stl_deque.h

Go to the documentation of this file.
00001 // Deque implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 2, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // You should have received a copy of the GNU General Public License along 00017 // with this library; see the file COPYING. If not, write to the Free 00018 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, 00019 // USA. 00020 00021 // As a special exception, you may use this file as part of a free software 00022 // library without restriction. Specifically, if other files instantiate 00023 // templates or use macros or inline functions from this file, or you compile 00024 // this file and link it with other files to produce an executable, this 00025 // file does not by itself cause the resulting executable to be covered by 00026 // the GNU General Public License. This exception does not however 00027 // invalidate any other reasons why the executable file might be covered by 00028 // the GNU General Public License. 00029 00030 /* 00031 * 00032 * Copyright (c) 1994 00033 * Hewlett-Packard Company 00034 * 00035 * Permission to use, copy, modify, distribute and sell this software 00036 * and its documentation for any purpose is hereby granted without fee, 00037 * provided that the above copyright notice appear in all copies and 00038 * that both that copyright notice and this permission notice appear 00039 * in supporting documentation. Hewlett-Packard Company makes no 00040 * representations about the suitability of this software for any 00041 * purpose. It is provided "as is" without express or implied warranty. 00042 * 00043 * 00044 * Copyright (c) 1997 00045 * Silicon Graphics Computer Systems, Inc. 00046 * 00047 * Permission to use, copy, modify, distribute and sell this software 00048 * and its documentation for any purpose is hereby granted without fee, 00049 * provided that the above copyright notice appear in all copies and 00050 * that both that copyright notice and this permission notice appear 00051 * in supporting documentation. Silicon Graphics makes no 00052 * representations about the suitability of this software for any 00053 * purpose. It is provided "as is" without express or implied warranty. 00054 */ 00055 00056 /** @file stl_deque.h 00057 * This is an internal header file, included by other library headers. 00058 * You should not attempt to use it directly. 00059 */ 00060 00061 #ifndef _DEQUE_H 00062 #define _DEQUE_H 1 00063 00064 #include <bits/concept_check.h> 00065 #include <bits/stl_iterator_base_types.h> 00066 #include <bits/stl_iterator_base_funcs.h> 00067 00068 namespace _GLIBCXX_STD 00069 { 00070 /** 00071 * @if maint 00072 * @brief This function controls the size of memory nodes. 00073 * @param size The size of an element. 00074 * @return The number (not byte size) of elements per node. 00075 * 00076 * This function started off as a compiler kludge from SGI, but seems to 00077 * be a useful wrapper around a repeated constant expression. The '512' is 00078 * tuneable (and no other code needs to change), but no investigation has 00079 * been done since inheriting the SGI code. 00080 * @endif 00081 */ 00082 inline size_t 00083 __deque_buf_size(size_t __size) 00084 { return __size < 512 ? size_t(512 / __size) : size_t(1); } 00085 00086 00087 /** 00088 * @brief A deque::iterator. 00089 * 00090 * Quite a bit of intelligence here. Much of the functionality of deque is 00091 * actually passed off to this class. A deque holds two of these internally, 00092 * marking its valid range. Access to elements is done as offsets of either 00093 * of those two, relying on operator overloading in this class. 00094 * 00095 * @if maint 00096 * All the functions are op overloads except for _M_set_node. 00097 * @endif 00098 */ 00099 template<typename _Tp, typename _Ref, typename _Ptr> 00100 struct _Deque_iterator 00101 { 00102 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator; 00103 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; 00104 00105 static size_t _S_buffer_size() 00106 { return __deque_buf_size(sizeof(_Tp)); } 00107 00108 typedef random_access_iterator_tag iterator_category; 00109 typedef _Tp value_type; 00110 typedef _Ptr pointer; 00111 typedef _Ref reference; 00112 typedef size_t size_type; 00113 typedef ptrdiff_t difference_type; 00114 typedef _Tp** _Map_pointer; 00115 typedef _Deque_iterator _Self; 00116 00117 _Tp* _M_cur; 00118 _Tp* _M_first; 00119 _Tp* _M_last; 00120 _Map_pointer _M_node; 00121 00122 _Deque_iterator(_Tp* __x, _Map_pointer __y) 00123 : _M_cur(__x), _M_first(*__y), 00124 _M_last(*__y + _S_buffer_size()), _M_node(__y) {} 00125 00126 _Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {} 00127 00128 _Deque_iterator(const iterator& __x) 00129 : _M_cur(__x._M_cur), _M_first(__x._M_first), 00130 _M_last(__x._M_last), _M_node(__x._M_node) {} 00131 00132 reference 00133 operator*() const 00134 { return *_M_cur; } 00135 00136 pointer 00137 operator->() const 00138 { return _M_cur; } 00139 00140 _Self& 00141 operator++() 00142 { 00143 ++_M_cur; 00144 if (_M_cur == _M_last) 00145 { 00146 _M_set_node(_M_node + 1); 00147 _M_cur = _M_first; 00148 } 00149 return *this; 00150 } 00151 00152 _Self 00153 operator++(int) 00154 { 00155 _Self __tmp = *this; 00156 ++*this; 00157 return __tmp; 00158 } 00159 00160 _Self& 00161 operator--() 00162 { 00163 if (_M_cur == _M_first) 00164 { 00165 _M_set_node(_M_node - 1); 00166 _M_cur = _M_last; 00167 } 00168 --_M_cur; 00169 return *this; 00170 } 00171 00172 _Self 00173 operator--(int) 00174 { 00175 _Self __tmp = *this; 00176 --*this; 00177 return __tmp; 00178 } 00179 00180 _Self& 00181 operator+=(difference_type __n) 00182 { 00183 const difference_type __offset = __n + (_M_cur - _M_first); 00184 if (__offset >= 0 && __offset < difference_type(_S_buffer_size())) 00185 _M_cur += __n; 00186 else 00187 { 00188 const difference_type __node_offset = 00189 __offset > 0 ? __offset / difference_type(_S_buffer_size()) 00190 : -difference_type((-__offset - 1) 00191 / _S_buffer_size()) - 1; 00192 _M_set_node(_M_node + __node_offset); 00193 _M_cur = _M_first + (__offset - __node_offset 00194 * difference_type(_S_buffer_size())); 00195 } 00196 return *this; 00197 } 00198 00199 _Self 00200 operator+(difference_type __n) const 00201 { 00202 _Self __tmp = *this; 00203 return __tmp += __n; 00204 } 00205 00206 _Self& 00207 operator-=(difference_type __n) 00208 { return *this += -__n; } 00209 00210 _Self 00211 operator-(difference_type __n) const 00212 { 00213 _Self __tmp = *this; 00214 return __tmp -= __n; 00215 } 00216 00217 reference 00218 operator[](difference_type __n) const 00219 { return *(*this + __n); } 00220 00221 /** @if maint 00222 * Prepares to traverse new_node. Sets everything except _M_cur, which 00223 * should therefore be set by the caller immediately afterwards, based on 00224 * _M_first and _M_last. 00225 * @endif 00226 */ 00227 void 00228 _M_set_node(_Map_pointer __new_node) 00229 { 00230 _M_node = __new_node; 00231 _M_first = *__new_node; 00232 _M_last = _M_first + difference_type(_S_buffer_size()); 00233 } 00234 }; 00235 00236 // Note: we also provide overloads whose operands are of the same type in 00237 // order to avoid ambiguous overload resolution when std::rel_ops operators 00238 // are in scope (for additional details, see libstdc++/3628) 00239 template<typename _Tp, typename _Ref, typename _Ptr> 00240 inline bool 00241 operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00242 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00243 { return __x._M_cur == __y._M_cur; } 00244 00245 template<typename _Tp, typename _RefL, typename _PtrL, 00246 typename _RefR, typename _PtrR> 00247 inline bool 00248 operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00249 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00250 { return __x._M_cur == __y._M_cur; } 00251 00252 template<typename _Tp, typename _Ref, typename _Ptr> 00253 inline bool 00254 operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00255 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00256 { return !(__x == __y); } 00257 00258 template<typename _Tp, typename _RefL, typename _PtrL, 00259 typename _RefR, typename _PtrR> 00260 inline bool 00261 operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00262 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00263 { return !(__x == __y); } 00264 00265 template<typename _Tp, typename _Ref, typename _Ptr> 00266 inline bool 00267 operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00268 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00269 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur) 00270 : (__x._M_node < __y._M_node); } 00271 00272 template<typename _Tp, typename _RefL, typename _PtrL, 00273 typename _RefR, typename _PtrR> 00274 inline bool 00275 operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00276 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00277 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur) 00278 : (__x._M_node < __y._M_node); } 00279 00280 template<typename _Tp, typename _Ref, typename _Ptr> 00281 inline bool 00282 operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00283 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00284 { return __y < __x; } 00285 00286 template<typename _Tp, typename _RefL, typename _PtrL, 00287 typename _RefR, typename _PtrR> 00288 inline bool 00289 operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00290 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00291 { return __y < __x; } 00292 00293 template<typename _Tp, typename _Ref, typename _Ptr> 00294 inline bool 00295 operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00296 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00297 { return !(__y < __x); } 00298 00299 template<typename _Tp, typename _RefL, typename _PtrL, 00300 typename _RefR, typename _PtrR> 00301 inline bool 00302 operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00303 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00304 { return !(__y < __x); } 00305 00306 template<typename _Tp, typename _Ref, typename _Ptr> 00307 inline bool 00308 operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00309 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00310 { return !(__x < __y); } 00311 00312 template<typename _Tp, typename _RefL, typename _PtrL, 00313 typename _RefR, typename _PtrR> 00314 inline bool 00315 operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00316 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00317 { return !(__x < __y); } 00318 00319 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00320 // According to the resolution of DR179 not only the various comparison 00321 // operators but also operator- must accept mixed iterator/const_iterator 00322 // parameters. 00323 template<typename _Tp, typename _RefL, typename _PtrL, 00324 typename _RefR, typename _PtrR> 00325 inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type 00326 operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00327 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00328 { 00329 return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type 00330 (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size()) 00331 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first) 00332 + (__y._M_last - __y._M_cur); 00333 } 00334 00335 template<typename _Tp, typename _Ref, typename _Ptr> 00336 inline _Deque_iterator<_Tp, _Ref, _Ptr> 00337 operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x) 00338 { return __x + __n; } 00339 00340 /** 00341 * @if maint 00342 * Deque base class. This class provides the unified face for %deque's 00343 * allocation. This class's constructor and destructor allocate and 00344 * deallocate (but do not initialize) storage. This makes %exception 00345 * safety easier. 00346 * 00347 * Nothing in this class ever constructs or destroys an actual Tp element. 00348 * (Deque handles that itself.) Only/All memory management is performed 00349 * here. 00350 * @endif 00351 */ 00352 template<typename _Tp, typename _Alloc> 00353 class _Deque_base 00354 { 00355 public: 00356 typedef _Alloc allocator_type; 00357 00358 allocator_type 00359 get_allocator() const 00360 { return *static_cast<const _Alloc*>(&this->_M_impl); } 00361 00362 typedef _Deque_iterator<_Tp,_Tp&,_Tp*> iterator; 00363 typedef _Deque_iterator<_Tp,const _Tp&,const _Tp*> const_iterator; 00364 00365 _Deque_base(const allocator_type& __a, size_t __num_elements) 00366 : _M_impl(__a) 00367 { _M_initialize_map(__num_elements); } 00368 00369 _Deque_base(const allocator_type& __a) 00370 : _M_impl(__a) 00371 { } 00372 00373 ~_Deque_base(); 00374 00375 protected: 00376 //This struct encapsulates the implementation of the std::deque 00377 //standard container and at the same time makes use of the EBO 00378 //for empty allocators. 