
GAPRelease 4.4.218 March 2004
Extending GAP

The GAP Grouphttp://www.gap-system.org

Acknowledgement
We would like to thank the many people who have made contributions ofvarious kinds to the development of GAP since 1986, in particular:Isabel M. Ara�ujo, Robert Arthur, Hans Ulrich Besche, Thomas Bischops,Oliver Bonten, Thomas Breuer, Frank Celler, Gene Cooperman, Bettina Eick,Volkmar Felsch, Franz G�ahler, Greg Gamble, Willem de Graaf,Burkhard H�o
ing, Jens Hollmann, Derek Holt, Erzs�ebet Horv�ath,Alexander Hulpke, Ansgar Kaup, Susanne Keitemeier, Steve Linton,Frank L�ubeck, Bohdan Majewski, Johannes Meier, Thomas Merkwitz,Wolfgang Merkwitz, J�urgen Mnich, Robert F. Morse, Scott Murray,Joachim Neub�user, Max Neunh�o�er, Werner Nickel,Alice Niemeyer, Dima Pasechnik, G�otz Pfei�er, Udo Polis,Ferenc R�ak�oczi, Sarah Rees, Edmund Robertson, Ute Schi�er,Martin Sch�onert, �Akos Seress, Andrew Solomon,Heiko Thei�en, Rob Wainwright, Alex Wegner, Chris Wensley and Charles Wright.
The following list gives the authors, indicated by A, who designed the code in the �rst place as well as thecurrent maintainers, indicated by M of the various modules of which GAP is composed.Since the process of modularization was started only recently, there might be omissions both in scope andin contributors. The compilers of the manual apologize for any such errors and promise to rectify them infuture editions.Kernel Frank Celler (A), Steve Linton (AM), Frank L�ubeck (AM), Werner Nickel (AM), Martin Sch�onert (A)Automorphism groups of �nite pc groupsBettina Eick (AM)Binary RelationsRobert Morse (AM), Andrew Solomon (A)Characters and Character Degrees of certain solvable groupsHans Ulrich Besche (A), Thomas Breuer (AM)Classes in nonsolvable groupsAlexander Hulpke (AM)Classical GroupsThomas Breuer (AM), Frank Celler (A), Stefan Kohl (AM), Frank L�ubeck (AM), Heiko Thei�en (A)

4 AcknowledgementCongruences of magmas, semigroups and monoidsRobert Morse (AM), Andrew Solomon (A)Cosets and Double CosetsAlexander Hulpke (AM)CyclotomicsThomas Breuer (AM)Dixon-Schneider AlgorithmAlexander Hulpke (AM)Documentation UtilitiesFrank Celler (A), Heiko Thei�en (A), Alexander Hulpke (A), Willem de Graaf (A), Steve Linton (A),Werner Nickel (A), Greg Gamble (AM)Factor groupsAlexander Hulpke (AM)Finitely presented groupsVolkmar Felsch (AM), Alexander Hulpke (AM), Martin Schoenert (A)Finitely presented monoids and semigroupsIsabel Ara�ujo (AM), Derek Holt (A), Alexander Hulpke (A), G�otz Pfei�er (A), Andrew Solomon (AM)GAP for MacOSBurkhard H�o
ing (AM)Group actionsHeiko Thei�en (A) and Alexander Hulpke (AM)Homomorphism searchAlexander Hulpke (AM)Homomorphisms for �nitely presented groupsAlexander Hulpke (AM)Identi�cation of Galois groupsAlexander Hulpke (AM)Intersection of subgroups of �nite pc groupsFrank Celler (A), Bettina Eick (AM)Irreducible Modules over �nite �elds for �nite pc groupsBettina Eick (AM)Isomorphism testing with random methodsHans Ulrich Besche (AM), Bettina Eick (AM)Lie algebrasThomas Breuer (A), Craig Struble (A), Juergen Wisliceny (A), Willem A. de Graaf (AM)Monomiality QuestionsThomas Breuer (AM), Erzs�ebet Horv�ath (A)Multiplier and Schur coverWerner Nickel (AM), Alexander Hulpke (AM)One-Cohomology and ComplementsFrank Celler (A) and Alexander Hulpke (AM)Partition Backtrack algorithmHeiko Thei�en (A), Alexander Hulpke (M)Permutation group composition series�Akos Seress (AM)

Acknowledgement 5Permutation group homomorphisms�Akos Seress (AM), Heiko Thei�en (A), Alexander Hulpke (M)Permutation Group PcgsHeiko Thei�en (A), Alexander Hulpke (M)Possible Permutation CharactersThomas Breuer (AM), G�otz Pfei�er (A)Possible Class Fusions, Possible Power Maps Thomas Breuer (AM)Primitive groups libraryHeiko Thei�en (A), Alexander Hulpke (M)Properties and attributes of �nite pc groupsFrank Celler (A), Bettina Eick (AM)Random Schreier-Sims�Akos Seress (AM)Rational FunctionsFrank Celler (A) and Alexander Hulpke (AM)Semigroup relationsIsabel Araujo (A), Robert F. Morse (AM), Andrew Solomon (A)Special Pcgs for �nite pc groupsBettina Eick (AM)Stabilizer Chains�Akos Seress (AM), Heiko Thei�en (A), Alexander Hulpke (M)Strings and CharactersMartin Sch�onert (A), Frank Celler (A), Thomas Breuer (A), Frank L�ubeck (AM)Subgroup latticeMartin Sch�onert (A), Alexander Hulpke (AM)Subgroup lattice for solvable groupsAlexander Hulpke (AM)Subgroup presentationsVolkmar Felsch (AM)The Help SystemFrank Celler (A), Frank L�ubeck (AM)Tietze transformationsVolkmar Felsch (AM)Transformation semigroupsIsabel Araujo (A), Robert Arthur (A), Robert F. Morse (AM), Andrew Solomon (A)Transitive groups libraryAlexander Hulpke (AM)Two-cohomology and extensions of �nite pc groupsBettina Eick (AM)

Contents
Copyright Notice 91 About: Extending GAP 102 The gapmacro.tex ManualFormat 112.1 The Main File 112.2 Chapters and Sections 152.3 Suppressing Indexing and Labelling of aSection and Resolving Label Clashes 152.4 Labels and References 152.5 TeX Macros 162.6 TeX Macros for Domains 202.7 Examples, Lists, and Verbatim . . 202.8 Tables, Displayed Mathematics andMathematics Alignments 232.9 Testing the Examples 242.10 Usage of the Percent Symbol . . . 242.11 Catering for Plain Text and HTMLFormats 252.12 Umlauts 262.13 Producing a Manual 262.14 Using buildman.pe 273 Library Files 323.1 File Types 323.2 File Structure 323.3 Finding Implementations in the Library 333.4 Undocumented Variables 334 Writing a GAP Package 35

4.1 The Files of a GAP Package . . . 354.2 Writing Documentation 364.3 An Example of a GAP Package . . 364.4 The WWW Homepage of a Package 374.5 The PackageInfo.g File 374.6 Requesting one GAP Package fromwithin Another 374.7 Declaration and Implementation Part 384.8 Standalone Programs in a GAPPackage 384.9 Installation of GAP Package Binaries 384.10 Test for the Existence of GAP PackageBinaries 394.11 Calling of and Communication withExternal Binaries 394.12 Package Completion 404.13 DeclareAutoreadableVariables . . 404.14 Version Numbers 404.15 Wrapping Up a GAP Package . . 415 Interface to the GAP HelpSystem 425.1 Installing a Help Book 425.2 The manual.six File 435.3 The Help Book Handler 435.4 Introducing new Viewer for the OnlineHelp 456 Function-Operation-AttributeTriples 46

Contents 76.1 Key Dependent Operations . . . 466.2 In Parent Attributes 476.3 Operation Functions 487 Weak Pointers 517.1 Weak Pointer Objects 517.2 WeakPointerObj 517.3 Low Level Access Functions for WeakPointer Objects 527.4 Accessing Weak Pointer Objects asLists 537.5 Copying Weak Pointer Objects . . 537.6 The GASMAN Interface for WeakPointer Objects 538 Stabilizer Chains (preliminary) 548.1 Generalized Conjugation Technique 548.2 The General Backtrack Algorithm withOrdered Partitions 558.3 Stabilizer Chains for AutomorphismsActing on Enumerators 61Bibliography 66Index 67

Copyright Notice
Copyright c
 (1987{2004) by the GAP Group,incorporating the Copyright c
 1999, 2000 by School of Mathematical and Computational Sciences, Univer-sity of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotlandbeing the Copyright c
 1992 by Lehrstuhl D f�ur Mathematik, RWTH, 52056 Aachen, Germany, transferredto St Andrews on July 21st, 1997.except for �les in the distribution, which have an explicit di�erent copyright statement. In particular, thecopyright of packages distributed with GAP is usually with the package authors or their institutions.GAP is free software; you can redistribute it and/or modify it under the terms of the GNU General PublicLicense as published by the Free Software Foundation; either version 2 of the License, or (at your option)any later version. For details, see the �le GPL in the etc directory of the GAP distribution or seehttp://www.gnu.org/licenses/gpl.htmlIf you obtain GAP please send us a short notice to that e�ect, e.g., an e-mail message to the addresssupport@gap-system.org, containing your full name and address. This allows us to keep track of thenumber of GAP users.If you publish a mathematical result that was partly obtained using GAP, please cite GAP, just as you wouldcite another paper that you used (see below for sample citation). Also we would appreciate if you couldinform us about such a paper.Speci�cally, please refer to[GAP] The GAP Group, GAP --- Groups, Algorithms, and Programming,Version 4.4.2; 2004(http://www.gap-system.org)GAP is distributed by us without any warranty, to the extent permitted by applicable state law. We distributeGAP as is without warranty of any kind, either expressed or implied, including, but not limited to, the impliedwarranties of merchantability and �tness for a particular purpose.The entire risk as to the quality and performance of the program is with you. Should GAP prove defective,you assume the cost of all necessary servicing, repair or correction.In no case unless required by applicable law will we, and/or any other party who may modify and redistributeGAP as permitted above, be liable to you for damages, including lost pro�ts, lost monies or other special,incidental or consequential damages arising out of the use or inability to use GAP.You are permitted to modify and redistribute GAP, but you are not allowed to restrict further redistribution.That is to say proprietary modi�cations will not be allowed. We want all versions of GAP to remain free.If you modify any part of GAP and redistribute it, you must supply a README document. This shouldspecify what modi�cations you made in which �les. We do not want to take credit or be blamed for yourmodi�cations.Of course we are interested in all of your modi�cations. In particular we would like to see bug-�xes, improve-ments and new functions. So again we would appreciate it if you would inform us about all modi�cationsyou make.

1 About: Extending GAP
This is one of four parts of the GAP documentation, the others being the GAP Tutorial, a beginner'sintroduction to GAP, the GAP Reference Manual, which contains the o�cial de�nitions of GAP, andProgramming in GAP which also provides information for those who want to write their own GAP exten-sions.Extending GAP explains how to create �les and functions that will work together with mechanisms builtin GAP.This manual is divided into chapters. Each chapter is divided into sections, and within each section, impor-tant de�nitions are numbered. References therefore are triples.The �rst chapters of this manual describe how to write documentation, how to interface packages andcomponents, and roughly describes the style used for writing the library. This is followed by chapters thatexplain advanced programming techniques in GAP. Finally there are chapters (alas, at the moment there isonly one due to a lack of manpower) that describe how internal functions work and how to interface onesown code to these internal functions.Pages are numbered consecutively in each of the four manuals. For manual conventions, see Section 1.1 inthe Reference Manual.

2 The gapmacro.texManual Format
The current GAP manual books and most of the GAP 4 package documentation is written in a restrictedTEX format, using a set of macros de�ned in the �le GAPPATH/doc/gapmacro.tex. This chapter describesthis format and how to create the �nal documents (which can be printed or used by GAP's online help) fromit.See 2.5 and 2.7 for details on the restricted set of available TEX commands.The �rst sections 2.1 and 2.2 describe the general layout of the �les in case you need to write your ownpackage documentation.If you are planning to write new documentation for a GAP package you can either use the format describedin this chapter or use an alternative approach. For example some packages have started to use the GAPDocpackage for their documentation, see Chapter \gapdoc:introduction and example" in the GAPDoc manualor typegap> ?GAPDoc:chaptersin GAP's online help for a table of contents, or (if it is not available in your installation) see:http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/If you want to use yet another document format you must provide certain information to the interface ofGAP's online help. This is described in chapter 5.2.1 The Main FileThe main TEX �le is called manual.tex. This �le should contain the following commands:\input ../gapmacro\Package{package-name}\BeginningOfBook{name-of-book}\UseReferences{book1}...\UseReferences{bookn}\TitlePage{title}\Colophon{text}\TableOfContents\FrontMatter\immediate\write\citeout{\bs bibdata{mybibliography}}\Input{�le1}...\Input{�len}\Chapters\Input{�le1}...\Input{�len}

12 Chapter 2. The gapmacro.tex Manual Format\Appendices\Input{�le1}...\Input{�len}\Bibliography\Index\EndOfBookNow we describe what these commands do:\input path/gapmacro.texinputs the GAP \style" and macros �le gapmacro.tex. If you are writing a GAP package either copythis �le or use a relative path. The former method will always work but requires you to keep the �leconsistent with the system while the latter forces users to change the manual.tex �le if they areinstalling a package in a private location. See also Section 9.2 in the Reference Manual.\Package{package-name}de�nes a macro \package-name so that when you type {\package-name} (please include the curlybraces) the text package-name is typeset in the right way for GAP packages, e.g. if you are writinga package MyPackage then you should include the line\Package{MyPackage}in your manual.tex �le and then in your chapter �les use {\MyPackage} when you refer to My-Package by name. There is also the command \package{pkg} when you wish to refer to other GAPpackages; don't confuse the two i.e. \Package{package-name} de�nes a macro \package-name butproduces no text, and \package{pkg} produces pkg set in the font that is right for GAP packages.\BeginningOfBook{name-of-book}starts the book name-of-book . It is used for cross-references, see 2.4. If you are writing a GAP packageuse the name of your package here.\UseReferences{booki}If your manual cross-refers to another manual, \UseReferences can be used to load the labels of theother books in case cross-references occur. booki should be the path of the directory containing thebook whose references you want to load. If you are writing a GAP package and you need to referencethe main GAP manual, use \UseReferences for each book you want to reference. However, as saidabove this requires changes to the manual.tex �le if the package is not installed in the standardlocation.If your manual.tex �le lives in pkg/qwer/doc and you want to use references to the tutorial use\UseReferences{../../../doc/tut}You may also cross-refer to other package manuals and even GapDoc-produced manuals. Just en-sure you get the path to the other manual's directory correct relative to the directory in whichyour manual resides, and if it's a GapDoc-produced manual that you are cross-referring to, use\UseGapDocReferences instead of \UseReferences.\TitlePageproduces a page containing the title. Please see the example.\Colophon\Colophon produces a page following the title that can be used for more explicit author information,acknowledgements, dedications or whatsoever.\TableOfContentsproduces a table of contents in double-column format. For short manuals, the double-column format

Section 1. The Main File 13may be inappropriate; in this case, use \OneColumnTableOfContents instead.\FrontMatterstarts the front matter chapters such as a copyright notice or a preface.The line\immediate\write\citeout{\bs bibdata{mybibliography}}is for users of BibTEX. It will use the �le mybibliography.bib to fetch bibliography information.\Chaptersstarts the chapters of the manual, which are included via \Input. \Input{�lei} inputs the �le�lei.tex, i.e. �lei should be the name of the �le without the .tex extension. For the chapterformat, see Section 2.2.\Appendicesstarts the appendices, i.e. it modi�es the \Chapter command to use uppercase letters to numberchapters.\Bibliographyproduces a bibliography, i.e. it reads and typesets the manual.bbl �le produced by BibTEX.\Index produces an index, i.e. it reads and typesets the manual.ind �le produced by the external manu-alindex program.\EndOfBookFinally \EndOfBook closes the book.ExampleAssume you have a GAP package qwert with two chapters Qwert and Extending Qwert, a copyright notice,a preface, no exercises, then your manual.tex would basically look like:\input ../../../doc/gapmacro % The right path from pkg/qwert/doc\Package{Qwert} % Defines macro {\Qwert}\BeginningOfBook{qwert}\TitlePage{\centerline{\titlefont Qwert}\medskip % Package name\centerline{\titlefont ---}\medskip\centerline{\titlefont A GAP4 Package}\bigskip\bigskip\centerline{\secfont Version 1.0}\medskip% If the package interfaces with an external program ...\centerline{\secfont Based on qwert Standalone Version 3.14}\vfill\centerline{\secfont by}\vfill\centerline{\secfont Q. Mustermensch}\medskip % Author\centerline{Department of Mathematics}\medskip % Affiliation\centerline{University of Erewhon}\medskip\centerline{\secfont email: qmuster@erewhon.uxyz.edu.ut} % Email address\vfill\centerline{\secfont{\Month} \Year}}\TableOfContents\FrontMatter\Input{copyright}\Input{preface}\Chapters\Input{qwert}

