Generated on Wed Jan 4 17:49:17 2006 for Gecode by doxygen 1.4.6

Integer propagators
[Other available functionality]

Collaboration diagram for Integer propagators:


Detailed Description

This module contains a description of all predefined integer propagators. They can be reused, for example, for rewriting newly defined integer propagators into already available propagators.


Classes

class  Gecode::Int::Arithmetic::Abs< View >
 Bounds-consistent absolute value propagator. More...
class  Gecode::Int::Arithmetic::Max< View >
 Bounds-consistent ternary maximum propagator. More...
class  Gecode::Int::Arithmetic::NaryMax< View >
 Bounds-consistent n-ary maximum propagator. More...
class  Gecode::Int::Arithmetic::Square< View >
 Bounds-consistent square propagator. More...
class  Gecode::Int::Arithmetic::Mult< View >
 Bounds-consistent multiplication propagator. More...
class  Gecode::Int::Bool::Eq< BVA, BVB >
 Boolean equality propagator. More...
class  Gecode::Int::Bool::And< BVA, BVB, BVC >
 Boolean conjunction propagator. More...
class  Gecode::Int::Bool::NaryAnd< View >
 Boolean n-ary conjunction propagator. More...
class  Gecode::Int::Bool::Eqv< BVA, BVB, BVC >
 Boolean equivalence propagator. More...
class  Gecode::Int::Count::Eq< VX, VY, VZ, Rel, shr >
 Propagator for counting views (equal to number of equal views) More...
class  Gecode::Int::Count::Nq< VX, VY, VZ, Rel, shr >
 Propagator for counting views (different from number of equal views) More...
class  Gecode::Int::Count::Lq< VX, VY, VZ, Rel, shr >
 Propagator for counting views (less or equal to number of equal views) More...
class  Gecode::Int::Count::Gq< VX, VY, VZ, Rel, shr >
 Propagator for counting views (greater or equal to number of equal views) More...
class  Gecode::Int::Cumulatives::Val< ViewM, ViewD, ViewH, View >
 Propagator for the cumulatives constraint. More...
class  Gecode::Int::Distinct::Val< View >
 Naive value distinct propagator. More...
class  Gecode::Int::Distinct::Bnd< View >
 Bounds-consistent distinct propagator. More...
class  Gecode::Int::Distinct::Dom< View >
 Domain-consistent distinct propagator. More...
class  Gecode::Int::Dom::ReRange< View >
 Reified range dom-propagator. More...
class  Gecode::Int::Dom::ReIntSet< View >
 Reified domain dom-propagator. More...
class  Gecode::Int::Element::Int< ViewA, ViewB >
 Element propagator for array of integers More...
class  Gecode::Int::Element::ViewBnd< ViewA, ViewB >
 Bounds-consistent element propagator for array of views. More...
class  Gecode::Int::Element::ViewDom< ViewA, ViewB >
 Domain-consistent element propagator for array of views. More...
class  Gecode::Int::GCC::Bnd< View, Card, isView >
 Bounds-consistent global cardinality propagator. More...
class  Gecode::Int::GCC::Dom< View, Card, isView >
 Domain-consistent global cardinality propagator. More...
class  Gecode::Int::GCC::Val< View, Card, isView >
 Value consistent global cardinality propagator. More...
class  Gecode::Int::Linear::EqBin< Val, A, B >
 Propagator for bounds-consistent binary linear equality More...
class  Gecode::Int::Linear::ReEqBin< Val, A, B, Ctrl >
 Propagator for reified bounds-consistent binary linear equality More...
class  Gecode::Int::Linear::NqBin< Val, A, B >
 Propagator for bounds-consistent binary linear disequality More...
class  Gecode::Int::Linear::LqBin< Val, A, B >
 Propagator for bounds-consistent binary linear less or equal More...
class  Gecode::Int::Linear::GqBin< Val, A, B >
 Propagator for bounds-consistent binary linear greater or equal More...
class  Gecode::Int::Linear::ReLqBin< Val, A, B >
 Propagator for reified bounds-consistent binary linear less or equal More...
class  Gecode::Int::Linear::EqTer< Val, A, B, C >
 Propagator for bounds-consistent ternary linear equality More...
class  Gecode::Int::Linear::NqTer< Val, A, B, C >
 Propagator for bounds-consistent ternary linear disquality More...
class  Gecode::Int::Linear::LqTer< Val, A, B, C >
 Propagator for bounds-consistent ternary linear less or equal More...
class  Gecode::Int::Linear::Eq< Val, P, N >
 Propagator for bounds-consistent n-ary linear equality More...
class  Gecode::Int::Linear::ReEq< Val, P, N, Ctrl >
 Propagator for reified bounds-consistent n-ary linear equality More...
class  Gecode::Int::Linear::Nq< Val, P, N >
 Propagator for bounds-consistent n-ary linear disequality More...
class  Gecode::Int::Linear::Lq< Val, P, N >
 Propagator for bounds-consistent n-ary linear less or equal More...
class  Gecode::Int::Linear::ReLq< Val, P, N >
 Propagator for reified bounds-consistent n-ary linear less or equal More...
class  Gecode::Int::Linear::EqBool< View >
 Propagator for equality to Boolean sum (cardinality) More...
class  Gecode::Int::Linear::NqBool< View >
 Propagator for disequality to Boolean sum (cardinality) More...
class  Gecode::Int::Linear::LqBool< View >
 Propagator for less or equal to Boolean sum (cardinality) More...
class  Gecode::Int::Linear::GqBool< View >
 Propagator for greater or equal to Boolean sum (cardinality) More...
class  Gecode::Int::Regular::Dom< View >
 Domain-consistent regular propagator. More...
class  Gecode::Int::Rel::EqDom< View >
 Binary domain-consistent equality propagator. More...
class  Gecode::Int::Rel::EqBnd< View >
 Binary bounds-consistent equality propagator. More...
class  Gecode::Int::Rel::NaryEqDom< View >
 n-ary domain-consistent equality propagator More...
class  Gecode::Int::Rel::NaryEqBnd< View >
 n-ary bounds-consistent equality propagator More...
class  Gecode::Int::Rel::ReEqDom< View, CtrlView >
 Reified binary domain-consistent equality propagator. More...
class  Gecode::Int::Rel::ReEqBnd< View, CtrlView >
 Reified binary bounds-consistent equality propagator. More...
class  Gecode::Int::Rel::ReEqDomInt< View, CtrlView >
 Reified domain-consistent equality with integer propagator. More...
class  Gecode::Int::Rel::ReEqBndInt< View, CtrlView >
 Reified bounds-consistent equality with integer propagator. More...
class  Gecode::Int::Rel::Nq< View >
 Binary disequality propagator. More...
class  Gecode::Int::Rel::Lq< View >
 Less or equal propagator. More...
class  Gecode::Int::Rel::Le< View >
 Less propagator. More...
class  Gecode::Int::Rel::ReLq< View, CtrlView >
 Reified less or equal propagator. More...
class  Gecode::Int::Rel::ReLqInt< View, CtrlView >
 Reified less or equal with integer propagator. More...
class  Gecode::Int::Rel::Lex< View >
 Lexical ordering propagator. More...
class  Gecode::Int::Sortedness::Sortedness< View, Tuple, Perm, shared >
 Bounds consistent sortedness propagator. More...