00379 struct _Deque_impl 00380 : public _Alloc { 00381 _Tp** _M_map; 00382 size_t _M_map_size; 00383 iterator _M_start; 00384 iterator _M_finish; 00385 00386 _Deque_impl(const _Alloc& __a) 00387 : _Alloc(__a), _M_map(0), _M_map_size(0), _M_start(), _M_finish() 00388 { } 00389 }; 00390 00391 typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type; 00392 _Map_alloc_type _M_get_map_allocator() const 00393 { return _Map_alloc_type(this->get_allocator()); } 00394 00395 _Tp* 00396 _M_allocate_node() 00397 { return _M_impl._Alloc::allocate(__deque_buf_size(sizeof(_Tp))); } 00398 00399 void 00400 _M_deallocate_node(_Tp* __p) 00401 { _M_impl._Alloc::deallocate(__p, __deque_buf_size(sizeof(_Tp))); } 00402 00403 _Tp** 00404 _M_allocate_map(size_t __n) 00405 { return _M_get_map_allocator().allocate(__n); } 00406 00407 void 00408 _M_deallocate_map(_Tp** __p, size_t __n) 00409 { _M_get_map_allocator().deallocate(__p, __n); } 00410 00411 protected: 00412 void _M_initialize_map(size_t); 00413 void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish); 00414 void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish); 00415 enum { _S_initial_map_size = 8 }; 00416 00417 _Deque_impl _M_impl; 00418 }; 00419 00420 template<typename _Tp, typename _Alloc> 00421 _Deque_base<_Tp,_Alloc>::~_Deque_base() 00422 { 00423 if (this->_M_impl._M_map) 00424 { 00425 _M_destroy_nodes(this->_M_impl._M_start._M_node, this->_M_impl._M_finish._M_node + 1); 00426 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size); 00427 } 00428 } 00429 00430 /** 00431 * @if maint 00432 * @brief Layout storage. 00433 * @param num_elements The count of T's for which to allocate space 00434 * at first. 00435 * @return Nothing. 00436 * 00437 * The initial underlying memory layout is a bit complicated... 00438 * @endif 00439 */ 00440 template<typename _Tp, typename _Alloc> 00441 void 00442 _Deque_base<_Tp,_Alloc>::_M_initialize_map(size_t __num_elements) 00443 { 00444 size_t __num_nodes = __num_elements / __deque_buf_size(sizeof(_Tp)) + 1; 00445 00446 this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size, 00447 __num_nodes + 2); 00448 this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size); 00449 00450 // For "small" maps (needing less than _M_map_size nodes), allocation 00451 // starts in the middle elements and grows outwards. So nstart may be 00452 // the beginning of _M_map, but for small maps it may be as far in as 00453 // _M_map+3. 00454 00455 _Tp** __nstart = this->_M_impl._M_map + (this->_M_impl._M_map_size - __num_nodes) / 2; 00456 _Tp** __nfinish = __nstart + __num_nodes; 00457 00458 try 00459 { _M_create_nodes(__nstart, __nfinish); } 00460 catch(...) 00461 { 00462 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size); 00463 this->_M_impl._M_map = 0; 00464 this->_M_impl._M_map_size = 0; 00465 __throw_exception_again; 00466 } 00467 00468 this->_M_impl._M_start._M_set_node(__nstart); 00469 this->_M_impl._M_finish._M_set_node(__nfinish - 1); 00470 this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first; 00471 this->_M_impl._M_finish._M_cur = this->_M_impl._M_finish._M_first + __num_elements 00472 % __deque_buf_size(sizeof(_Tp)); 00473 } 00474 00475 template<typename _Tp, typename _Alloc> 00476 void 00477 _Deque_base<_Tp,_Alloc>::_M_create_nodes(_Tp** __nstart, _Tp** __nfinish) 00478 { 00479 _Tp** __cur; 00480 try 00481 { 00482 for (__cur = __nstart; __cur < __nfinish; ++__cur) 00483 *__cur = this->_M_allocate_node(); 00484 } 00485 catch(...) 00486 { 00487 _M_destroy_nodes(__nstart, __cur); 00488 __throw_exception_again; 00489 } 00490 } 00491 00492 template<typename _Tp, typename _Alloc> 00493 void 00494 _Deque_base<_Tp,_Alloc>::_M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish) 00495 { 00496 for (_Tp** __n = __nstart; __n < __nfinish; ++__n) 00497 _M_deallocate_node(*__n); 00498 } 00499 00500 /** 00501 * @brief A standard container using fixed-size memory allocation and 00502 * constant-time manipulation of elements at either end. 00503 * 00504 * @ingroup Containers 00505 * @ingroup Sequences 00506 * 00507 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00508 * <a href="tables.html#66">reversible container</a>, and a 00509 * <a href="tables.html#67">sequence</a>, including the 00510 * <a href="tables.html#68">optional sequence requirements</a>. 00511 * 00512 * In previous HP/SGI versions of deque, there was an extra template 00513 * parameter so users could control the node size. This extension turned 00514 * out to violate the C++ standard (it can be detected using template 00515 * template parameters), and it was removed. 00516 * 00517 * @if maint 00518 * Here's how a deque<Tp> manages memory. Each deque has 4 members: 00519 * 00520 * - Tp** _M_map 00521 * - size_t _M_map_size 00522 * - iterator _M_start, _M_finish 00523 * 00524 * map_size is at least 8. %map is an array of map_size pointers-to-"nodes". 00525 * (The name %map has nothing to do with the std::map class, and "nodes" 00526 * should not be confused with std::list's usage of "node".) 00527 * 00528 * A "node" has no specific type name as such, but it is referred to as 00529 * "node" in this file. It is a simple array-of-Tp. If Tp is very large, 00530 * there will be one Tp element per node (i.e., an "array" of one). 00531 * For non-huge Tp's, node size is inversely related to Tp size: the 00532 * larger the Tp, the fewer Tp's will fit in a node. The goal here is to 00533 * keep the total size of a node relatively small and constant over different 00534 * Tp's, to improve allocator efficiency. 00535 * 00536 * **** As I write this, the nodes are /not/ allocated using the high-speed 00537 * memory pool. There are 20 hours left in the year; perhaps I can fix 00538 * this before 2002. 00539 * 00540 * Not every pointer in the %map array will point to a node. If the initial 00541 * number of elements in the deque is small, the /middle/ %map pointers will 00542 * be valid, and the ones at the edges will be unused. This same situation 00543 * will arise as the %map grows: available %map pointers, if any, will be on 00544 * the ends. As new nodes are created, only a subset of the %map's pointers 00545 * need to be copied "outward". 00546 * 00547 * Class invariants: 00548 * - For any nonsingular iterator i: 00549 * - i.node points to a member of the %map array. (Yes, you read that 00550 * correctly: i.node does not actually point to a node.) The member of 00551 * the %map array is what actually points to the node. 00552 * - i.first == *(i.node) (This points to the node (first Tp element).) 00553 * - i.last == i.first + node_size 00554 * - i.cur is a pointer in the range [i.first, i.last). NOTE: 00555 * the implication of this is that i.cur is always a dereferenceable 00556 * pointer, even if i is a past-the-end iterator. 00557 * - Start and Finish are always nonsingular iterators. NOTE: this means that 00558 * an empty deque must have one node, a deque with <N elements (where N is 00559 * the node buffer size) must have one node, a deque with N through (2N-1) 00560 * elements must have two nodes, etc. 00561 * - For every node other than start.node and finish.node, every element in 00562 * the node is an initialized object. If start.node == finish.node, then 00563 * [start.cur, finish.cur) are initialized objects, and the elements outside 00564 * that range are uninitialized storage. Otherwise, [start.cur, start.last) 00565 * and [finish.first, finish.cur) are initialized objects, and [start.first, 00566 * start.cur) and [finish.cur, finish.last) are uninitialized storage. 00567 * - [%map, %map + map_size) is a valid, non-empty range. 00568 * - [start.node, finish.node] is a valid range contained within 00569 * [%map, %map + map_size). 00570 * - A pointer in the range [%map, %map + map_size) points to an allocated 00571 * node if and only if the pointer is in the range 00572 * [start.node, finish.node]. 00573 * 00574 * Here's the magic: nothing in deque is "aware" of the discontiguous 00575 * storage! 00576 * 00577 * The memory setup and layout occurs in the parent, _Base, and the iterator 00578 * class is entirely responsible for "leaping" from one node to the next. 00579 * All the implementation routines for deque itself work only through the 00580 * start and finish iterators. This keeps the routines simple and sane, 00581 * and we can use other standard algorithms as well. 00582 * @endif 00583 */ 00584 template<typename _Tp, typename _Alloc = allocator<_Tp> > 00585 class deque : protected _Deque_base<_Tp, _Alloc> 00586 { 00587 // concept requirements 00588 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00589 00590 typedef _Deque_base<_Tp, _Alloc> _Base; 00591 00592 public: 00593 typedef _Tp value_type; 00594 typedef typename _Alloc::pointer pointer; 00595 typedef typename _Alloc::const_pointer const_pointer; 00596 typedef typename _Alloc::reference reference; 00597 typedef typename _Alloc::const_reference const_reference; 00598 typedef typename _Base::iterator iterator; 00599 typedef typename _Base::const_iterator const_iterator; 00600 typedef std::reverse_iterator<const_iterator> const_reverse_iterator; 00601 typedef std::reverse_iterator<iterator> reverse_iterator; 00602 typedef size_t size_type; 00603 typedef ptrdiff_t difference_type; 00604 typedef typename _Base::allocator_type allocator_type; 00605 00606 protected: 00607 typedef pointer* _Map_pointer; 00608 00609 static size_t _S_buffer_size() 00610 { return __deque_buf_size(sizeof(_Tp)); } 00611 00612 // Functions controlling memory layout, and nothing else. 00613 using _Base::_M_initialize_map; 00614 using _Base::_M_create_nodes; 00615 using _Base::_M_destroy_nodes; 00616 using _Base::_M_allocate_node; 00617 using _Base::_M_deallocate_node; 00618 using _Base::_M_allocate_map; 00619 using _Base::_M_deallocate_map; 00620 00621 /** @if maint 00622 * A total of four data members accumulated down the heirarchy. 00623 * May be accessed via _M_impl.* 00624 * @endif 00625 */ 00626 using _Base::_M_impl; 00627 00628 public: 00629 // [23.2.1.1] construct/copy/destroy 00630 // (assign() and get_allocator() are also listed in this section) 00631 /** 00632 * @brief Default constructor creates no elements. 00633 */ 00634 explicit 00635 deque(const allocator_type& __a = allocator_type()) 00636 : _Base(__a, 0) {} 00637 00638 /** 00639 * @brief Create a %deque with copies of an exemplar element. 00640 * @param n The number of elements to initially create. 00641 * @param value An element to copy. 00642 * 00643 * This constructor fills the %deque with @a n copies of @a value. 00644 */ 00645 deque(size_type __n, const value_type& __value, 00646 const allocator_type& __a = allocator_type()) 00647 : _Base(__a, __n) 00648 { _M_fill_initialize(__value); } 00649 00650 /** 00651 * @brief Create a %deque with default elements. 00652 * @param n The number of elements to initially create. 00653 * 00654 * This constructor fills the %deque with @a n copies of a 00655 * default-constructed element. 00656 */ 00657 explicit 00658 deque(size_type __n) 00659 : _Base(allocator_type(), __n) 00660 { _M_fill_initialize(value_type()); } 00661 00662 /** 00663 * @brief %Deque copy constructor. 00664 * @param x A %deque of identical element and allocator types. 00665 * 00666 * The newly-created %deque uses a copy of the allocation object used 00667 * by @a x. 00668 */ 00669 deque(const deque& __x) 00670 : _Base(__x.get_allocator(), __x.size()) 00671 { std::uninitialized_copy(__x.begin(), __x.end(), this->_M_impl._M_start); } 00672 00673 /** 00674 * @brief Builds a %deque from a range. 00675 * @param first An input iterator. 00676 * @param last An input iterator. 00677 * 00678 * Create a %deque consisting of copies of the elements from [first, 00679 * last). 00680 * 00681 * If the iterators are forward, bidirectional, or random-access, then 00682 * this will call the elements' copy constructor N times (where N is 00683 * distance(first,last)) and do no memory reallocation. But if only 00684 * input iterators are used, then this will do at most 2N calls to the 00685 * copy constructor, and logN memory reallocations. 00686 */ 00687 template<typename _InputIterator> 00688 deque(_InputIterator __first, _InputIterator __last, 00689 const allocator_type& __a = allocator_type()) 00690 : _Base(__a) 00691 { 00692 // Check whether it's an integral type. If so, it's not an iterator. 00693 typedef typename _Is_integer<_InputIterator>::_Integral _Integral; 00694 _M_initialize_dispatch(__first, __last, _Integral()); 00695 } 00696 00697 /** 00698 * The dtor only erases the elements, and note that if the elements 00699 * themselves are pointers, the pointed-to memory is not touched in any 00700 * way. Managing the pointer is the user's responsibilty. 00701 */ 00702 ~deque() 00703 { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish); } 00704 00705 /** 00706 * @brief %Deque assignment operator. 00707 * @param x A %deque of identical element and allocator types. 00708 * 00709 * All the elements of @a x are copied, but unlike the copy constructor, 00710 * the allocator object is not copied. 00711 */ 00712 deque& 00713 operator=(const deque& __x); 00714 00715 /** 00716 * @brief Assigns a given value to a %deque. 00717 * @param n Number of elements to be assigned. 00718 * @param val Value to be assigned. 