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1
About Programming

in GAP
This is one of four parts of the GAP documentation, the others being the GAP Tutorial, a beginner'sintroduction to GAP, the GAP Reference Manual, which contains the o�cial de�nitions of GAP, andExtending GAP, which explains how to create �les and functions that will work together with mechanismsbuilt in GAP, how to write documentation, and so on.This manual is divided into chapters. Each chapter is divided into sections, and within each section, impor-tant de�nitions are numbered. References therefore are triples.The chapters 2 and 3 of this manual describe how the knowledge about GAP objects is used by the system,via the so-called method selection mechanism, and how such knowledge resp. objects with such knowledgecan be created.Chapter 4 gives some simple examples of how to add new functionality to the system.A more involved example for the design of new GAP objects can be found in Chapter 5. In particular,see Sections 5.1 and 5.2 for �nding out whether this manual is useful for you at all. One more example isdiscussed in Chapter 6.Pages are numbered consecutively in each of the four manuals. For manual conventions, see Section 1.1 inthe Reference Manual.



2 Method Selection
This chapter explains how GAP decides which function to call for which types of objects. It assumes thatyou have read the chapters about objects (Chapter 12) and types (Chapter 13) in the Reference Manual.An operation is a special GAP function that bundles a set of functions, its methods.All methods of an operation compute the same result. But each method is installed for speci�c types ofarguments.If an operation is called with a tuple of arguments, one of the applicable methods is selected and called.Special cases of methods are partial methods, immediate methods, and logical implications.2.1 Operations and MethodsOperations are functions in the category IsOperation (see 5.4.2 in the Reference Manual).So on the one hand, operations are GAP functions, that is, they can be applied to arguments and returna result or cause a side-e�ect.On the other hand, operations are more. Namely, an operation corresponds to a set of GAP functions, calledthe methods of the operation.Each call of an operation causes a suitable method to be selected and then called. The choice of whichmethod to select is made according to the types of the arguments, the underlying mechanism is describedin the following sections.Examples of operations are the binary in�x operators =, + etc., and PrintObj is the operation that is calledfor each argument of Print.Also all attributes and properties are operations. Each attribute has a special method which is called if theattribute value is already stored; this method of course simply returns this value.The setter of an attribute is called automatically if an attribute value has been computed. Attribute settersare operations, too. They have a default method that ignores the request to store the value. Depending onthe type of the object, there may be another method to store the value in a suitable way, and then set theattribute tester for the object to true.2.2 Method InstallationIn order to describe what it means to select a method of an operation, we must describe how the methodsare connected to their operations.

1I InstallMethod( opr[,info][,famp],args-�lts[,val],method ) Finstalls a function method method for the operation opr ; args-�lts should be a list of requirements for thearguments; if supplied info should be a short but informative string that describes for what situation themethod is installed, famp should be a function to be applied to the families of the arguments, each entrybeing a �lter, and val is an integer that measures the priority of the method.



12 Chapter 2. Method SelectionThe default values for info, famp, and val are the empty string, the function ReturnTrue, and the integerzero, respectively.The exact meaning of the arguments famp, args-�lts, and val is explained in Section 2.3.opr expects its methods to require certain �lters for their arguments. For example, the argument of a methodfor the operation Zero must be in the category IsAdditiveElementWithZero. It is not possible to useInstallMethod to install a method for which the entries of args-�lts do not imply the respective requirementsof the operation opr . If one wants to override this restriction, one has to use InstallOtherMethod instead.
2I InstallOtherMethod( opr[,info][,famp],args-�lts[,val],method ) Finstalls a function method method for the operation opr , in the same way as for InstallMethod (see 2.2.1),but without the restriction that the number of arguments must match the declaration of opr and withoutthe restriction that args-�lts imply the respective requirements of the operation opr .For attributes and properties there is InstallImmediateMethod (see 2.6.1).For declaring that a �lter is implied by other �lters there is InstallTrueMethod (see 2.7.1).2.3 Applicable Methods and Method SelectionA method installed as above is applicable for an arguments tuple if the following conditions are satis�ed.The number of arguments equals the length of the list args-�lts, the i -th argument lies in the �lter args-�lts[i], and famp returns true when applied to the families of the arguments.So args-�lt describes conditions for each argument, and famp describes a relation between the arguments.For unary operations such as attributes and properties, there is no such relation to postulate, famp isReturnTrue for these operations, a function that always returns true. For binary operations, the usualvalue of famp is IsIdenticalObj (see 12.5.1 in the Reference Manual), which means that both argumentsmust lie in the same family.Note that any properties which occur among the �lters in the �lter list will not be tested by the methodselection if they are not yet known. (More exact: if prop is a property then the �lter implicitly uses not propbut Hasprop and prop.) If this is desired you must explicitly enforce a test (see section 2.5) below.If no method is applicable, the error message no method found is signaled.Otherwise, the applicable method with highest rank is selected and then called. This rank is given by thesum of the ranks of the �lters in the list args-�lt , including involved �lters, plus the number val usedin the call of InstallMethod. So the argument val can be used to raise the priority of a method relative toother methods for opr .Note that from the applicable methods, an e�cient one shall be selected. This is a method that needs onlylittle time and storage for the computations.It seems to be impossible for GAP to select an optimal method in all cases. The present ranking of methodsis based on the assumption that a method installed for a special situation shall be preferred to a methodinstalled for a more general situation.For example, a method for computing a Sylow subgroup of a nilpotent group is expected to be more e�cientthan a method for arbitrary groups. So the more speci�c method will be selected if GAP knows that thegroup given as argument is nilpotent.Of course there is no obvious way to decide between the e�ciency of incommensurable methods. For example,take an operation with one method for permutation groups, another method for nilpotent groups, but nomethod for nilpotent permutation groups, and call this operation with a permutation group known to benilpotent.



Section 6. Immediate Methods 132.4 Partial Methods
1I TryNextMethod()After a method has been selected and called, the method may recognize that it cannot compute the desiredresult, and give up by calling TryNextMethod().In e�ect, the execution of the method is terminated, and the method selection calls the next method that isapplicable w.r.t. the original arguments. In other words, the applicable method is called that is subsequentto the one that called TryNextMethod, according to decreasing rank of the methods.For example, since every �nite group of odd order is solvable, one may install a method for the propertyIsSolvableGroup that checks whether the size of the argument is an odd integer, returns true if so, andgives up otherwise.Care is needed if a partial method might modify the type of one of its arguments, for example by computingan attribute or property. If this happens, and the type has really changed, then the method should notexit using TryNextMethod() but should call the operation again, as the new information in the type maycause some methods previously judged inapplicable to be applicable. For example, if the above method forIsSolvableGroup actually computes the size, (rather than just examining a stored size), then it must takecare to check whether the type of the group has changed.2.5 RedispatchingAs mentioned above the method selection will not test unknown properties. In situations, in which algorithmsare only known (or implemented) under certain conditions, however such a test might be actually desired.One way to achieve this would be to install the method under weaker conditions and explicitly test theproperties �rst, exiting via TryNextMethod (see 2.4.1) if some of them are not ful�lled. A problem of thisapproach however is that such methods then automatically are ranked lower and that the code does notlook nice.A much better way is to use redispatching: Before deciding that no method has been found one tests theseproperties and if they turn out to be true the method selection is started anew (and will then �nd a method).This can be achieved via the following function:
1I RedispatchOnCondition( oper, fampred, reqs, cond, val ) FThis function installs a method for the operation oper under the conditions fampred and reqs which hasabsolute value val ; that is, the value of the �lters reqs is disregarded. cond is a list of �lters. If not all thevalues of properties involved in these �lters are already known for actual arguments of the method, theyare explicitly tested and if they are ful�lled and stored after this test, the operation is dispatched again.Otherwise the method exits with TryNextMethod (see 2.4.1). This can be used to enforce tests like IsFinitein situations when all existing methods require this property. The list cond may have unbound entries inwhich case the corresponding argument is ignored for further tests.2.6 Immediate MethodsUsually a method is called only if its operation has been called and if this method has been selected.For attributes and properties, one can install also immediate methods. An immediate method is calledautomatically as soon as it is applicable to an object, provided that the value is not yet known. Afterwardsthe attribute setter is called in order to store the value.Note that in such a case GAP executes a computation for which it was not explicitly asked by the user.So one should install only those methods as immediate methods that are extremely cheap. To emphasizethis, immediate methods are also called zero cost methods. The time for their execution should really beapproximately zero.



14 Chapter 2. Method SelectionAn immediate method method for the attribute or property attr with requirement req is installed via
1I InstallImmediateMethod( attr, req, val, method )where val is an integer value that measures the priority of method among the immediate methods for attr .Note the di�erence to InstallMethod (see 2.2.1) that no family predicate occurs because attr expects onlyone argument, and that req is not a list of requirements but the argument requirement itself.For example, the size of a permutation group can be computed very cheaply if a stabilizer chain of thegroup is known. So it is reasonable to install an immediate method for Size with requirement IsGroup andTester( stab ), where stab is the attribute corresponding to the stabilizer chain.Another example would be the implementation of the conclusion that every �nite group of prime power orderis nilpotent. This could be done by installing an immediate method for the attribute IsNilpotentGroupwith requirement IsGroup and Tester( Size ). This method would then check whether the size is a �niteprime power, return true in this case and otherwise call TryNextMethod() (see 2.4.1). But this requiresfactoring of an integer, which cannot be guaranteed to be very cheap, so one should not install this methodas an immediate method.Immediate methods are thought of as a possibility for objects to gain useful knowledge. They must not beused to force the storing of \de�ning information" in an object. In other words, GAP should work even if allimmediate methods are invalidated.2.7 Logical ImplicationsIt may happen that a �lter new�l shall be implied by another �lter �lt , which is usually a meet of otherproperties, or the meet of some properties and some categories. Such a logical implication can be installedas an immediate method for new�l that requires �lt and that always returns true. It should be installed via
1I InstallTrueMethod( new�l, �lt )This has the e�ect that new�l becomes an implied �lter of �lt , see 13.2 in the Reference Manual.For example, each cyclic group is abelian, each �nite vector space is �nite dimensional, and each divisionring is integral. The �rst of these implications is installed as follows.InstallTrueMethod( IsCommutative, IsGroup and IsCyclic );Contrary to other immediate methods, logical implications cannot be switched o�. This means that afterthe above implication has been installed, one can rely on the fact that every object in the �lter IsGroupand IsCyclic will also be in the �lter IsCommutative.2.8 Operations and Mathematical TermsUsually an operation stands for a mathematical concept, and the name of the operation describes thisuniquely. Examples are the property IsFinite and the attribute Size. But there are cases where the samemathematical term is used to denote di�erent concepts, for example Degree is de�ned for polynomials, groupcharacters, and permutation actions, and Rank is de�ned for matrices, free modules, p-groups, and transitivepermutation actions.It is in principle possible to install methods for the operation Rank that are applicable to the di�erenttypes of arguments, corresponding to the di�erent contexts. But this is not the approach taken in the GAPlibrary. Instead there are operations such as RankMat for matrices and DegreeOfCharacter (in fact theseare attributes) which are installed as methods of the \ambiguous" operations Rank and Degree.The idea is to distinguish between on the one hand di�erent ways to compute the same thing (e.g. di�erentmethods for \=, Size, etc.), and on the other hand genuinely di�erent things (such as the degree of apolynomial and a permutation action).



Section 8. Operations and Mathematical Terms 15The former is the basic purpose of operations and attributes. The latter is provided as a user conveniencewhere mathematical usage forces it on us and where no con
icts arise. In programming the library, we usethe underlying mathematically precise operations or attributes, such as RankMat and RankOperation. Theseshould be attributes if appropriate, and the only role of the operation Rank is to decide which attribute theuser meant. That way, stored information is stored with \full mathematical precision" and is less likely tobe retrieved for a wrong purpose later.One word about possible con
icts. A typical example is the mathematical term \centre", which is de�nedas fx 2 M ja � x = x � a8a 2 M g for a magma M , and as fx 2 Ljl � x = 08l 2 Lg for a Lie algebra L.Here it is not possible to introduce an operation Centre that delegates to attributes CentreOfMagma andCentreOfLieAlgebra, depending on the type of the argument. This is because any Lie algebra in GAP isalso a magma, so both CentreOfMagma and CentreOfLieAlgebra would be de�ned for a Lie algebra, withdi�erent meaning if the characteristic is 2. So we cannot achieve that one operation in GAP corresponds tothe mathematical term \centre".\Ambiguous" operations such as Rank are declared in the library �le overload.g.



3 Creating New Objects
This chapter is divided into three parts.In the �rst part, it is explained how to create �lters (see 3.1, 3.2, 3.3, 3.4), operations (see 3.5), families(see 3.6), types (see 3.7), and objects with given type (see 3.8).In the second part, �rst a few small examples are given, for dealing with the usual cases of componentobjects (see 3.9) and positional objects (see 3.10), and for the implementation of new kinds of lists (see 3.11and 3.14). Finally, the external representation of objects is introduced (see 3.15), as a tool for representationindependent access to an object.The third part deals with some rules concerning the organization of the GAP library; namely, some commandsfor creating global variables are explained (see 3.17) that correspond to the ones discussed in the �rst part ofthe chapter, and the idea of distinguishing declaration and implementation part of GAP packages is outlined(see 3.18).See also Chapter 5 for examples how the functions from the �rst part are used, and why it is useful to havea declaration part and an implementation part.3.1 Creating Categories

1I NewCategory( name, super )NewCategory returns a new category cat that has the name name and is contained in the �lter super ,see 13.2 in the Reference Manual. This means that every object in cat lies automatically also in super . Wesay also that super is an implied �lter of cat .For example, if one wants to create a category of group elements then super should be IsMultiplica-tiveElementWithInverse or a subcategory of it. If no speci�c supercategory of cat is known, super may beIsObject.@Eventually tools will be provided to display hierarchies of categories etc., which will help tochoose super appropriately.@The incremental rank (see 13.2 in the Reference Manual) of cat is 1.Two functions that return special kinds of categories are of importance.
2I CategoryCollections( cat )For a category cat , CategoryCollections returns the collections category of cat . This is a category inthat all collections of objects in cat lie.For example, a permutation lies in the category IsPerm, and every dense list of permutations and everydomain of permutations lies in the collections category of IsPerm.
3I CategoryFamily( cat )For a category cat , CategoryFamily returns the family category of cat . This is a category in that allfamilies lie that know from their creation that all their elements are in the category cat , see 3.6.For example, a family of tuples is in the category CategoryFamily( IsTuple ), and one can distinguishsuch a family from others by this category. So it is possible to install methods for operations that requireone argument to be a family of tuples.CategoryFamily is quite technical, and in fact of minor importance.