Functions

void Gecode::Int::Linear::post (Space *home, Term t[], int n, IntRelType r, int c)
 Post propagator for linear constraint.
void Gecode::Int::Linear::post (Space *home, Term t[], int n, IntRelType r, int c, BoolView b)
 Post reified propagator for linear constraint.


Function Documentation

void Gecode::Int::Linear::post Space *  home,
Term  t[],
int  n,
IntRelType  r,
int  c
 

Post propagator for linear constraint.

Parameters:
e array of linear terms
n size of array
r type of relation
c result of linear constraint
All variants for linear constraints share the following properties:
  • Only bounds-consistency is supported.
  • Variables occuring multiply in the term array are replaced by a single occurence: for example, $ax+bx$ becomes $(a+b)x$.
  • If in the above simplification the value for $(a+b)$ (or for $a$ and $b$) exceeds the limits for integers as defined in Limits::Int, an exception of type Int::NumericalOverflow is thrown.
  • Assume linear terms for the constraint $\sum_{i=0}^{|x|-1}a_i\cdot x_i\sim_r c$. If $|c|+\sum_{i=0}^{|x|-1}a_i\cdot x_i$ exceeds the limits for doubles as defined in Limits::Int, an exception of type Int::NumericalOverflow is thrown.
  • In all other cases, the created propagators are accurate (that is, they will not silently overflow during propagation).

Requires

 #include "int/linear.hh" 

Definition at line 162 of file post.cc.

void Gecode::Int::Linear::post Space *  home,
Term  t[],
int  n,
IntRelType  r,
int  c,
BoolView  b
 

Post reified propagator for linear constraint.

Parameters:
e array of linear terms
n size of array
r type of relation
c result of linear constraint
b Boolean control view
All variants for linear constraints share the following properties:
  • Only bounds-consistency is supported.
  • Variables occuring multiply in the term array are replaced by a single occurence: for example, $ax+bx$ becomes $(a+b)x$.
  • If in the above simplification the value for $(a+b)$ (or for $a$ and $b$) exceeds the limits for integers as defined in Limits::Int, an exception of type Int::NumericalOverflow is thrown.
  • Assume linear terms for the constraint $\sum_{i=0}^{|x|-1}a_i\cdot x_i\sim_r c$. If $|c|+\sum_{i=0}^{|x|-1}a_i\cdot x_i$ exceeds the limits for doubles as defined in Limits::Int, an exception of type Int::NumericalOverflow is thrown.
  • In all other cases, the created propagators are accurate (that is, they will not silently overflow during propagation).

Requires

 #include "int/linear.hh" 

Definition at line 387 of file post.cc.