00719 * 00720 * This function fills a %deque with @a n copies of the given value. 00721 * Note that the assignment completely changes the %deque and that the 00722 * resulting %deque's size is the same as the number of elements assigned. 00723 * Old data may be lost. 00724 */ 00725 void 00726 assign(size_type __n, const value_type& __val) 00727 { _M_fill_assign(__n, __val); } 00728 00729 /** 00730 * @brief Assigns a range to a %deque. 00731 * @param first An input iterator. 00732 * @param last An input iterator. 00733 * 00734 * This function fills a %deque with copies of the elements in the 00735 * range [first,last). 00736 * 00737 * Note that the assignment completely changes the %deque and that the 00738 * resulting %deque's size is the same as the number of elements 00739 * assigned. Old data may be lost. 00740 */ 00741 template<typename _InputIterator> 00742 void 00743 assign(_InputIterator __first, _InputIterator __last) 00744 { 00745 typedef typename _Is_integer<_InputIterator>::_Integral _Integral; 00746 _M_assign_dispatch(__first, __last, _Integral()); 00747 } 00748 00749 /// Get a copy of the memory allocation object. 00750 allocator_type 00751 get_allocator() const 00752 { return _Base::get_allocator(); } 00753 00754 // iterators 00755 /** 00756 * Returns a read/write iterator that points to the first element in the 00757 * %deque. Iteration is done in ordinary element order. 00758 */ 00759 iterator 00760 begin() 00761 { return this->_M_impl._M_start; } 00762 00763 /** 00764 * Returns a read-only (constant) iterator that points to the first 00765 * element in the %deque. Iteration is done in ordinary element order. 00766 */ 00767 const_iterator 00768 begin() const 00769 { return this->_M_impl._M_start; } 00770 00771 /** 00772 * Returns a read/write iterator that points one past the last element in 00773 * the %deque. Iteration is done in ordinary element order. 00774 */ 00775 iterator 00776 end() 00777 { return this->_M_impl._M_finish; } 00778 00779 /** 00780 * Returns a read-only (constant) iterator that points one past the last 00781 * element in the %deque. Iteration is done in ordinary element order. 00782 */ 00783 const_iterator 00784 end() const 00785 { return this->_M_impl._M_finish; } 00786 00787 /** 00788 * Returns a read/write reverse iterator that points to the last element 00789 * in the %deque. Iteration is done in reverse element order. 00790 */ 00791 reverse_iterator 00792 rbegin() 00793 { return reverse_iterator(this->_M_impl._M_finish); } 00794 00795 /** 00796 * Returns a read-only (constant) reverse iterator that points to the 00797 * last element in the %deque. Iteration is done in reverse element 00798 * order. 00799 */ 00800 const_reverse_iterator 00801 rbegin() const 00802 { return const_reverse_iterator(this->_M_impl._M_finish); } 00803 00804 /** 00805 * Returns a read/write reverse iterator that points to one before the 00806 * first element in the %deque. Iteration is done in reverse element 00807 * order. 00808 */ 00809 reverse_iterator 00810 rend() { return reverse_iterator(this->_M_impl._M_start); } 00811 00812 /** 00813 * Returns a read-only (constant) reverse iterator that points to one 00814 * before the first element in the %deque. Iteration is done in reverse 00815 * element order. 00816 */ 00817 const_reverse_iterator 00818 rend() const 00819 { return const_reverse_iterator(this->_M_impl._M_start); } 00820 00821 // [23.2.1.2] capacity 00822 /** Returns the number of elements in the %deque. */ 00823 size_type 00824 size() const 00825 { return this->_M_impl._M_finish - this->_M_impl._M_start; } 00826 00827 /** Returns the size() of the largest possible %deque. */ 00828 size_type 00829 max_size() const 00830 { return size_type(-1); } 00831 00832 /** 00833 * @brief Resizes the %deque to the specified number of elements. 00834 * @param new_size Number of elements the %deque should contain. 00835 * @param x Data with which new elements should be populated. 00836 * 00837 * This function will %resize the %deque to the specified number of 00838 * elements. If the number is smaller than the %deque's current size the 00839 * %deque is truncated, otherwise the %deque is extended and new elements 00840 * are populated with given data. 00841 */ 00842 void 00843 resize(size_type __new_size, const value_type& __x) 00844 { 00845 const size_type __len = size(); 00846 if (__new_size < __len) 00847 erase(this->_M_impl._M_start + __new_size, this->_M_impl._M_finish); 00848 else 00849 insert(this->_M_impl._M_finish, __new_size - __len, __x); 00850 } 00851 00852 /** 00853 * @brief Resizes the %deque to the specified number of elements. 00854 * @param new_size Number of elements the %deque should contain. 00855 * 00856 * This function will resize the %deque to the specified number of 00857 * elements. If the number is smaller than the %deque's current size the 00858 * %deque is truncated, otherwise the %deque is extended and new elements 00859 * are default-constructed. 00860 */ 00861 void 00862 resize(size_type new_size) 00863 { resize(new_size, value_type()); } 00864 00865 /** 00866 * Returns true if the %deque is empty. (Thus begin() would equal end().) 00867 */ 00868 bool 00869 empty() const 00870 { return this->_M_impl._M_finish == this->_M_impl._M_start; } 00871 00872 // element access 00873 /** 00874 * @brief Subscript access to the data contained in the %deque. 00875 * @param n The index of the element for which data should be accessed. 00876 * @return Read/write reference to data. 00877 * 00878 * This operator allows for easy, array-style, data access. 00879 * Note that data access with this operator is unchecked and out_of_range 00880 * lookups are not defined. (For checked lookups see at().) 00881 */ 00882 reference 00883 operator[](size_type __n) 00884 { return this->_M_impl._M_start[difference_type(__n)]; } 00885 00886 /** 00887 * @brief Subscript access to the data contained in the %deque. 00888 * @param n The index of the element for which data should be accessed. 00889 * @return Read-only (constant) reference to data. 00890 * 00891 * This operator allows for easy, array-style, data access. 00892 * Note that data access with this operator is unchecked and out_of_range 00893 * lookups are not defined. (For checked lookups see at().) 00894 */ 00895 const_reference 00896 operator[](size_type __n) const 00897 { return this->_M_impl._M_start[difference_type(__n)]; } 00898 00899 protected: 00900 /// @if maint Safety check used only from at(). @endif 00901 void 00902 _M_range_check(size_type __n) const 00903 { 00904 if (__n >= this->size()) 00905 __throw_out_of_range(__N("deque::_M_range_check")); 00906 } 00907 00908 public: 00909 /** 00910 * @brief Provides access to the data contained in the %deque. 00911 * @param n The index of the element for which data should be accessed. 00912 * @return Read/write reference to data. 00913 * @throw std::out_of_range If @a n is an invalid index. 00914 * 00915 * This function provides for safer data access. The parameter is first 00916 * checked that it is in the range of the deque. The function throws 00917 * out_of_range if the check fails. 00918 */ 00919 reference 00920 at(size_type __n) 00921 { _M_range_check(__n); return (*this)[__n]; } 00922 00923 /** 00924 * @brief Provides access to the data contained in the %deque. 00925 * @param n The index of the element for which data should be accessed. 00926 * @return Read-only (constant) reference to data. 00927 * @throw std::out_of_range If @a n is an invalid index. 00928 * 00929 * This function provides for safer data access. The parameter is first 00930 * checked that it is in the range of the deque. The function throws 00931 * out_of_range if the check fails. 00932 */ 00933 const_reference 00934 at(size_type __n) const 00935 { 00936 _M_range_check(__n); 00937 return (*this)[__n]; 00938 } 00939 00940 /** 00941 * Returns a read/write reference to the data at the first element of the 00942 * %deque. 00943 */ 00944 reference 00945 front() 00946 { return *this->_M_impl._M_start; } 00947 00948 /** 00949 * Returns a read-only (constant) reference to the data at the first 00950 * element of the %deque. 00951 */ 00952 const_reference 00953 front() const 00954 { return *this->_M_impl._M_start; } 00955 00956 /** 00957 * Returns a read/write reference to the data at the last element of the 00958 * %deque. 00959 */ 00960 reference 00961 back() 00962 { 00963 iterator __tmp = this->_M_impl._M_finish; 00964 --__tmp; 00965 return *__tmp; 00966 } 00967 00968 /** 00969 * Returns a read-only (constant) reference to the data at the last 00970 * element of the %deque. 00971 */ 00972 const_reference 00973 back() const 00974 { 00975 const_iterator __tmp = this->_M_impl._M_finish; 00976 --__tmp; 00977 return *__tmp; 00978 } 00979 00980 // [23.2.1.2] modifiers 00981 /** 00982 * @brief Add data to the front of the %deque. 00983 * @param x Data to be added. 00984 * 00985 * This is a typical stack operation. The function creates an element at 00986 * the front of the %deque and assigns the given data to it. Due to the 00987 * nature of a %deque this operation can be done in constant time. 00988 */ 00989 void 00990 push_front(const value_type& __x) 00991 { 00992 if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first) 00993 { 00994 std::_Construct(this->_M_impl._M_start._M_cur - 1, __x); 00995 --this->_M_impl._M_start._M_cur; 00996 } 00997 else 00998 _M_push_front_aux(__x); 00999 } 01000 01001 /** 01002 * @brief Add data to the end of the %deque. 01003 * @param x Data to be added. 01004 * 01005 * This is a typical stack operation. The function creates an element at 01006 * the end of the %deque and assigns the given data to it. Due to the 01007 * nature of a %deque this operation can be done in constant time. 01008 */ 01009 void 01010 push_back(const value_type& __x) 01011 { 01012 if (this->_M_impl._M_finish._M_cur != this->_M_impl._M_finish._M_last - 1) 01013 { 01014 std::_Construct(this->_M_impl._M_finish._M_cur, __x); 01015 ++this->_M_impl._M_finish._M_cur; 01016 } 01017 else 01018 _M_push_back_aux(__x); 01019 } 01020 01021 /** 01022 * @brief Removes first element. 01023 * 01024 * This is a typical stack operation. It shrinks the %deque by one. 01025 * 01026 * Note that no data is returned, and if the first element's data is 01027 * needed, it should be retrieved before pop_front() is called. 01028 */ 01029 void 01030 pop_front() 01031 { 01032 if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_last - 1) 01033 { 01034 std::_Destroy(this->_M_impl._M_start._M_cur); 01035 ++this->_M_impl._M_start._M_cur; 01036 } 01037 else 01038 _M_pop_front_aux(); 01039 } 01040 01041 /** 01042 * @brief Removes last element. 01043 * 01044 * This is a typical stack operation. It shrinks the %deque by one. 01045 * 01046 * Note that no data is returned, and if the last element's data is 01047 * needed, it should be retrieved before pop_back() is called. 01048 */ 01049 void 01050 pop_back() 01051 { 01052 if (this->_M_impl._M_finish._M_cur != this->_M_impl._M_finish._M_first) 01053 { 01054 --this->_M_impl._M_finish._M_cur; 01055 std::_Destroy(this->_M_impl._M_finish._M_cur); 01056 } 01057 else 01058 _M_pop_back_aux(); 01059 } 01060 01061 /** 01062 * @brief Inserts given value into %deque before specified iterator. 01063 * @param position An iterator into the %deque. 01064 * @param x Data to be inserted. 01065 * @return An iterator that points to the inserted data. 01066 * 01067 * This function will insert a copy of the given value before the 01068 * specified location. 01069 */ 01070 iterator 01071 insert(iterator position, const value_type& __x); 01072 01073 /** 01074 * @brief Inserts a number of copies of given data into the %deque. 01075 * @param position An iterator into the %deque. 01076 * @param n Number of elements to be inserted. 01077 * @param x Data to be inserted. 01078 * 01079 * This function will insert a specified number of copies of the given 01080 * data before the location specified by @a position. 01081 */ 01082 void 01083 insert(iterator __position, size_type __n, const value_type& __x) 01084 { _M_fill_insert(__position, __n, __x); } 01085 01086 /** 01087 * @brief Inserts a range into the %deque. 01088 * @param position An iterator into the %deque. 01089 * @param first An input iterator. 01090 * @param last An input iterator. 01091 * 01092 * This function will insert copies of the data in the range [first,last) 01093 * into the %deque before the location specified by @a pos. This is 01094 * known as "range insert." 01095 */ 01096 template<typename _InputIterator> 01097 void 01098 insert(iterator __position, _InputIterator __first, 01099 _InputIterator __last) 01100 { 01101 // Check whether it's an integral type. If so, it's not an iterator. 01102 typedef typename _Is_integer<_InputIterator>::_Integral _Integral; 01103 _M_insert_dispatch(__position, __first, __last, _Integral()); 01104 } 01105 01106 /** 01107 * @brief Remove element at given position. 01108 * @param position Iterator pointing to element to be erased. 01109 * @return An iterator pointing to the next element (or end()). 01110 * 01111 * This function will erase the element at the given position and thus 01112 * shorten the %deque by one. 01113 * 01114 * The user is cautioned that 01115 * this function only erases the element, and that if the element is 01116 * itself a pointer, the pointed-to memory is not touched in any way. 01117 * Managing the pointer is the user's responsibilty. 01118 */ 01119 iterator 01120 erase(iterator __position); 01121 01122 /** 01123 * @brief Remove a range of elements. 01124 * @param first Iterator pointing to the first element to be erased. 01125 * @param last Iterator pointing to one past the last element to be 01126 * erased. 01127 * @return An iterator pointing to the element pointed to by @a last 01128 * prior to erasing (or end()). 01129 * 01130 * This function will erase the elements in the range [first,last) and 01131 * shorten the %deque accordingly. 01132 * 01133 * The user is cautioned that 01134 * this function only erases the elements, and that if the elements 01135 * themselves are pointers, the pointed-to memory is not touched in any 01136 * way. Managing the pointer is the user's responsibilty. 01137 */ 01138 iterator 01139 erase(iterator __first, iterator __last); 01140 01141 /** 01142 * @brief Swaps data with another %deque. 01143 * @param x A %deque of the same element and allocator types. 01144 * 01145 * This exchanges the elements between two deques in constant time. 01146 * (Four pointers, so it should be quite fast.) 01147 * Note that the global std::swap() function is specialized such that 01148 * std::swap(d1,d2) will feed to this function. 01149 */ 01150 void 01151 swap(deque& __x) 01152 { 01153 std::swap(this->_M_impl._M_start, __x._M_impl._M_start); 01154 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish); 01155 std::swap(this->_M_impl._M_map, __x._M_impl._M_map); 01156 std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size); 01157 } 01158 01159 /** 01160 * Erases all the elements. Note that this function only erases the 01161 * elements, and that if the elements themselves are pointers, the 01162 * pointed-to memory is not touched in any way. Managing the pointer is 01163 * the user's responsibilty. 01164 */ 01165 void clear(); 01166 01167 protected: 01168 // Internal constructor functions follow. 01169 01170 // called by the range constructor to implement [23.1.1]/9 01171 template<typename _Integer> 01172 void 01173 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) 01174 { 01175 _M_initialize_map(__n); 01176 _M_fill_initialize(__x); 01177 } 01178 01179 // called by the range constructor to implement [23.1.1]/9 01180 template<typename _InputIterator> 01181 void 01182 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, 01183 __false_type) 01184 { 01185 typedef typename iterator_traits<_InputIterator>::iterator_category 01186 _IterCategory; 01187 _M_range_initialize(__first, __last, _IterCategory()); 01188 } 01189 01190 // called by the second initialize_dispatch above 01191 //@{ 01192 /** 01193 * @if maint 01194 * @brief Fills the deque with whatever is in [first,last). 01195 * @param first An input iterator. 01196 * @param last An input iterator. 01197 * @return Nothing. 01198 * 01199 * If the iterators are actually forward iterators (or better), then the 01200 * memory layout can be done all at once. Else we move forward using 01201 * push_back on each value from the iterator. 01202 * @endif 01203 */ 01204 template<typename _InputIterator> 01205 void 01206 _M_range_initialize(_InputIterator __first, _InputIterator __last, 01207 input_iterator_tag); 01208 01209 // called by the second initialize_dispatch above 01210 template<typename _ForwardIterator> 01211 void 01212 _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last, 01213 forward_iterator_tag); 01214 //@} 01215 01216 /** 01217 * @if maint 01218 * @brief Fills the %deque with copies of value. 01219 * @param value Initial value. 01220 * @return Nothing. 01221 * @pre _M_start and _M_finish have already been initialized, but none of 01222 * the %deque's elements have yet been constructed. 01223 * 01224 * This function is called only when the user provides an explicit size 01225 * (with or without an explicit exemplar value). 01226 * @endif 01227 */ 01228 void 01229 _M_fill_initialize(const value_type& __value); 01230 01231 // Internal assign functions follow. The *_aux functions do the actual 01232 // assignment work for the range versions. 01233 01234 // called by the range assign to implement [23.1.1]/9 01235 template<typename _Integer> 01236 void 01237 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) 01238 { 01239 _M_fill_assign(static_cast<size_type>(__n), 01240 static_cast<value_type>(__val)); 01241 } 01242 01243 // called by the range assign to implement [23.1.1]/9 01244 template<typename _InputIterator> 01245 void 01246 _M_assign_dispatch(_InputIterator __first, _InputIterator __last, 01247 __false_type) 01248 { 01249 typedef typename iterator_traits<_InputIterator>::iterator_category 01250 _IterCategory; 01251 _M_assign_aux(__first, __last, _IterCategory()); 01252 } 01253 01254 // called by the second assign_dispatch above 01255 template<typename _InputIterator> 01256 void 01257 _M_assign_aux(_InputIterator __first, _InputIterator __last, 01258 input_iterator_tag); 01259 01260 // called by the second assign_dispatch above 01261 template<typename _ForwardIterator> 01262 void 01263 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, 01264 forward_iterator_tag) 01265 { 01266 const size_type __len = std::distance(__first, __last); 01267 if (__len > size()) 01268 { 01269 _ForwardIterator __mid = __first; 01270 std::advance(__mid, size()); 01271 std::copy(__first, __mid, begin()); 01272 insert(end(), __mid, __last); 01273 } 01274 else 01275 erase(std::copy(__first, __last, begin()), end()); 01276 } 01277 01278 // Called by assign(n,t), and the range assign when it turns out to be the 01279 // same thing. 01280 void 01281 _M_fill_assign(size_type __n, const value_type& __val) 01282 { 01283 if (__n > size()) 01284 { 01285 std::fill(begin(), end(), __val); 01286 insert(end(), __n - size(), __val); 01287 } 01288 else 01289 { 01290 erase(begin() + __n, end()); 01291 std::fill(begin(), end(), __val); 01292 } 01293 } 01294 01295 //@{ 01296 /** 01297 * @if maint 01298 * @brief Helper functions for push_* and pop_*. 01299 * @endif 01300 */ 01301 void _M_push_back_aux(const value_type&); 01302 void _M_push_front_aux(const value_type&); 01303 void _M_pop_back_aux(); 01304 void _M_pop_front_aux(); 01305 //@} 01306 01307 // Internal insert functions follow. The *_aux functions do the actual 01308 // insertion work when all shortcuts fail. 01309 01310 // called by the range insert to implement [23.1.1]/9 01311 template<typename _Integer> 01312 void 01313 _M_insert_dispatch(iterator __pos, 01314 _Integer __n, _Integer __x, __true_type) 01315 { 01316 _M_fill_insert(__pos, static_cast<size_type>(__n), 01317 static_cast<value_type>(__x)); 01318 } 01319 01320 // called by the range insert to implement [23.1.1]/9 01321 template<typename _InputIterator> 01322 void 01323 _M_insert_dispatch(iterator __pos, 01324 _InputIterator __first, _InputIterator __last, 01325 __false_type) 01326 { 01327 typedef typename iterator_traits<_InputIterator>::iterator_category 01328 _IterCategory; 01329 _M_range_insert_aux(__pos, __first, __last, _IterCategory()); 01330 } 01331 01332 // called by the second insert_dispatch above 01333 template<typename _InputIterator> 01334 void 01335 _M_range_insert_aux(iterator __pos, _InputIterator __first, 01336 _InputIterator __last, input_iterator_tag); 01337 01338 // called by the second insert_dispatch above 01339 template<typename _ForwardIterator> 01340 void 01341 _M_range_insert_aux(iterator __pos, _ForwardIterator __first, 01342 _ForwardIterator __last, forward_iterator_tag); 01343 01344 // Called by insert(p,n,x), and the range insert when it turns out to be 01345 // the same thing. Can use fill functions in optimal situations, 01346 // otherwise passes off to insert_aux(p,n,x). 01347 void 01348 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x); 01349 01350 // called by insert(p,x) 01351 iterator 01352 _M_insert_aux(iterator __pos, const value_type& __x); 01353 01354 // called by insert(p,n,x) via fill_insert 01355 void 01356 _M_insert_aux(iterator __pos, size_type __n, const value_type& __x); 01357 01358 // called by range_insert_aux for forward iterators 01359 template<typename _ForwardIterator> 01360 void 01361 _M_insert_aux(iterator __pos, 01362 _ForwardIterator __first, _ForwardIterator __last, 01363 size_type __n); 01364 01365 //@{ 01366 /** 01367 * @if maint 01368 * @brief Memory-handling helpers for the previous internal insert 01369 * functions. 01370 * @endif 01371 */ 01372 iterator 01373 _M_reserve_elements_at_front(size_type __n) 01374 { 01375 const size_type __vacancies = this->_M_impl._M_start._M_cur 01376 - this->_M_impl._M_start._M_first; 01377 if (__n > __vacancies) 01378 _M_new_elements_at_front(__n - __vacancies); 01379 return this->_M_impl._M_start - difference_type(__n); 01380 } 01381 01382 iterator 01383 _M_reserve_elements_at_back(size_type __n) 01384 { 01385 const size_type __vacancies = (this->_M_impl._M_finish._M_last 01386 - this->_M_impl._M_finish._M_cur) - 1; 01387 if (__n > __vacancies) 01388 _M_new_elements_at_back(__n - __vacancies); 01389 return this->_M_impl._M_finish + difference_type(__n); 01390 } 01391 01392 void 01393 _M_new_elements_at_front(size_type __new_elements); 01394 01395 void 01396 _M_new_elements_at_back(size_type __new_elements); 01397 //@} 01398 01399 01400 //@{ 01401 /** 01402 * @if maint 01403 * @brief Memory-handling helpers for the major %map. 01404 * 01405 * Makes sure the _M_map has space for new nodes. Does not actually add 01406 * the nodes. Can invalidate _M_map pointers. (And consequently, %deque 01407 * iterators.) 01408 * @endif 01409 */ 01410 void 01411 _M_reserve_map_at_back (size_type __nodes_to_add = 1) 01412 { 01413 if (__nodes_to_add + 1 > this->_M_impl._M_map_size 01414 - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map)) 01415 _M_reallocate_map(__nodes_to_add, false); 01416 } 01417 01418 void 01419 _M_reserve_map_at_front (size_type __nodes_to_add = 1) 01420 { 01421 if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node - this->_M_impl._M_map)) 01422 _M_reallocate_map(__nodes_to_add, true); 01423 } 01424 01425 void 01426 _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front); 01427 //@} 01428 }; 01429 01430 01431 /** 01432 * @brief Deque equality comparison. 01433 * @param x A %deque. 01434 * @param y A %deque of the same type as @a x. 01435 * @return True iff the size and elements of the deques are equal. 01436 * 01437 * This is an equivalence relation. It is linear in the size of the 01438 * deques. Deques are considered equivalent if their sizes are equal, 01439 * and if corresponding elements compare equal. 01440 */ 01441 template<typename _Tp, typename _Alloc> 01442 inline bool 01443 operator==(const deque<_Tp, _Alloc>& __x, 01444 const deque<_Tp, _Alloc>& __y) 01445 { return __x.size() == __y.size() 01446 && std::equal(__x.begin(), __x.end(), __y.begin()); } 01447 01448 /** 01449 * @brief Deque ordering relation. 01450 * @param x A %deque. 01451 * @param y A %deque of the same type as @a x. 01452 * @return True iff @a x is lexicographically less than @a y. 01453 * 01454 * This is a total ordering relation. It is linear in the size of the 01455 * deques. The elements must be comparable with @c <. 01456 * 01457 * See std::lexicographical_compare() for how the determination is made. 01458 */ 01459 template<typename _Tp, typename _Alloc> 01460 inline bool 01461 operator<(const deque<_Tp, _Alloc>& __x, 01462 const deque<_Tp, _Alloc>& __y) 01463 { return lexicographical_compare(__x.begin(), __x.end(), 01464 __y.begin(), __y.end()); } 01465 01466 /// Based on operator== 01467 template<typename _Tp, typename _Alloc> 01468 inline bool 01469 operator!=(const deque<_Tp, _Alloc>& __x, 01470 const deque<_Tp, _Alloc>& __y) 01471 { return !(__x == __y); } 01472 01473 /// Based on operator< 01474 template<typename _Tp, typename _Alloc> 01475 inline bool 01476 operator>(const deque<_Tp, _Alloc>& __x, 01477 const deque<_Tp, _Alloc>& __y) 01478 { return __y < __x; } 01479 01480 /// Based on operator< 01481 template<typename _Tp, typename _Alloc> 01482 inline bool 01483 operator<=(const deque<_Tp, _Alloc>& __x, 01484 const deque<_Tp, _Alloc>& __y) 01485 { return !(__y < __x); } 01486 01487 /// Based on operator< 01488 template<typename _Tp, typename _Alloc> 01489 inline bool 01490 operator>=(const deque<_Tp, _Alloc>& __x, 01491 const deque<_Tp, _Alloc>& __y) 01492 { return !(__x < __y); } 01493 01494 /// See std::deque::swap(). 01495 template<typename _Tp, typename _Alloc> 01496 inline void 01497 swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y) 01498 { __x.swap(__y); } 01499 } // namespace std 01500 01501 #endif /* _DEQUE_H */

Generated on Tue Sep 7 10:05:17 2004 for libstdc++-v3 Source by doxygen 1.3.8