14 Chapter 2. The gapmacro.tex Manual Format\Input{extend}\Appendices\Index\EndOfBookOccasionally there will be the need for additional commands over and above those shown above. The onesdescribed below should be the only exceptions.{ There may be other packages that are referred to a lot, so that it's worthwhile to add more \Packagecommands. (There's nothing special about \Package, you can use it to de�ne macros for other packagesbesides the package being documented.){ Besides the macros {\Month} and {\Year}, which typeset the current month (as an English word) andthe year (all four digits), respectively, there are also {\Day} and {\Today} which are mainly intendedfor drafts. {\Day} typesets the day of the month as a number and {\Today} is equivalent to: {\Day}{\Month} {\Year}.{ Sometimes one desires a chapter to be unnumbered in the TEX-produced manuals, e.g. the Tutorialmanual has GAP's Copyright Notice as an unnumbered chapter. To achieve this one inputs the �lecontaining the chapter via TEX's \input command rather than \Input. However, neither the on-linehelp browser nor the HTML converter \sees" such chapters. Thus if it is desired that the on-line helpbrowser and the HTML manuals should also have such chapters, they must be \input" again via the\PseudoInput command (not necessarily in the same manual).{ For chapters that should only appear via the on-line help browser or in the HTML manuals, one may usethe \PseudoInput command. Any \PseudoInput commands should come after all \Input commands;failure to do this will result in di�erent numbering of \Input chapters for TEX-produced and HTMLmanuals. The syntax of this command is as follows:\PseudoInput{�lename}{six-entry}{chaptername}where �lename is the name of the �le containing the chapter without the .tex extension, as for the\Input command, six-entry is the section-index-entry for the chapter (written to the manual.six �le)and chaptername is the actual argument of the \Chapter command that appears at the beginning of�lename.tex. The argument six-entry enables the on-line text browser to reference the chapter by aname other than chaptername. Thus a copyright chapter for the book with name name-of-book mighthave chaptername \Copyright Notice" but six-entry \Copyright", which would enable one to accessthe chapter \Copyright Notice" via ?name-of-book:copyright via the on-line browser. The HTMLconverter adds an index entry for both six-entry and chaptername.NoteUsage of the commands \input and \PseudoInput in the way described above will necessitate special treat-ment of references to such chapters. For such purposes, there is a special variant of the %display environment(see 2.11), e.g. a copyright notice appearing via \input at the beginning of a TEX-produced manual andappearing in the non-TEX manuals { the on-line help browser or HTML manual { via a \PseudoInputcommand as described above, may be referenced via%display{tex}See the copyright notice at the beginning of this book.%display{nontex}%See "Copyright".%enddisplay

Section 4. Labels and References 152.2 Chapters and SectionsThe contents of each chapter must be in its own .tex �le. The command \Chapter{chaptername} startsa new chapter named chaptername; it should constitute the �rst non-comment (and non-blank) line of the�le containing a chapter. A chapter begins with an introduction to the chapter and is followed by sectionscreated with the \Section{secname} command. The strings chaptername and secname are automaticallyavailable as references (see Section 2.4).There must be no further commands on the same line as the \Chapter or \Section line, and theremustbe an empty line after a \Chapter or \Section command. This means that \index commands referring tothe chapter or section can be placed only after this empty line.Finally, the HTML converter requires that each \Section line is preceded by a line starting with at least16 percentage signs (conventionally, one actually types a full line of percentage signs). The HTML converterstops converting a section whenever it hits such a line; therefore do not add lines starting with 16 or more %signs which are not just before a \Section command. Failure to include the line of percentage signs beforea \Section line will cause the converter to crash, due to the discovery of what it sees as two \Sectioncommands within the one section.2.3 Suppressing Indexing and Labelling of a Section and Resolving Label ClashesSometimes one does not wish a section to be indexed. To suppress the indexing of a section, simply add themacro \null after the \Section command, e.g.\Section{section-name}\nulland then section-name will still generate a label (so that you can still refer to it via Section~"section-name"), but section-name will not appear in the index.Occasionally, one has a dedicated section for the description of a single function. If the label generated forthe section coincides with the label for a subsection (generated by a \> command) a multiply de�ned labelresults. In these cases, one would generally rather that the section did not generate a label or an index entry.To suppress the generation of both the label and the index entry of such a section, simply add the macro\nolabel immediately after the \Section command, e.g. for a section dedicated to the function func:\Section{func}\nolabelNote: Labels are generated by converting to lowercase and removing whitespace. So coincidences can occurwhen you might not have expected it. An alternative to index suppression to resolve label clashes is toinclude a sub-label for the function in the \> command (see Section 2.5).2.4 Labels and ReferencesEach \Chapter, \Section and \> command generates a (short) label label , which is extended by name-of-book (the argument of \BeginningOfBook mentioned earlier in Section 2.1), to create a \long label"long-label , and emitted to a �le manual.lab. The construction of long-label is name-of-book:label , wherethe label generated by either of the commands \Chapter or \Section is just its chaptername or secnameargument. For \>, there are a few cases to consider, and we'll consider them in Section 2.5, where we meetthe various forms of the \> command. To see how to resolve problems with label clashes see Section 2.3.A reference to a label any-label (long or short) is made by enclosing any-label in a pair of double quotationmarks: "any-label"; it is replaced by the number of the \Chapter, \Section or \> command that generatedany-label in the �rst place. Generally, one only needs to make references to long labels when referring toother manuals. For references within the same manual, short labels are su�cient, except when the shortlabel itself contains a colon.Example

16 Chapter 2. The gapmacro.tex Manual FormatSince the \BeginningOfBook command for this manual de�nes name-of-book to be ext, the long label forthe current section is ext:Labels and References and so a reference to this section within this manualmight be: Section "Labels and References" (which is typeset as: Section 2.4). From another manual, along label reference is required.Another exampleThe �rst chapter of this manual has the title \About: Extending GAP", which contains a colon. Hence, torefer to that chapter, one must use a long label:Chapter "ext:About: Extending GAP"produces: Chapter 1.NoteIn actual fact long labels are �rst sanitised by conversion to lower case and removal of super
uous whitespace (multiple blanks and new lines are converted to a single space). The same sanitisation process isapplied to references. Thus,Chapter "ext:about: extendingGap"also produces: Chapter 1. So, don't worry about references to labels being broken over lines and think ofthem as being case-insensitive, except that the HTML converter requires that one respects case for thename-of-book component of a long label.2.5 TeX MacrosAs the manual pages are also used as on-line help, and are automatically converted to HTML, the useof special TEX commands should be avoided. The following macros can be used to structure the text, thementioned fonts are used when printing the manual, however the on-line help and HTML are free to use otherfonts or even colour. Since, the plain text on-line help, doesn't have special fonts, it leaves in much of themarkup, including the left and right quotes that surround something intended to be displayed in typewritertype, the angle brackets that surround something intended to appear in italics, and the dollar-signs enclosingmathematics; you will need to keep that in mind when reading the following section.`text' sets text in typewriter style. This is typically used to denote GAP keywords such as for andfalse or variables that are not arguments to a function, e.g., `for' produces for. See also <text>.Use \< to get a \less than" sign.``text''encloses text in double quotes, e.g., ``double-quoted text'' produces \double-quoted text". Inparticular, ``text'' does not set `text' in typewriter style; use `{`text'}' to produce `text'.Double quotes are mainly used to mark a phrase which will be de�ned later or is used in anuncommon way.\lq sets a single left quote: `. For a phrase text that is to be de�ned later or is used in an uncommonway, please use ``text'' (which encloses text in double quotes rather than single quotes).\rq, \pifeach set a single apostrophe (right quote): '. For the HTML and on-line manuals \accent19{} alsosets an apostrophe; however the TEX-derived manuals produce an acute-d blankspace (what it infact is).\accent127sets an umlaut, e.g. \accent127a produces �a. Do not use the shorthand \" (otherwise the HTMLconverter will not translate it properly).

Section 5. TeX Macros 17<text> sets text in italics. This can also be used inside $...$ and `...'. Use \< to get a \less than" sign.<...> is used to denote a variable which is an argument of a function; a typical application is thedescription of a function:\>Group(<gens>) FThe function `Group' constructs a group generated by <gens>.The F at the end of the �rst line in the above example indicates that Group is a function (see the\> entry, below).*text* sets text in emphasized style.$a.b$ Inside math mode, you can use . instead of \cdot (a centred multiplication dot). Use \. for a fullstop inside math mode. For example, $a.b$ produces a � b while $a\.b$ produces a.b.\cite{...}produces a reference to a bibliography entry (the \cite[...]{...} option of LaTEX is not sup-ported)."label" produces a reference to label . Labels are generated by the commands \Chapter, \Section (see 2.4),and \> commands (see below).\index{index-entry}de�nes an index entry index-entry . Besides appearing in the index, index-entry is also written tothe section index �le manual.six used by the on-line help. An exclamation mark (!), if present,is used to partition index-entry into main entry (left part) and subentry (right part) components,in the index. TEX converts index-entry to lowercase and sets it in roman type, in the index. TheHTML converter respects case and uses the default font, in producing the HTML manual index.index-entry must be completely free of special characters and font changing commands; if you needspecial fonts, characters or commands use one of \indextt or \atindex.Note that for the HTML converter to process indexing commands (\index, \indextt and \atindex)correctly they must be on lines of their own. There can be several indexing commands on the sameline, but there should be no horizontal whitespace before each indexing command, and if an indexingcommand needs to be broken over lines place a % at the point of the break at the end of the line tomark a \continuation".For the HTML converter it works best to put indexing commands all together at the beginningof a paragraph, rather than strewn between lines of a paragraph. However, for the TEX-producedmanuals after a maths display one gets a rogue space if you do this (this is a bug); you can workaround the bug by putting at least one word of the paragraph followed by your line(s) of indexingcommands.Note also that indexing commands do not produce labels for cross-references; they only produceentries for the index. Labels are only produced by the chapter (\Chapter), section (\Section) andsubsection (\>) commands.\indextt{index-entry}is the same as \index{index-entry}, except that index-entry is set by TEX in typewriter style,respecting case; the HTML converter sets index-entry in the default font. Again, index-entry shouldbe completely free of special characters and font changing commands, and ! may be used for sub-entries in the same way as for \index. Note that a sub-entry component, if present, is not set intypewriter style for the TEX-produced manuals; if you want that it is, use \atindex.\atindex{sort-entry}{|indexit}is simply a special form of the \index command that tells TEX to typeset the page number in italics.

18 Chapter 2. The gapmacro.tex Manual Format\atindex{sort-entry}{@index-entry}The HTML converter treats this command as if it was \index{index-entry}, except that it stripsout any font information and sets it in the default font, but nevertheless respects case. index-entrymay have |indexit at the end which is ignored by the HTML converter.The TEX-produced manuals set the index entry as index-entry respecting font and case, and listit according to sort-entry . If a sub-entry is required then it should be present behind a ! in boththe sort-entry and index-entry ; the only di�erence between the sub-entry in sort-entry and thatin index-entry , is that the sort-entry sub-entry should be stripped of mark-up and font changingcommand. The index-entry component is ignored when constructing the manual.six �les, and isalso ignored by the HTML converter. Anything after an ! in sort-entry is ignored when constructingthe manual.idx �le that is processed by MakeIndex. Macros like {\GAP} are allowed in index-entry .However, any ` that appears in index-entry must be preceded by \noexpand; sort-entry must becompletely free of special characters and font changing commands.In general, one should make sort-entry the same as index-entry modulo fonts and other mark-up,e.g.,\atindex{Fred!Nerk}{@\noexpand`Fred'!\noexpand`Nerk'}{\GAP} typesets GAP.\package{pkg}typesets pkg in the font correct for GAP packages (respecting case). This is intended for cross-referencing other GAP packages. There is also the command \Package{mypkg} command whichde�nes a macro \mypkg so that when you type {\mypkg} (please include the curly braces) thetext mypkg is typeset in the right way for GAP packages. The \Package command should normallybe included in one's manual.tex �le (see 2.1) and just allows one to type {\mypkg} rather thanthe longer \Package{mypkg} as one is frequently likely to do when formulating one's own GAPpackage documentation. So, just to be clear about the di�erence between \Package and \package,\Package{mypkg} de�nes a macro \mypkg but produces no text, and \package{pkg} produces pkgset in the font that is right for GAP packages.\> produces a subsection. The line following the \> entry must either contain another \> entry (inwhich case the further entries are assumed to be variants and do not start a new subsection) ormust be empty. The description text will follow this empty line.There are several forms of the \> command. In all forms, a label and index entry are generated;the HTML converter uses the label to form an index entry, respecting case and setting in romantype. If the next non-space character is not a left quote (`) it is assumed that the subsection is fora \function"; we exhibit these forms �rst.\>func While this form is supported; it is discouraged. If func is a 0-argument function, func should befollowed by an empty pair of brackets (see \>func(args) below). If func is actually a global variablethen \>`global-var' V should be used instead (see below). In order for this form to be parsedcorrectly the remainder of the line to the right of func must be empty. It generates func as both alabel and index entry; func appears as is, in typewriter type in the TEX-derived manual index.\>func(args)The macro uses the brackets after func to parse the arguments args. Thus, it is necessary for thefunction to use brackets and for the arguments to have none. (We use the term \function" looselyhere to mean \a GAP command with arguments"; we really mean an object that GAP knows asa: \Function", \Property", \Operation", \Category", or \Representation" | but not \Variable",since a \Variable" does not have arguments.) The label and index entry generated consists of thetext between the > and opening bracket. The index entry is set as is (i.e. without conversion to

Section 5. TeX Macros 19lowercase) in typewriter type in the TEX-derived manual index. Here is an example of how to use\>; the index entry is \Size" (in typewriter type, with mixed case preserved).\>Size(<obj>) AThe A indicates that Size is an \Attribute". Instead of A there can be F, P, O, C, or R whichindicate that a command is a \Function" (probably the most common), \Property", \Operation",\Category", or \Representation", respectively. For the forms of the \> command followed by a leftquote, V indicating \Variable" (an object without arguments), is also possible. (See Section 1.1 andChapter 13 in the reference manual).\>func(args)!{sub-entry}This is a special form of the previous command, that forms a label func!sub-entry and an indexentry with main entry func (set in typewriter type and respecting case) and sub-entry sub-entry(set in roman type but also respecting case).The remaining forms of the command \> expect to be followed by a `.\>`command'{label}works as \> without `...', but will not use bracket matching; it simply displays command as aheader, which appears in typewriter type. It will use label as both the label and index entry, andthe index entry is set in roman type. Whenever label contains a !, it is used to partition label intomain entry (left part) and subentry (right part) components, in the index.\>`<a> + '{addition}\>`Size(<obj>)'{size} AIn the �rst of the examples immediately above, the �rst form of \> cannot be used because nobrackets occur. Also, observe that there is no command type (it's not appropriate here); TEX doesnot need it to correctly parse a \> entry, in general. The second example di�ers from our previousSize example, in that the index entry will be typeset as \size" (in roman type), rather than \Size".Also, the index entry is always converted to lowercase, no matter what case or mixed case was used.\>`command'{label}!{sub-entry}is equivalent to: \>`command'{label!sub-entry}.\>`command'{label}@{index-entry}works as \>`command'{label}, except that it uses label for sorting the index entry and the indexentry itself is printed as index-entry . References to the subsection use label . (Note that the HTMLconverter ignores everything after an @ symbol in these commands, essentially treating the commandas if it were \>`command'{label}. However, the HTML converter also always preserves the case ina label.) Here are two examples.\>`Size(<obj>)'{size}@{`Size'} A\>`Size(GL(<n>, <q>))'{Size!GL(n, q)}@{`Size'! `GL'(\noexpand<n>, \noexpand<q>)} AThe �rst of these examples is equivalent to \\>Size(<obj>)". For the second example, it wasnecessary to use ` and ', since the argument contained brackets. Note that \noexpand is neededbefore < here, but not needed before ` in the index-entry argument. Otherwise, the rules for sub-entries are the same as for \atindex.\>`global-var' VThis is actually a short-hand for: \\>`global-var'{global-var}@{`global-var'} V" to save you sometyping when creating subsections for global variables, i.e., global-var is the label and the index entryappears in typewriter type, with mixed case preserved.\){\fmark ...}is like \> except that it produces no label and index entry. It is \fmark that produces the �lled inright arrow. Omitting it produces a line in typewriter type.