Section 3. Creating Attributes and Properties 173.2 Creating Representations
1I NewRepresentation( name, super, slots )NewRepresentation returns a new representation rep that has the name name and is a subrepresentationof the representation super . This means that every object in rep lies automatically also in super . We sayalso that super is an implied �lter of rep.Each representation in GAP is a subrepresentation of exactly one of the four representations IsInternalRep,IsDataObjectRep, IsComponentObjectRep, IsPositionalObjectRep. The data describing objects in theformer two can be accessed only via GAP kernel functions, the data describing objects in the latter two isaccessible also in library functions, see 3.9 and 3.10 for the details.The third argument slots is a list either of integers or of strings. In the former case, rep must be IsPosition-alObjectRep or a subrepresentation of it, and slots tells what positions of the objects in the representationrep may be bound. In the latter case, rep must be IsComponentObjectRep or a subrepresentation of, and slotslists the admissible names of components that objects in the representation rep may have. The admissiblepositions resp. component names of super need not be be listed in slots.The incremental rank (see 13.2 in the Reference Manual) of rep is 1.Note that for objects in the representation rep, of course some of the component names and positionsreserved via slots may be unbound.Examples for the use of NewRepresentation can be found in 3.9, 3.10, and also in 5.3.3.3 Creating Attributes and Properties
1I NewAttribute( name, �lt )
I NewAttribute( name, �lt, rank )NewAttribute returns a new attribute attr with name name (see also 13.5 in the Reference Manual). The�lter �lt describes the involved �lters of attr (see 13.2 in the Reference Manual). That is, the argument forattr is expected to lie in �lt .Each method for attr that does not require its argument to lie in �lt must be installed using InstallOther-Method.Contrary to the situation with categories and representations, the tester of attr does not imply �lt . This isexactly because of the possibility to install methods that do not require �lt .For example, the attribute Size was created with second argument a list or a collection, but there is also amethod for Size that is applicable to a character table, which is neither a list nor a collection.The optional third argument rank denotes the incremental rank (see 13.2 in the Reference Manual) of thetester of attr , the default value is 1.

2I NewAttribute( name, �lt, "mutable" )
I NewAttribute( name, �lt, "mutable", rank )If the third argument is the string "mutable", the stored values of the new attribute are not forced to beimmutable. This is useful for an attribute whose value is some partial information that may be completedlater. For example, there is an attribute ComputedSylowSubgroups for the list holding those Sylow subgroupsof a group that have been computed already by the function SylowSubgroup, and this list is mutable becauseone may want to enter groups into it as they are computed.

3I NewProperty( name, �lt )
I NewProperty( name, �lt, rank )NewProperty returns a new property prop with name name (see also 13.7 in the Reference Manual). The�lter �lt describes the involved �lters of prop. As in the case of attributes, �lt is not implied by prop.



18 Chapter 3. Creating New ObjectsThe optional third argument rank denotes the incremental rank (see 13.2 in the Reference Manual) of theproperty prop itself, i.e. not of its tester, the default value is 1.Each method that is installed for an attribute or a property via InstallMethod must require exactly oneargument, and this must lie in the �lter �lt that was entered as second argument of NewAttribute resp.NewProperty.As for any operation (see 3.5), for attributes and properties one can install a method taking an argumentthat does not lie in �lt via InstallOtherMethod, or a method for more than one argument; in the lattercase, clearly the result value is not stored in any of the arguments.3.4 Creating Other Filters
1I NewFilter( name )
I NewFilter( name, rank )NewFilter returns a simple �lter with name name (see 13.8 in the Reference Manual). The optional secondargument rank denotes the incremental rank (see 13.2 in the Reference Manual) of the �lter, the defaultvalue is 1.In order to change the value of �lt for an object obj , one can use logical implications (see 2.7) or the functions

2I SetFilterObj( obj, �lt )
I ResetFilterObj( obj, �lt )SetFilterObj sets the value of �lt (and of all �lters implied by �lt) for obj to true,ResetFilterObj sets the value of �lt for obj to false (but implied �lters of �lt are not touched. This mightcreate inconsistent situations if applied carelessly).The default value of �lt for each object is false.3.5 Creating Operations

1I NewOperation( name, args-�lts )NewOperation returns an operation opr with name name. The list args-�lts describes requirements aboutthe arguments of opr , namely the number of arguments must be equal to the length of args-�lts, and thei -th argument must lie in the �lter args-�lts[i].Each method that is installed for opr via InstallMethod must require that the i -th argument lies in the�lter args-�lts[i].One can install methods for other arguments tuples via InstallOtherMethod, this way it is also possible toinstall methods for a di�erent number of arguments than the length of args-�lts.3.6 Creating FamiliesFamilies are probably the least obvious part of the GAP type system, so some remarks about the role offamilies are necessary. When one uses GAP as it is, one will (better: should) not meet families at all. Thetwo situations where families come into play are the following.First, since families are used to describe relations between arguments of operations in the method selectionmechanism (see Chapter 2 in this manual, and also Chapter 13 in the Reference Manual), one has to prescribesuch a relation in each method installation (see 2.2); usual relations are ReturnTrue (which means that anyrelation of the actual arguments is admissible), IsIdenticalObj (which means that there are two argumentsthat lie in the same family), and IsCollsElms (which means that there are two arguments, the �rst beinga collection of elements that lie in the same family as the second argument).



Section 6. Creating Families 19Second |and this is the more complicated situation| whenever one creates a new kind of objects, one hasto decide what its family shall be. If the new object shall be equal to existing objects, for example if it isjust represented in a di�erent way, there is no choice: The new object must lie in the same family as allobjects that shall be equal to it. So only if the new object is di�erent (w.r.t. the equality \=") from all otherGAP objects, we are likely to create a new family for it. Note that enlarging an existing family by such newobjects may be problematic because of implications that have been installed for all objects of the family inquestion. The choice of families depends on the applications one has in mind. For example, if the new objectsin question are not likely to be arguments of operations for which family relations are relevant (for examplebinary arithmetic operations), one could create one family for all such objects, and regard it as \the familyof all those GAP objects that would in fact not need a family". On the other extreme, if one wants to createdomains of the new objects then one has to choose the family in such a way that all intended elements ofa domain do in fact lie in the same family. (Remember that a domain is a collection, see Chapter 12.4 inthe Reference Manual, and that a collection consists of elements in the same family, see Chapter 28 andSection 13.1 in the Reference Manual.)Let us look at an example. Suppose that no permutations are available in GAP, and that we want toimplement permutations. Clearly we want to support permutation groups, but it is not a priori clear howto distribute the new permutations into families. We can put all permutations into one family; this is howin fact permutations are implemented in GAP. But it would also be possible to put all permutations of agiven degree into a family of their own; this would for example mean that for each degree, there would bedistinguished trivial permutations, and that the stabilizer of the point 5 in the symmetric group on thepoints 1; 2; : : : ; 5 is not regarded as equal to the symmetric group on 1; 2; 3; 4. Note that the latter approachwould have the advantage that it is no problem to construct permutations and permutation groups acting onarbitrary (�nite) sets, for example by constructing �rst the symmetric group on the set and then generatingany desired permutation group as a subgroup of this symmetric group.So one aspect concerning a reasonable choice of families is to make the families large enough for being able toform interesting domains of elements in the family. But on the other hand, it is useful to choose the familiessmall enough for admitting meaningful relations between objects. For example, the elements of di�erent freegroups in GAP lie in di�erent families; the multiplication of free group elements is installed only for the casethat the two operands lie in the same family, with the e�ect that one cannot erroneously form the productof elements from di�erent free groups. In this case, families appear as a tool for providing useful restrictions.As another example, note that an element and a collection containing this element never lie in the samefamily, by the general implementation of collections; namely, the family of a collection of elements in thefamily Fam is the collections family of Fam (see 3.6.2). This means that for a collection, we need not (becausewe cannot) decide about its family.
1I NewFamily( name )
I NewFamily( name, req )
I NewFamily( name, req, imp )
I NewFamily( name, req, imp, fam�lter )NewFamily returns a new family fam with name name. The argument req , if present, is a �lter of which famshall be a subset. If one tries to create an object in fam that does not lie in the �lter req , an error messageis printed. Also the argument imp, if present, is a �lter of which fam shall be a subset. Any object that iscreated in the family fam will lie automatically in the �lter imp.The �lter fam�lter , if given, speci�es a �lter that will hold for the family fam (not for objects in fam).Families are always represented as component objects (see 3.9). This means that components can be usedto store and access useful information about the family.There are a few functions in GAP that construct families. As an example, consider (see also 28.1 in theReference Manual)



20 Chapter 3. Creating New Objects
2I CollectionsFamily( fam )CollectionsFamily is an attribute that takes a family fam as argument, and returns the family of allcollections over fam, that is, of all dense lists and domains that consist of objects in fam.The NewFamily call in the standard method of CollectionsFamily is executed with second argumentIsCollection, since every object in the collections family must be a collection, and with third argumentthe collections categories of the involved categories in the implied �lter of fam.If fam is a collections family then
3I ElementsFamily( fam )returns the unique family with collections family fam; note that by de�nition, all elements in a collectionlie in the same family, so ElementsFamily( fam ) is the family of each element in any collection that hasthe family fam.3.7 Creating Types
1I NewType( fam, �lt )
I NewType( fam, �lt, data )NewType returns the type given by the family fam and the �lter �lt . The optional third argument data isany object that denotes de�ning data of the desired type.For examples where NewType is used, see 3.9, 3.10, and the example in Chapter 5.3.8 Creating Objects

1I Objectify( type, data ) FNew objects are created by Objectify. data is a list or a record, and type is the type that the desired objectshall have. Objectify turns data into an object with type type. That is, data is changed, and afterwards itwill not be a list or a record unless type is of type list resp. record.If data is a list then Objectify turns it into a positional object, if data is a record then Objectify turns itinto a component object (for examples, see 3.9 and 3.10).Objectify does also return the object that it made out of data.For examples where Objectify is used, see 3.9, 3.10, and the example in Chapter 5.Attribute assignments will change the type of an object. If you create many objects, code of the formo:=Objectify(type,rec());SetMyAttribute(o,value);will take a lot of time for type changes. You can avoid this by setting the attributes immediately while theobject is created, via:
2I ObjectifyWithAttributes(obj,type,Attr1,val1[,Attr2,val2...]) Fwhich changes the type of object obj to type type and sets attribute Attr1 to val1 , sets attribute Attr2 toval2 and so forth.If the �lter list of type includes that these attributes are set (and the properties also include values of theproperties) and if no special setter methods are installed for any of the involved attributes then they are setsimultaneously without type changes which can produce a substantial speedup.If the conditions of the last sentence are not ful�lled, an ordinary Objectify with subsequent Setter callsfor the attributes is performed, instead.



Section 9. Component Objects 213.9 Component ObjectsA component object is an object in the representation IsComponentObjectRep or a subrepresentation ofit. Such an object cobj is built from subobjects that can be accessed via cobj!.name, similar to componentsof a record. Also analogously to records, values can be assigned to components of cobj via cobj!.name:=val . For the creation of component objects, see 3.8.
1I NamesOfComponents( comobj ) FFor a component object comobj , NamesOfComponents returns a list of strings, which are the names ofcomponents currently bound in comobj .One must be very careful when using the !. operator, in order to interpret the component in the right way,and even more careful when using the assignment to components using !., in order to keep the informationstored in cobj consistent.First of all, in the access or assignment to a component as shown above, name must be among the admissiblecomponent names for the representation of cobj , see 3.2. Second, preferably only few low level functionsshould use !., whereas this operator should not occur in \user interactions".Note that even if cobj claims that it is immutable, i.e., if cobj is not in the category IsMutable, access andassignment via !. work. This is necessary for being able to store newly discovered information in immutableobjects.The following example shows the implementation of an iterator (see 28.7 in the Reference Manual) for thedomain of integers, which is represented as component object. See 3.10 for an implementation using positionalobjects. (In practice, such an iterator can be implemented more elegantly using IteratorByFunctions,see 3.13 and 28.7.8 in the GAP Reference Manual.)The used succession of integers is 0; 1;�1; 2;�2; 3;�3; : : :, that is, an = n=2 if n is even, and an = (1� n)=2otherwise.IsIntegersIteratorCompRep := NewRepresentation( "IsIntegersIteratorRep",IsComponentObjectRep, [ "counter" ] );The above command creates a new representation (see 3.2.1) IsIntegersIteratorCompRep, as a subrepre-sentation of IsComponentObjectRep, and with one admissible component counter. So no other componentsthan counter will be needed.InstallMethod( Iterator,"method for `Integers'",[ IsIntegers ],function( Integers )return Objectify( NewType( IteratorsFamily,IsIteratorand IsIntegersIteratorCompRep ),rec( counter := 0 ) );end );After the above method installation, one can already ask for Iterator( Integers ). Note that exactly thedomain of integers is described by the �lter IsIntegers.By the call to NewType, the returned object lies in the family containing all iterators, which is Itera-torsFamily, it lies in the category IsIterator and in the representation IsIntegersIteratorCompRep;furthermore, it has the component counter with value 0.What is missing now are methods for the two basic operations of iterators, namely IsDoneIterator andNextIterator. The former must always return false, since there are in�nitely many integers. The latter



22 Chapter 3. Creating New Objectsmust return the next integer in the iteration, and update the information stored in the iterator, that is,increase the value of the component counter.InstallMethod( IsDoneIterator,"method for iterator of `Integers'",[ IsIterator and IsIntegersIteratorCompRep ],ReturnFalse );InstallMethod( NextIterator,"method for iterator of `Integers'",[ IsIntegersIteratorCompRep ],function( iter )iter!.counter:= iter!.counter + 1;if iter!.counter mod 2 = 0 thenreturn iter!.counter / 2;elsereturn ( 1 - iter!.counter ) / 2;fi;end );3.10 Positional ObjectsA positional object is an object in the representation IsPositionalObjectRep or a subrepresentation ofit. Such an object pobj is built from subobjects that can be accessed via pobj![pos], similar to positions ina list. Also analogously to lists, values can be assigned to positions of pobj via pobj![pos]:= val . For thecreation of positional objects, see 3.8.One must be very careful when using the ![] operator, in order to interpret the position in the right way,and even more careful when using the assignment to positions using ![], in order to keep the informationstored in pobj consistent.First of all, in the access or assignment to a position as shown above, pos must be among the admissiblepositions for the representation of pobj , see 3.2. Second, preferably only few low level functions should use![], whereas this operator should not occur in \user interactions".Note that even if pobj claims that it is immutable, i.e., if pobj is not in the category IsMutable, accessand assignment via ![] work. This is necessary for being able to store newly discovered information inimmutable objects.The following example shows the implementation of an iterator (see 28.7 in the Reference Manual) for thedomain of integers, which is represented as positional object. See 3.9 for an implementation using componentobjects, and more details.IsIntegersIteratorPosRep := NewRepresentation( "IsIntegersIteratorRep",IsPositionalObjectRep, [ 1 ] );The above command creates a new representation (see 3.2.1) IsIntegersIteratorPosRep, as a subrepre-sentation of IsComponentObjectRep, and with only the �rst position being admissible for storing data.InstallMethod( Iterator,"method for `Integers'",[ IsIntegers ],function( Integers )return Objectify( NewType( IteratorsFamily,IsIteratorand IsIntegersIteratorRep ),



Section 11. Implementing New List Objects 23[ 0 ] );end );After the above method installation, one can already ask for Iterator( Integers ). Note that exactly thedomain of integers is described by the �lter IsIntegers.By the call to NewType, the returned object lies in the family containing all iterators, which is IteratorsFam-ily, it lies in the category IsIterator and in the representation IsIntegersIteratorPosRep; furthermore,the �rst position has value 0.What is missing now are methods for the two basic operations of iterators, namely IsDoneIterator andNextIterator. The former must always return false, since there are in�nitely many integers. The lattermust return the next integer in the iteration, and update the information stored in the iterator, that is,increase the value stored in the �rst position.InstallMethod( IsDoneIterator,"method for iterator of `Integers'",[ IsIterator and IsIntegersIteratorPosRep ],ReturnFalse );InstallMethod( NextIterator,"method for iterator of `Integers'",[ IsIntegersIteratorPosRep ],function( iter )iter![1]:= iter![1] + 1;if iter![1] mod 2 = 0 thenreturn iter![1] / 2;elsereturn ( 1 - iter![1] ) / 2;fi;end );It should be noted that one can of course install both the methods shown in Section 3.9 and 3.10. The callIterator( Integers ) will cause one of the methods to be selected, and for the returned iterator, whichwill have one of the representations we constructed, the right NextIterator method will be chosen.3.11 Implementing New List ObjectsThis section gives some hints for the quite usual situation that one wants to implement new objects thatare lists. More precisely, one either wants to deal with lists that have additional features, or one wants thatsome objects also behave as lists. An example can be found in 3.12.A list in GAP is an object in the category IsList. Basic operations for lists are Length, \[\], and Is-Bound\[\] (see 21.2 in the Reference Manual).Note that the access to the position pos in the list list via list[pos] is handled by the call \[\]( list,pos ) to the operation \[\]. To explain the somewhat strange name \[\] of this operation, note thatnon-alphanumeric characters like [ and ] may occur in GAP variable names only if they are escaped by a \character.Analogously, the check IsBound( list[pos] ) whether the position pos of the list list is bound is handledby the call IsBound\[\]( list, pos ) to the operation IsBound\[\].For mutable lists, also assignment to positions and unbinding of positions via the operations \[\]\:\= andUnbind\[\] are basic operations. The assignment list[pos]:= val is handled by the call \[\]\:\=( list,pos, val ), and Unbind( list[pos] ) is handled by the call Unbind\[\]( list, pos ).



24 Chapter 3. Creating New ObjectsAll other operations for lists, e.g., Add, Append, Sum, are based on these operations. This means that it issu�cient to install methods for the new list objects only for the basic operations.So if one wants to implement new list objects then one creates them as objects in the category IsList, andinstalls methods for Length, \[\], and IsBound\[\]. If the new lists shall be mutable, one needs to installalso methods for \[\]\:\= and Unbind\[\].One application for this is the implementation of enumerators for domains. An enumerator for the domainD is a dense list whose entries are in bijection with the elements of D . If D is large then it is not useful towrite down all elements. Instead one can implement such a bijection implicitly. This works also for in�nitedomains.In this situation, one implements a new representation of the lists that are already available in GAP, inparticular the family of such a list is the same as the family of the domain D .But it is also possible to implement new kinds of lists that lie in new families, and thus are not equalto lists that were available in GAP before. An example for this is the implementation of matrices whosemultiplication via \*" is the Lie product of matrices.In this situation, it makes no sense to put the new matrices into the same family as the original matrices.Note that the product of two Lie matrices shall be de�ned but not the product of an ordinary matrix anda Lie matrix. So it is possible to have two lists that have the same entries but that are not equal w.r.t. \="because they lie in di�erent families.3.12 Example { Constructing EnumeratorsWhen dealing with countable sets, a usual task is to de�ne enumerations, i.e., bijections to the positiveintegers. In GAP, this can be implemented via enumerators (see 21.23 in the GAP Reference Manual).These are lists containing the elements in a speci�ed ordering, and the operations Position and list accessvia \[\] de�ne the desired bijection. For implementing such an enumerator, one mainly needs to install theappropriate functions for these operations.A general setup for creating such lists is given by EnumeratorByFunctions (see 28.2.4 in the GAP ReferenceManual).If the set in question is a domain D for which a Size method is available then all one has to do is to writedown the functions for computing the n-th element of the list and for computing the position of a givenGAP object in the list, to put them into the components ElementNumber and NumberElement of a record,and to call EnumeratorByFunctions with the domain D and this record as arguments. For example, thefollowing lines of code install an Enumerator method for the case that D is the domain of rational integers.(Note that IsIntegers is a �lter that describes exactly the domain of rational integers.)InstallMethod( Enumerator,"for integers",[ IsIntegers ],Integers -> EnumeratorByFunctions( Integers, rec(ElementNumber := function( e, n ) ... end,NumberElement := function( e, x ) ... end ) ) );The bodies of the functions have been omitted above; here is the code that is actually used in GAP. (Theordering coincides with that for the iterators for the domain of rational integers that have been discussedin 3.9 and 3.10.)



Section 12. Example { Constructing Enumerators 25gap> enum:= Enumerator( Integers );<enumerator of Integers>gap> Print( enum!.NumberElement, "\n" );function ( e, x )local pos;if not IsInt( x ) thenreturn fail;elif 0 < x thenpos := 2 * x;elsepos := -2 * x + 1;fi;return pos;endgap> Print( enum!.ElementNumber, "\n" );function ( e, n )if n mod 2 = 0 thenreturn n / 2;elsereturn (1 - n) / 2;fi;return;endThe situation becomes slightly more complicated if the set S in question is not a domain. This is because onemust provide also at least a method for computing the length of the list, and because one has to determinethe family in which it lies (see 3.8). The latter should usually not be a problem since either S is nonemptyand all its elements lie in the same family {in this case one takes the collections family of any element in S{or the family of the enumerator must be ListsFamily.An example in the GAP library is an enumerator for the set of k -tuples over a �nite set; the function iscalled EnumeratorOfTuples.gap> Print( EnumeratorOfTuples, "\n" );function ( set, k )local enum;if IsEmpty( set ) thenreturn Immutable( [ ] );elif k = 0 thenreturn Immutable( [ [ ] ] );fi;enum := EnumeratorByFunctions( CollectionsFamily( FamilyObj( set ) ), rec(ElementNumber := function ( enum, n )local nn, t, i;nn := n - 1;t := [ ];for i in [ 1 .. enum!.k ] dot[i] := RemInt( nn, Length( enum!.set ) ) + 1;nn := QuoInt( nn, Length( enum!.set ) );od;if nn <> 0 thenError( "<enum>[", n, "] must have an assigned value" );fi;



26 Chapter 3. Creating New Objectsnn := enum!.set{Reversed( t )};MakeImmutable( nn );return nn;end,NumberElement := function ( enum, elm )local n, i;if not IsList( elm ) thenreturn fail;fi;elm := List( elm, function ( x )return Position( enum!.set, x );end );if fail in elm or Length( elm ) <> enum!.k thenreturn fail;fi;n := 0;for i in [ 1 .. enum!.k ] don := Length( enum!.set ) * n + elm[i] - 1;od;return n + 1;end,Length := function ( enum )return Length( enum!.set ) ^ enum!.k;end,PrintObj := function ( enum )Print( "EnumeratorOfTuples( ", enum!.set, ", ", enum!.k, " )");return;end,set := Set( set ),k := k ) );SetIsSSortedList( enum, true );return enum;endWe see that the enumerator is a homogeneous list that stores individual functions ElementNumber, Num-berElement, Length, and PrintObj; besides that, the data components S and k are contained.3.13 Example { Constructing IteratorsIterators are a kind of objects that is implemented for several collections in the GAP library and which mightbe interesting also in other cases, see 28.7 in the GAP Reference Manual. A general setup for implementingnew iterators is provided by IteratorByFunctions.All one has to do is to write down the functions for NextIterator, IsDoneIterator, and ShallowCopy,and to call IteratorByFunctions with this record as argument. For example, the following lines of codeinstall an Iterator method for the case that the argument is the domain of rational integers.(Note that IsIntegers is a �lter that describes exactly the domain of rational integers.)



Section 14. Arithmetic Issues in the Implementation of New Kinds of Lists 27InstallMethod( Iterator,"for integers",[ IsIntegers ],Integers -> IteratorByFunctions( rec(NextIterator:= function( iter ) ... end,IsDoneIterator := ReturnFalse,ShallowCopy := function( iter ) ... end ) ) );The bodies of two of the functions have been omitted above; here is the code that is actually used inGAP. (The ordering coincides with that for the iterators for the domain of rational integers that have beendiscussed in 3.9 and 3.10.)gap> iter:= Iterator( Integers );<iterator>gap> Print( iter!.NextIterator, "\n" );function ( iter )iter!.counter := iter!.counter + 1;if iter!.counter mod 2 = 0 thenreturn iter!.counter / 2;elsereturn (1 - iter!.counter) / 2;fi;return;endgap> Print( iter!.ShallowCopy, "\n" );function ( iter )return rec(counter := iter!.counter );endNote that the ShallowCopy component of the record must be a function that does not return an iterator buta record that can be used as the argument of IteratorByFunctions in order to create the desired shallowcopy.3.14 Arithmetic Issues in the Implementation of New Kinds of ListsWhen designing a new kind of list objects in GAP, de�ning the arithmetic behaviour of these objects is anissue.There are situations where arithmetic operations of list objects are unimportant in the sense that addingtwo such lists need not be represented in a special way. In such cases it might be useful either to support noarithmetics at all for the new lists, or to enable the default arithmetic methods. The former can be achievedby not setting the �lters IsGeneralizedRowVector and IsMultiplicativeGeneralizedRowVector in thetypes of the lists, the latter can be achieved by setting the �lter IsListDefault. (for details, see 21.12 in theGAP Reference Manual). An example for \wrapped lists" with default behaviour are vector space bases; theyare lists with additional properties concerning the computation of coe�cients, but arithmetic properties arenot important. So it is no loss to enable the default methods for these lists.However, often the arithmetic behaviour of new list objects is important, and one wants to keep theselists away from default methods for addition, multiplication etc. For example, the sum and the productof (compatible) block matrices shall be represented as a block matrix, so the default methods for sum andproduct of matrices shall not be applicable, although the results will be equal to those of the default methodsin the sense that their entries at corresponding positions are equal.



28 Chapter 3. Creating New ObjectsSo one does not set the �lter IsListDefault in such cases, and thus one can implement one's own methodsfor arithmetic operations. (Of course \can" means on the other hand that onemust implement such methodsif one is interested in arithmetics of the new lists.)The speci�c binary arithmetic methods for the new lists will usually cover the case that both arguments areof the new kind, and perhaps also the interaction between a list of the new kind and certain other kinds oflists may be handled if this appears to be useful.For the last situation, interaction between a new kind of lists and other kinds of lists, GAP provides al-ready a setup. Namely, there are the categories IsGeneralizedRowVector and IsMultiplicativeGener-alizedRowVector, which are concerned with the additive and the multiplicative behaviour, respectively, oflists. For lists in these �lters, the structure of the results of arithmetic operations is prescribed (see 21.13and 21.14 in the GAP Reference Manual).For example, if one implements block matrices in IsMultiplicativeGeneralizedRowVector then automat-ically the product of such a block matrix and a (plain) list of such block matrices will be de�ned as theobvious list of matrix products, and a default method for plain lists will handle this multiplication. (Notethat this method will rely on a method for computing the product of the block matrices, and of course nodefault method is available for that.) Conversely, if the block matrices are not in IsMultiplicativeGen-eralizedRowVector then the product of a block matrix and a (plain) list of block matrices is not de�ned.(There is no default method for it, and one can de�ne the result and provide a method for computing it.)Thus if one decides to set the �lters IsGeneralizedRowVector and IsMultiplicativeGeneralizedRowVec-tor for the new lists, on the one hand one loses freedom in de�ning arithmetic behaviour, but on the otherhand one gains several default methods for a more or less natural behaviour.If a list in the �lter IsGeneralizedRowVector (IsMultiplicativeGeneralizedRowVector) lies in IsAt-tributeStoringRep, the values of additive (multiplicative) nesting depth is stored in the list and need notbe calculated for each arithmetic operation. One can then store the value(s) already upon creation of thelists, with the e�ect that the default arithmetic operations will access elements of these lists only if this isunavoidable. For example, the sum of two plain lists of \wrapped matrices" with stored nesting depths arecomputed via the method for adding two such wrapped lists, and without accessing any of their rows (whichmight be expensive). In this sense, the wrapped lists are treated as black boxes.3.15 External RepresentationAn operation is de�ned for elements rather than for objects in the sense that if the arguments are replacedby objects that are equal to the old arguments w.r.t. the equivalence relation \=" then the result must beequal to the old result w.r.t. \=".But the implementation of many methods is representation dependent in the sense that certain representationdependent subobjects are accessed.For example, a method that implements the addition of univariate polynomials may access coe�cients lists ofits arguments only if they are really stored, while in the case of sparsely represented polynomials a di�erentapproach is needed.In spite of this, for many operations one does not want to write an own method for each possible representa-tions of each argument, for example because none of the methods could in fact take advantage of the actuallygiven representations of the objects. Another reason could be that one wants to install �rst a representationindependent method, and then add speci�c methods as they are needed to gain more e�ciency, by reallyexploiting the fact that the arguments have certain representations.For the purpose of admitting representation independent code, one can de�ne an external representationof objects in a given family, install methods to compute this external representation for each representationof the objects, and then use this external representation of the objects whenever they occur.



Section 16. Mutability and Copying 29We cannot provide conversion functions that allow us to �rst convert any object in question to one particular\standard representation", and then access the data in the way de�ned for this representation, simply becauseit may be impossible to choose such a \standard representation" uniformly for all objects in the given family.So the aim of an external representation of an object obj is a di�erent one, namely to describe the data fromwhich obj is composed. In particular, the external representation of obj is not one possible (\standard")representation of obj , in fact the external representation of obj is in general di�erent from obj w.r.t. \=",�rst of all because the external representation of obj does in general not lie in the same family as obj .For example the external representation of a rational function is a list of length two or three, the �rstentry being the zero coe�cient, the second being a list describing the coe�cients and monomials of thenumerator, and the third, if bound, being a list describing the coe�cients and monomials of the denominator.In particular, the external representation of a polynomial is a list and not a polynomial.The other way round, the external representation of obj encodes obj in such a way that from this data andthe family of obj , one can create an object that is equal to obj . Usually the external representation of anobject is a list or a record.Although the external representation of obj is by de�nition independent of the actually available represen-tations for obj , it is usual that a representation of obj exists for which the computation of the externalrepresentation is obtained by just \unpacking" obj , in the sense that the desired data is stored in a compo-nent or a position of obj , if obj is a component object (see 3.9) or a positional object (see 3.10).To implement an external representation means to install methods for the following two operations.
1I ExtRepOfObj( obj )
I ObjByExtRep( fam, data )ExtRepOfObj returns the external representation of its argument, and ObjByExtRep returns an object in thefamily fam that has external representation data.Of course, ObjByExtRep( FamilyObj( obj ), ExtRepOfObj( obj ) ) must be equal to obj . But it is notrequired that equal objects have equal external representations.Note that if one de�nes a new representation of objects for which an external representation does alreadyexist then one must install a method to compute this external representation for the objects in the newrepresentation.3.16 Mutability and CopyingAny GAP Object is either mutable or immutable. This can be tested with the Operation IsMutable. Theintended meaning of (im)mutability is a mathematical one: an immutable Object should never change insuch a way that it represents a di�erent Element. Objects may change in other ways, for instance to storemore information, or represent an element in a di�erent way.Immutability is enforced in di�erent ways for built-in objects (like records, or lists) and for external objects(made using Objectify).For built-in objects which are immutable, the kernel will prevent you from changing them. Thusgap> l := [1,2,4];[ 1, 2, 4 ]gap> MakeImmutable(l);gap> l[3] := 5;Lists Assignment: <list> must be a mutable listFor external Objects, the situation is di�erent. An external Object which claims to be immutable (i.e. itsType does not contain IsMutable) should not admit any Methods which change the Element it represents.The kernel does not prevent the use of !. and ![ to change the underlying data structure. This is used for



30 Chapter 3. Creating New Objectsinstance by the code that stores Attribute values for reuse. In general, these ! operations should only beused in Methods which depend on the Representation of the Object. Furthermore, we would not recommendusers to install Methods which depend on the Representations of Objects created by the library or by GAPpackages, as there is certainly no guarantee of the representations being the same in future versions of GAP.Here we see an immutable Object (the group S4), in which we improperly install a new component.gap> g := SymmetricGroup(IsPermGroup,4);Sym( [ 1 .. 4 ] )gap> IsMutable(g);falsegap> NamesOfComponents(g);[ "GeneratorsOfMagmaWithInverses", "Size", "MovedPoints", "NrMovedPoints" ]gap> g!.silly := "rubbish";"rubbish"gap> NamesOfComponents(g);[ "GeneratorsOfMagmaWithInverses", "Size", "MovedPoints", "NrMovedPoints","silly" ]gap> g!.silly;"rubbish"On the other hand, if we form an immutable externally represented list, we �nd that GAP will not let uschange the object.gap> e := Enumerator(g);<enumerator of perm group>gap> IsMutable(e);falsegap> IsList(e);truegap> e[3];(1,2,4)gap> e[3] := false;Error, The list you are trying to assign to is immutableWhen we consider copying Objects, another �lter IsCopyable, enters the game and we �nd that Shal-lowCopy and StructuralCopy behave quite di�erently. Objects can be divided for this purpose into three:mutable Objects, immutable but copyable Objects, and non-copyable objects (called constants).A mutable or copyable Object should have a Method for the Operation ShallowCopy, which should makea new mutable Object, sharing its top-level subobjects with the original. The exact de�nition of top-levelsubobject may be de�ned by the implementor for new kinds of Object.ShallowCopy applied to a constant simply returns the constant.StructuralCopy is expected to be much less used than ShallowCopy. Applied to a mutable object, it returnsa new mutable object which shares no mutable sub-objects with the input. Applied to an immutable Object(even a copyable one), it just returns the object. It is not an Operation (indeed, it's a rather special kernelfunction).gap> e1 := StructuralCopy(e);<enumerator of perm group>gap> IsMutable(e1);falsegap> e2 := ShallowCopy(e);[ (), (1,4), (1,2,4), (1,3,4), (2,4), (1,4,2), (1,2), (1,3,4,2), (2,3,4),



Section 17. Global Variables in the Library 31(1,4,2,3), (1,2,3), (1,3)(2,4), (3,4), (1,4,3), (1,2,4,3), (1,3), (2,4,3),(1,4,3,2), (1,2)(3,4), (1,3,2), (2,3), (1,4)(2,3), (1,2,3,4), (1,3,2,4) ]gap>There are two other related functions: Immutable, which makes a new immutable object which shares nomutable subobjects with its input and MakeImmutable which changes an object and its mutable subobjectsin place to be immutable. It should only be used on \new" Objects that you have just created, and whichcannot share mutable subobjects with anything else.Both Immutable and MakeImmutable work on external objects by just resetting the IsMutable �lter in theObject's type. This should make ineligible any methods that might change the Object. As a consequence,you must allow for the possibility of immutable versions of any objects you create.So, if you are implementing your own external Objects. The rules amount to the following:1. You decide if your Objects should be mutable or copyable or constants, by �xing whether their Typeincludes IsMutable or IsCopyable.2. You install Methods for your objects respecting that decision:� for constants { no methods change the underlying elements;� for copyables { you provide a method for ShallowCopy;� for mutables { you may have methods that change the underlying elements and these shouldexplicitly require IsMutable.3.17 Global Variables in the LibraryGlobal variables in the GAP library are usually read-only in order to avoid their being overwritten acciden-tally.
1I BindGlobal( name, val ) Fsets the global variable named by the string name to the value val , and makes it read-only. An error is givenif the global variable corresponding to name already had a value bound.
2I DeclareAttribute( name, �lt[, "mutable"][, rank] ) F
I DeclareCategory( name, super ) F
I DeclareFilter( name, rank ) F
I DeclareProperty( name, �lt[, rank] ) F
I DeclareRepresentation( name, super, slots ) FThe di�erent types of �lters (see Sections 3.1, 3.2, 3.3, 3.4) that are used in the GAP library are assigned by theabove DeclareSomething functions which make the variable with name name (a string) automatically read-only. The only other di�erence between NewSomething and DeclareSomething is that DeclareAttributeand DeclareProperty also bind read-only global variables with names Hasname and Setname for thetester and setter of the attribute (see Section 13.6 in the Reference Manual). For the meaning of the otherarguments of DeclareSomething , see 3.3.1, 3.1.1, 3.4.1, 3.3.3, and 3.2.1.

3I DeclareOperation( name, args-�lts ) F
I DeclareGlobalFunction( name ) Fdeclare operations and other global functions used in the GAP library, respectively, are assigned to the read-only variable with name name (a string). For the meaning of the other arguments of DeclareOperation,see 3.5.1.GAP functions that are not operations and that are intended to be called by users should be noti�ed toGAP in the declaration part of the respective package (see Section 3.18) via DeclareGlobalFunction, which



32 Chapter 3. Creating New Objectsreturns a function that serves as a place holder for the function that will be installed later, and that willprint an error message if it is called. See also 3.17.7.
4I InstallGlobalFunction( gvar, func ) FA global function declared with DeclareGlobalFunction can be given its value func via InstallGlob-alFunction; gvar is the global variable (not a string) named with the name argument of the call toDeclareGlobalFunction. For example, a declaration likeDeclareGlobalFunction( "SumOfTwoCubes" );in the \declaration part" (see Section 3.18) might have a corresponding \implementation part" of:InstallGlobalFunction( SumOfTwoCubes, function(x, y) return x^3 + y^3; end);Note: func must be a function which has not been declared as a GlobalFunction itself. Otherwise com-pletion �les (see 3.5 in the reference manual) get confused!
5I DeclareGlobalVariable( name[, description] ) FFor global variables that are not functions, instead of using BindGlobal one can also declare the variablewith DeclareGlobalVariable which creates a new global variable named by the string name. If the secondargument description is entered then this must be a string that describes the meaning of the global variable.DeclareGlobalVariable shall be used in the declaration part of the respective package (see 3.18), values canthen be assigned to the new variable with InstallValue or InstallFlushableValue, in the implementationpart (again, see 3.18).
6I InstallValue( gvar, value ) F
I InstallFlushableValue( gvar, value ) FInstallValue assigns the value value to the global variable gvar . InstallFlushableValue does the samebut additionally provides that each call of FlushCaches (see 3.17.9) will assign a structural copy of valueto gvar .InstallValue does not work if value is an \immediate object" (i.e., an internally represented small integeror �nite �eld element). Furthermore, InstallFlushableValue works only if value is a list. (Note thatInstallFlushableValue makes sense only for mutable global variables.)

7I DeclareSynonym( name, value ) Fassigns the string name to a global variable as a synonym for value. Two typical intended usages are todeclare an \and-�lter", e.g.DeclareSynonym( "IsGroup", IsMagmaWithInverses and IsAssociative );and (mainly for compatibility reasons) to provide a previously declared global function with an alternativename, e.g.DeclareGlobalFunction( "SizeOfSomething" );DeclareSynonym( "OrderOfSomething", SizeOfSomething );Note: Before using DeclareSynonym in the way of this second example, one should determine whether thesynonym is really needed. Perhaps an extra index entry in the documentation would be su�cient.When declaring a synonym that is to be an attribute DeclareSynonymAttr should be used.
8I DeclareSynonymAttr( name, value ) Fassigns the string name to an attribute global variable as a synonym for value. Two typical intended usagesare to provide a previously declared attribute or property with an alternative name, e.g.



Section 18. Declaration and Implementation Part 33DeclareAttribute( "GeneratorsOfDivisionRing", IsDivisionRing );DeclareSynonymAttr( "GeneratorsOfField", GeneratorsOfDivisionRing );and to declare an attribute that is an \and-�lter", e.g.DeclareSynonymAttr( "IsField", IsDivisionRing and IsCommutative );Also see 3.17.7. (The comments made there also pertain to DeclareSynonymAttr.)
9I FlushCaches() OFlushCaches resets the value of each global variable that has been declared with DeclareGlobalVariableand for which the initial value has been set with InstallFlushableValue to this initial value.FlushCaches should be used only for debugging purposes, since the involved global variables include forexample lists that store �nite �elds and cyclotomic �elds used in the current GAP session, in order to avoidthat these �elds are constructed anew in each call to GF and CF (see 57.3.1 and 58.1.1 in the ReferenceManual).3.18 Declaration and Implementation PartEach package of GAP code consists of two parts, the declaration part that de�nes the new categories andoperations for the objects the package deals with, and the implementation part where the correspondingmethods are installed. The declaration part should be representation independent, representation dependentinformation should be dealt with in the implementation part.GAP functions that are not operations and that are intended to be called by users should be noti�ed toGAP in the declaration part via DeclareGlobalFunction. Values for these functions can be installed in theimplementation part via InstallGlobalFunction.Calls to the following functions belong to the declaration part.DeclareAttribute, DeclareCategory, DeclareFilter, DeclareOperation, DeclareGlobalFunction, De-clareSynonym, DeclareSynonymAttr, DeclareProperty, InstallTrueMethod.See 3.17.2, 3.17.2, 3.17.2, 3.17.3, 3.17.3, 3.17.7, 3.17.8, 3.17.2, 2.7.1.Calls to the following functions belong to the implementation part.DeclareRepresentation, InstallGlobalFunction, InstallMethod, InstallImmediateMethod, Instal-lOtherMethod, NewFamily, NewType, Objectify.See 3.17.2, 3.17.4, 2.2.1, 2.6.1, 2.2.2, 3.6.1, 3.7.1, 3.8.1.Whenever both a NewSomething and a DeclareSomething variant of a function exist (see 3.17), the use ofDeclareSomething is recommended because this protects the variables in question from being overwritten.Note that there are no functions DeclareFamily and DeclareType since families and types are createddynamically, hence usually no global variables are associated to them. Further note that DeclareRepre-sentation is regarded as belonging to the implementation part, because usually representations of objectsare accessed only in very few places, and all code that involves a particular representation is contained inone �le; additionally, representations of objects are often not interesting for the user, so there is no need toprovide a user interface or documentation about representations.It should be emphasized that \declaration" means only an explicit noti�cation of mathematical or technicalterms or of concepts to GAP. For example, declaring a category or property with name IsInteresting doesof course not tell GAP what this shall mean, and it is necessary to implement possibilities to create objectsthat know already that they lie in IsInteresting in the case that it is a category, or to install implicationsor methods in order to compute for a given object whether IsInteresting is true or false for it in thecase that IsInteresting is a property.



4
Examples of

Extending the System
This chapter gives a few examples of how one can extend the functionality of GAP.They are arranged in ascending di�culty. We show how to install new methods, add new operations andattributes and how to implement new features using categories and representations. (As we do not introducecompletely new kinds of objects in these example it will not be necessary to declare any families.) Finallywe show a simple way how to create new objects with an own arithmetic.The examples given are all very rudimentary { no particular error checks are performed and the user interfacesometimes is quite clumsy.Even more complex examples that create whole classes of objects anew will be given in the following twochapters 5 and 6.4.1 Addition of a MethodThe easiest case is the addition of a new algorithm as a method for an existing operation for the existingstructures.For example, assume we wanted to implement a better method for computing the exponent of a nilpotentgroup (it is the product of the exponents of the Sylow subgroups).The �rst task is to �nd which operation is used by GAP (it is Exponent) and how it is declared. We can�nd this in the reference manual (in our particular case in section 37.15) and the declaration in the library�le lib/grp.gd (The easiest way to �nd the place of the declaration is usually to grep over all .gd and .g�les, see section 3 of \Extending Gap".)In our example the declaration in the library is:DeclareAttribute("Exponent",IsGroup);Similarly we �nd that the �lter IsNilpotentGroup represents the concept of being nilpotent.We then write a function that implements the new algorithm which takes the right set of arguments andinstall it as a method. In our example this installation would be:InstallMethod(Exponent,"for nilpotent groups",[IsGroup and IsNilpotent],function(G)[function body omitted]end);We have left out the optional rank argument of InstallMethod, which normally is a wise choice { GAPautomatically uses an internal ranking based on the �lters that is only o�set by the given rank. So ourmethod will certainly be \better" than a method that has been installed for mere groups or for solvablegroups but will be ranked lower than the library method for abelian groups.That's all. Using ApplicableMethod (see 7.2.1) we can check for an nilpotent group that indeed our newmethod will be used.



Section 2. Extending the Range of De�nition of an Existing Operation 35When testing, remember that the method selection will not check for properties that are not known. (Thisis done internally by checking the property tester �rst.) Therefore the method would not be applicable forthe group g in the following de�nition but only for the { mathematically identical but endowed with moreknowledge by GAP { group h. (Section 4.3 shows a way around this.)gap> g:=Group((1,2),(1,3)(2,4));;gap> h:=Group((1,2),(1,3)(2,4));;gap> IsNilpotentGroup(h); # enforce testtruegap> HasIsNilpotentGroup(g);falsegap> HasIsNilpotentGroup(h);trueLets now look at a slightly more complicated example: We want to implement a better method for computingnormalizers in a nilpotent permutation group. (Such an algorithm can be found for example in [LRW97].)We already know IsNilpotentGroup, the �lter IsPermGroup represent the concepts of being a group ofpermutations.GAP uses Normalizer to compute normalizers, however the declaration is a bit more complicated. In thelibrary we �ndInParentFOA( "Normalizer", IsGroup, IsObject, NewAttribute );The full mechanism of InParentFOA is described in chapter 6 of \Extending GAP", however for our purposesit is su�cient to know that for such a function the actual work is done by an operation NormalizerOp (andall the complications are just there to be able to remember certain results) and that the declaration of thisoperation is given by the �rst arguments, it would be:DeclareOperation( "NormalizerOp", [IsGroup, IsObject] );This time we decide to enter a non-default family predicate in the call to InstallMethod. We could justleave it out as in the previous call; this would yield the default value, the function ReturnTrue of arbitrarymany arguments which always returns true. However, then the method might be called in some cases ofinconsistent input (for example matrix groups in di�erent characteristics) that ought to fall through themethod selection to raise an error.In our situation, we want the second group to be a subgroup of the �rst, so necessarily both must have thesame family and we can use IsIdenticalObj as family predicate.Now we can install the method. Again this manual is lazy and does not show you the actual code:InstallMethod(NormalizerOp,"for nilpotent permutation groups",IsIdenticalObj,[IsPermGroup and IsNilpotentGroup,IsPermGroup and IsNilpotentGroup],function(G,U)[ function body omitted ]end);4.2 Extending the Range of De�nition of an Existing OperationIt might be that the operation has been de�ned so far only for a set of objects that is too restrictive for ourpurposes (or we want to install a method that takes another number of arguments). If this is the case, thecall to InstallMethod causes an error message. We can avoid this by using InstallOtherMethod insteadof InstallMethod.



36 Chapter 4. Examples of Extending the System4.3 Enforcing Property TestsAs mentioned above, GAP does not check unknown properties to test whether a method might be applicable.In some cases one wants to enforce this, however, because the gain from knowing the property outweighsthe cost of its determination.In this situation one has to install a method without the additional property (so it can be tried even if theproperty is not yet known) and at high rank (so it will be used before other methods). The �rst thing todo in the actual function then is to test the property and to bail out with TryNextMethod() (see 2.4.1) if itturns out to be false.The above Exponent example thus would become:InstallMethod(Exponent,"test abelianity", [IsGroup],50,# enforced high rankfunction(G)if not IsAbelian(G) thenTryNextMethod();fi;[remaining function body omitted]end);The value \50" used in this example is quite arbitrary. A better way is to use values that are given by thesystem inherently: We want this method still to be ranked as high, as if it had the IsAbelian requirement.So we have GAP compute the extra rank of this:InstallMethod(Exponent,"test abelianity", [IsGroup],# enforced absolute rank of `IsGroup and IsAbelian' installation: Subtract# the rank of `IsGroup' and add the rank of `IsGroup and IsAbelian':SIZE_FLAGS(FLAGS_FILTER(IsGroup and IsAbelian))-SIZE_FLAGS(FLAGS_FILTER(IsGroup)),function(G)the slightly complicated construction of addition and subtraction is necessary because IsGroup and Is-Abelian might imply the same elementary �lters which we otherwise would count twice.A somehow similar situation occurs with matrix groups. Most methods for matrix groups are only applicableif the group is known to be �nite.However we should not enforce a �niteness test early (someone else later might install good methods forin�nite groups while the �niteness test would be too expensive) but just before GAP would give a \no methodfound" error. This is done by redispatching, see 2.5. For example to enforce such a �nal �niteness test fornormalizer calculations could be done by:RedispatchOnCondition(NormalizerOp,IsIdenticalObj,[IsMatrixGroup,IsMatrixGroup],[IsFinite,IsFinite],0);4.4 Adding a new OperationThe next step is to add own operations. As an example we take the Sylow normalizer in a group of a givenprime. This operation gets two arguments, the �rst has to be a group, the second a prime number.There is a function IsPrimeInt, but no property for being prime (which would be pointless as integerscannot store property values anyhow). So the second argument gets speci�ed only as positive integer:



Section 5. Adding a new Attribute 37SylowNormalizer:=NewOperation("SylowNormalizer",[IsGroup,IsPosInt]);(Note that we are using NewOperation (see 3.5.1) instead of DeclareOperation (see 3.17.3) as used in thelibrary. The only di�erence other than that DeclareOperation saves some typing, is that it also protectsthe variables against overwriting. When testing code (when one probably wants to change things) this mightbe restricting. If this does not bother you, you can useDeclareOperation("SylowNormalizer",[IsGroup,IsPosInt]);as well.)The �lters IsGroup and IsPosInt given are only used to test that InstallMethod (see 2.2.1) installs meth-ods with suitable arguments and will be completely ignored when using InstallOtherMethod (see 2.2.2).Technically one could therefore simply use IsObject for all arguments in the declaration. The main pointof using more speci�c �lters here is to help documenting with which arguments the function is to be used(so for example a call SylowNormalizer(5,G) would be invalid).Of course initially there are no useful methods for newly declared operations; you will have to write andinstall them yourself.If the operation only takes one argument and has reproducible results without side e�ects, it might be worthdeclaring it as an attribute instead; see the next section (4.5).4.5 Adding a new AttributeNow we look at an example of how to add a new attribute. As example we consider the set of all primesthat divide the size of a group.First we have to declare the attribute:PrimesDividingSize:=NewAttribute("PrimesDividingSize",IsGroup);(See 3.3.1). This implicitly declares attribute tester and setter, it is convenient however to assign these tovariables as well:HasPrimesDividingSize:=Tester(PrimesDividingSize);SetPrimesDividingSize:=Setter(PrimesDividingSize);Alternatively, there is a declaration command DeclareAttribute (see 3.17.2) that executes all three assign-ments simultaneously and protects the variables against overwriting:DeclareAttribute("PrimesDividingSize",IsGroup);Next we have to install method(s) for the attribute that compute its value. (This is not strictly necessary.We could use the attribute also without methods only for storing and retrieving information, but calling itfor objects for which the value is not known would produce a \No method found" error.) For this purposewe can imagine the attribute simply as an one-argument operation:InstallMethod(PrimesDividingSize,"for finite groups",[IsGroup and IsFinite],function(G)if Size(G)=1 then return [];else return Set(Factors(Size(G)));fi;end);The function installed must always return a value (or call TryNextMethod; see 2.4.1). If the object is in therepresentation IsAttributeStoringRep this return value once computed will be automatically stored andretrieved if the attribute is called a second time. We don't have to call setter or tester ourselves. (This storagehappens by GAP internally calling the attribute setter with the return value of the function. Retrieval is bya high-ranking method which is installed under the condition HasPrimesDividingSize. This method wasinstalled automatically when the attribute was declared.)



38 Chapter 4. Examples of Extending the System4.6 Adding a new RepresentationNext, we look at the implementation of a new representation of existing objects. In most cases we want toimplement this representation only for e�ciency reasons while keeping all the existing functionality.For example, assume we wanted (following [Wie69]) to implement permutation groups de�ned by relations.Next, we have to decide a few basics about the representation. All existing permutation groups in the libraryare attribute storing and we probably want to keep this for our new objects. Thus the representation must bea subrepresentation of IsComponentObjectRep and IsAttributeStoringRep. Furthermore we want eachobject to be a permutation group and we can imply this directly in the representation.We also decide that we store the degree (the largest point that might be moved) in a component degreeand the de�ning relations in a component relations (we do not specify the format of relations here. Inan actual implementation one would have to design this as well, but it does not a�ect the declarations thischapter is about).IsPermutationGroupByRelations:=NewRepresentation("IsPermutationGroupByRelations",IsComponentObjectRep and IsAttributeStoringRep and IsPermGroup,["degree","relations"]);(If we wanted to implement sparse matrices we might for example rather settle for a positional object inwhich we store a list of the nonzero entries.)We can make the new representation a subrepresentation of an existing one. In such a case of course wehave to provide all structure of this \parent" representation as well.Next we need to check in which family our new objects will be. This will be the same family as of ev-ery other permutation group, namely the CollectionsFamily(PermutationsFamily) (where the familyPermutationsFamily=FamilyObj((1,2,3)) has been de�ned already in the library).Now we can write a function to create our new objects. Usually it is helpful to look at functions from thelibrary that are used in similar situations (for example GroupByGenerators in our case) to make sure wehave not forgotten any further requirements in the declaration we might have to add here. However in mostcases the function is straightforward:PermutationGroupByRelations:=function(degree,relations)local gg:=Objectify(NewType(CollectionsFamily(PermutationsFamily),IsPermutationGroupByRelations),rec(degree:=degree,relations:=relations));end;It also is a good idea to install a Print (possibly also a View) method { otherwise testing becomes quitehard:InstallMethod(PrintObj,"for perm grps. given by relations",[IsPermutationGroupByRelations],function(G)Print("PermutationGroupByRelations(", G!.degree,",",G!.relations,")");end);Next we have to write enough methods for the new representation so that the existing algorithms can beused. In particular we will have to implement methods for all operations for which library or kernel providesmethods for the existing (alternative) representations. In our particular case there are no such methods. (Ifwe would have implemented sparse matrices we would have had to implement methods for the list accessand assignment functions, see 21.2 in the reference manual.) However the existing way permutation groups



Section 8. Adding new Concepts 39are represented is by generators. To be able to use the existing machinery we want to be able to obtain agenerating set also for groups in our new representation. This can be done (albeit not very e�ectively) bya stabilizer calculation in the symmetric group given by the degree component. The operation function touse is probably a bit complicated and will depend on the format of the relations (we have not speci�ed inthis example). In the following method we use operationfunction as a placeholder;InstallMethod(GeneratorsOfGroup,"for perm grps. given by relations",[IsPermutationGroupByRelations],function(G)local S,U;S:=SymmetricGroup(G!.degree);U:=Stabilizer(S,G!.relations, operationfunction );return GeneratorsOfGroup(U);end);This is all we must do. Of course for performance reasons one might want to install methods for furtheroperations as well.4.7 Components versus AttributesIn the last section we introduced two new components, G!.degree and G!.relations. Technically, we couldhave used attributes instead. There is no clear distinction which variant is to be preferred: An attributeexpresses part of the functionality available to certain objects (and thus could be computed later andprobably even for a wider class of objects), a component is just part of the internal de�nition of an object.So if the data is \of general interest", if we want the user to have access to it, attributes are preferable. Theyprovide a clean interface and their immutability makes it safe to hand the data to a user who potentiallycould corrupt a components entries.On the other hand more \technical" data (say the encoding of a sparse matrix) is better hidden from theuser in a component, as declaring it as an attribute would not give any advantage.Resource-wise, attributes need more memory (the attribute setter and tester are implicitly declared, andtwo �lter bits are required), the attribute access is one further function call in the kernel, thus componentsmight be an immeasurable bit faster.4.8 Adding new ConceptsFinally we look how to implement a new concept for existing objects and �t this in the method selection.Three examples that will be made more explicit below would be groups for which a \length" of elements(as a word in certain generators) is de�ned, groups that can be decomposed as a semidirect product andM-groups.In each case we have two possibilities for the declaration. We can either declare it as a property or as acategory. Both are eventually �lter and in this way indistinguishable for the method selection. The distinctionis rather conceptual and mainly re
ects whether we want existing objects to be part of our new concept ornot.Property:Properties also are attributes: If a property value is not known for an object, GAP tries to �nd amethod to compute the property value. If no suitable method is found, an error is raised.



40 Chapter 4. Examples of Extending the SystemCategory:An object is in a category if it has been created in it. Testing the category for an object simplyreturns this value. Existing objects cannot enter a new category later in life. This means that inmost cases one has to write own code to create objects in a new category.If we want to implement a completely new concept so that new operations are de�ned only for thenew objects { for example bialgebras for which a second scalar multiplication is de�ned { usually acategory is chosen.Technically, the behaviour of the category IsXYZ, declared as subcategory of IsABC is thereforeexactly the same as if we would declare IsXYZ to be a property for IsABC and install the followingmethod:InstallMethod(IsXYZ,"return false if not known",[IsABC],ReturnFalse);(The words category also has a well-de�ned mathematical meaning, but this does not need toconcern us at this point. The set of objects which is de�ned to be a (GAP)-category does not needto be a category in the mathematical sense, vice versa not every mathematical category is declaredas a (GAP) category.)Eventually the choice between category and property often becomes a matter of taste or style.Sometimes there is even a third possibility (if you have GAP 3 experience this might re
ect most closely \anobject whose operations record is XYOps"): We might want to indicate this new concept simply by the factthat certain attributes are set. In this case we could simply use the respective attribute tester(s).The examples given below each give a short argument why the respective solution was chosen, but one couldargue as well for other choices.4.9 Example: M-groupsM-groups are �nite groups for which all irreducible complex representations are induced from linear rep-resentations of subgroups, it turns out that they are all solvable and that every supersolvable group is anM-group. See [Isa76] for further details.Solvability and supersolvability both are testable properties. We therefore declare IsMGroup as a propertyfor solvable groups:IsMGroup:=NewProperty("IsMGroup",IsSolvableGroup);The �lter IsSolvableGroup in this declaration only means that methods for IsMGroup by default can onlybe installed for groups that are (and know to be) solvable (though they could be installed for more generalsituations using InstallOtherMethod). It does not yet imply that M-groups are solvable. We must do thisdeliberately via an implication and we use the same technique to imply that every supersolvable group isan M-group.InstallTrueMethod(IsSolvableGroup,IsMGroup);InstallTrueMethod(IsMGroup,IsSupersolvableGroup);Now we might install a method that tests for solvable groups whether they are M-groups:InstallMethod(IsMGroup,"for solvable groups",[IsSolvableGroup],function(G)[... code omitted. The function must return `true' or `false' ...]end);



Section 12. Creating Own Arithmetic Objects 414.10 Example: Groups with a word lengthOur second example is that of groups for whose elements a word length is de�ned. (We assume that theword length is only de�ned in the context of the group with respect to a preselected generating set but notfor single elements alone. However we will not delve into any details of how this length is de�ned and howit could be computed.)Having a word length is a feature which enables other operations (for example a \word length" function).This is exactly what categories are intended for and therefore we use one.First, we declare the category. All objects in this category are groups and so we inherit the supercategoryIsGroup:DeclareCategory("IsGroupWithWordLength",IsGroup);We also de�ne the operation which is \enabled" by this category, the word length of a group element,which is de�ned for a group and an element (remember that group elements are described by the categoryIsMultiplicativeElementWithInverse):DeclareOperation("WordLengthOfElement",[IsGroupWithWordLength,IsMultiplicativeElementWithInverse]);We then would proceed by installing methods to compute the word length in concrete cases and might forexample add further operations to get shortest words in cosets.4.11 Example: Groups with a decomposition as semidirect productThe third example is groups which have a (nontrivial) decomposition as a semidirect product. If this infor-mation has been found out, we want to be able to use it in algorithms. (Thus we do not only need the factthat there is a decomposition, but also the decomposition itself.)We also want this to be applicable to every group and not only for groups which have been explicitlyconstructed via SemidirectProduct.Instead we simply declare an attribute SemidirectProductDecomposition for groups. (again, in this manualwe don't go in the details of how such an decomposition would look like).DeclareAttribute("SemidirectProductDecomposition",IsGroup);If a decomposition has been found, it can be stored in a group using SetSemidirectProductDecomposition.(At the moment all groups in GAP are attribute storing.)Methods that rely on the existence of such a decomposition then get installed for the tester �lter Has-SemidirectProductDecomposition.4.12 Creating Own Arithmetic ObjectsFinally let's look at a way to create new objects with a user-de�ned arithmetic such that one can formfor example groups, rings or vector spaces of these elements. This topic is discussed in much more detailin chapter 6, in this section we present a simple approach that may be useful to get started but does notpermit you to exploit all potential features.The basic design is that the user designs some way to represent her objects in terms of GAPs built-in types,for example as a list or a record. We call this the \de�ning data" of the new objects. Also provided arefunctions that perform arithmetic on this \de�ning data", that is they take objects of this form and returnobjects that represent the result of the operation. The function ArithmeticElementCreator then is calledto provide a wrapping such that proper new GAP-objects are created which can be multiplied etc. with thedefault in�x operations such as \*.



42 Chapter 4. Examples of Extending the System
1I ArithmeticElementCreator( spec ) Fo�ers a simple interface to create new arithmetic elements by providing functions that perform addition,multiplication and so forth, conforming to the speci�cation spec. ArithmeticElementCreator creates a newcategory, representation and family for the new arithmetic elements being de�ned, and returns a functionwhich takes the \de�ning data" of an element and returns the corresponding new arithmetic element.spec is a record with one or more of the following components:ElementNamea string used to identify the new type of object. A global identi�er IsElementName will be de�nedto indicate a category for these now objects. (Therefore it is not clever to have blanks in the name).Also a collections category is de�ned. (You will get an error message if the identi�er IsElementNameis already de�ned.)Equality, LessThan, One, Zero, Multiplication, Inverse, Addition, AdditiveInversefunctions de�ning the arithmetic operations. The functions interface on the level of \de�ning data",the actual methods installed will perform the unwrapping and wrapping as objects. Componentsare optional, but of course if no multiplication is de�ned elements cannot be multiplied and so forth.There are default methods for Equality and LessThan which simply calculate on the de�ning data.If one is de�ned, it must be ensured that the other is compatible (so that a < b implies not(a = b))Print a function which prints the object. By default, just the de�ning data is printed.MathInfo�lters determining the mathematical properties of the elements created. A typical value is for ex-ample IsMultiplicativeElementWithInverse for group elements.RepInfo�lters determining the representational properties of the elements created. The objects created arealways component objects, so in most cases the only reasonable option is IsAttributeStoringRepto permit the storing of attributes.All components are optional and will be �lled in with default values (though of course an empty record willnot result in useful objects).Note that the resulting objects are not equal to their de�ning data (even though by default they print asonly the de�ning data). The operation UnderlyingElement can be used to obtain the de�ning data of suchan element.As the �rst example we look at subsets of f1 : : : ; 4g and de�ne an \addition" as union and \multiplication"as intersection. These operations are both commutative and we want the resulting elements to know this.We therefore use the following speci�cation:gap> # the whole setgap> w := [1,2,3,4];[ 1, 2, 3, 4 ]gap> PosetElementSpec :=rec(> # name of the new elements> ElementName := "PosetOn4",> # arithmetic operations> One := a -> w,> Zero := a -> [],> Multiplication := function(a, b) return Intersection(a, b); end,> Addition := function(a, b) return Union(a, b); end,> AdditiveInverse := a -> Filtered(w, x->(not x in a)),> # Mathematical properties of the elements



Section 12. Creating Own Arithmetic Objects 43> MathInfo := IsCommutativeElement and IsAdditivelyCommutativeElement> );;gap> mkposet := ArithmeticElementCreator(PosetElementSpec);function( x ) ... endNow we can create new elements, perform arithmetic on them and form domains:gap> a := mkposet([1,2,3]);[ 1, 2, 3 ]gap> CategoriesOfObject(a);[ "IsExtAElement", "IsNearAdditiveElement", "IsNearAdditiveElementWithZero","IsNearAdditiveElementWithInverse", "IsExtLElement", "IsExtRElement","IsMultiplicativeElement", "IsMultiplicativeElementWithOne","IsAdditivelyCommutativeElement", "IsCommutativeElement", "IsPosetOn4" ]gap> a=[1,2,3];falsegap> UnderlyingElement(a)=[1,2,3];truegap> b:=mkposet([2,3,4]);[ 2, 3, 4 ]gap> a+b;[ 1, 2, 3, 4 ]gap> a*b;[ 2, 3 ]gap> s:=Semigroup(a,b);<semigroup with 2 generators>gap> Size(s);3The categories IsPosetOn4 and IsPosetOn4Collection can be used to install methods speci�c to the newobjects.gap> IsPosetOn4Collection(s);true



5
An Example {

Residue Class Rings
In this chapter, we give an example how GAP can be extended by new data structures and new functionality.In order to focus on the issues of the implementation, the mathematics in the example chosen is trivial.Namely, we will discuss computations with elements of residue class rings Z=nZ.The �rst attempt is straightforward (see Section 5.1), it deals with the implementation of the necessaryarithmetic operations. Section 5.2 deals with the question why it might be useful to use an approach thatinvolves creating a new data structure and integrating the algorithms dealing with these new GAP objectsinto the system. Section 5.3 shows how this can be done in our example, and Section 5.4, the question offurther compatibility of the new objects with known GAP objects is discussed. Finally, Section 5.5 givessome hints how to improve the implementation presented before.5.1 A First Attempt to Implement Elements of Residue Class RingsSuppose we want to do computations with elements of a ring Z=nZ, where n is a positive integer.First we have to decide how to represent the element k + nZ in GAP. If the modulus n is �xed then we canuse the integer k . More precisely, we can use any integer k 0 such that k � k 0 is a multiple of n. If di�erentmoduli are likely to occur then using a list of the form [k ;n], or a record of the form rec( residue := k,modulus := n ) is more appropriate. In the following, let us assume the list representation [k ;n] is chosen.Moreover, we decide that the residue k in all such lists satis�es 0 � k < n, i.e., the result of adding tworesidue classes represented by [k1;n] and [k2;n] (of course with same modulus n) will be [k ;n] with k1 + k2congruent to k modulo n and 0 � k < n.Now we can implement the arithmetic operations for residue classes. Note that the result of the mod operatoris normalized as required. The division by a noninvertible residue class results in fail.gap> resclass_sum := function( c1, c2 )> if c1[2] <> c2[2] then Error( "different moduli" ); fi;> return [ ( c1[1] + c2[1] ) mod c1[2], c1[2] ];> end;;gap>gap> resclass_diff := function( c1, c2 )> if c1[2] <> c2[2] then Error( "different moduli" ); fi;> return [ ( c1[1] - c2[1] ) mod c1[2], c1[2] ];> end;;gap>gap> resclass_prod := function( c1, c2 )> if c1[2] <> c2[2] then Error( "different moduli" ); fi;> return [ ( c1[1] * c2[1] ) mod c1[2], c1[2] ];> end;;gap>gap> resclass_quo := function( c1, c2 )> local quo;> if c1[2] <> c2[2] then Error( "different moduli" ); fi;



Section 2. Why Proceed in a Di�erent Way? 45> quo:= QuotientMod( c1[1], c2[1], c1[2] );> if quo <> fail then> quo:= [ quo, c1[2] ];> fi;> return quo;> end;;With these functions, we can in principle compute with residue classes.gap> list:= List( [ 0 .. 3 ], k -> [ k, 4 ] );[ [ 0, 4 ], [ 1, 4 ], [ 2, 4 ], [ 3, 4 ] ]gap> resclass_sum( list[2], list[4] );[ 0, 4 ]gap> resclass_diff( list[1], list[2] );[ 3, 4 ]gap> resclass_prod( list[2], list[4] );[ 3, 4 ]gap> resclass_prod( list[3], list[4] );[ 2, 4 ]gap> List( list, x -> resclass_quo( list[2], x ) );[ fail, [ 1, 4 ], fail, [ 3, 4 ] ]5.2 Why Proceed in a Di�erent Way?It depends on the computations we intended to do with residue classes whether or not the implementationdescribed in the previous section is satisfactory for us.Probably we are mainly interested in more complex data structures than the residue classes themselves, forexample in matrix algebras or matrix groups over a ring such as Z=4Z. For this, we need functions to add,multiply, invert etc. matrices of residue classes. Of course this is not a di�cult task, but it requires to writeadditional GAP code.And when we have implemented the arithmetic operations for matrices of residue classes, we might beinterested in domain operations such as computing the order of a matrix group over Z=4Z, a Sylow 2subgroup, and so on. The problem is that a residue class represented as a pair [k ;n] is not regarded as agroup element by GAP. We have not yet discussed how a matrix of residue classes shall be represented, but ifwe choose the obvious representation of a list of lists of our residue classes then also this is not a valid groupelement in GAP. Hence we cannot apply the function Group to create a group of residue classes or a groupof matrices of residue classes. This is because GAP assumes that group elements can be multiplied via thein�x operator * (equivalently, via the operation \*). Note that in fact the multiplication of two lists [ k 1,n ], [ k 2, n ] is de�ned, but we have [ k 1, n ] * [ k 2, n ] = k 1 * k 2 + n * n, the standardscalar product of two row vectors of same length. That is, the multiplication with * is not compatible withthe function reclass prod introduced in the previous section. Similarly, ring elements are assumed to beadded via the in�x operator +; the addition of residue classes is not compatible with the available additionof row vectors.What we have done in the previous section can be described as implementation of a \standalone" arithmeticfor residue classes. In order to use the machinery of the GAP library for creating higher level objects suchas matrices, polynomials, or domains over residue class rings, we have to \integrate" this implementationinto the GAP library. The key step will be to create a new kind of GAP objects. This will be done in thefollowing sections; there we assume that residue classes and residue class rings are not yet available in GAP;in fact they are available, and their implementation is very close to what is described here.



46 Chapter 5. An Example { Residue Class Rings5.3 A Second Attempt to Implement Elements of Residue Class RingsFaced with the problem to implement elements of the rings Z=nZ, we must de�ne the types of these elementsas far as is necessary to distinguish them from other GAP objects.As is described in Chapter 13 in the Reference Manual, the type of an object comprises several aspectsof information about this object; the family determines the relation of the object to other objects, thecategories determine what operations the object admits, the representation determines how an object isactually represented, and the attributes describe knowledge about the object.First of all, we must decide about the family of each residue class. A natural way to do this is to put theelements of each ring Z=nZ into a family of their own. This means that for example elements of Z=3Z and
Z=9Z lie in di�erent families. So the only interesting relation between the families of two residue classes isequality; binary arithmetic operations with two residue classes will be admissible only if their families areequal. Note that in the naive approach in Section 5.1, we had to take care of di�erent moduli by a check ineach function; these checks may disappear in the new approach because of our choice of families.Note that we do not need to tell GAP anything about the above decision concerning the families of the objectsthat we are going to implement, that is, the declaration part (see 3.18) of the little GAP package we arewriting contains nothing about the distribution of the new objects into families. (The actual constructionof a family happens in the function MyZmodnZ shown below.)Second, we want to describe methods to add or multiply two elements in Z=nZ, and these methods shall benot applicable to other GAP objects. The natural way to do this is to create a new category in which allelements of all rings Z=nZ lie. This is done as follows.gap> DeclareCategory( "IsMyZmodnZObj", IsScalar );gap> cat:= CategoryCollections( IsMyZmodnZObj );;gap> cat:= CategoryCollections( cat );;gap> cat:= CategoryCollections( cat );;So all elements in the rings Z=nZ will lie in the category IsMyZmodnZObj, which is a subcategory of IsScalar.The latter means that one can add, subtract, multiply and divide two such elements that lie in the samefamily, with the obvious restriction that the second operand of a division must be invertible. (The nameIsMyZmodnZObj is chosen because IsZmodnZObj is already de�ned in GAP, for an implementation of residueclasses that is very similar to the one developed in this manual chapter. Using this di�erent name, one cansimply enter the GAP code of this chapter into a GAP session, either interactively or by reading a �le withthis code, and experiment after each step whether the expected behaviour has been achieved, and what isstill missing.)The next lines of GAP code above create the categories CategoryCollections( IsMyZmodnZObj ) and twohigher levels of collections categories of this, which will be needed later; it is important to create thesecategories before collections of the objects in IsMyZmodnZObj actually arise.Note that the only di�erence between DeclareCategory and NewCategory is that in a call to DeclareCate-gory, a variable corresponding to the �rst argument is set to the new category, and this variable is read-only(see 3.17). The same holds for DeclareRepresentation and NewRepresentation etc.There is no analogue of categories in the implementation in Section 5.1, since there it was not necessaryto distinguish residue classes from other GAP objects. Note that the functions there assumed that theirarguments were residue classes, and the user was responsible not to call them with other arguments. Thusan important aspect of types is to describe arguments of functions explicitly.Third, we must decide about the representation of our objects. This is something we know already fromSection 5.1, where we chose a list of length two. Here we may choose between two essentially di�erentrepresentations for the new GAP objects, namely as \component object" (record{like) or \positional object"(list{like). We decide to store the modulus of each residue class in its family, and to encode the element



Section 3. A Second Attempt to Implement Elements of Residue Class Rings 47k + nZ by the unique residue in the range [ 0 .. n-1 ] that is congruent to k modulo n, and the objectitself is chosen to be a positional object with this residue at the �rst and only position (see 3.10).gap> DeclareRepresentation( "IsMyModulusRep", IsPositionalObjectRep, [ 1 ] );The fourth ingredients of a type, attributes, are usually of minor importance for element objects. Inparticular, we do not need to introduce special attributes for residue classes.Having de�ned what the new objects shall look like, we now declare a global function (see 3.18), to createan element when family and residue are given.gap> DeclareGlobalFunction( "MyZmodnZObj" );Now we have declared what we need, and we can start to implement the missing methods resp. functions;so the following command belongs to the implementation part of our package (see 3.18).The probably most interesting function is the one to construct a residue class.gap> InstallGlobalFunction( MyZmodnZObj, function( Fam, residue )> return Objectify( NewType( Fam, IsMyZmodnZObj and IsMyModulusRep ),> [ residue mod Fam!.modulus ] );> end );Note that we normalize residue explicitly using mod; we assumed that the modulus is stored in Fam, so wemust take care of this below. If Fam is a family of residue classes, and residue is an integer, MyZmodnZObjreturns the corresponding object in the family Fam, which lies in the category IsMyZmodnZObj and in therepresentation IsMyModulusRep.MyZmodnZObj needs an appropriate family as �rst argument, so let us see how to get our hands on this. Ofcourse we could write a handy function to create such a family for given modulus, but we choose anotherway. In fact we do not really want to call MyZmodnZObj explicitly when we want to create residue classes.For example, if we want to enter a matrix of residues then usually we start with a matrix of correspondingintegers, and it is more elegant to do the conversion via multiplying the matrix with the identity of therequired ring Z=nZ; this is also done for the conversion of integral matrices to �nite �eld matrices. (Notethat we will have to install a method for this.) So it is often su�cient to access this identity, for example viaOne( MyZmodnZ( n ) ), where MyZmodnZ returns a domain representing the ring Z=nZ when called withthe argument n. We decide that constructing this ring is a natural place where the creation of the familycan be hidden, and implement the function. (Note that the declaration belongs to the declaration part, andthe installation belongs to the implementation part, see 3.18).gap> DeclareGlobalFunction( "MyZmodnZ" );gap>gap> InstallGlobalFunction( MyZmodnZ, function( n )> local F, R;>> if not IsPosInt( n ) then> Error( "<n> must be a positive integer" );> fi;>> # Construct the family of element objects of our ring.> F:= NewFamily( Concatenation( "MyZmod", String( n ), "Z" ),> IsMyZmodnZObj );>> # Install the data.> F!.modulus:= n;>



48 Chapter 5. An Example { Residue Class Rings> # Make the domain.> R:= RingWithOneByGenerators( [ MyZmodnZObj( F, 1 ) ] );> SetIsWholeFamily( R, true );> SetName( R, Concatenation( "(Integers mod ", String(n), ")" ) );>> # Return the ring.> return R;> end );Note that the modulus n is stored in the component modulus of the family, as is assumed by MyZmodnZ.Thus it is not necessary to store the modulus in each element. When storing n with the !. operator as valueof the component modulus, we used that all families are in fact represented as component objects (see 3.9).We see that we can use RingWithOneByGenerators to construct a ring with one if we have the appropriategenerators. The construction via RingWithOneByGenerators makes sure that IsRingWithOne (and IsRing)is true for each output of MyZmodnZ. So the main problem is to create the identity element of the ring,which in our case su�ces to generate the ring. In order to create this element via MyZmodnZObj, we have toconstruct its family �rst, at each call of MyZmodnZ.Also note that we may enter known information about the ring. Here we store that it contains the wholefamily of elements; this is useful for example when we want to check the membership of an element in thering, which can be decided from the type of the element if the ring contains its whole elements family. Givinga name to the ring causes that it will be printed via printing the name. (By the way: This name (Integersmod n) looks like a call to \mod with the arguments Integers and n; a construction of the ring via this callseems to be more natural than by calling MyZmodnZ; later we shall install a \mod method in order to admitthis construction.)Now we can read the above code into GAP, and the following works already.gap> R:= MyZmodnZ( 4 );(Integers mod 4)gap> IsRing( R );truegap> gens:= GeneratorsOfRingWithOne( R );[ <object> ]But of course this means just to ask for the information we have explicitly stored in the ring. Already thequestions whether the ring is �nite and how many elements it has, cannot be answered by GAP. Clearly weknow the answers, and we could store them in the ring, by setting the value of the property IsFinite totrue and the value of the attribute Size to n (the argument of the call to MyZmodnZ). If we do not want todo so then GAP could only try to �nd out the number of elements of the ring via forming the closure of thegenerators under addition and multiplication, but up to now, GAP does not know how to add or multiplytwo elements of our ring.So we must install some methods for arithmetic and other operations if the elements are to behave as wewant.We start with a method for showing elements nicely on the screen. There are di�erent operations for thispurpose. One of them is PrintObj, which is called for each argument in an explicit call to Print. Anotherone is ViewObj, which is called in the read-eval-print loop for each object. ViewObj shall produce shortand human readable information about the object in question, whereas PrintObj shall produce informationthat may be longer and is (if reasonable) readable by GAP. We cannot satisfy the latter requirement fora PrintObj method because there is no way to make a family GAP readable. So we decide to display theexpression ( k mod n ) for an object that is given by the residue k and the modulus n, which would be�ne as a ViewObj method. Since the default for ViewObj is to call PrintObj, and since no other ViewObjmethod is applicable to our elements, we need only a PrintObj method.



Section 3. A Second Attempt to Implement Elements of Residue Class Rings 49gap> InstallMethod( PrintObj,> "for element in Z/nZ (ModulusRep)",> [ IsMyZmodnZObj and IsMyModulusRep ],> function( x )> Print( "( ", x![1], " mod ", FamilyObj(x)!.modulus, " )" );> end );So we installed a method for the operation PrintObj (�rst argument), and we gave it a suitable informa-tion message (second argument), see 7.2.1 and 7.3 for applications of this information string. The thirdargument tells GAP that the method is applicable for objects that lie in the category IsMyZmodnZObj andin the representation IsMyModulusRep. and the fourth argument is the method itself. More details aboutInstallMethod can be found in 2.2.Note that the requirement IsMyModulusRep for the argument x allows us to access the residue as x![1].Since the family of x has the component modulus bound if it is constructed by MyZmodnZ, we may accessthis component. We check whether the method installation has some e�ect.gap> gens;[ ( 1 mod 4 ) ]Next we install methods for the comparison operations. Note that we can assume that the residues in therepresentation chosen are normalized.gap> InstallMethod( \=,> "for two elements in Z/nZ (ModulusRep)",> IsIdenticalObj,> [ IsMyZmodnZObj and IsMyModulusRep, IsMyZmodnZObj and IsMyModulusRep ],> function( x, y ) return x![1] = y![1]; end );gap>gap> InstallMethod( \<,> "for two elements in Z/nZ (ModulusRep)",> IsIdenticalObj,> [ IsMyZmodnZObj and IsMyModulusRep, IsMyZmodnZObj and IsMyModulusRep ],> function( x, y ) return x![1] < y![1]; end );The third argument used in these installations speci�es the required relation between the families of thearguments (see 13.1 in the Reference Manual). This argument of a method installation, if present, is afunction that shall be applied to the families of the arguments. IsIdenticalObj means that the methodsare applicable only if both arguments lie in the same family. (In installations for unary methods, obviouslyno relation is required, so this argument is left out there.)Up to now, we see no advantage of the new approach over the one in Section 5.1. For a residue classrepresented as [ k, n ], the way it is printed on the screen is su�cient, and equality and comparison oflists are good enough to de�ne equality and comparison of residue classes if needed. But this is not the casein other situations. For example, if we would have decided that the residue k need not be normalized thenwe would have needed functions in Section 5.1 that compute whether two residue classes are equal, andwhich of two residue classes is regarded as larger than another. Note that we are free to de�ne what \larger"means for objects that are newly introduced.Next we install methods for the arithmetic operations, �rst for the additive structure.



50 Chapter 5. An Example { Residue Class Ringsgap> InstallMethod( \+,> "for two elements in Z/nZ (ModulusRep)",> IsIdenticalObj,> [ IsMyZmodnZObj and IsMyModulusRep, IsMyZmodnZObj and IsMyModulusRep ],> function( x, y )> return MyZmodnZObj( FamilyObj( x ), x![1] + y![1] );> end );gap>gap> InstallMethod( ZeroOp,> "for element in Z/nZ (ModulusRep)",> [ IsMyZmodnZObj ],> x -> MyZmodnZObj( FamilyObj( x ), 0 ) );gap>gap> InstallMethod( AdditiveInverseOp,> "for element in Z/nZ (ModulusRep)",> [ IsMyZmodnZObj and IsMyModulusRep ],> x -> MyZmodnZObj( FamilyObj( x ), AdditiveInverse( x![1] ) ) );Here the new approach starts to pay o�. The method for the operation \+ allows us to use the in�x operator+ for residue classes. The method for ZeroOp is used when we call this operation or the attribute Zeroexplicitly, and ZeroOp it is also used when we ask for 0 * rescl , where rescl is a residue class.(Note that Zero and ZeroOp are distinguished because 0 * obj is guaranteed to return a mutable resultwhenever a mutable version of this result exists in GAP {for example if obj is a matrix{ whereas Zero is anattribute and therefore returns immutable results; for our example there is no di�erence since the residueclasses are always immutable, nevertheless we have to install the method for ZeroOp. The same holds forAdditiveInverse, One, and Inverse.)Similarly, AdditiveInverseOp can be either called directly or via the unary - operator; so we can computethe additive inverse of the residue class rescl as -rescl .It is not necessary to install methods for subtraction, since this is handled via addition of the additive inverseof the second argument if no other method is installed.Let us try what we can do with the methods that are available now.gap> x:= gens[1]; y:= x + x;( 1 mod 4 )( 2 mod 4 )gap> 0 * x; -x;( 0 mod 4 )( 3 mod 4 )gap> y = -y; x = y; x < y; -x < y;truefalsetruefalseWe might want to admit the addition of integers and elements in rings Z=nZ, where an integer is implicitlyidenti�ed with its residue modulo n. To achieve this, we install methods to add an integer to an object inIsMyZmodnZObj from the left and from the right.



Section 3. A Second Attempt to Implement Elements of Residue Class Rings 51gap> InstallMethod( \+,> "for element in Z/nZ (ModulusRep) and integer",> [ IsMyZmodnZObj and IsMyModulusRep, IsInt ],> function( x, y )> return MyZmodnZObj( FamilyObj( x ), x![1] + y );> end );gap>gap> InstallMethod( \+,> "for integer and element in Z/nZ (ModulusRep)",> [ IsInt, IsMyZmodnZObj and IsMyModulusRep ],> function( x, y )> return MyZmodnZObj( FamilyObj( y ), x + y![1] );> end );Now we can do also the following.gap> 2 + x; 7 - x; y - 2;( 3 mod 4 )( 2 mod 4 )( 0 mod 4 )Similarly we install the methods dealing with the multiplicative structure. We need methods to multiply twoof our objects, and to compute identity and inverse. The operation OneOp is called when we ask for rescl^0,and InverseOp is called when we ask for rescl^-1. Note that the method for InverseOp returns fail if theargument is not invertible.gap> InstallMethod( \*,> "for two elements in Z/nZ (ModulusRep)",> IsIdenticalObj,> [ IsMyZmodnZObj and IsMyModulusRep, IsMyZmodnZObj and IsMyModulusRep ],> function( x, y )> return MyZmodnZObj( FamilyObj( x ), x![1] * y![1] );> end );gap>gap> InstallMethod( OneOp,> "for element in Z/nZ (ModulusRep)",> [ IsMyZmodnZObj ],> elm -> MyZmodnZObj( FamilyObj( elm ), 1 ) );gap>gap> InstallMethod( InverseOp,> "for element in Z/nZ (ModulusRep)",> [ IsMyZmodnZObj and IsMyModulusRep ],> function( elm )> local residue;> residue:= QuotientMod( 1, elm![1], FamilyObj( elm )!.modulus );> if residue <> fail then> residue:= MyZmodnZObj( FamilyObj( elm ), residue );> fi;> return residue;> end );To be able to multiply our objects with integers, we need not (but we may, and we should if we are goingfor e�ciency) install special methods. This is because in general, GAP interprets the multiplication of an



52 Chapter 5. An Example { Residue Class Ringsinteger and an additive object as abbreviation of successive additions, and there is one generic method forsuch a multiplication that uses only additions and |in the case of a negative integer| taking the additiveinverse. Analogously, there is a generic method for powering by integers that uses only multiplications andtaking the multiplicative inverse.Note that we could also interpret the multiplication with an integer as a shorthand for the multiplicationwith the corresponding residue class. We are lucky that this interpretation is compatible with the one thatis already available. If this would not be the case then of course we would get into trouble by installing aconcurrent multiplication that computes something di�erent from the multiplication that is already de�ned,since GAP does not guarantee which of the applicable methods is actually chosen (see 2.3).Now we have implemented methods for the arithmetic operations for our elements, and the following calcu-lations work.gap> y:= 2 * x; z:= (-5) * x;( 2 mod 4 )( 3 mod 4 )gap> y * z; y * y;( 2 mod 4 )( 0 mod 4 )gap> y^-1; y^0;fail( 1 mod 4 )gap> z^-1;( 3 mod 4 )There are some other operations in GAP that we may want to accept our elements as arguments. An exampleis the operation Int that returns, e.g., the integral part of a rational number or the integer corresponding toan element in a �nite prime �eld. For our objects, we may de�ne that Int returns the normalized residue.Note that we de�ne this behaviour for elements but we implement it for objects in the representationIsMyModulusRep. This means that if someone implements another representation of residue classes then thisperson must be careful to implement Int methods for objects in this new representation compatibly withour de�nition, i.e., such that the result is independent of the representation.gap> InstallMethod( Int,> "for element in Z/nZ (ModulusRep)",> [ IsMyZmodnZObj and IsMyModulusRep ],> z -> z![1] );Another example of an operation for which we might want to install a method is \mod. We make the ringprint itself as Integers mod the modulus, and then it is reasonable to allow a construction this way, whichmakes the PrintObj output of the ring GAP readable.gap> InstallMethod( PrintObj,> "for full collection Z/nZ",> [ CategoryCollections( IsMyZmodnZObj ) and IsWholeFamily ],> function( R )> Print( "(Integers mod ",> ElementsFamily( FamilyObj(R) )!.modulus, ")" );> end );gap>gap> InstallMethod( \mod,> "for `Integers', and a positive integer",> [ IsIntegers, IsPosRat and IsInt ],> function( Integers, n ) return MyZmodnZ( n ); end );Let us try this.



Section 3. A Second Attempt to Implement Elements of Residue Class Rings 53gap> Int( y );2gap> Integers mod 1789;(Integers mod 1789)Probably it is not necessary to emphasize that with the approach of Section 5.1, installing methods forexisting operations is usually not possible or at least not recommended. For example, installing the functionresclass sum de�ned in Section 5.1 as a \+ method for adding two lists of length two (with integer entries)would not be compatible with the general de�nition of the addition of two lists of same length. Installinga method for the operation Int that takes a list [ k, n ] and returns k would in principle be possible,since there is no Int method for lists yet, but it is not sensible to do so because one can think of otherinterpretations of such a list where di�erent Int methods could be installed with the same right.As mentioned in Section 5.2, one advantage of the new approach is that with the implementation we haveup to now, automatically also matrices of residue classes can be treated.gap> r:= Integers mod 16;(Integers mod 16)gap> x:= One( r );( 1 mod 16 )gap> mat:= IdentityMat( 2 ) * x;[ [ ( 1 mod 16 ), ( 0 mod 16 ) ], [ ( 0 mod 16 ), ( 1 mod 16 ) ] ]gap> mat[1][2]:= x;;gap> mat;[ [ ( 1 mod 16 ), ( 1 mod 16 ) ], [ ( 0 mod 16 ), ( 1 mod 16 ) ] ]gap> Order( mat );16gap> mat + mat;[ [ ( 2 mod 16 ), ( 2 mod 16 ) ], [ ( 0 mod 16 ), ( 2 mod 16 ) ] ]gap> last^4;[ [ ( 0 mod 16 ), ( 0 mod 16 ) ], [ ( 0 mod 16 ), ( 0 mod 16 ) ] ]Such matrices, if they are invertible, are valid as group elements. One technical problem is that the defaultalgorithm for inverting matrices may give up since Gaussian elimination need not be successful over ringscontaining zero divisors. Therefore we install a simpleminded inversion method that inverts an integer matrix.gap> InstallMethod( InverseOp,> "for an ordinary matrix over a ring Z/nZ",> [ IsMatrix and IsOrdinaryMatrix> and CategoryCollections( CategoryCollections( IsMyZmodnZObj ) ) ],> function( mat )> local one, modulus;>> one:= One( mat[1][1] );> modulus:= FamilyObj( one )!.modulus;> mat:= InverseOp( List( mat, row -> List( row, Int ) ) );> if mat <> fail then> mat:= ( mat mod modulus ) * one;> fi;> if not IsMatrix( mat ) then> mat:= fail;> fi;> return mat;> end );



54 Chapter 5. An Example { Residue Class RingsAdditionally we install a method for �nding a domain that contains the matrix entries; this is used by someGAP library functions.gap> InstallMethod( DefaultFieldOfMatrixGroup,> "for a matrix group over a ring Z/nZ",> [ IsMatrixGroup and CategoryCollections( CategoryCollections(> CategoryCollections( IsMyZmodnZObj ) ) ) ],> G -> RingWithOneByGenerators( [ One( Representative( G )[1][1] ) ] ) );Now we can deal with matrix groups over residue class rings.gap> mat2:= IdentityMat( 2 ) * x;;gap> mat2[2][1]:= x;;gap> g:= Group( mat, mat2 );;gap> Size( g );3072gap> Factors( last );[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3 ]gap> syl3:= SylowSubgroup( g, 3 );;gap> gens:= GeneratorsOfGroup( syl3 );[ [ [ ( 1 mod 16 ), ( 7 mod 16 ) ], [ ( 11 mod 16 ), ( 14 mod 16 ) ] ] ]gap> Order( gens[1] );3It should be noted that this way more involved methods for matrix groups may not be available. For example,many questions about a �nite matrix group can be delegated to an isomorphic permutation group via a so-called \nice monomorphism"; this can be controlled by the �lter IsHandledByNiceMonomorphism (see 38.5.1in the GAP Reference Manual).By the way, also groups of (invertible) residue classes can be formed, but this may be of minor interest.gap> g:= Group( x );; Size( g );#I default `IsGeneratorsOfMagmaWithInverses' method returns `true' for[ ( 1 mod 16 ) ]1gap> g:= Group( 3*x );; Size( g );#I default `IsGeneratorsOfMagmaWithInverses' method returns `true' for[ ( 3 mod 16 ) ]4(The messages above tell that GAP does not know a method for deciding whether the given elements arevalid group elements. We could add an appropriate IsGeneratorsOfMagmaWithInversesmethod if we wouldwant.)Having done enough for the elements, we may install some more methods for the rings if we want to usethem as arguments. These rings are �nite, and there are many generic methods that will work if they areable to compute the list of elements of the ring, so we install a method for this.gap> InstallMethod( Enumerator,> "for full collection Z/nZ",> [ CategoryCollections( IsMyZmodnZObj ) and IsWholeFamily ],> function( R )> local F;> F:= ElementsFamily( FamilyObj(R) );> return List( [ 0 .. Size( R ) - 1 ], x -> MyZmodnZObj( F, x ) );> end );



Section 3. A Second Attempt to Implement Elements of Residue Class Rings 55Note that this method is applicable only to full rings Z=nZ, for proper subrings it would return a wrongresult. Furthermore, it is not required that the argument is a ring; in fact this method is applicable also tothe additive group formed by all elements in the family, provided that it knows to contain the whole family.Analogously, we install methods to compute the size, a random element, and the units of full rings Z=nZ.gap> InstallMethod( Random,> "for full collection Z/nZ",> [ CategoryCollections( IsMyZmodnZObj ) and IsWholeFamily ],> R -> MyZmodnZObj( ElementsFamily( FamilyObj(R) ),> Random( [ 0 .. Size( R ) - 1 ] ) ) );gap>gap> InstallMethod( Size,> "for full ring Z/nZ",> [ CategoryCollections( IsMyZmodnZObj ) and IsWholeFamily ],> R -> ElementsFamily( FamilyObj(R) )!.modulus );gap>gap> InstallMethod( Units,> "for full ring Z/nZ",> [ CategoryCollections( IsMyZmodnZObj )> and IsWholeFamily and IsRing ],> function( R )> local F;> F:= ElementsFamily( FamilyObj( R ) );> return List( PrimeResidues( Size(R) ), x -> MyZmodnZObj( F, x ) );> end );The Units method has the disadvantage that the result is returned as a list (in fact this list is also strictlysorted). We could improve the implementation by returning the units as a group; if we do not want to takethe full list of elements as generators, we can use the function GeneratorsPrimeResidues (see 15.1.4 in theReference Manual).gap> InstallMethod( Units,> "for full ring Z/nZ",> [ CategoryCollections( IsMyZmodnZObj )> and IsWholeFamily and IsRing ],> function( R )> local G, gens;>> gens:= GeneratorsPrimeResidues( Size( R ) ).generators;> if not IsEmpty( gens ) and gens[ 1 ] = 1 then> gens:= gens{ [ 2 .. Length( gens ) ] };> fi;> gens:= Flat( gens ) * One( R );> return GroupByGenerators( gens, One( R ) );> end );Each ring Z=nZ is �nite, and we could install a method that returns true when IsFinite is called with
Z=nZ as argument. But we can do this more elegantly via installing a logical implication.gap> InstallTrueMethod( IsFinite,> CategoryCollections( IsMyZmodnZObj ) and IsDomain );In e�ect, every domain that consists of elements in IsMyZmodnZObj will automatically store that it is �nite,even if IsFinite is not called for it.



56 Chapter 5. An Example { Residue Class Rings5.4 Compatibility of Residue Class Rings with Prime FieldsThe above implementation of residue classes and residue class rings has at least two disadvantages. First, ifp is a prime then the ring Z=pZ is in fact a �eld, but the return values of MyZmodnZ are never regarded as�elds because they are not in the category IsMagmaWithInversesIfNonzero. Second, and this makes theexample really interesting, there are already elements of �nite prime �elds implemented in GAP, and wemay want to identify them with elements in Z=pZ.To be more precise, elements of �nite �elds in GAP lie in the category IsFFE, and there is already arepresentation, IsInternalRep, of these elements via discrete logarithms. The aim of this section is to makeIsMyModulusRep an alternative representation of elements in �nite prime �elds.Note that this is only one step towards the desired compatibility. Namely, after having a second representationof elements in �nite prime �elds, we may wish that the function GF (which is the usual function to create�nite �elds in GAP) is able to return MyZmodnZ( p ) when GF( p ) is called for a prime p. Moreover,then we have to decide about a default representation of elements in GF( p ) for primes p for which bothrepresentations are available. Of course we can force the new representation by explicitly calling MyZmodnZand MyZmodnZObj whenever we want, but it is not a priori clear in which situation which representation ispreferable.The same questions will occur when we want to implement a new representation for non-prime �elds. Thesteps of this implementation will be the same as described in this chapter, and we will have to achievecompatibility with both the internal representation of elements in small �nite �elds and the representationIsMyModulusRep of elements in arbitrary prime �elds.But let us now turn back to the task of this section. We �rst adjust the setup of the declaration part of theprevious section, and then repeat the installations with suitable modi�cations.(We should start a new GAP session for that, otherwise GAP will complain that the objects to be declaredare already bound; additionally, the methods installed above may be not compatible with the ones we want.)gap> DeclareCategory( "IsMyZmodnZObj", IsScalar );gap>gap> DeclareCategory( "IsMyZmodnZObjNonprime", IsMyZmodnZObj );gap>gap> DeclareSynonym( "IsMyZmodpZObj", IsMyZmodnZObj and IsFFE );gap>gap> DeclareRepresentation( "IsMyModulusRep", IsPositionalObjectRep, [ 1 ] );gap>gap> DeclareGlobalFunction( "MyZmodnZObj" );gap>gap> DeclareGlobalFunction( "MyZmodnZ" );As in the previous section, all (newly introduced) elements of rings Z=nZ lie in the category IsMyZmodnZObj.But now we introduce two subcategories, namely IsMyZmodnZObjNonprime for all elements in rings Z=nZwhere n is not a prime, and IsMyZmodpZObj for elements in �nite prime �elds. All objects in the latter areautomatically known to lie in the category IsFFE of �nite �eld elements.It would be reasonable if also those internally represented elements in the category IsFFE that do in factlie in a prime �eld would also lie in the category IsMyZmodnZObj (and thus in fact in IsMyZmodpZObj). Butthis cannot be achieved because internally represented �nite �eld elements do in general not store whetherthey lie in a prime �eld.As for the implementation part, again let us start with the de�nitions of MyZmodnZObj and MyZmodnZ.



Section 4. Compatibility of Residue Class Rings with Prime Fields 57gap> InstallGlobalFunction( MyZmodnZObj, function( Fam, residue )> if IsFFEFamily( Fam ) then> return Objectify( NewType( Fam, IsMyZmodpZObj> and IsMyModulusRep ),> [ residue mod Characteristic( Fam ) ] );> else> return Objectify( NewType( Fam, IsMyZmodnZObjNonprime> and IsMyModulusRep ),> [ residue mod Fam!.modulus ] );> fi;> end );gap> InstallGlobalFunction( MyZmodnZ, function( n )> local F, R;>> if not ( IsInt( n ) and IsPosRat( n ) ) then> Error( "<n> must be a positive integer" );> elif IsPrimeInt( n ) then> # Construct the family of element objects of our field.> F:= FFEFamily( n );> # Make the domain.> R:= FieldOverItselfByGenerators( [ MyZmodnZObj( F, 1 ) ] );> SetIsPrimeField( R, true );> else> # Construct the family of element objects of our ring.> F:= NewFamily( Concatenation( "MyZmod", String( n ), "Z" ),> IsMyZmodnZObjNonprime );> # Install the data.> F!.modulus:= n;> # Make the domain.> R:= RingWithOneByGenerators( [ MyZmodnZObj( F, 1 ) ] );> SetIsWholeFamily( R, true );> SetName( R, Concatenation( "(Integers mod ",String(n),")" ) );> fi;>> # Return the ring resp. field.> return R;> end );Note that the result of MyZmodnZ with a prime as argument is a �eld that does not contain the whole familyof its elements, since all �nite �eld elements of a �xed characteristic lie in the same family. Further note thatwe cannot expect a family of �nite �eld elements to have a component modulus, so we use Characteristicto get the modulus. Requiring that Fam!.modulus works also if Fam is a family of �nite �eld elements wouldviolate the rule that an extension of GAP should not force changes in existing code, in this case code dealingwith families of �nite �eld elements.gap> InstallMethod( PrintObj,> "for element in Z/nZ (ModulusRep)",> [ IsMyZmodnZObjNonprime and IsMyModulusRep ],> function( x )> Print( "( ", x![1], " mod ", FamilyObj(x)!.modulus, " )" );> end );



58 Chapter 5. An Example { Residue Class Ringsgap>gap> InstallMethod( PrintObj,> "for element in Z/pZ (ModulusRep)",> [ IsMyZmodpZObj and IsMyModulusRep ],> function( x )> Print( "( ", x![1], " mod ", Characteristic(x), " )" );> end );gap>gap> InstallMethod( \=,> "for two elements in Z/nZ (ModulusRep)",> IsIdenticalObj,> [ IsMyZmodnZObj and IsMyModulusRep,> IsMyZmodnZObj and IsMyModulusRep ],> function( x, y ) return x![1] = y![1]; end );The above method to check equality is independent of whether the arguments have a prime or nonprimemodulus, so we installed it for arguments in IsMyZmodnZObj. Now we install also methods to compare objectsin IsMyZmodpZObj with the \old" �nite �eld elements.gap> InstallMethod( \=,> "for element in Z/pZ (ModulusRep) and internal FFE",> IsIdenticalObj,> [ IsMyZmodpZObj and IsMyModulusRep, IsFFE and IsInternalRep ],> function( x, y )> return DegreeFFE( y ) = 1 and x![1] = IntFFE( y );> end );gap>gap> InstallMethod( \=,> "for internal FFE and element in Z/pZ (ModulusRep)",> IsIdenticalObj,> [ IsFFE and IsInternalRep, IsMyZmodpZObj and IsMyModulusRep ],> function( x, y )> return DegreeFFE( x ) = 1 and IntFFE( x ) = y![1];> end );The situation with the operation \< is more di�cult. Of course we are free to de�ne the comparison ofobjects in IsMyZmodnZObjNonprime, but for the �nite �eld elements, the comparison must be compatiblewith the prede�ned comparison of the \old" �nite �eld elements. The de�nition of the \< comparison ofinternally represented �nite �eld elements can be found in Chapter 57 in the Reference Manual. In situationswhere the documentation does not provide the required information, one has to look it up in the GAP code;for example, the comparison in our case can be found in the appropriate source code �le of the GAP kernel.gap> InstallMethod( \<,> "for two elements in Z/nZ (ModulusRep, nonprime)",> IsIdenticalObj,> [ IsMyZmodnZObjNonprime and IsMyModulusRep,> IsMyZmodnZObjNonprime and IsMyModulusRep ],> function( x, y ) return x![1] < y![1]; end );gap>gap> InstallMethod( \<,> "for two elements in Z/pZ (ModulusRep)",> IsIdenticalObj,> [ IsMyZmodpZObj and IsMyModulusRep,



Section 4. Compatibility of Residue Class Rings with Prime Fields 59> IsMyZmodpZObj and IsMyModulusRep ],> function( x, y )> local p, r; # characteristic and primitive root> if x![1] = 0 then> return y![1] <> 0;> elif y![1] = 0 then> return false;> else> p:= Characteristic( x );> r:= PrimitiveRootMod( p );> return LogMod( x![1], r, p ) < LogMod( y![1], r, p );> fi;> end );gap>gap> InstallMethod( \<,> "for element in Z/pZ (ModulusRep) and internal FFE",> IsIdenticalObj,> [ IsMyZmodpZObj and IsMyModulusRep, IsFFE and IsInternalRep ],> function( x, y )> return x![1] * One( y ) < y;> end );gap>gap> InstallMethod( \<,> "for internal FFE and element in Z/pZ (ModulusRep)",> IsIdenticalObj,> [ IsFFE and IsInternalRep, IsMyZmodpZObj and IsMyModulusRep ],> function( x, y )> return x < y![1] * One( x );> end );Now we install the same methods for the arithmetic operations \+, ZeroOp, AdditiveInverseOp, \-, \*,and OneOp as in the previous section, without listing them below. Also the same Int method is installedfor objects in IsMyZmodnZObj. Note that it is compatible with the de�nition of Int for �nite �eld elements.And of course the same method for \mod is installed.We have to be careful, however, with the methods for InverseOp, \/, and \^. These methods and the missingmethods for arithmetic operations with one argument in IsMyModulusRep and the other in IsInternalRepare given below.gap> InstallMethod( \+,> "for element in Z/pZ (ModulusRep) and internal FFE",> IsIdenticalObj,> [ IsMyZmodpZObj and IsMyModulusRep, IsFFE and IsInternalRep ],> function( x, y ) return x![1] + y; end );gap>gap> InstallMethod( \+,> "for internal FFE and element in Z/pZ (ModulusRep)",> IsIdenticalObj,> [ IsFFE and IsInternalRep, IsMyZmodpZObj and IsMyModulusRep ],> function( x, y ) return x + y![1]; end );gap>gap> InstallMethod( \*,> "for element in Z/pZ (ModulusRep) and internal FFE",



60 Chapter 5. An Example { Residue Class Rings> IsIdenticalObj,> [ IsMyZmodpZObj and IsMyModulusRep, IsFFE and IsInternalRep ],> function( x, y ) return x![1] * y; end );gap>gap> InstallMethod( \*,> "for internal FFE and element in Z/pZ (ModulusRep)",> IsIdenticalObj,> [ IsFFE and IsInternalRep, IsMyZmodpZObj and IsMyModulusRep ],> function( x, y ) return x * y![1]; end );gap>gap> InstallMethod( InverseOp,> "for element in Z/nZ (ModulusRep, nonprime)",> [ IsMyZmodnZObjNonprime and IsMyModulusRep ],> function( x )> local residue;> residue:= QuotientMod( 1, x![1], FamilyObj(x)!.modulus );> if residue <> fail then> residue:= MyZmodnZObj( FamilyObj(x), residue );> fi;> return residue;> end );gap>gap> InstallMethod( InverseOp,> "for element in Z/pZ (ModulusRep)",> [ IsMyZmodpZObj and IsMyModulusRep ],> function( x )> local residue;> residue:= QuotientMod( 1, x![1], Characteristic( FamilyObj(x) ) );> if residue <> fail then> residue:= MyZmodnZObj( FamilyObj(x), residue );> fi;> return residue;> end );The operation DegreeFFE is de�ned for �nite �eld elements, we need a method for objects in IsMyZmodpZObj.Note that we need not require IsMyModulusRep since no access to representation dependent data occurs.gap> InstallMethod( DegreeFFE,> "for element in Z/pZ",> [ IsMyZmodpZObj ],> z -> 1 );The methods for Enumerator, Random, Size, and Units, that we had installed in the previous section hadall assumed that their argument contains the whole family of its elements. So these methods make sense onlyfor the nonprime case. For the prime case, there are already methods for these operations with argument a�eld.gap> InstallMethod( Enumerator,> "for full ring Z/nZ",> [ CategoryCollections( IsMyZmodnZObjNonprime ) and IsWholeFamily ],> function( R )> local F;> F:= ElementsFamily( FamilyObj( R ) );



Section 5. Further Improvements in Implementing Residue Class Rings 61> return List( [ 0 .. Size( R ) - 1 ], x -> MyZmodnZObj( F, x ) );> end );gap>gap> InstallMethod( Random,> "for full ring Z/nZ",> [ CategoryCollections( IsMyZmodnZObjNonprime ) and IsWholeFamily ],> R -> MyZmodnZObj( ElementsFamily( FamilyObj( R ) ),> Random( [ 0 .. Size( R ) - 1 ] ) ) );gap>gap> InstallMethod( Size,> "for full ring Z/nZ",> [ CategoryCollections( IsMyZmodnZObjNonprime ) and IsWholeFamily ],> R -> ElementsFamily( FamilyObj( R ) )!.modulus );gap>gap> InstallMethod( Units,> "for full ring Z/nZ",> [ CategoryCollections( IsMyZmodnZObjNonprime )> and IsWholeFamily and IsRing ],> function( R )> local G, gens;>> gens:= GeneratorsPrimeResidues( Size( R ) ).generators;> if not IsEmpty( gens ) and gens[ 1 ] = 1 then> gens:= gens{ [ 2 .. Length( gens ) ] };> fi;> gens:= Flat( gens ) * One( R );> return GroupByGenerators( gens, One( R ) );> end );gap>gap> InstallTrueMethod( IsFinite,> CategoryCollections( IsMyZmodnZObjNonprime ) and IsDomain );5.5 Further Improvements in Implementing Residue Class RingsThere are of course many possibilities to improve the implementation.With the setup as described above, subsequent calls MyZmodnZ( n ) with the same n yield incompatiblerings in the sense that elements of one ring cannot be added to elements of an other one. The solution forthis problem is to keep a global list of all results of MyZmodnZ in the current GAP session, and to returnthe stored values whenever possible. Note that this approach would admit PrintObj methods that produceGAP readable output.One can improve the Units method for the full ring in such a way that a group is returned and not only alist of its elements; then the result of Units can be used, e. g., as input for the operation SylowSubgroup.To make computations more e�cient, one can install methods for \-, \/, and \^; one reason for doing so maybe that this avoids the unnecessary construction of the additive or multiplicative inverse, or of intermediatepowers.



62 Chapter 5. An Example { