT-DPM(1)

−−redo Do something, even if it seems like there is nothing to do.

−−allow−rev ert
passed on to merge−patched−into−debian

−−amend
passed on to merge−patched−into−debian

−−keep−branch
do not remove an existing patched branch (usually that is removed and can be recreated
with checkout−patchedto avoid stale copies lurking around.

merge−patched−into−debian
Usuallyupdate−patchesruns this for you if deemed necessary.

Replace the current contents of the debian branch (master|whaterver) with the contents of the
patched branch (patched|patched−whaterver), except for everything underdebian/. Also files
that are deleted in the debian branch keep being deleted and files in the root directory starting with
".git" keep their contents from the debian branch, too.

The current state of the patched branch is recorded indebian/.git−dpm and so is which upstream
branch was recorded patched branch is relative to (to easy future merge−patched−into−debian
operations).

Options:

−−allow−rev ert
Usually reverting to an old state of the patched branch is not allowed, to avoid mistakes
(like having only pulled the debian branch and forgot to runcheckout−patched). This
option changes that so you can for example drop the last patch in your stack.

−−keep−branch
do not remove an existing patched branch (usually that is removed and can be recreated
with checkout−patchedto avoid stale copies lurking around).

−−amend
Replace the last commit on your debian branch (as git commit −−amend would do). With
the exception that every parent that is an ancestor of or equal to the new patched branch
or the recorded patched branch is omitted. (That is, you lose not only the commit on the
debian branch, but also a previous state of the patched branch if your last commit also
merged the patched branch).

import−new−upstream [options] .orig.tar
Import the contents of the given tarfile (as withimport−tar) and record this branch (as with
new−upstream).

This is roughly equivalent to:
git−dpm import−tar −p upstream filename
git checkout −bupstream
git−dpm new−upstreamfilename

git−dpm 2009-12-30 5

GIT-DPM(1) GIT-DPM GIT-DPM(1)

−−detached
Don’t make the new upstream branch an ancestor of the old upstream branch (unless you
readd that with−p).

−p commit-id|−−parent commit-id
Give import−tar additional parents of the new commit to create.

For example if you track upstream’s git repository in some branch, you can name that
here to make it part of the history of your debian branch.

−−rebase−patched
After recording the new upstream branch, rebase the patched branch to the new upstream
branch.

import−tar [options] .tar-file
Create a new commit containing the contents of the given file. Thecommit will not have any par-
ents, unless you give−p options.

−p commit-id|−−parent commit-id
Add the given commit as parent. (Can be specified multiple times).

new−upstream[−−rebase−patched] .orig.tar [commit]

If you changed the upstream branch (upstream|upstream−whatever), git−dpm needs to know
which tarball this branch now corresponds to and you have to rebase your patched branch
(patched|patched−whaterver) to the new upstream branch.

If there is a second argument, this command first replaces your upstream branch with the specified
commit.

Then the new upstream branch is recorded in your debian branch’sdebian/.git−dpm file.

If you specified−−rebase−patched(or short−−rebase),
git−dpm rebase−patchedwill be called to rebase your patched branch on top of the new
upstream branch.

After this (and if the branch then looks like what you want), you still need to callgit−dpm
merge−patched−into−debian(or directlygit−dpm update−patches).

WARNING to avoid any misunderstandings: You have to change the upstream branch before
using this command.It’s your responsibility to ensure the contents of the tarball match those of
the upstream branch.

rebase−patched
Try to rebase your current patched branch (patched|patched−whaterver) to your current current
upstream branch (upstream|upstream−whatever).

If those branches do not yet exist as git branches, they are (re)created from the information
recorded indebian/.git−dpm first.

This is only a convenience wrapper around git rebase that first tries to determine what exactly is to
rebase. Ifthere are any conflicts, git rebase will ask you to resolv them and tell rebase to continue.

After this is finished (and if the branch then looks like what you want), you still need

git−dpm 2009-12-30 6

GIT-DPM(1) GIT-DPM GIT-DPM(1)

merge−patched−into−debian(or directlyupdate−patches).

tag [version]
Add tags to the uptream, patched and debian branches.If no version is given, it is taken from
debian/changelog.

Options:

−−refresh
Overwrite the tags if they are already there and differ (except upstream).

−−refresh−upstream
Overwrite the upstream if that is there and differs.

−−allow−nonclean
Don’t error out if patches are not up to date.This is only useful if you are importing his-
torical data and want to tag it.

apply−patch [options...] [filename]
Switch to the patched branch (assuming it is up to date, use checkout−patched first to make sure or
get an warning), and apply the patch given as argument or from stdin.

−−author author <email>
Override the author to be recorded.

−−defaultauthor author <email>
If no author could be determined from the commit, use this.

−−datedate
Date to record this patch originally be from if non found.

−−edit Start an editor before doing the commit (In case you are too lazy to amend).

cherry−pick [options...] commit
Recreate the patched branch and cherry−pick the given commit. Thenmerge that back into the
debian branch and update the debian/patches directory (i.e. mostly equivalent to check-
out−patched, git’s cherry-pick, and update-patches).

−−merge-only
Only merge the patched branch back into the debian branch but do not update the patches
directory (You’ll need to run update-patches later to get this done).

−e | −−edit
Passed to git’s cherry−pick: edit the commit message picked.

−s | −−signoff
Passed to git’s cherry−pick: add a Signed-off-by header

git−dpm 2009-12-30 7

GIT-DPM(1) GIT-DPM GIT-DPM(1)

−x Passed to git’s cherry−pick: add a line describing what was picked

−m num| −−mainline num
Passed to git’s cherry−pick: allow picking a merge by specifign the parent to look at.

−−repick
Don’t abort if the specified commit is already contained.

−−allow-nonlinear
passed to merge−patched−into−debian and update−patches.

−−keep−branch
do not remove the patched branch when it is no longer needed.

−−amend
passed to merge−patched−into−debian: amend the last commit in the debian branch.

the debian/.git−dpm file
You should not need to know about the contents if this file except for debuging git−dpm.

The file contains 8 lines, but future version may contain more.

The first line is hint what this file is about and ignored.

Then there are 4 git commit ids for the recorded states:

First the state of the patched branch when the patches indebian/patcheswere last updated.

Then the state of the patched branch when it was last merged into the debian branch.

Then the state upstream branch when the patched branch was last merged.

Finally the upstream branch.

The following 3 lines are the filename, the sha1 checksum and the size of the origtarball belonging to the
recorded upstream branch.

BRANCHES
the upstream branch (upstream|upstream−whatever)

This branch contains the upstream sources.It contents need to be equal enough to the contents in
your upstream tarball.

Equal enough means that dpkg−source should see no difference between your patched tree and
and original tarball unpackaged, the patched applied anddebian/rules cleanrun. Usuallyit is
easiest to just store the verbatim contents of your orig tarball here. Then you can also use it for
pristine tar.

This branch may contain a debian/ subdirectory, which will usually be just ignored.

You can either publish that branch or make it only implicitly visible via thedebian/.git−dpm file
in the debian branch.

git−dpm 2009-12-30 8

GIT-DPM(1) GIT-DPM GIT-DPM(1)

While it usually makes sense that newer upstream branches contain older ones, this is not needed.
You should be able to switch from one created yourself or by some foreign-vcs importing tool
generated one to an native upstream branch or vice versa without problems. Note that since the
debian branch has the patched branch as ancestor and the patched branch the upstream branch,
your upstream branches are part of the history of your debian branch. Which has the advantage
that you can recreate the exact state of your branches from your history directly (like git checkout
−b oldstate myoldtagorshaofdebianbranchcommit; git−dpm pr epare ; git checkout unsta-
ble−oldstate) but the disadvantage that to remove those histories from your repository you have to
do some manual work.

the patched branch (patched|patched−whaterver)
This branch contains your patches to the upstream source. (which of course means it is based on
your upstream branch).

Every commit will be stored as a single patch in the resulting package.

To help git generate a linear patch series, this should ideal be a linear chain of commits, whose
description are helpful for other people.

As this branch is regulary rebased, you should not publish it. Instead you can recreate this branch
usinggit−dpm checkout−patchedusing the information stored indebian/.git−dpm.

You are not allowed to change the contents of thedebian/ subdirectory in this branch.Renaming
files or deleting files usuall causes unecesary large patches.

the debian branch (master|whaterver)
This is the primary branch.

This branch contains thedebian/directory and has the patched branch merged in.

Every change not indebian/, .git* or deleting files must be done in the patched branch.

COPYRIGHT
Copyright © 2009,2010 Bernhard R. Link
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

REPORTING BUGS AND ISSUES
You can report bugs or feature suggestions to git-dpm-devel@lists.alioth.debian.org or tome. Pleasesend
questions to git-dpm-user@lists.alioth.debian.org or to me at brlink@debian.org.

git−dpm 2009-12-30 9

