Generated on Wed Jan 4 17:49:17 2006 for Gecode by doxygen 1.4.6

Using finite integer sets
[Interfacing to Gecode]

Collaboration diagram for Using finite integer sets:


Modules

 Set variables
 Argument arrays
 Variable arrays
 Range and value iterators for set variables
 Domain constraints
 Relation constraints
 Set operation/relation constraints
 Convexity constraints
 Sequence constraints
 Distinctness constraints
 Connection constraints to finite domain variables
 Selection constraints
 Branching

Enumerations

enum  Gecode::SetRelType {
  Gecode::SRT_EQ, Gecode::SRT_NQ, Gecode::SRT_SUB, Gecode::SRT_SUP,
  Gecode::SRT_DISJ, Gecode::SRT_CMPL
}
 Common relation types for sets. More...
enum  Gecode::SetOpType { Gecode::SOT_UNION, Gecode::SOT_DUNION, Gecode::SOT_INTER, Gecode::SOT_MINUS }
 Common operations for sets. More...


Enumeration Type Documentation

enum Gecode::SetRelType
 

Common relation types for sets.

Enumerator:
SRT_EQ  Equality ($=$).
SRT_NQ  Disequality ($\neq$).
SRT_SUB  Subset ($\subseteq$).
SRT_SUP  Superset ($\supseteq$).
SRT_DISJ  Disjoint ($\parallel$).
SRT_CMPL  Complement.

Definition at line 81 of file set.hh.

enum Gecode::SetOpType
 

Common operations for sets.

Enumerator:
SOT_UNION  Union.
SOT_DUNION  Disjoint union.
SOT_INTER  Intersection
SOT_MINUS  Difference.

Definition at line 94 of file set.hh.