20 Chapter 2. The gapmacro.tex Manual Format\){\kernttindent ...}is useful for producing a line in typewriter type, that you might otherwise have typed between\begintt and \endtt, but where you actually want the TEX macros and variables <...> to beinterpreted.\URL{url}prints the WWW URL url . In the HTML version this will be a HREF link.\Mailto{email}prints the email address email . In the HTML version this will be a mailto link.Note:When a TEX macro is followed by a space, TEX generally swallows up the space; one way, and it is theGAP-preferred way, of preventing the space being swallowed up, is by enclosing the macro in {...}. Whena macro is often followed by a space, it's a good habit to get into to always enclose that macro in {...}(the braces do nothing when the macro is not followed by a space, and prevent TEX from swallowing up thespace, otherwise). Thus the macro for GAP should always be typed {\GAP}. Similarly, macros like \lq, \rqand \pif should probably always appear in braces; moreover the word \don't" typeset via \don{\pif}t"will actually be interpreted correctly by the on-line browser.2.6 TeX Macros for DomainsThe following macros are required for the following common domains:\N the natural numbers (you should probably indicate whether by your convention N includes zero or not,when using this);\Z the integers;\Q the rational numbers;\R the real numbers;\C the complex numbers;\F a �eld; and\calR a general domain e.g. a ring.2.7 Examples, Lists, and VerbatimIn order to produce a list of items with descriptions use the \beginitems, \enditems environment, i.e. thisis a \description" environment in the parlance of LaTEX and HTML.For example, the following list describes base, knownBase, and reduced. The di�erent item/descriptionpairs must be separated by blank lines.\beginitems`base' &must be a list of points ...`knownBase' &If a base for <G> is known in advance ...`reduced' (default `true') &If this is `true' the resulting stabilizer chain will be ...\enditemsThis will be printed as

Section 7. Examples, Lists, and Verbatim 21base must be a list of points ...knownBaseIf a base for G is known in advance ...reduced (default true)If this is true the resulting stabilizer chain will be ...In order to produce a list in a more compact format, use the \beginlist, \endlist environment.An example is the following list.\beginlist\item{(a)}first entry\item{(b)}second entry\itemitem{--}a sub-item of the second entry\itemitem{--}another sub-item of the second entry\item{(c)}third entry\endlistIt is printed as follows.(a) �rst entry(b) second entry{ a sub-item of the second entry{ another sub-item of the second entry(c) third entryThe above example will take advantage of the ordered and unordered list environments in the HTML version,with the addition of slightly more mark-up. First, we present the example again with that additional mark-up, and then we explain how it works.\beginlist%ordered{a}\item{(a)}first entry\item{(b)}second entry\itemitem{--}%unordereda sub-item of the second entry\itemitem{--}another sub-item of the second entry\item{(c)}third entry\endlistIt is printed as follows (of course, you should see no di�erence in the TEX-produced and on-line versions ofthis manual).(a) �rst entry

22 Chapter 2. The gapmacro.tex Manual Format(b) second entry{ a sub-item of the second entry{ another sub-item of the second entry(c) third entryIn the HTML version the above example is interpreted as a nested list. The outer list is interpreted asan ordered list. The HTML standard provides 5 di�erent types of ordered list, and these mirror thetypes provided by the enumerate LaTEX package. To signify that the outer list was ordered the comment%ordered was added after \beginlist. If there is no further markup the list is numbered in the defaultmanner, namely with integers. Otherwise, following %ordered there should be one of the following:{1} indicates the list should be numbered with integers (the default obtained when there is nothing following%ordered);{a} indicates the list should be numbered with lowercase letters (a, b, : : :);{A} indicates the list should be numbered with uppercase letters (A, B, : : :);{i} indicates the list should be numbered with lowercase roman numerals (i, ii, : : :); and �nally{I} indicates the list should be numbered with uppercase roman numerals (I, II, : : :).The \beginlist of the above example was followed by %ordered{a} and so the list is numbered usinglowercase letters in the HTML version and using the ordered list environment (rather than the descriptionenvironment).Occasionally, it is necessary to break from a list, add some explanatory text and then restart the list,and resume numbering the items from where you left o�. To do this follow the comment mark-up alreadymentioned by an integer in curly braces, i.e. if the outer list should actually start at c then you wouldneed to have %ordered{a}{3} after \beginlist because c is the 3rd letter of our alphabet. Note that, foran integer-numbered list not starting at 1, you must have the full markup; you cannot omit the {1} after%ordered in this case.The inner list of the above example is an unordered list (this corresponds to a plain itemize environmentin LaTEX). To indicate this the �rst \itemitem above was followed by %unordered.Of course, to get an unordered outer list, one would start the list with \beginlist%ordered, and to getan ordered inner list numbered with lowercase letters the �rst \itemitem would need to be followed by%ordered{a}, i.e. the same syntax is used for the comment added after a \beginlist and after the �rst\itemitem in a sequence of \itemitems.Notes1. Only lists to a maximum depth of two are supported.2. You cannot change the type of a sublist halfway through. Only the comment after the �rst \itemitemin a sequence is interpreted.There are two types of verbatim environments. Example GAP sessions are typeset in typewriter style usingthe \beginexample, \endexample environment.\beginexamplegap> 1+2;3\endexampletypesets the example

Section 8. Tables, Displayed Mathematics and Mathematics Alignments 23gap> 1+2;3Examples whose output may vary should use the macro |unstableoutput, e.g.\beginexample|unstableoutputgap> Exec("date");Sun Oct 7 16:23:45 CEST 2001\endexampletypesets in all manual versions in the same way:gap> Exec("date");Sun Oct 7 16:23:45 CEST 2001but the testexample routine knows to treat the example di�erently (namely, it ensures there is output butdoes not insist on it being the same).Non-GAP examples are typeset in typewriter style using the \begintt, \endtt environment.Notes1. The manual style will automatically indent examples. It also will break examples which become too longto �t on one page. If you want to encourage breaks at speci�c points in an example, end the examplewith \endexample and immediately start a new example environment with \beginexample on the nextline.2. To typeset a pipe symbol | in the \begintt, \endtt environment or \beginexample, \endexample youneed to actually type ||.2.8 Tables, Displayed Mathematics and Mathematics AlignmentsTables should normally be set using the \begintt, \endtt environment. This means that one should enterthe appropriate white space so that columns line up. Note that to get a vertical line | in the \begintt,\endtt environment one must actually type ||. The reason for setting tables this way is so that both theHTML converter and GAP's built-in text browser have no trouble in displaying them correctly.The HTML converter when used with its -t option (which causes it to use TtH to translate mathematics)usually does a reasonable job of converting mathematics displays and mathematics alignments. To helpGAP's built-in text browser, however, one should follow a few rules:{ Place the $$s that begin and end the mathematics display on lines of their own. (If you don't do thisit will be displayed in the same way as ordinary in-line mathematics.){ Use only the \matrix{ .. } environment for mathematics alignments. The \matrix{ starting thealignment should be on a line on its own, (
ush left and no trailing whitespace). The } closing theenvironment should also be on a line of its own. The built-in browser doesn't do anything special toline things up; you must insert the whitespace where it's needed. Any \hfill macros you add to helpthe line things up in the TEX and HTML formats is ignored by the GAP's built-in text browser. The\matrix{ .. } environment should be used even when one might like to use TEX's \cases{ .. }environment.The following example shows a typical usage of the \matrix{ .. } environment (in particular, it shows howone can use it to avoid using the \cases{ .. } environment). Observe, how su�cient whitespace has beenadded in order that alignment is maintained by GAP's built-in text browser. (Recall that \right. whichproduces nothing is required to match \left\{.)

24 Chapter 2. The gapmacro.tex Manual FormatFrom a theorem of Gauss we know that$$b_N = \left\{\matrix{\frac{1}{2}(-1+\sqrt{N}) &{\rm if} &N \equiv 1 &\pmod 4\cr\frac{1}{2}(-1+i \sqrt{N}) &{\rm if} &N \equiv -1 &\pmod 4\cr}\right.$$The example produces : : :From a theorem of Gauss we know thatbN = � 1
2 (�1 +pN) if N � 1 (mod 4)
1
2 (�1 + ipN) if N � �1 (mod 4)2.9 Testing the ExamplesFor purposes of automatically checking the manual, the GAP examples in one chapter (the text between\beginexample and \endexample) should produce the same output, up to line breaks and whitespace,whenever they are run in the same order immediately after starting GAP (this will ensure that the globalrandom number generator is initialized to the same values). For more details, see the last paragraph of 2.1in the Tutorial.To permit this automatic running, examples that shall produce error messages should be put between\begintt and \endtt such that they will not be seen by this automatic test.The automatic test also requires that examples are not indented in the �les; in the printed manual, the linesbetween \beginexample and \endexample and the lines between \begintt and \endtt are automaticallyindented.2.10 Usage of the Percent SymbolThe % symbol has a number of very speci�c uses. Take care that you use it correctly. These uses are:1. A line beginning with 16 (or more) % symbols marks the end of a section, or the end of a chapterintroduction (which may be empty). Such a line must precede every \Section (see 2.2).2. A % at the beginning of a line tells TEX that the line is a comment and is to be ignored by TEX, ex-cept in the verbatim environments: \begintt..\endtt and \beginexample..\endexample. However,%display or %enddisplay commands have special meaning for the on-line text help browser and for theHTML converter and may temporarily alter the meaning of an initial % for these (see 2.11 for details);otherwise the meaning of an initial % is the same as for TEX.3. A % at the end of a line marks a \continuation", except in the situation mentioned in item 4. A\continuation" may be needed for lines of indexing commands (\index, \indextt or \atindex). Suchcommands must occur on lines of their own (see 2.5), not mixed with text, and there must not be anysuper
uous whitespace (modulo the next statement). Occasionally an indexing command is too long toeasily �t on a line; this is where a continuation is desirable; a % at the end of such a line indicates thatthe line is to be joined with the next line after removal of the % symbol and any initial whitespace onthe next line (this is what TEX does! : : : and we mimic this behaviour for both the on-line text helpbrowser and the HTML manuals).A \continuation" may also be necessary for subsections, i.e. lines beginning with \> or \) (again see 2.5);the usage is as for indexing line continuations.

Section 11. Catering for Plain Text and HTML Formats 254. A line ending with a % that is not an indexing command line or a subsection line that after any initialwhitespace is removed matches exactly {% or }%, or begins with {\ or \ and is followed by a letter,is ignored by both the on-line browser and the HTML converter. This is intended to screen the on-line browser and HTML converter from TEX commands such as \obeylines, \begingroup, \def etc.,without having to resort to using the %display{tex}..%enddisplay environment.Warning. In view of items 3. and 4. above, avoid using a % at the end of a line unless you really need it,and it �ts into those categories. In particular, do not put a % at the end of an indexing command line thatis immediately followed by a line of text; otherwise, the text line will not appear in the HTML manual oron-line via the text help browser. Similarly, do not put a % line at the end of a text line that is immediatelyfollowed by an indexing command line; this causes the indexing command line to be ignored by the HTMLconverter. For the HTML converter it works best to put indexing commands all together at the beginningof a paragraph, rather than strewn between lines of a paragraph. However, for the TEX-produced manualsafter a maths display one gets a rogue space if you do this (this is a bug); you can work around the bug byputting at least one word of the paragraph followed by your lines(s) of indexing commands.2.11 Catering for Plain Text and HTML FormatsAs described in 2.5, the use of macros should be restricted to the ones given in the previous sections. Bydoing so, you should �nd that the documentation you write will still look ok in GAP's on-line help (plaintext format) and in the translated HTML. However, in rare situations one might be forced to use otherTEX macros, for example in order to typeset a lattice. In this case you should provide an alternative for theon-line help, and possibly also for the HTML version. This can be done by putting in guiding commands asTEX comments:%display{tex}TeX version (only used by TeX manual)%display{html}%HTML version (only used by HTML manual)%display{text}%Text version (only used by the built-in manual browser)%enddisplayObserve that the lines that should appear only in the TEX-produced manuals do not begin with a %. For theHTML (resp. text) version the lines begin with a %; each line of a %display{html} (resp. %display{text})environment is printed verbatim, after removing the initial % symbol. The above example produces:TeX version (only used by TeX manual)(Note the above example will vary according to whether you are viewing it as a TEX-produced manual, oras an HTML manual, or via the built-in manual browser | as it should!)Sometimes one needs a %display environment to be not seen by TEX, but still interpreted normally (i.e. notprinted verbatim). The following variant of the above provides this capability.%display{tex}TeX version (only used by TeX manual)%display{nontex}%HTML and Text version (interpreted normally, after removing the \% symbol)%enddisplayThe above example produces:TeX version (only used by TeX manual)It is permissible to abbreviate any of the above by omitting %display{tex}, %display{html}, or %dis-play{text} if that portion of the environment would be empty.

26 Chapter 2. The gapmacro.tex Manual FormatThere are yet two more variants of conditional display. Firstly,%display{nonhtml}%Text version (interpreted normally by built-in browser, after removing the%\% symbol)%enddisplayis normally used to ensure text only appears via the on-line help browser. If there is no initial % it alsoappears in the TEX-produced manuals. The above example produces:Finally, there is%display{nontext}%HTML version (interpreted normally by HTML converter, after removing the%\% symbol)%enddisplaywhich excludes text from the on-line help browser. Like the %display{nonhtml} environment, if there is noinitial % it also appears in the TEX-produced manuals. The example produces:However, the use of these special environments should be avoided as much as possible, since it is much moredi�cult to maintain such pseudo-duplicated documentation.2.12 UmlautsTo produce umlauts, use \accent127 and not the shorthand \" (otherwise the HTML converter will nottranslate it properly).2.13 Producing a ManualTo produce a manual you will need the following �les:manual.texcontains the body of the manual (as described in Section 2.1) and an \Input command for eachchapter/appendix �le.�le1.tex, �le2.tex, : : :the chapter/appendix �les. There must be one �le for each chapter or appendix, and each such �leshould have a \Chapter or \PreliminaryChapter command. Alternatively, one can write .msk �lesand use buildman.pe to generate the corresponding .tex �les (see 2.14).gapmacro.texcontains the macros for the manual. It must be input by an \input statement (not and \Inputstatement, which creates a Table of Contents entry) in manual.tex. You can either use the versionin the doc directory of GAP (use a relative path then) or make a copy.manual.mstis a \con�gure" �le used by makeindex when processing index information in a TEX-generated andmanualindex-preprocessed manual.idx �le. It must reside in your manual directory.GAPDOCPATH/manualindexis used to call makeindex. GAPDOCPATH is the path of the doc directory of your GAP distribution.For bibliography information you will need a �le manual.bbl. If you intend to create it with BibTEX, youwill need to indicate the appropriate .bib �le (as described in section 2.1). Then after running TEX onceover the manual, run BibTEX to create the manual.bbl �le.

Section 14. Using buildman.pe 27Assuming that all necessary �les are there (a manual.lab �le for each book argument of a \UseReferencescommand, mrabbrev.bib and manualindex in the GAP doc directory), on a Unix system the following callswill then produce a �le manual.dvi as well as a �le manual.six which is used by the GAP help functions.If you are missing some of the needed �les and don't have CVS access to GAP, just send an email request forthem to support@gap-system.org.Go to the directory holding the manual. Calltex manualto produce bibliography information. Unless you provide a manual.bbl �le which is not produced by BibTEX,callbibtex manualto produce the manual.bbl �le. Then run TEX twice over the manual to �ll all references and produce astable table of contents:tex manualtex manualIf you have sections which are named like commands, you may get messages about rede�ned labels. At thispoint you can ignore these.Now it is time to produce the index. CallGAPDOCPATH/manualindex manualwhich preprocesses the manual.idx �le and then runs makeindex. Provided that manual.mst exists, thisproduces a �le manual.ind. Finally, once again runtex manualto incorporate the index. The manual is ready.2.14 Using buildman.peRather than write the chapter/appendix .tex �les directly, one may incorporate one's documentation incomments in one's GAP code. To do it this way, there are four ingredients:.gd �lesGAP �les with .gd su�xes that have the documentation in comments (actually �les with .g or .gior any other extension are also possible, but �les with extension .gd are the default);.msk �leswhich are just like the .tex �les, and must obey all the rules given for .tex �les previously, butadditionally may have \FileHeader or \Declaration commands at places where text should beinserted from a .gd �le, and with {{variable}} patterns which are replaced by replacement whenwritten to the .tex �le, if the con�guration �le con�g�le has a line of form: variable=replacement ;con�g�lea �le which de�nes msfiles (the list of .msk �les), gdfiles (the list of .gd �les), LIB (the directorycontaining the .gd �les), DIR (the directory in which to put the constructed .tex �les, one .tex�le for each .msk �le), and optionally a line check (see below) and variable=replacement lines; andbuildman.pea perl program (in the etc directory for those with CVS access to GAP), which strips the commentsfrom the .gd �les according to the \FileHeader or \Declaration commands in the .msk �les,translates any {{variable}} patterns de�ned by the �le con�g�le and constructs the .tex �les.

28 Chapter 2. The gapmacro.tex Manual FormatIf you don't have CVS access and want to use buildman.pe, just email support@gap-system.org and askfor it. Please note that there is no obligation for package authors to buildman.pe; nor does it attract thesame level of support as the rest of GAP; in general, bugs can be expected to be �xed (eventually), but nonew features will be added. Also, note that the GAPDoc package provides a similar facility.The perl program buildman.pe is called as follows:buildman.pe -f con�g�leThe form of con�g�leThere is no restriction on how to name con�g�le, but by convention it is of form config.something orbuildman.config; con�g�le should contain lines of form:msfiles=ms�le1,ms�le2,...,ms�lem;gdfiles=gd�le1,gd�le2,...,gd�len;LIB=gd�le dir;DIR=TeX dir;Optionally, as mentioned above, one may also have:check;which says to construct a notfound �le that lists missing expected data, and any number of lines of formvariable=replacementThe �le con�g�le should obey the following syntactic rules:{ After msfiles= there should be a comma-separated and semicolon-terminated list of .msk �les withthe .msk extensions removed; buildman.pe assumes that the .msk �les are all in, or at least have pathrelative to, the directory in which buildman.pe is called.{ Similar to the msfiles de�nition, after gdfiles= there should be a comma-separated and semicolon-terminated list of \.gd" �les. If a \.gd" �le really does have a .gd extension, it may be listed withoutextension; otherwise the extension must be included. All the \.gd" �les must be listed with pathrelative to the directory de�ned by LIB.{ For both the msfiles and gdfiles de�nitions, the lists following the = may continue over several linesif necessary, and any whitespace, parentheses (round brackets) or double-quotes characters are ignored.{ The paths after LIB= and DIR= are assumed relative to the \current directory", i.e. the directory in whichbuildman.pe is executed. For each ms�lei listed after the msfiles keyword, buildman.pe constructsfrom ms�lei.msk a corresponding ms�lei.tex in TeX dir . The LIB and DIR de�nitions must be on asingle line.{ The terminating ; is optional on the lines containing the keywords LIB, DIR or check.{ Super
uous characters around any of the keywords msfiles, gdfiles, LIB, DIR or check, but beforethe = on the lines where = is required, are ignored. Whitespace and double-quotes characters are ignored,everywhere.{ The variable=replacement lines (if there are any) should have no other punctuation or whitespace. Theselines direct buildman.pe to replace any string of form {{variable}} in a .msk �le with replacement .Special .msk �le commandsNow we describe the special (non-TEX) commands that direct buildman.pe to extract text from \.gd" �les.\FileHeader[n]{gd�le}This command is replaced by the text following a #n line (for positive integer n) in �le gd�le.gd(or gd�le if gd�le already contains a su�x). The argument [n] of \FileHeader is optional; if

Section 14. Using buildman.pe 29it is omitted n is taken to be 1. See below for the typical form of a �leheader extracted by the\FileHeader command; the comments in the example describe its required format.\Declaration{func}[gd�le]{label}!{sub-entry}@{index-entry}This command is replaced by a \> subsection declaration or block of \> declarations, and theirdescription extracted from a block in a \.gd" �le that starts with a line matching #X func, forsome letter X in F, M, A, P, O, C, R or V. The line \matches" if there is a (, space, or newline afterfunc. The argument func (in {..}) is the only mandatory argument.If present, [gd�le], says that func is to be found in the �le gd�le.gd (or gd�le if gd�le alreadycontains a su�x); it is required only if func appears in more than one of the \.gd" �les listed in the�le con�g�le. The gd�le argument is typically required for distinguishing methods of operations.The remaining arguments (if present) have exactly the purpose that they have in subsection decla-rations, i.e. lines of the following forms:\>func!{sub-entry}\>`command'{label}\>`command'!{sub-entry}\>`command'@{index-entry}(see Section 2.5), and are used to build subsection declaration lines of these forms. Note that the label ,sub-entry and index-entry arguments, if needed, should follow the \Declaration command (andnot be in the \.gd" �le #X func... lines, where they will be indistinguishable from comments).If in the \.gd" �le the #X func line is followed by other #Xi funci lines, then each \> subsectiondeclaration formed has the same label , sub-entry and index-entry arguments appended.Corresponding to \FileHeader[n]{gd�le}, in the \.gd" �le denoted by gd�le, there should be:#n## Text for \FileHeader[n]{gd�le}. Each line## should have two # characters followed by 2 blank## space characters at the left margin. The text## can and should include any necessary {\TeX}## mark-up and indexing commands.#### A fileheader may consist of any number of paragraphs.## It is terminated by a totally empty line (i.e.~a## line devoid even of # characters).##Corresponding to each \Declaration{func}... line of a .msk �le there should be in one of the \.gd" �les,a block of form:#X func(args) comment#Y func2(args2) comment2..#Z funcn(argsn) commentn#### description of func, func2, ..., funcn.##Declare...("func" ...);Declare...("func2" ...);..

30 Chapter 2. The gapmacro.tex Manual FormatDeclare...("funcn" ...);The above block should comply with the following syntactic rules. Below we use the term \function" in ageneral sense to mean any one of function (in the strict sense), attribute, category, method, representation,operation, property or variable.{ X ;Y ; : : : ;Z 2 fA; C; F; M; R; O; P; Vg. If the letter is V then no parentheses or arguments should follow the\function name" funci .{ The letters, X , Y , : : : , Z are printed in the manual. If a letter is A or P, then also the letters S and Tare printed if the setter and the tester are available. If the letter is A, then the letter M is printed if theattribute is mutable.{ The comments comment , comment2 , : : : , commentn (by convention starting with spaced dots) whichdo not appear in the manual, are optional.{ The X , Y , : : : , Z \function name" lines must appear on consecutive lines, i.e. not intermingled withtext lines.{ After the \function name" lines there should be text lines describing the \functions". As with �leheadertext these text lines should contain any TEX mark-up and indexing commands that are necessary, andthere should be two blank space characters between the ## and the text. Lines starting with #T (orsome other non-# character in place of T) are ignored.{ It is assumed that for each \function name" func, func2 , : : : , funcn there is a corresponding GAPdeclaration (which need not be via a Declare... command, e.g. it might be BindGlobal) after the ##text lines (and comment lines), and that they appear in the same order.ExampleThe �le lib/algebra.gd contains the following declaration:##O DirectSumOfAlgebras(<A1>, <A2>)#O DirectSumOfAlgebras(<list>)#### is the direct sum of the two algebras <A1> and <A2> respectively of the## algebras in the list <list>.#### If all involved algebras are associative algebras then the result is also## known to be associative.## If all involved algebras are Lie algebras then the result is also known## to be a Lie algebra.#### All involved algebras must have the same left acting domain.#### The default case is that the result is a structure constants algebra.## If all involved algebras are matrix algebras, and either both are Lie## algebras or both are associative then the result is again a## matrix algebra of the appropriate type.##DeclareOperation("DirectSumOfAlgebras", [IsDenseList]);The �le doc/build/algebra.msk contains the line:\Declaration{DirectSumOfAlgebras}The \con�g" �le doc/build/config.alg:

Section 14. Using buildman.pe 31@msfiles = ("algebra","algfp","alglie","mgmring");@gdfiles = ("algebra","alghom","alglie","object","liefam","mgmring","algrep","lierep");DIR = "../ref";LIB = "../../lib";speci�es algebra.msk via the �rst entry of msfiles and lib/algebra.gd via the �rst entry of gdfiles and(its directory by) the de�nition of LIB. Observe that there are @ and " symbols, as well as parentheses andwhitespace, in the above \con�g" �le; none of these is necessary, but they don't do any harm either. Gener-ally, one calls buildman.pe in the same directory that contains the msfiles (which is why one doesn't needto specify the directory containing the msfiles) and the \con�g" �le. Since DIR = "../ref", buildman.peconstructs algebra.tex from algebra.msk in directory doc/ref. The subsection generated in algebra.texby the above \Declaration command starts with the header:\>DirectSumOfAlgebras(<A1>, <A2>) O\>DirectSumOfAlgebras(<list>) Oand is followed by its description, i.e. the lines beginning with two hashes and two blanks, but with thehashes and blanks stripped away, so that when it is processed the resulting subsection appears as:
I DirectSumOfAlgebras(A1, A2) O
I DirectSumOfAlgebras(list) Ois the direct sum of the two algebras A1 and A2 respectively of the algebras in the list list .If all involved algebras are associative algebras then the result is also known to be associative. If all involvedalgebras are Lie algebras then the result is also known to be a Lie algebra.All involved algebras must have the same left acting domain.The default case is that the result is a structure constants algebra. If all involved algebras are matrixalgebras, and either both are Lie algebras or both are associative then the result is again a matrix algebraof the appropriate type.Variable replacementAs mentioned above the \con�g" �le may also contain lines that assign variables, e.g.versionnumber=4.3versionsuffix=4r3Occurrences of these variables in double curly braces will be replaced by their value. For example the linesWhen `unzoo -x' is applied to {\GAP}~{{versionnumber}}'s `zoo' file`gap{{versionsuffix}}.zoo' a directory `gap{{versionsuffix}}' is formed.in a .msk �le will be replaced by:When `unzoo -x' is applied to {\GAP}~4.3's `zoo' file`gap4r3.zoo' a directory `gap4r3' is formed.in the corresponding .tex �le. This feature is very handy for information that changes over time.Final noteThere is a document for version 0.0 of buildman.pe that describes features that have either never beenused or have since been disabled. Only the features described in this section can be relied upon to havecurrency.

3 Library Files
This chapter describes some of the conventions used in the GAP library �les. These conventions are intendedas a help on how to read library �les and how to �nd information in them. So everybody is recommendedto follow these conventions, although they do not prescribe a compulsory programming style { GAP itselfwill not bother with the formatting of �les.Filenames have traditionally GAP adhered to the 8+3 convention (to make it possible to use the same�lenames even on a MS-DOS �le system) and been in lower case (systems that do not recognize lower casein �le names will convert them automatically to upper case). It is no longer so important to adhere tothese conventions, but at the very least �lenames should adhere to a 16+5 convention, and be distinct evenafter identifying upper and lower case. Directory names of packages, however, must be in lower case (theLoadPackage command (see 74.2.1 in the Reference manual) assumes this).3.1 File TypesThe GAP library consists of the following types of �les, distinguished by their su�xes:.g Files which contain parts of the \inner workings" of GAP. These �les usually do not contain math-ematical functionality, except for providing links to kernel functions..gd Declaration �les. These �les contain declarations of all categories, attributes, operations, and globalfunctions. These �les also contain the operation de�nitions in comments..gi Implementation �les. These �les contain all installations of methods and global functions. Usuallydeclarations of representations are also considered to be part of the implementation and are thereforefound in the .gi �les.As a rule of thumb, all .gd �les are read in before the .gi �les are read. Therefore a .gi �le usuallymay use any operation or global function (it has been declared before), and no care has to be takentowards the order in which the .gi �les are read..co Completion �les. They are used only to speed up loading (see 3.5 in the Reference Manual).3.2 File StructureEvery �le starts with a header that lists the �lename, copyright, a short description of the �le contents andthe original authors of this �le.This is followed by a revision entry:Revision.file_suf :="@(#)$Id: libform.tex,v 4.13.2.1 2004/01/27 11:37:59 stefan Exp $";where file.suf is the �le name. The revision control system used for the development will automaticallyappend text to the string \Id: " which indicates the version number. The reason for these revision entries

Section 4. Undocumented Variables 33is to give the possibility to check from within GAP for revision numbers of a �le. (Do not mistake theserevision numbers for the version number of GAP itself.)Global comments usually are indented by two hash marks and two blanks. If a section of such a commentis introduced by a line containing a hash mark and a number it will be used for the manual (stripped of thehash marks and leading two blanks; see Section 2.14).Every declaration or method or function installation which is not only of local scope is introduced by afunction header of the following type.##X ExampleFunction(<A>,)#### This function does nothing.The X in the example is one of the letters: F, A, P, O, C, R or V, and has the same meaning as at the end of adeclaration line in the Reference Manual (see 1.1 in the Reference Manual); it indicates whether the objectdeclared will be a function, attribute, property, operation, category, representation or variable, respectively.Additionally M is used in .gi �les for method installations. The line then gives a sample usage of the function.This is followed by a comment which describes the identi�er. This description will automatically be extractedto build the Reference Manual source, if there is a \Declaration line in some .msk �le together with anappropriate con�guration �le (see Section 2.14).Indentation in functions and the use of decorative spaces in the code are left to the decision of the authorsof each �le.The �le ends with an#Ecomment section that may be used to store formatting descriptions for an editor.3.3 Finding Implementations in the LibraryThere is no general browsing tool that would point you to the place in the library where a certain methodor global function is installed. However the following remarks might be of help:You can use ApplicableMethod (see 7.2.1 in the reference manual) to get the function which implements amethod for speci�c arguments. Setting its print level higher will also give you the installation string for thismethod.To �nd the occurrence of functions and methods in the library, one can use the grep tool under UNIX. To�nd a function, search for the function name in the .gd �les (as it is declared only once, only one �le willshow up), the function installation is likely to occur in the corresponding .gi �le.To �nd a method search for Method((this catches InstallMethod and InstallOtherMethod) and theinstallation string or the operation name.3.4 Undocumented VariablesFor several global variables in GAP, no information is available via the help system (see Section 2.8 in theTutorial, for a quick overview of the help system, or Chapter 2 in the reference manual, for details). Thereare various reasons for \hiding" a variable from the user; namely, the variable may be regarded as of minorimportance (for example, it may be a function called by documented GAP functions that �rst compute manyinput parameters for the undocumented function), or it belongs to a part of GAP that is still experimentalin the sense that the meaning of the variable has not yet been �xed or even that it is not clear whether thevariable will vanish in a more developed version.

34 Chapter 3. Library FilesAs a consequence, it is dangerous to use undocumented variables because they are not guaranteed to existor to behave the same in future versions of GAP.Conversely, for documented variables, the de�nitions in the GAP manual can be relied on for future GAPversions (unless they turn out to be erroneous); if the GAP developers �nd that some piece of minor, butdocumented functionality is an insurmountable obstacle to important developments, they may make thesmallest possible incompatible change to the functionality at the time of a major release. However, in anysuch case it will be announced clearly in the GAP Forum what has been changed and why.So on the one hand, the developers of GAP want to keep the freedom of changing undocumented GAP code.On the other hand, users may be interested in using undocumented variables.In this case, whenever you write GAP code involving undocumented variables, and want to make sure thatthis code will work in future versions of GAP, you may ask at support@gap-system.orgfor documentation about the variables in question. The GAP developers then decide whether these variablesshall be documented or not, and if yes, what the de�nitions shall be.In the former case, the new documentation is added to the GAP manual, this means that from then on, thisde�nition is protected against changes.In the latter case (which may occur for example if the variables in question are still experimental), you mayadd the current values of these variables to your private code if you want to be sure that nothing will bebroken later due to changes in GAP.

4 Writing a GAP Package
This chapter explains the basics of how to write a GAP package so that it interfaces properly to GAP. Forthe role of GAP packages and the ways to load them, see Chapter 74 in the GAP Reference Manual.There are two basic aspects of creating a GAP package. First, it is a convenient possibility to load additionalfunctionality into GAP including a smooth integration of the package documentation. And secondly, a packageis a way to make your code available to other GAP users. The GAP Team provides some help with thedistribution of packages. In particular, a package can be submitted to a refereeing process. Check out theGAP Web pageshttp://www.gap-system.org for more details.We start this chapter with a description how the directory structure of a GAP package must look like andthen add remarks on certain aspects of creating a package, some of these only apply to some packages.4.1 The Files of a GAP PackageAll �les of a GAP package must be collected in a single directory. To use the package with GAP this directorymust be a subdirectory of a pkg directory in (one of) the GAP root directories (see 9.2 in the GAP ReferenceManual). (For example, if GAP is installed in /usr/local/gap4 then put the �les of your package MyPackin the directory /usr/local/gap4/pkg/mypack.) Let us call this directory the home directory of thepackage.There are three �le names with a special meaning in the home directory of a package: PackageInfo.g andinit.g which must be present and read.g which is optional.The �le PackageInfo.g contains meta-information about the package (package name, version, author(s),relations to other packages, homepage, download archives, banner, ...). This is used by the package loadingmechanism and also for the distribution of a package to other users. The content of this �le is explained viaa template �le below (see 4.5).The init.g is read when the package is loaded (see 74.2.1 in the GAP Reference Manual). In principle this�le could contain the whole GAP code of a package, but usually it contains mainly Read or ReadPackagestatements for reading further �les of the package. For many packages it may be useful to have declarationand implementation parts in di�erent �les, see 4.7 below for more details. In that case it can be useful toread in only the declaration parts from the init.g �le and to adda �le read.g which contains the ReadPackage statements for the implementation parts.There is one further rule for the location of kernel library modules or external programs which is explainedin 4.9 below.All other �les can be organized as you like. But we suggest that you have a look at existing packagesand use a similar scheme. For example, collect your GAP code in �les in a subdirectory lib or gap, putthe documentation in a subdirectory doc, put source code for compilation in src, data libraries in extrasubdirectories and so on.

36 Chapter 4. Writing a GAP Package4.2 Writing DocumentationIf you intend to make your package available to other users it is essential to include a documentation howto install and use your programs.Concerning the installation you should produce a �le README which gives a short description of the purposeof the package and contains proper instructions how to install your package. Again, check out some existingpackages to get an idea how this could look like.Concerning the documentation of the use of the package there are currently two recognised ways of producingGAP package documentation. There is the method that has been used to produce the main manuals for GAPwhich requires the documentation to be written in TEX according to the format described in Chapter 2.There is also an XML-based documentation format that is de�ned in and can be used with the GAPDocpackage (see \gapdoc:introduction and example").In principle it is also possible to use some completely di�erent documentation format. In that case you needto study the Chapter 5 to learn how to make your documentation available to the GAP help system. Thereshould be at least a text version of your documenation provided for use in the terminal running GAP andsome nicely printable version in .dvi and/or .pdf format. Many GAP users like to browse the documentationin HTML-format via their Web-browser.4.3 An Example of a GAP PackageWe illustrate the creation of a GAP package by an example of a basic package.Create the following directories in your home area: pkg and pkg/test. Inside the directory test create anempty �le init.g, and a �le PackageInfo.g with the following contents.SetPackageInfo(rec(PackageName := "test",Version := "1.0",AvailabilityTest := ReturnTrue,Autoload := false,BannerString := Concatenation(["#I loading the GAP package ``test'' in version ",~.Version, "\n"]),PackageDoc := rec(BookName := "test",SixFile := "doc/manual.six",Autoload := true)));This �le declares the GAP package with name \test" in version 1.0. There are no requirements that have to betested, so ReturnTrue (see 5.3.1 in the GAP Reference Manual) is used as test function. The package is notautoloaded, and it has its individual banner string. The package documentation consists of one autoloadedbook; the SixFile component is needed by the GAP help system.Now start GAP with the commandgap -l "./;"(the -l "./;" option adds the current directory to the GAP root directories and allows GAP to �nd thepackages installed in the ./pkg directory.gap> LoadPackage("test");#I loading the GAP package ``test'' in version 1.0trueThis GAP package is too simple to be useful, but we have succeeded in loading it via LoadPackage.

Section 6. Requesting one GAP Package from within Another 374.4 The WWW Homepage of a PackageIf you want to distribute your package you should create a WWW homepage containing some basic infor-mation, archives for download and the README �le with installation instructions, and maybe a copy of thepackages PackageInfo.g �le.The responsibility for this WWW homepage is with the package authors/maintainers.If you tell us about your package (say, by mail to support@gap-system.org) we may agree to add a link toyour package homepage from the GAP website and to redistribute the current version of your package viathe GAP download sites. We can also provide some service for producing several archive formats from thearchive you provide (e.g., you produce a .tar.gz version of your archive and we produce also a .tar.bz2,a .zoo and a -win.zip version from this).Please, consider to submit your package to the GAP package refereeing process.4.5 The PackageInfo.g FileWe suggest to create a PackageInfo.g �le for your package by copying the one in the Example package,distributed with GAP, and to adjust it for your package. Within GAP you can look at that �le byPager(StringFile(Filename(DirectoriesLibrary(),"../pkg/example/PackageInfo.g")));As a �rst step the example in 4.3 shows the information needed for the package loading mechanism of a simplepackage. If your package depends on the functionality of other packages, the component Dependencies givenin the PackageInfo.g �le becomes important, see 4.6 below.The other entries become relevant if you want to distribute your package: they contain lists of authorsand/or maintainers including contact information, URLs of the package archives and README �les, statusinformation, text for a package overview Web page, and so on. See the mentioned template �le for a list andexplanation of all recognized entries.Once you have created the PackageInfo.g �le for your package, you can test its validity with the commandValidatePackageInfo(filename);.4.6 Requesting one GAP Package from within AnotherIt is possible for one GAP package A, say, to require another package B. For that, one simply adds thename and the (least) version number of the package B to the NeededOtherPackages component of theDependencies component of the PackageInfo.g �le of the package A. In this situation, loading the packageA forces that also the package B is loaded, and that A cannot be loaded if B is not available.If B is not essential for A but should be loaded if it is available (for example because B provides someimprovements of the main system that are useful for A) then the name and the (least) version number ofB should be added to the SuggestedOtherPackages component of the PackageInfo.g �le of A. In thissituation, loading A forces an attempt to load also B, but A is loaded even if B is not available.

38 Chapter 4. Writing a GAP Package4.7 Declaration and Implementation PartWhen GAP packages require each other in a circular way, a \bootstrapping" problem arises of de�ningfunctions before they are called. The same problem occurs in the GAP library, it is resolved there byseparating declarations (which de�ne global variables such as �lters and operations) and implementations(which install global functions and methods) in di�erent �les. Any implementation �le may use globalvariables de�ned in any declaration �le. GAP initially reads all declaration �les (in the library they have a.gd su�x) and afterwards reads all implementation �les (which have a .gi su�x).Something similar is possible for GAP packages: If a �le read.g exists in the home directory of the package,this �le is read only after all the init.g �les of all (implicitly) required GAP packages are read. Thus onecan separate declaration and implementation for a GAP package in the same way as done for the GAP library,by creating a �le read.g, restricting the ReadPackage statements in init.g to only load those �les of thepackage that provide declarations, and to load the implementation �les from read.g.See Section 3.18 in the Programmers' Tutorial which discusses further the commands that should appear inthe declaration part (i.e., in the �les read with ReadPackage from init.g) and in the implementation part(i.e., in the �les read with ReadPackage from read.g) of a package.4.8 Standalone Programs in a GAP PackageGAP packages that involve stand-alone programs are fundamentally di�erent from GAP packages that consistentirely of GAP code.This di�erence is threefold: A user who installs the GAP package must also compile (or install) the package'sbinaries, the package must check whether the binaries are indeed available, and �nally the GAP code of thepackage has to start the external binary and to communicate with it. We will treat these three points in thefollowing sections.If the package does not solely consist of an interface to an external binary and if the external program calledis not just special-purpose code, but a generally available program, chances are high that sooner or laterother GAP packages might also require this program.We therefore strongly suggest to provide a documented GAP function that will call the external binary. Wealso suggest to create actually two GAP packages; the �rst providing only the binary and the interface andthe second (requiring the �rst, see 4.6) being the actual GAP package.4.9 Installation of GAP Package BinariesThe scheme for the installation of package binaries which is described further on is intended to permitthe installation on di�erent architectures which share a common �le system (and share the architectureindependent �le).A GAP package which includes external binaries contains a bin subdirectory. This subdirectory in turncontains subdirectories for the di�erent architectures on which the GAP package binaries are installed. Thenames of these directories must be the same as the names of the architecture dependent subdirectories ofthe main bin directory. Unless you use a tool like autoconf yourself, you must obtain the correct nameof the binary directory from the main GAP branch. To help with this, the main GAP directory containsa �le sysinfo.gap which assigns the shell variable GAParch to the proper name as determined by GAP'sconfigure process. For example on a Linux system, the �le sysinfo.gap may look like this:GAParch=i586-unknown-linux2.0.31-gccWe suggest that your GAP package contains a �le configure which is called with the path of the GAP rootdirectory as parameter. This �le then will read sysinfo.gap and set up everything for compiling under thegiven architecture (for example creating a Makefile from Makefile.in.The standard GAP distribution contains a GAP package \example" whose installation script shows an ex-ample way of how to do this.

Section 11. Calling of and Communication with External Binaries 394.10 Test for the Existence of GAP Package BinariesIf an external binary is essential for the workings of a GAP package, the function stored in the componentAvailabilityTest of the PackageInfo.g �le of the package should test whether the program has beencompiled on the architecture (and inhibit package loading if this is not the case). This is especially importantif the package is loaded automatically.The easiest way to accomplish this is to use Filename (see 9.4.1 in the GAP Reference Manual) for checkingfor the actual binaries in the path given by DirectoriesPackagePrograms (see 74.3.5 in the GAP Refer-ence Manual) for the respective package. For example the \example" GAP package could use the followingcommands to test whether the binary hello has been compiled; they issue a warning if not and will onlyload if it is indeed available....AvailabilityTest := function()local path,file;# test for existence of the compiled binarypath:=DirectoriesPackagePrograms("example");file:=Filename(path,"hello");if file=fail thenInfo(InfoWarning,1,"Package ``example'': The program `hello' is not compiled");Info(InfoWarning,1,"`HelloWorld()' is thus unavailable");Info(InfoWarning,1,"See the installation instructions; ","type: ?Installing the Example package");fi;return file<>fail;end,...(In fact the AvailabilityTest function that is actually used in the \example" package always returns true,just the warnings are printed if the binary is not available. This means that the binary is not regarded asessential for this package.)You might also have to cope with the situation that external binaries will only run under UNIX (and not, sayon a Macintosh). See 3.6 in the GAP Reference Manual for information on how to test for the architecture.4.11 Calling of and Communication with External BinariesThere are two reasons for this: the input data has to be passed on to the stand-alone program and thestand-alone program has to be started from within GAP.There are two principal ways of doing this.The �rst possibility is to write all the data for the stand-alone to one or several �les, then start the stand-alone with Process or Exec (see 11.1.1 and 11.2.1 in the GAP Reference Manual) which then writes theoutput data to �le, and �nally read in the standalone's output �le.The second way is interfacing via iostreams (see Section 10.8 in the GAP Reference Manual). The supportfor this is in its infancy.

40 Chapter 4. Writing a GAP Package4.12 Package CompletionReading a larger package can take a few moments and will take up user workspace. This might be a nuisanceto users, especially if the package is loaded automatically. The same problem of course a�ects the GAPlibrary, the problem there is solved using completion �les (see 3.5 in the GAP Reference Manual).Completion �les make it possible to read only short function headers initially which are completed to fullfunctions only when the functions are actually called. This section explains how to set up completion for aGAP package.Completion works for those �les which are read (using ReadPackage) from the read.g �le. (This is no realrestriction as completion a�ects only the implementation part.) To create completion �les, load the GAPpackage, and then use the following command.
1I CreateCompletionFilesPackage(pkgname)This will create a new �le read.co in the home directory of the loaded version of the GAP package pkgname(so you must have write permissions there). When the GAP package is loaded, this �le is used in place ofread.g, and automatically takes care of completion.When you change �les which are completed, GAP will complain about non-matching CRC �les and will notload them. In this case simply remove the read.co �le and create it anew.As a GAP package author you should consider including a completion �le with the package.If you start GAP with the command line option -D, it displays information about reading and completion,the command line option -N turns completion o� (as if all .co �les were erased). (Section 3.2 in the GAPReference Manual describes the options -D and -N.)4.13 DeclareAutoreadableVariablesThe completion mechanism is designed for delaying reading function bodies whose headers has to be readwhen the package is loaded; this is necessary for example for the installation of methods.For �les not containing functions {this applies to many data �les{ completion does not help. However,another mechanism allows one to delay reading such �les until the data are actually accessed.
1I DeclareAutoreadableVariables(pkgname, �lename, varlist)Let pkgname be the name of a package,let �lename be the name of a �le relative to the home directory ofthis package, and let varlist be a list of strings that are the names of global variables which get bound whenthe �le is read. DeclareAutoreadableVariables noti�es the names in varlist such that the �rst attempt toaccess one of the variables causes the �le to be read.4.14 Version NumbersA version number is a string which contains nonnegative integers separated by non-numeric characters.Examples of valid version numbers are for example:"1.0" "3.141.59" "2-7-8.3" "5 release 2 patchlevel 666"Version numbers are interpreted as lists of integers and are compared in that way. Thus version "2-3" islarger than version "2-2-5" but smaller than "11.0".It is possible for code to require GAP packages in certain versions. In this case, all versions, whose numberis equal or larger than the requested number are acceptable. It is the task of the package author to provideupwards compatibility.The global variable GAPInfo.Version contains the version number of the version of GAP and also can bechecked against (using CompareVersionNumbers, see 74.3.6 in the GAP Reference Manual).Package authors should choose a version numbering scheme that allows a new version number even aftertiny changes to the package. The automatic update of package archives in the GAP distribution will onlywork if a package becomes a new version number.

Section 15. Wrapping Up a GAP Package 414.15 Wrapping Up a GAP PackageThe releases of GAP packages are independent of releases of GAP. Therefore GAP packages should be wrappedup in separate �les that can be installed onto any version of GAP. Similarly a GAP package can be upgradedany time without the need to wait for new releases of GAP.Because it is independent of the version of GAP a GAP package should be archived from the GAP pkgdirectory, that is all �les are archived with the path starting the package's name.The archive of a GAP package should contain all �les necessary for the package to work. In particular thereshould be a compiled documentation, which includes the manual.six, manual.toc and manual.lab �le in thedocumentation subdirectory which are created by TEXing the documentation, if you use the gapmacro.texor GAPDoc document formats. (The �rst two are needed by the GAP help system, and the manual.lab �le isneeded if the main manual is referring to your package. Use the command GAPDocManualLab(packagename); to create this �le for your help books if you use GAPDoc.)If the package provides a substantial amount of code, especially if it is intended to be loaded automatically,create a completion �le (see 4.12) and include it with the package.Currently, the GAP distribution provides archives in four di�erent formats.- .tar.gz, a standard UNIX tar archive, compressed with gzip- .tar.bz2, a standard UNIX tar archive, compressed with bzip2- .zoo, a special version of zoo archives, that can essentially be used on all operating systems with theunzoo utility provided with the GAP distribution- -win.zip, an archive in zip format, where text �les should have DOS/Windows style line breaksFor convenience of possible users it is sensible that you archive your package also in one or several of theseformats.For packages which are redistributed via the GAP Web site, we o�er an automatic conversion of any of theformats listed above to all the others.

5 Interface to theGAP Help System
In this chapter we describe which information the help system needs about a manual book and how to tellit this information. The code which implements this interface can be found in lib/helpbase.gi.If you are intending to use a documentation format that is already used by some other help book youprobably don't need to know anything from this chapter. However, if you want to create a new format andmake it available to GAP then hopefully you will �nd the necessary information here.The basic idea of the help system is as follows: One tells GAP a directory which contains a �le manual.six,see 5.1. When the GAP help is asked something about this book it reads in some basic information fromthe �le manual.six: strings like section headers, function names, and index entries to be searched by theonline help; information about the available formats of this book like text, html, dvi, and pdf; the actual�les containing the documentation, corresponding section numbers, and page numbers: and so on. See 5.2for a description of the format of the manual.six �le.It turns out that there is almost no restriction on the format of the manual.six �le, except that itmust provide a string, say "myownformat" which identi�es the format of the help book. Then the ba-sic actions on a help book are delegated by the help system to handler functions stored in a recordHELP BOOK HANDLER.myownformat. See 5.3 for information which functions must be provided by the handlerand what they are supposed to do. The main work to teach GAP to use a new document format is to writethese handler functions and to produce an appropriate manual.six �le.5.1 Installing a Help Book

1I HELP ADD BOOK(short, long, dir)This command tells GAP that in directory dir (given as either a string describing the path relative to theGAP root directory GAPInfo.RootPaths[1] or as directory object) contains the basic information about ahelp book. The string short is used as an identifying name for that book by the online help. The string longshould be a short explanation of the content of the book. Both strings together should easily �t on a line,since they are displayed with ?books.It is possible to reinstall a book with di�erent strings short , long ; (for example, documentation of a not-loaded GAP package indicates this in the string short and if you later load the package, GAP quietly changesthe string short as it reinstalls its documentation).The only condition necessary to make the installation of a book valid is that the directory dir must containa �le manual.six. The next section explains how this �le must look.

Section 3. The Help Book Handler 435.2 The manual.six FileIf a manual.six �le for a help book is not in the format of the gapmacro.tex macros, explained in chapterThe gapmacro.tex Manual Format (see 2), the �rst non-empty line of manual.six must be of the form#SIXFORMAT myownformatwhere myownformat is an identifying string for this format. The reading of the (remainder of the) �le is thendelegated to the function HELP BOOK HANDLER.myownformat.ReadSix which must exist. Thus there are nofurther regulations for the format of the manual.six �le, other that what you yourself impose. If such aline is missing then it is assumed that the manual.six �le complies with the gapmacro.tex documentationformat which is the default format.The next section explains what the return value of HELP BOOK HANDLER.myownformat.ReadSix should looklike and which further function should be contained in HELP BOOK HANDLER.myownformat .5.3 The Help Book HandlerFor each document format myownformat there must be a record HELP BOOK HANDLER.myownformat of func-tions with the following names and functionality.An implementation example of such a set of handler functions is the default format, which is the formatname used for the gapmacro.tex documentation format, and this is contained in the �le lib/helpdef.gi.The package GapDoc (see Chapter \gapdoc:introduction and example") also de�nes a format (as it should)which is called: GapDocGAP (the case is signi�cant).As you can see by the above two examples, the name for a document format can be anything, but it shouldbe in some way meaningful.ReadSix(stream)For an input text stream stream to a manual.six �le, this must return a record info which has atleast the following two components: bookname which is the short identifying name of the help book,and entries. Here info.entries must be a list with one entry per search string (which can be asection header, function name, index entry, or whatever seems sensible to be searched for matchinga help query). A match for the GAP help is a pair (info, i) where i refers to an index for thelist info.entries and this corresponds to a certain position in the document. There is one furtherregulation for the format of the entries of info.entries. They must be lists and the �rst element ofsuch a list must be a string which is printed by GAP for example when several matches are foundfor a query (so it should essentially be the string which is searched for the match, except that itmay contain upper and lower case letters or some markup). There may be other components ininfo which are needed by the functions below, but their names and formats are not prescribed. Thestream argument is typically generated using InputTextFile (see 10.5.1), e.g.gap> dirs := DirectoriesPackageLibrary("gapdoc", "doc");;gap> file := Filename(dirs, "manual.six");;gap> stream := InputTextFile(file);;ShowChapters(info)This must return a text string or list of text lines which contains the chapter headers of the bookinfo.bookname.ShowSection(info)This must return a text string or list of text lines which contains the section (and chapter) headersof the book info.bookname.

44 Chapter 5. Interface to the GAP Help SystemSearchMatches(info, topic, frombegin)This function must return a list of indices of info.entries for entries which match the searchstring topic. If frombegin is true then those parts of topic which are separated by spaces should beconsidered as the beginnings of words to decide the matching. It frombegin is false, a substringsearch should be performed. The string topic can be assumed to be already normalized (transformedto lower case, and whitespace normalized). The function must return a list with two entries [exact,match] where exact is the list of indices for exact matches and match a list of indices of the remainingmatches.MatchPrevChap(info, i)This should return the match [info, j] which points to the beginning of the chapter containing match[info, i], respectively to the beginning of the previous chapter if [info, i] is already the beginning ofa chapter. (Corresponds to ?<<.)MatchNextChap(info, i)Like the previous function except that it should return the match for the beginning of the nextchapter. (Corresponds to ?>>.)MatchPrev(info, i)This should return the previous section (or appropriate portion of the document). (Corresponds to?<.)MatchNext(info, i)Like the previous function except that it should return the next section (or appropriate portion ofthe document). (Corresponds to ?>.)HelpData(info, i, type)This returns for match [info, i] some data whose format depends on the string type, or fail if thesedata are not available. The values of type which currently must be handled and the correspondingresult format are described in the list below.The HELP BOOK HANDLER.myownformat.HelpData function must recognize the following values of the typeargument."text" This must return a corresponding text string in a format which can be fed into the Pager, see 2.4.1."url" If the help book is available in HTML format this must return an URL as a string (Probably afile:// URL containing a label for the exact start position in that �le). Otherwise it returns fail."dvi" If the help book is available in dvi-format this must return a record of form rec(file := �lename,page := pagenumber). Otherwise it returns fail."pdf" Same as case "dvi", but for the corresponding pdf-�le."secnr"This must return a pair like [[3,3,1], "3.3.1"] which gives the section number as chapter number,section number, subsection number triple and a corresponding string (a chapter itself is encodedlike [[4,0,0], "4."]). Useful for cross-referencing between help books.

Section 4. Introducing new Viewer for the Online Help 455.4 Introducing new Viewer for the Online HelpThere is a record HELP VIEWER INFO which contains one component for each help viewer. Such a recordcontains two components.The component .type refers to one of the types recognized by the HelpData handler function explained inthe previous section (currently one of "text", "url", "dvi", or "pdf").The component .show is a function which gets as input the result of a corresponding HelpData handler call,if it was not fail. This function has to perform the actual display of the data. (E.g., by calling a functionlike Pager or by starting up an external viewer program.)

6
Function-Operation-AttributeTriples

GAP is eager to maintain information that it has gathered about an object, possibly by lengthy calculations.The most important mechanism for information maintenance is the automatic storage and look-up thattakes place for attributes; and this was already mentioned in section 8.1 in the tutorial. In this chapter wewill describe further mechanisms that allow storage of results that are not values of attributes.The idea which is common to all sections is that certain operations, which are not themselves attributes,have an attribute associated with them. To automatically delegate tasks to the attribute, GAP knows, inaddition to the operation and the attributes also a function, which is \wrapped around" the other two.This \wrapper function" is called by the user and decides whether to call the operation or the attribute orpossibly both. The whole function-operation-attribute triple (or FOA triple) is set up by a single GAPcommand which writes the wrapper function and already installs some methods, e.g., for the attribute to fallback on the operation. The idea is then that subsequent methods, which perform the actual computation,are installed only for the operation, whereas the wrapper function remains unaltered, and in general noadditional methods for the attribute are required either.6.1 Key Dependent OperationsThere are several functions that require as �rst argument a domain, e.g., a group, and as second argumentsomething much simpler, e.g., a prime. SylowSubgroup is an example. Since its value depends on twoarguments, it cannot be an attribute, yet one would like to store Sylow subgroups once they have beencomputed.The idea is to provide an attribute of the group, called ComputedSylowSubgroups, and to store the groupsin this list. The name implies that the value of this attribute may change in the course of a GAP session,whenever a newly-computed Sylow subgroup is put into the list. Therefore, this is a mutable attribute(see 3.3 in \Programming in GAP"). The list contains primes in each bound odd position and a correspondingSylow subgroup in the following even position. More precisely, if p = ComputedSylowSubgroups(G)[even - 1] then ComputedSylowSubgroups(G)[even] holds the value of SylowSubgroup(G, p).The pairs are sorted in increasing order of p, in particular at most one Sylow p subgroup of G is stored foreach prime p. This attribute value is maintained by the operation SylowSubgroup, which calls the operationSylowSubgroupOp(G, p) to do the real work, if the prime p cannot be found in the list. So methodsthat do the real work should be installed for SylowSubgroupOp and not for SylowSubgroup.The same mechanism works for other functions as well, e.g., for PCore, but also for HallSubgroup, wherethe second argument is not a prime but a set of primes.
1I KeyDependentOperation(name, dom-req, key-req, key-test)declares at the same time all three: two operations with names name and nameOp, respectively, and anattribute with name and the attribute as described above, with names name, nameOp, and Computednames.dom-req and key-req specify the required �lters for the �rst and second argument of the operation nameOp,

Section 2. In Parent Attributes 47which are needed to create this operation with NewOperation (see 3.5.1). dom-req is also the required �lterfor the corresponding attribute Computednames. The fourth argument key-test is in general a function towhich the second argument info of name(D, info) will be passed. This function can perform tests oninfo, and raise an error if appropriate.For example, to set up the three objects SylowSubgroup, SylowSubgroupOp, and ComputedSylowSubgroupstogether, the declaration �le \lib/grp.gd" contains the following line of code.KeyDependentOperation("SylowSubgroup", IsGroup, IsPosInt, "prime");In this example, key-test has the value "prime", which is silently replaced by a function that tests whetherits argument is a prime.gap> s4 := Group((1,2,3,4),(1,2));;gap> SylowSubgroup(s4, 5);; ComputedSylowSubgroups(s4);[5, Group(())]gap> SylowSubgroup(s4, 2);; ComputedSylowSubgroups(s4);[2, Group([(3,4), (1,4)(2,3), (1,3)(2,4)]), 5, Group(())]gap> SylowSubgroup(s4, 6);Error, SylowSubgroup: <p> must be a prime called from<compiled or corrupted call value> called from<function>(<arguments>) called from read-eval-loopEntering break read-eval-print loop ...you can 'quit;' to quit to outer loop, oryou can 'return;' to continuebrk> quit;Thus the prime test need not be repeated in the methods for the operation SylowSubgroupOp (which areinstalled to do the real work). Note that no methods need be installed for SylowSubgroup and ComputedSy-lowSubgroups. If a method is installed with InstallMethod for a wrapper operation such as SylowSubgroupthen a warning is signalled provided the InfoWarning level is at least 1. (Use InstallOtherMethod in orderto suppress the warning.)6.2 In Parent AttributesThis section describes how you can add new \in parent attributes" (see 30.8 and 30.7 in the ReferenceManual). As an example, we describe how Index and its related functions are implemented.There are two operations Index and IndexOp, and an attribute IndexInParent. They are created togetheras shown below, and after they have been created, methods need be installed only for IndexOp. In thecreation process, IndexInParent already gets one default method installed (in addition to the usual systemgetter of each attribute, see 13.5 in the Reference Manual), namely D -> IndexOp(Parent(D), D).The operation Index proceeds as follows.� If it is called with the two arguments super and sub, and if HasParent(sub) and IsIdenticalObj(super, Parent(sub)) are true, IndexInParent is called with argument sub, and the result isreturned.� Otherwise, IndexOp is called with the same arguments that Index was called with, and the result isreturned.(Note that it is in principle possible to install even Index and IndexOp methods for a number of argumentsdi�erent from two, with InstallOtherMethod, see 3.3 in \Programming in GAP").

48 Chapter 6. Function-Operation-Attribute Triples
1I InParentFOA(name, super-req, sub-req, DeclareAttribute)
I InParentFOA(name, super-req, sub-req, DeclareProperty)declares the operations and the attribute as described above, with names name, nameOp, and nameInParent.super-req and sub-req specify the required �lters for the �rst and second argument of the operation nameOp,which are needed to create this operation with NewOperation (see 3.5.1). sub-req is also the required �lterfor the corresponding attribute nameInParent; note that HasParent is not required for the argument Uof nameInParent, because even without a parent stored, Parent(U) is legal, meaning U itself (see 30.7in the Reference Manual). The fourth argument is DeclareProperty if nameInParent takes only booleanvalues (for example in the case IsNormalInParent), and DeclareAttribute otherwise.For example, to set up the three objects Index, IndexOp, and IndexInParent together, the declaration �le\lib/domain.gd" contains the following line of code.InParentFOA("Index", IsGroup, IsGroup, DeclareAttribute);Note that no methods need be installed for Index and IndexInParent.6.3 Operation FunctionsChapter 39 of the Reference Manual and, in particular, the Section 39.1 explain that certain operationssuch as Orbits (see 39.3), besides their usual usage with arguments G , D , and opr , can also be appliedto an external set (G-set), in which case they can be interpreted as attributes. Moreover, they can also beinterpreted as attributes for permutation group, meaning the natural action on the set of its moved points.The de�nition of Orbits says that a method should be a function with arguments G , D , gens, oprs, and opr ,as in the case of the operation ExternalSet when speci�ed via gens and oprs (see 39.11 in the ReferenceManual). All other syntax variants allowed for Orbits (e.g., leaving out gens and oprs) are handled bydefault methods.The default methods for Orbits support the following behaviour.1. If the only argument is an external set xset and the attribute tester HasOrbits(xset) returns true,the stored value of that attribute is returned.2. If the only argument is an external set xset and the attribute value is not known, the default argumentsare obtained from the data of xset .3. If gens and oprs are not speci�ed, gens is set to Pcgs(G) if CanEasilyComputePcgs(G) is true,and to GeneratorsOfGroup(G) otherwise; oprs is set to gens.4. The default value of opr is OnPoints.5. In the case of an operation of a permutation group G on MovedPoints(G) via OnPoints, if theattribute tester HasOrbits(G) returns true, the stored attribute value is returned.6. The operation is called as result:= Orbits(G, D, gens, oprs, opr).7. In the case of an external set xset or a permutation group G in its natural action, the attribute setteris called to store result .8. result is returned.The declaration of operations that match the above pattern is done as follows.

1I OrbitsishOperation(name, reqs, usetype, NewAttribute) F
I OrbitsishOperation(name, reqs, usetype, NewProperty) Fdeclares an attribute op as described above, with name name. The second argument reqs speci�es the listof required �lters for the usual (�ve-argument) methods that do the real work.

Section 3. Operation Functions 49If the third argument usetype is true, the function call op(xset) will | if the value of op for xset isnot yet known | delegate to the �ve-argument call of op with second argument xset rather than with D(cf. step 6 above). This allows certain methods for op to make use of the type of xset , in which the types ofthe external subsets of xset and of the external orbits in xset are stored. (This is used to avoid repeated callsof NewType in functions like ExternalOrbits(xset), which call ExternalOrbit(xset, pnt) for severalvalues of pnt .)For property testing functions such as IsTransitive, the fourth argument is NewProperty, otherwise it isNewAttribute.For example, to set up the operation Orbits, the declaration �le \lib/oprt.gd" contains the following lineof code:OrbitsishOperation("Orbits", OrbitsishReq, false, NewAttribute);The variable OrbitsishReq contains the standard requirementsOrbitsishReq := [IsGroup, IsList,IsList,IsList,IsFunction];which are usually entered in calls to OrbitsishOperation.A similar mechanism is provided for operations such as Orbit that do not have an associated attribute butstill need a wrapper function to standardize the arguments for the associated operation.
2I OrbitishFO(name, reqs, famrel, usetype) Fdeclares a wrapper function and its operation, with names name and nameOp. The second argument reqsspeci�es the list of required �lters for the operation nameOp.The third argument famrel is used to test the family relation between the second and third argument ofname(G, D, elm). For example, in the call Orbit(G, D, pnt), pnt must be an element of D , sofamrel = IsCollsElms is appropriate, and in the call Blocks(G, D, seed), seed must be a subset ofD , and the family relation is IsIdenticalObj. The fourth argument usetype serves the same purpose as inthe case of OrbitsishOperation.For example, to setup the function Orbit and its operation OrbitOp, the declaration �le \lib/oprt.gd"contains the following line of code:OrbitishFO("Orbit", OrbitishReq, IsCollsElms, false);The variable OrbitishReq contains the standard requirementsOrbitishReq := [IsGroup, IsList, IsObject,IsList,IsList,IsFunction];which are usually entered in calls to OrbitishFO.The relation test via famrel is used to provide a uniform construction of the wrapper functions created byOrbitishFO, in spite of the di�erent syntax of the speci�c functions. For example, Orbit admits the callsOrbit(G, D, pnt, opr) and Orbit(G, pnt, opr), i.e., the second argument D may be omitted;Blocks admits the calls Blocks(G, D, seed, opr) and Blocks(G, D, opr), i.e., the third argu-ment may be omitted. The translation to the appropriate call of OrbitOp or BlocksOp, for either operationwith �ve or six arguments, is handled via famrel .As a consequence, there must not only be methods for OrbitOp with the six arguments corresponding toOrbitishReq, but also methods for only �ve arguments (i.e., without D). Plenty of examples are containedin the implementation �le \lib/oprt.gi".

50 Chapter 6. Function-Operation-Attribute TriplesIn order to handle a few special cases (currently Blocks and MaximalBlocks), also the following form issupported.OrbitishFO(name, reqs, famrel, attr) FThe functions in question depend upon an argument seed , so they cannot be regarded as attributes. However,they are most often called without giving seed , meaning \choose any minimal resp. maximal block system".In this case, the result can be stored as the value of the attribute attr that was entered as fourth argumentof OrbitishFO. This attribute is considered by a call Blocks(G, D, opr) (i.e., without seed) in thesame way as Orbits considers OrbitsAttr.To set this up, the declaration �le \lib/oprt.gd" contains the following lines:DeclareAttribute("BlocksAttr", IsExternalSet);OrbitishFO("Blocks",[IsGroup, IsList, IsList,IsList,IsList,IsFunction], IsIdenticalObj, BlocksAttr);And this extraordinary FOA triple works as follows:gap> s4 := Group((1,2,3,4),(1,2));; Blocks(s4, MovedPoints(s4), [1,2]);[[1, 2, 3, 4]]gap> Tester(BlocksAttr)(s4);falsegap> Blocks(s4, MovedPoints(s4));[[1, 2, 3, 4]]gap> Tester(BlocksAttr)(s4); BlocksAttr(s4);true[[1, 2, 3, 4]]

7 Weak Pointers
This chapter describes the use of the kernel feature of weak pointers. This feature is intended for use onlyin GAP internals, and is not recommended for use in GAP packages, user code, or at the higher levels ofthe library.The GASMAN garbage collector is the part of the kernel that manages memory in the users workspace. Itwill normally only reclaim the storage used by an object when the object cannot be reached as a subobjectof any GAP variable, or from any reference in the kernel. We say that any link to object a from object b\keeps object a alive", as long as b is alive. It is occasionally convenient, however to have a link to an objectwhich does not keep it alive, and this is a weak pointer. The most common use is in caches, and similarstructures, where it is only necessary to remember how to solve problem x as long as some other link to xexists.The following section 7.1 describes the semantics of the objects that contain weak pointers. Following sectionsdescribe the functions available to manipulate them.7.1 Weak Pointer ObjectsA weak pointer object is similar to a mutable plain list, except that it does not keep its subobjects aliveduring a garbage collection. From the GAP viewpoint this means that its entries may become unbound,apparently spontaneously, at any time. Considerable care is therefore needed in programming with such anobject.7.2 WeakPointerObj

1I WeakPointerObj(list)WeakPointerObj returns a weak pointer object which contains the same subobjects as list , that is it returnsa shallow weak copy of list .gap> w := WeakPointerObj([1, , [2,3], fail, rec()]);WeakPointerObj([1, , [2, 3], fail, rec()])gap> GASMAN("collect");gap> w;WeakPointerObj([1, , , fail])Note that w has failed to keep its list and record subobjects alive during the garbage collection. Certainsubobjects, such as small integers and elements of small �nite �elds, are not stored in the workspace, andso are not subject to garbage collection, while certain other objects, such as the Boolean values, are alwaysreachable from global variables or the kernel and so are never garbage collected.Subobjects reachable without going through a weak pointer object do not evaporate, as in:

52 Chapter 7. Weak Pointersgap> l := [1,2,3];;gap> w[1] := l;;gap> w;WeakPointerObj([[1, 2, 3], , , fail])gap> GASMAN("collect");gap> w;WeakPointerObj([[1, 2, 3], , , fail])Note also that the global variables last, last2 and last3 will keep things alive { this can be confusingwhen debugging.7.3 Low Level Access Functions for Weak Pointer Objects
1I SetElmWPObj(wp,pos,val)
I UnbindElmWPObj(wp,pos)
I ElmWPObj(wp, pos)
I IsBOundElmWPObj(wp,pos)
I LengthWPObj(wp)The functions SetElmWPObj(wp,pos,val) and UnbindElmWPObj(wp,pos) set and unbind entries in a weakpointer object.The function ElmWPObj(wp, pos) returns the element at position pos of the weak pointer object wp, ifthere is one, and fail otherwise. A return value of fail can thus arise either because (a) the value failis stored at position pos, or (b) no value is stored at position pos. Since fail cannot vanish in a garbagecollection, these two cases can safely be distinguished by a subsequent call to IsBoundElmWPObj(wp,pos),which returns true if there is currently a value bound at position pos of wp and false otherwise.Note that it is not safe to write: if IsBoundElmWpObj(w,i) then x:= ElmWPObj(w,i); fi; and treat xas reliably containing a value taken from w, as a badly timed garbage collection could leave x containingfail. Instead use x := ElmWPObj(w,i); if x <> fail or IsBoundElmWPObj(w,i) thengap> w := WeakPointerObj([1, , [2,3], fail, rec()]);WeakPointerObj([1, , [2, 3], fail, rec()])gap> SetElmWPObj(w,5,[]);gap> w;WeakPointerObj([1, , [2, 3], fail, []])gap> UnbindElmWPObj(w,1);gap> w;WeakPointerObj([, , [2, 3], fail, []])gap> ElmWPObj(w,3);[2, 3]gap> ElmWPObj(w,1);failgap> 2;;3;;4;;GASMAN("collect"); # clear last etc.gap> ElmWPObj(w,3);failgap> w;WeakPointerObj([, , , fail])gap> ElmWPObj(w,4);failgap> IsBoundElmWPObj(w,3);falsegap> IsBoundElmWPObj(w,4);true

Section 6. The GASMAN Interface for Weak Pointer Objects 537.4 Accessing Weak Pointer Objects as ListsWeak pointer objects are members of ListsFamily and the categories IsList and IsMutable. Methodsbased on the low-level functions in the previous section, are installed for the list access operations, enablingthem to be used as lists. However, it is not recommended that these be used in programming. They aresupplied mainly as a convenience for interactive working, and may not be safe, since functions and methodsfor lists may assume that after IsBound(w[i]) returns true, access to w[i] is safe.7.5 Copying Weak Pointer ObjectsA ShallowCopy method is installed, which makes a new weak pointer object containing the same objects asthe original.It is possible to apply StructuralCopy to a weak pointer object, obtaining a new weak pointer objectcontaining copies of the objects in the original. This may not be safe if a badly timed garbage collectionoccurs during copying.Applying Immutable to a weak pointer object produces an immutable plain list containing immutable copiesof the objects contained in the weak pointer object. An immutable weak pointer object is a contradiction interms.7.6 The GASMAN Interface for Weak Pointer ObjectsThe key support for weak pointers is in gasman.c and gasman.h. This document assumes familiarity withthe rest of the operation of GASMAN. A kernel type (tnum) of bags which are intended to act as weakpointers to their subobjects must meet three conditions. Firstly, the marking function installed for thattnum must use MarkBagWeakly for those subbags, rather than MARK BAG. Secondly, before any access to sucha subbag, it must be checked with IS WEAK DEAD BAG. If that returns true, then the subbag has evaporatedin a recent garbage collection and must not be accessed. Typically the reference to it should be removed.Thirdly, a sweeping function must be installed for that tnum which copies the bag, removing all referencesto dead weakly held subbags.The �les weakptr.c and weakptr.h use this interface to support weak pointer objects. Other objects withweak behaviour could be implemented in a similar way.

8 Stabilizer Chains(preliminary)
This chapter contains some rather technical complements to the material handled in the chapters 40 and 41of the reference manual.8.1 Generalized Conjugation TechniqueThe command ConjugateGroup(G, p) (see 37.2.5 in the reference manual) for a permutation group Gwith stabilizer chain equips its result also with a stabilizer chain, namely with the chain of G conjugate byp. Conjugating a stabilizer chain by a permutation p means replacing all the points which appear in theorbit components by their images under p and replacing every permutation g which appears in a labelsor transversal component by its conjugate gp . The conjugate gp acts on the mapped points exactly as gdid on the original points, i.e., (pnt � p) � gp = (pnt � g) � p. Since the entries in the translabels componentsare integers pointing to positions of the labels list, the translabels lists just have to be permuted by p forthe conjugated stabilizer. Then generators is reconstructed as labels{ genlabels } and transversal{orbit } as labels{ translabels{ orbit } }.This conjugation technique can be generalized. Instead of mapping points and permutations under the samepermutation p, it is sometimes desirable (e.g., in the context of permutation group homomorphisms) to mapthe points with an arbitrary mapping map and the permutations with a homomorphism hom such thatthe compatibility of the actions is still valid: map(pnt) � hom(g) = map(pnt � g). (Of course the ordinaryconjugation is a special case of this, with map(pnt) = pnt � p and hom(g) = gp .)In the generalized case, the \conjugated" chain need not be a stabilizer chain for the image of hom, since the\preimage" of the stabilizer of map(b) (where b is a base point) need not �x b, but only �xes the preimagemap�1(map(b)) setwise. Therefore the method can be applied only to one level and the next stabilizermust be computed explicitly. But if map is injective, we have map(b) � hom(g) = map(b) () b � g = b,and if this holds, then g = w(g1; : : : ; gn) is a word in the generators g1; : : : ; gn of the stabilizer of b andhom(g) =� w(hom(g1); : : : ; hom(gn)) is in the \conjugated" stabilizer. If, more generally, hom is a rightinverse to a homomorphism ' (i.e., '(hom(g)) = g 8g), equality � holds modulo Ker'; in this case the\conjugated" chain can be made into a real stabilizer chain by extending each level with the generatorsKer' and appending a proper stabilizer chain of Ker' at the end. These special cases will occur in thealgorithms for permutation group homomorphisms (see 38 in the reference manual).To \conjugate" the points (i.e., orbit) and permutations (i.e., labels) of the Schreier tree, a loop is set upover the orbit list constructed during the orbit algorithm, and for each vertex b with unique edge a(l)bending at b, the label l is mapped with hom and b with map. We assume that the orbit list was builtw.r.t. a certain ordering of the labels, where l 0 < l means that every point in the orbit was mapped with l 0before it was mapped with l . This shape of the orbit list is guaranteed if the Schreier tree is extended onlyby AddGeneratorsExtendSchreierTree, and it is then also guaranteed for the \conjugated" Schreier tree.(The ordering of the labels cannot be read from the Schreier tree, however.)In the generalized case, it can happen that the edge a(l)b bears a label l whose image is \old", i.e., equalto the image of an earlier label l 0 < l . Because of the compatibility of the actions we then have map(b) =map(a) � hom(l)�1 = map(a) � hom(l 0)�1 = map(al 0�1), so map(b) is already equal to the image of thevertex al 0�1. This vertex must have been encountered before b = al�1 because l 0 < l . We conclude that the

Section 2. The General Backtrack Algorithm with Ordered Partitions 55image of a label can be \old" only if the vertex at the end of the corresponding edge has an \old" image,too, but then it need not be \conjugated" at all. A similar remark applies to labels which map under homto the identity.8.2 The General Backtrack Algorithm with Ordered PartitionsSection 41.11 in the reference manual describes the basic functions for a backtrack search. The purpose ofthis section is to document how the general backtrack algorithm is implemented in GAP and which partsyou have to modify if you want to write your own backtrack routines.
Internal representation of ordered partitions. GAP represents an ordered partition as a record with the followingcomponents.points a list of all points contained in the partition, such that the points of each cell from lie consecutively,cellno a list whose ith entry is the number of the cell which contains the point i ,firsts a list such that points[firsts[j]] is the �rst point in points which is in cell j ,lengthsa list of the cell lengths.Some of the information is redundant, e.g., the lengths could also be read o� the firsts list, but sincethis need not be increasing, it would require some searching. Similar for cellno, which could be replacedby a systematic search of points, keeping track of what cell is currently being traversed. With the abovecomponents, the mth cell of a partition P is expressed as P.points [P.firsts[m] .. P.firsts[m] +P.lengths[m] - 1] . The most important operations, however, to be performed upon P are the splittingof a cell and the reuniting of the two parts. Following the strategy of J. Leon, this is done as follows:(1) The points which make up the cell that is to be split are sorted so that the ones that remain insideoccupy positions [P.firsts[m] .. last] in the list P.points (for a suitable value of last).(2) The points at positions [last + 1 .. P.firsts[m] + P.lengths[m] - 1] will form the addi-tional cell. For this new cell requires additional entries are added to the lists P.firsts (namely, last+1)and P.lengths (namely, P.firsts[m] + P.lengths[m] - last - 1).(3) The entries of the sublist P.cellno [last+1 .. P.firsts[m] + P.lengths[m]-1] must be setto the number of the new cell.(4) The entry P.lengths[m] must be reduced to last - P.firsts[m] + 1.Then reuniting the two cells requires only the reversal of steps 2 to 4 above. The list P.points need not berearranged.
Functions for setting up an R-base. This subsection explains some GAP functions which are local to the library�le lib/stbcbckt.gi which contains the code for backtracking in permutation groups. They are mentionedhere because you might �nd them helpful when you want to implement you own backtracking function basedon the partition concept. An important argument to most of the functions is the R-base R, which you shouldregard as a black box. We will tell you how to set it up, how to maintain it and where to pass it as argument,but it is not necessary for you to know its internal representation. However, if you insist to learn the wholestory: Here are the record components from which an R-base is made up:domain the set
 on which the group G operates

56 Chapter 8. Stabilizer Chains (preliminary)base the sequence (a1; : : : ; ar) of base pointspartitionan ordered partition, initially �0, this will be re�ned to �1; : : : ;�r during the backtrack algorithmwhere a list such that ai lies in cell number where[i] of �irfm a list whose ith entry is a list of re�nements which take �i to �i+1; the structure of a re�nement isdescribed belowchain a (copy of a) stabilizer chain for G (not if G is a symmetric group)fix only if G is a symmetric group: a list whose i entry contains Fixcells(�i)level initially equal to chain, this will be changed to chains for the stabilizers Ga1:::ai for i = 1; : : : ; rduring the backtrack algorithm; if G is a symmetric group, only the number of moved points isstored for each stabilizerlev a list whose ith entry remembers the level entry for Ga1:::ai�1level2, lev2a similar construction for a second group (used in intersection calculations), false otherwise. Thissecond group H activated if the R-base is constructed as EmptyRBase([G, H],
, �0) (ifG = H , GAP sets level2 = true instead).nextLevelthis is described belowAs our guiding example, we present code for the function Centralizer which calculates the centralizer ofan element g in the group G . (The real code is more general and has a few more subtleties.)1 �0 := TrivialPartition(
);2 R := EmptyRBase(G,
, �0);3 R.nextLevel := function(�, rbase)4 local �x, p, q, where;5 NextRBasePoint(�, rbase);6 �x := Fixcells(�);7 for p in �x do8 q := p ^ g;9 where := IsolatePoint(�, q);10 if where <> false then12 Add(�x, q);13 ProcessFixpoint(R, q);14 AddRefinement(R, "Centralizer", [�.cellno[p], q, where]);15 if �.lengths[where] = 1 then16 p := FixpointCellNo(�, where);17 ProcessFixpoint(R, p);18 AddRefinement(R, "ProcessFixpoint", [p, where]);19 fi;20 fi;21 od;

Section 2. The General Backtrack Algorithm with Ordered Partitions 5722 end;23 return PartitionBacktrack(24 G,25 c -> g ^ c = g,26 false,27 R,28 [�0, g],29 L, R);The list numbers below refer to the line numbers of the code above.1.
 is the set on which G acts and �0 is the �rst member of the decreasing sequence of partitions men-tioned in 41.11 in the reference manual. We set �0 = (
), which is constructed as TrivialPartition(
)), but we could have started with a �ner partition, e.g., into unions of g-cycles of the same length.2. This statement sets up the R-base in the variable R.3. { 21. These lines de�ne a function R.nextLevel which is called whenever an additional member inthe sequence �0 � �1 � : : : of partitions is needed. If �i does not yet contain enough base points inone-point cells, GAP will call R.nextLevel(�i, R), and this function will choose a new base pointai+1, re�ne �i to �i+1 (thereby changing the �rst argument) and store all necessary information in R.5. This statement selects a new base point ai+1, which is not yet in a one-point cell of � and still movedby the stabilizer Ga1:::ai of the earlier base points. If certain points of
 should are preferred as basepoint (e.g., because they belong to long cycles of g), a list of points starting with the most wanted ones,can be given as an optional third argument to NextRBasePoint (actually, this is done in the real codefor Centralizer).6. Fixcells(�) returns the list of points in one-point cells of � (ordered as the cells are ordered in �).7. For every point p 2 �x , if we know the image p ^ g under c 2 CG(e), we also know (p ^ g) ^ c =(p ^ c) ^ g . We therefore want to isolate these extra points in �.9. This statement puts point q in a cell of its own, returning in where the number of the cell of � fromwhich q was taken. If q was already the only point in its cell, where = false instead.12. This command does the necessary bookkeeping for the extra base point q : It prescribes q as next base inthe stabilizer chain for G (needed, e.g., in line 5) and returns false if q was already �xed the stabilizerof the earlier base points (and true otherwise; this is not used here). Another call to ProcessFixpointlike this was implicitly made by the function NextRBasePoint to register the chosen base point. Bycontrast, the point q was not chosen this way, so ProcessFixpoint must be called explicitly for q .13. This statement registers the function which will be used during the backtrack search to perform thecorresponding re�nements on the \image partition" �i (to yield the re�ned �i+1). After choosingan image bi+1 for the base point ai+1, GAP will compute �i ^ (fbi+1g;
 � fbi+1g) and store thispartition in I.partition, where I is a black box similar to R, but corresponding to the current\image partition" (hence it is an \R-image" in analogy to the R-base). Then GAP will call the functionRefinements.Centralizer(R, I, �.cellno[p], p, where), with the then current values ofR and I, but where �.cellno[p], p, where still have the values they have at the time of thisAddRefinement command. This function call will further re�ne I.partition to yield �i+1 as it isprogrammed in the function Refinements.Centralizer, which is described below. (The global variableRefinements is a record which contains all re�nement functions for all backtracking procedures.)14. { 19. If the cell from which q was taken out had only two points, we now have an additional one-point cell. This condition is checked in line 13 and if it is true, this extra �xpoint p is taken (line 15),

58 Chapter 8. Stabilizer Chains (preliminary)processed like q before (line 16) and is then (line 17) passed to another re�nement function Refine-ments.ProcessFixpoint(R, I, p, where), which is also described below.23. { 29. This command starts the backtrack search. Its result will be the centralizer as a subgroup of G .Its arguments are24. the group we want to run through,25. the property we want to test, as a GAP function,26. false if we are looking for a subgroup, true in the case of a representative search (when the resultwould be one representative),27. the R-base,28. a list of data, to be stored in I.data, which has in position 1 the �rst member �0 of the decreasingsequence of \image partitions" mentioned in 41.11 in the reference manual. In the centralizer example,position 2 contains the element that is to be centralized. In the case of a representative search, i.e., aconjugacy test g ^ c ?= h, we would have h instead of g here, and possibly a �0 di�erent from �0(e.g., a partition into unions of h-cycles of same length).29. two subgroups L � CG(g) and R � CG(h) known in advance (we have L = R in the centralizer case).
Re�nement functions for the backtrack search. The last subsection showed how the re�nement process leadingfrom �i to �i+1 is coded in the function R.nextLevel, this has to be executed once the base point ai+1.The analogous re�nement step from �i to �i+1 must be performed for each choice of an image bi+1 for ai+1,and it will depend on the corresponding value of �i ^ (fbi+1g;
� fbi+1g). But before we can continue ourcentralizer example, we must, for the interested reader, document the record components of the other blackbox I, as we did above for the R-base black box R. Most of the components change as GAP walks up anddown the levels of the search tree.data this will be mentioned belowdepth the level i in the search tree of the current node �ibimg a list of images of the points in R.basepartitionthe partition �i of the current nodelevel the stabilizer chain R.lev[i] at the current levelperm a permutation mapping Fixcells(�i) to Fixcells(�i) (this implies mapping (a1; : : : ; ai) to(b1; : : : ; bi))level2, perm2a similar construction for the second stabilizer chain, false otherwise (and true if R.level2 =true)As declared in the above code for Centralizer, the re�nement is performed by the function Refine-ment.Centralizer(R, I, �.cellno[p], p, where). The functions in the record Refinement al-ways take two additional arguments before the ones speci�ed in the AddRefinement call (in line 13 above),namely the R-base R and the current value I of the \R-image". In our example, p is a �xpoint of� = �i ^ (fai+1g;
 � fai+1g) such that where = �.cellno[p ^ g]. The Refinement functions must

Section 2. The General Backtrack Algorithm with Ordered Partitions 59return false if the re�nement is unsuccessful (e.g., because it leads to �i+1 having di�erent cell sizes from�i+1) and true otherwise. Our particular function looks like this.1 Refinements.Centralizer := function(R, I, cellno, p, where)2 local �, q;3 � := I.partition;4 q := FixpointCellNo(�, cellno) ^ I.data[2];5 return IsolatePoint(�, q) = where and ProcessFixpoint(I, p, q);6 end;The list numbers below refer to the line numbers of the code immediately above.3. The current value of �i ^ (fbi+1g;
� fbi+1g) is always found in I.partition.4. The image of the only point in cell number cellno = �i.cellno[p] in � under g = I.data[2] iscalculated.5. The function returns true only if the image q has the same cell number in � as p had in � (i.e., where)and if q can be prescribed as an image for p under the coset of the stabilizer Ga1:::ai+1 �c where c 2 G is an(already constructed) element mapping the earlier base points a1; : : : ; ai+1 to the already chosen imagesb1; : : : ; bi+1. This latter condition is tested by ProcessFixpoint(I, p, q) which, if successful, alsodoes the necessary bookkeeping in I. In analogy to the remark about line 12 in the program above,the chosen image bi+1 for the base point ai+1 has already been processed implicitly by the functionPartitionBacktrack, and this processing includes the construction of an element c 2 G which mapsFixcells(�i) to Fixcells(�i) and ai+1 to bi+1. By contrast, the extra �xpoints p and q in �i+1and �i+1 were not chosen automatically, so they require an explicit call of ProcessFixpoint, whichreplaces the element c by some c0 � c (with c0 2 Ga1:::ai+1) which in addition maps p to q , or returnsfalse if this is impossible.You should now be able to guess what Refinements.ProcessFixpoint(R, I, p, where) does: it simplyreturns ProcessFixpoint(I, p, FixpointCellNo(I.partition, where)).
Summary. When you write your own backtrack functions using the partition technique, you have to supplyan R-base, including a component nextLevel, and the functions in the Refinements record which you need.Then you can start the backtrack by passing the R-base and the additional data (for the data componentof the \R-image") to PartitionBacktrack.
Functions for meeting ordered partitions. A kind of re�nement that occurs in particular in the normalizercalculation involves computing the meet of � (cf. lines 6�. above) with an arbitrary other partition �, notjust with one point. To do this e�ciently, GAP uses the following two functions.

1I StratMeetPartition(R, �, � [, g])
I MeetPartitionStrat(R, I, �0 [, g 0], strat)Such a StratMeetPartition command would typically appear in the function call R.nextLevel(�, R) (during the re�nement of �i to �i+1). This command replaces � by �^� (thereby changing the secondargument) and returns a \meet strategy" strat . This is (for us) a black box which serves two purposes: First,it allows GAP to calculate faster the corresponding meet �^�0, which must then appear in a Refinementsfunction (during the re�nement of �i to �i+1). It is faster to compute � ^ �0 with the \meet strategy" of� ^ � because if the re�nement of � is successful at all, the intersection of a cell from the left hand side ofthe ^ sign with a cell from the right hand side must have the same size in both cases (and strat records thesesizes, so that only non-empty intersections must be calculated for � ^ �0). Second, if there is a discrepancybetween the behaviour prescribed by strat and the behaviour observed when re�ning �, the re�nement canimmediately be abandoned.

60 Chapter 8. Stabilizer Chains (preliminary)On the other hand, if you only want to meet a partition � with � for a one-time use, without recordinga strategy, you can simply type StratMeetPartition(�, �) as in the following example, which alsodemonstrates some other partition-related commands.gap> P := Partition([[1,2],[3,4,5],[6]]);; Cells(P);[[1, 2], [3, 4, 5], [6]]gap> Q := Partition(OnTuplesTuples(last, (1,3,6)));; Cells(Q);[[3, 2], [6, 4, 5], [1]]gap> StratMeetPartition(P, Q);[]gap> # The ``meet strategy'' was not recorded, ignore this result.gap> Cells(P);[[1], [5, 4], [6], [2], [3]]You can even say StratMeetPartition(�, �) where � is simple a subset of
, it will then be interpretedas the partition (�;
��).GAP makes use of the advantages of a \meet strategy" if the re�nement function in Refinements containsa MeetPartitionStrat command where strat is the \meet strategy" calculated by StratMeetPartitionbefore. Such a command replaces I.partition by its meet with �0, again changing the argument I. Thenecessary reversal of these changes when backtracking from a node (and prescribing the next possible imagefor a base point) is automatically done by the function PartitionBacktrack.In all cases, an additional argument g means that the meet is to be taken not with �, but instead with� � g�1, where operation on ordered partitions is meant cellwise (and setwise on each cell). (Analogously forthe primed arguments.)gap> P := Partition([[1,2],[3,4,5],[6]]);;gap> StratMeetPartition(P, P, (1,6,3));; Cells(P);[[1], [5, 4], [6], [2], [3]]Note that P � (1; 3; 6) = Q .
Avoiding multiplication of permutations. In the description of the last subsections, the backtrack algorithmconstructs an element c 2 G mapping the base points to the prescribed images and �nally tests the propertyin question for that element. During the construction, c is obtained as a product of transversal elementsfrom the stabilizer chain for G , and so multiplications of permutations are required for every c submittedto the test, even if the test fails (i.e., in our centralizer example, if g ^ c <> g). Even if the construction ofc stops before images for all base points have been chosen, because a re�nement was unsuccessful, severalmultiplications will already have been performed by (explicit or implicit) calls of ProcessFixpoint, and,actually, the general backtrack procedure implemented in GAP avoids this.For this purpose, GAP does not actually multiply the permutations but rather stores all the factors of theproduct in a list. Speci�cally, instead of carrying out the multiplication in c 7! c0 � c mentioned in thecomment to line 5 of the above program | where c0 2 Ga1:::ai+1 is a product of factorized inverse transversalelements, see 41.8 in the reference manual | GAP appends the list of these factorized inverse transversalelements (giving c0) to the list of factors already collected for c. Here c0 is multiplied from the left and isitself a product of inverses of strong generators of G , but GAP simply spares itself all the work of invertingpermutations and stores only a \list of inverses", whose product is then (c0 � c)�1 (which is the new value ofc�1). The \list of inverses" is extended this way whenever ProcessFixpoint is called to improve c.The product has to be multiplied out only when the property is �nally tested for the element c. But it isoften possible to delay the multiplication even further, namely until after the test, so that no multiplicationis required in the case of an unsuccessful test. Then the test itself must be carried out with the factorizedversion of the element c. For this purpose, PartitionBacktrack can be passed its second argument (theproperty in question) in a di�erent way, not as a single GAP function, but as a list like in lines 2{4 of thefollowing alternative excerpt from the code for Centralizer.

Section 3. Stabilizer Chains for Automorphisms Acting on Enumerators 611 return PartitionBacktrack(G,2 [g, g,3 OnPoints,4 c -> c!.lftObj = c!.rgtObj],5 false, R, [�0, g], L, R);The test for c to have the property in question is of the form opr(left, c) = right where opr is anoperation function as explained in 39.11 in the reference manual. In other words, c passes the test if andonly if it maps a \left object" to a \right object" under a certain operation. In the centralizer example, wehave opr = OnPoints and left = right = g , but in a conjugacy test, we would have right = h.2. Two �rst two entries (here g and g) are the values of left and right .3. The third entry (here OnPoints) is the operation opr .4. The fourth entry is the test to be performed upon the mapped left object left and preimage of theright object opr(right, c^-1). Here GAP operates with the inverse of c because this is the productof the permutations stored in the \list of inverses". The preimage of right under c is then calculatedby mapping right with the factors of c�1 one by one, without the need to multiply these factors. Thismapping of right is automatically done by the ProcessFixpoint function whenever c is extended, thecurrent value of right is always stored in c!.rgtObj. When the test given by the fourth entry is �nallyperformed, the element c has two components c!.lftObj = left and c!.rgtObj = opr(right, c^-1), which must be used to express the desired relation as a function of c. In our centralizer example, wesimply have to test whether they are equal.8.3 Stabilizer Chains for Automorphisms Acting on EnumeratorsThis section describes a way of representing the automorphism group of a group as permutation group,following [Sim97]. The code however is not yet included in the GAP library.In this section we present an example in which objects we already know (namely, automorphisms of solvablegroups) are equipped with the permutation-like operations ^ and / for action on positive integers. To achievethis, we must de�ne a new type of objects which behave like permutations but are represented as automor-phisms acting on an enumerator. Our goal is to generalize the Schreier-Sims algorithm for construction of astabilizer chain to groups of such new automorphisms.
An operation domain for automorphisms. The idea we describe here is due to C. Sims. We consider a groupA of automorphisms of a group G , given by generators, and we would like to know its order. Of coursewe could follow the strategy of the Schreier-Sims algorithm (described in 41.5 in the reference manual)for A acting on G . This would involve a call of StabChainStrong(EmptyStabChain([], One(A)),GroupGenerators(A)) where StabChainStrong is a function as the one described in the pseudo-codebelow:StabChainStrong := function(S, newgens)Extend the Schreier tree of S with newgens.for sch in Schreier generators doif sch =2 S.stabilizer thenStabChainStrong(S.stabilizer, [sch]);fi;od;end;The membership test sch =2 S.stabilizer can be performed because the stabilizer chain of S.stabilizeris already correct at that moment. We even know a base in advance, namely any generating set for G . Fixsuch a generating set (g1; : : : ; gd) and observe that this base is generally very short compared to the degreejG j of the operation. The problem with the Schreier-Sims algorithm, however, is then that the length of the

62 Chapter 8. Stabilizer Chains (preliminary)�rst basic orbit g1 �A would already have the magnitude of jG j, and the basic orbits at deeper levels wouldnot be much shorter. For the advantage of a short base we pay the high price of long basic orbits, since theproduct of the (few) basic orbit lengths must equal jAj. Such long orbits make the Schreier-Sims algorithminfeasible, so we have to look for a longer base with shorter basic orbits.Assume that G is solvable and choose a characteristic series with elementary abelian factors. For the sake ofsimplicity we assume that N < G is an elementary abelian characteristic subgroup with elementary abelianfactor group G=N . Since N is characteristic, A also acts as a group of automorphisms on the factor groupG=N , but of course not necessarily faithfully. To retain a faithful action, we let A act on the disjoint unionG=N with G , and choose as base (g1N ; : : : ; gdN ; g1; : : : ; gd). Now the �rst d basic orbits lie inside G=Nand can have length at most [G : N]. Since the base points g1N ; : : : ; gdN form a generating set for G=N ,their iterated stabilizer A(d+1) acts trivially on the factor group G=N , i.e., it leaves the cosets giN invariant.Accordingly, the next d basic orbits lie inside giN (for i = 1; : : : ; d) and can have length at most jN j.Generalizing this method to a characteristic series G = N0 > N1 > : : : > Nl = f1g of length l > 2, wecan always �nd a base of length l � d such that each basic orbit is contained in a coset of a characteristicfactor, i.e. in a set of the form giNj�1=Nj (where gi is one of the generators of G and 1 � j � l). Inparticular, the length of the basic orbits is bounded by the size of the corresponding characteristic factors.To implement a Schreier-Sims algorithm for such a base, we must be able to let automorphisms act on cosetsof characteristic factors giNj�1=Nj , for varying i and j . We would like to translate each such action into anaction on f1; : : : ; [Nj�1 :Nj]g, because then we need not enumerate the operation domainG=N1 _[G=N2 _[: : : _[G=Nlas a whole. Enumerating it as a whole would result in basic orbits like orbit � f1001; : : : ; 1100g witha transversal list whose �rst 1000 entries would be unbound, but still require 4 bytes of memory each(see 41.8 in the reference manual).Identifying each coset giNj�1=Nj into f1; : : : ; [Nj�1 :Nj]g of course means that we have to change the actionof the automorphisms on every level of the stabilizer chain. Such
exibility is not possible with permutationsbecause their e�ect on positive integers is \hardwired" into them, but we can install new operations forautomorphisms.
Enumerators for cosets of characteristic factors. So far we have not used the fact that the characteristic factorsare elementary abelian, but we will do so from here on. Our �rst task is to implement an enumerator (see28.2.7 and 21.23 in the reference manual) for a coset of a characteristic factor in a solvable group G . Weassume that such a coset gN =M is given by(1) a pcgs for the group G (see 43.2.1 in the reference manual), let n = Length(pcgs);(2) a range range = [start .. stop] indicating that N = hpcgs{ [start .. n] } i and M = hpcgs{[stop + 1 .. n] } i, i.e., the cosets of pcgs{ range } form a base for the vector space N =M ;(3) the representative g .We �rst de�ne a new representation for such enumerators and then construct them by simply puttingthese three pieces of data into a record object. The enumerator should behave as a list of group elements(representing cosets modulo M), consequently, its family will be the family of the pcgs itself.IsCosetSolvableFactorEnumeratorRep := NewRepresentation("isCosetSolvableFactorEnumerator", IsEnumerator,["pcgs", "range", "representative"]);

Section 3. Stabilizer Chains for Automorphisms Acting on Enumerators 63EnumeratorCosetSolvableFactor := function(pcgs, range, g)return Objectify(NewKind(FamilyObj(pcgs),IsCosetSolvableFactorEnumeratorRep),rec(pcgs := pcgs,range := range,representative := g));end;The de�nition of the operations Length, \[\] and Position is now straightforward. The code has sometimesbeen abbreviated and is meant \cum grano salis", e.g., the declaration of the local variables has been leftout.InstallMethod(Length, [IsCosetSolvableFactorEnumeratorRep],enum -> Product(RelativeOrdersPcgs(enum!.pcgs){ enum!.range }));InstallMethod(\[\], [IsCosetSolvableFactorEnumeratorRep,IsPosRat and IsInt],function(enum, pos)elm := ();pos := pos - 1;for i in Reversed(enum!.range) dop := RelativeOrderOfPcElement(enum!.pcgs, i);elm := enum!.pcgs[i] ^ (pos mod p) * elm;pos := QuoInt(pos, p);od;return enum!.representative * elm;end);InstallMethod(Position, [IsCosetSolvableFactorEnumeratorRep,IsObject, IsZeroCyc],function(enum, elm, zero)exp := ExponentsOfPcElement(enum!.pcgs,LeftQuotient(enum!.representative, elm));pos := 0;for i in enum!.range dopos := pos * RelativeOrderOfPcElement(pcgs, i) + exp[i];od;return pos + 1;end);
Making automorphisms act on such enumerators. Our next task is to make automorphisms of the solvablegroup pcgs!.group act on [1 .. Length(enum)] for such an enumerator enum. We achieve this byintroducing a new representation of automorphisms on enumerators and by putting the enumerator togetherwith the automorphism into an object which behaves like a permutation. Turning an ordinary automorphisminto such a special automorphism requires then the construction of a new object which has the new kind.We provide an operation PermOnEnumerator(model, aut) which constructs such a new object having thesame kind as model , but representing the automorphism aut . So aut can be either an ordinary automorphismor one which already has an enumerator in its kind, but perhaps di�erent from the one we want (i.e. fromthe one in model).

64 Chapter 8. Stabilizer Chains (preliminary)IsPermOnEnumerator := NewCategory("IsPermOnEnumerator",IsMultiplicativeElementWithInverse and IsPerm);IsPermOnEnumeratorDefaultRep := NewRepresentation("IsPermOnEnumeratorDefaultRep",IsPermOnEnumerator and IsAttributeStoringRep,["perm"]);PermOnEnumerator := NewOperation("PermOnEnumerator",[IsEnumerator, IsObject]);InstallMethod(PermOnEnumerator,[IsEnumerator, IsObject],function(enum, a)SetFilterObj(a, IsMultiplicativeElementWithInverse);a := Objectify(NewKind(PermutationsOnEnumeratorsFamily,IsPermOnEnumeratorDefaultRep),rec(perm := a));SetEnumerator(a, enum);return a;end);InstallMethod(PermOnEnumerator,[IsEnumerator, IsPermOnEnumeratorDefaultRep],function(enum, a)a := Objectify(TypeObj(a), rec(perm := a!.perm));SetEnumerator(a, enum);return a;end);Next we have to install new methods for the operations which calculate the product of two automorphisms,because this product must again have the right kind. We also have to write a function which uses theenumerators to apply such an automorphism to positive integers.InstallMethod(*, IsIdenticalObj,[IsPermOnEnumeratorDefaultRep, IsPermOnEnumeratorDefaultRep],function(a, b)perm := a!.perm * b!.perm;SetIsBijective(perm, true);return PermOnEnumerator(Enumerator(a), perm);end);InstallMethod(\^,[IsPosRat and IsInt, IsPermOnEnumeratorDefaultRep],function(p, a)return PositionCanonical(Enumerator(a),Enumerator(a)[p] ^ a!.perm);end);How the corresponding methods for p / aut and aut ^ n look like is obvious.Now we can formulate the recursive procedure StabChainStrong which extends the stabilizer chain byadding in new generators newgens. We content ourselves again with pseudo-code, emphasizing only the lineswhich set the EnumeratorDomainPermutation. We assume that initially S is a stabilizer chain for the trivial

Section 3. Stabilizer Chains for Automorphisms Acting on Enumerators 65subgroup with a level for each pair (range; g) characterizing an enumerator (as described above). We alsoassume that the identity element at each level already has the kind corresponding to that level.StabChainStrong := function(S, newgens)for i in [1 .. Length(newgens)] donewgens[i] := AutomorphismOnEnumerator(S.identity, newgens[i]);od;Extend the Schreier tree of S with newgens.for sch in Schreier generators doif sch =2 S.stabilizer thenStabChainStrong(S.stabilizer, [sch]);fi;od;end;

Bibliography
[Sim97] Charles C. Sims. Computing with subgroups of automorphism groups of �nite groups. In WolfgangK�uchlin, editor, Proceedings of the 1997 International Symposium on Symbolic and Algebraic

Computation, pages 40{403. The Association for Computing Machinery, ACM Press, 1997.

Index
This index covers only this manual. A page number in italics refers to a whole section which is devotedto the indexed subject. Keywords are sorted with case and spaces ignored, e.g., \PermutationCharacter"comes before \permutation group".., 16%, 24%display, 25%enddisplay, 25\., 16\>, 16\Appendices, 11, 13\BeginningOfBook, 11, 12\Bibliography, 11, 13\C, 20\Chapter, 14\Chapters, 11, 13\Colophon, 11, 12\Day, 14\Declaration, 27\EndOfBook, 11, 13\F, 20\FileHeader, 27\FrontMatter, 11, 12\Index, 11, 13\Mailto, 16\Month, 14\N, 20\OneColumnTableOfContents, 11, 12\Package, 11, 12, 16\PseudoInput, 14\Q, 20\R, 20\Section, 14\TableOfContents, 11, 12\TitlePage, 11, 12\Today, 14\URL, 16\UseGapDocReferences, 12\UseReferences, 11, 12\Year, 14\Z, 20\accent127, 16

\atindex, 16\beginexample, 22indicating unstable output, 22\beginitems, 20\beginlist, 21\begintt, 22\calR, 20\endexample, 22\enditems, 20\endlist, 21\endtt, 22\fmark, 16\index, 16\indextt, 16\item, 21\itemitem, 21\kernttindent, 16\lq, 16\matrix, 23\nolabel, use in index and label suppression, 15\null, use in index suppression, 15\package, 11, 16\pif, 16\rq, 16AA, Attribute mark-up, 16Accessing Weak Pointer Objects as Lists, 52An Example of a GAP Package, 36Bbibtex, 26buildman.pe, 27CC, Category mark-up, 16Calling of and Communication with ExternalBinaries, 39Catering for Plain Text and HTML Formats, 25Chapters and Sections, 14

68 Indexcommand mark-up, 16continuation, 24Copying Weak Pointer Objects, 53CreateCompletionFilesPackage, 40DDeclaration and Implementation Part, 37DeclareAutoreadableVariables, 40DeclareAutoreadableVariables, 40document formats, for help books, 43EElmWPObj, 52Examples, Lists, and Verbatim, 20ExternalSet, 48FF, Function mark-up, 16File Structure, 32File Types, 32Finding Implementations in the Library, 33foa triples, 46GG-sets, 48GAPDocManualLab, 41GAPInfo.Version, 40gapmacro.tex, 11Generalized Conjugation Technique, 54generalized conjugation technique, 54HHELP ADD BOOK, 42Iindexing commands, 16init.g, for a GAP package, 37In Parent Attributes, 47InParentFOA, 47Installation of GAP Package Binaries, 38Installing a Help Book, 42Introducing new Viewer for the Online Help, 44IsBOundElmWPObj, 52KKeyDependentOperation, 46Key Dependent Operations, 46LLabels and References, 15LengthWPObj, 52list environment, compact description, 21

description, 20ordered, 21unordered, 21Low Level Access Functions for Weak PointerObjects, 52Mmakeindex, 26manual.bbl, 26manual.bib, 26manual.dvi, 26manual.lab, 26manual.mst, 26manual.six, 26manual.tex, 26manualindex, 26mathematics alignments, 23mathematics displays, 23MeetPartitionStrat, 59meet strategy, 59OO, Operation mark-up, 16Operation Functions, 48OrbitishFO, 49Orbits, 48OrbitsishOperation, 48ordered partitions, 55PP, Property mark-up, 16Package Completion, 39Producing a Manual, 26RR, Representation mark-up, 16read.g, for a GAP package, 37README, for a GAP package, 35reference to a label, 15Requesting one GAP Package from within Another,37SSetElmWPObj, 52Stabilizer Chains for Automorphisms Acting onEnumerators, 61Standalone Programs in a GAP Package, 38StratMeetPartition, 59subsection mark-up, 16

Index 69Suppressing Indexing and Labelling of a Section andResolving Label Clashes, 15Ttables, 23Tables, Displayed Mathematics and MathematicsAlignments, 23Test for the Existence of GAP Package Binaries, 38Testing the Examples, 24TeX Macros, 16TeX Macros for Domains, 20The Files of a GAP Package, 35The GASMAN Interface for Weak Pointer Objects,53The General Backtrack Algorithm with OrderedPartitions, 55The Help Book Handler, 43The Main File, 11The manual.six File, 42The PackageInfo.g File, 37The WWW Homepage of a Package, 36

UUmlauts, 26UnbindElmWPObj, 52Undocumented Variables, 33Usage of the Percent Symbol, 24Using buildman.pe, 27VV, (global) Variable mark-up, 16verbatim environments, 22Version Numbers, 40WWeakPointerObj, 51WeakPointerObj, 51Weak Pointer Objects, 51Wrapping Up a GAP Package, 41Writing Documentation, 35Zzoo, 41

	
	Acknowledgement
	Contents
	Copyright Notice
	About: Extending GAP
	The gapmacro.tex Manual Format
	The Main File
	Chapters and Sections
	Suppressing Indexing and Labelling of a Section and Resolving Label Clashes
	Labels and References
	TeX Macros
	TeX Macros for Domains
	Examples, Lists, and Verbatim
	Tables, Displayed Mathematics and Mathematics Alignments
	Testing the Examples
	Usage of the Percent Symbol
	Catering for Plain Text and HTML Formats
	Umlauts
	Producing a Manual
	Using buildman.pe

	Library Files
	File Types
	File Structure
	Finding Implementations in the Library
	Undocumented Variables

	Writing a GAP Package
	The Files of a GAP Package
	Writing Documentation
	An Example of a GAP Package
	The WWW Homepage of a Package
	The PackageInfo.g File
	Requesting one GAP Package from within Another
	Declaration and Implementation Part
	Standalone Programs in a GAP Package
	Installation of GAP Package Binaries
	Test for the Existence of GAP Package Binaries
	Calling of and Communication with External Binaries
	Package Completion
	DeclareAutoreadableVariables
	Version Numbers
	Wrapping Up a GAP Package

	Interface to the GAP Help System
	Installing a Help Book
	The manual.six File
	The Help Book Handler
	Introducing new Viewer for the Online Help

	Function-Operation-Attribute Triples
	Key Dependent Operations
	In Parent Attributes
	Operation Functions

	Weak Pointers
	Weak Pointer Objects
	WeakPointerObj
	Low Level Access Functions for Weak Pointer Objects
	Accessing Weak Pointer Objects as Lists
	Copying Weak Pointer Objects
	The GASMAN Interface for Weak Pointer Objects

	Stabilizer Chains
	Generalized Conjugation Technique
	The General Backtrack Algorithm with Ordered Partitions
	Stabilizer Chains for Automorphisms Acting on Enumerators

	Bibliography
	Index
	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	Z

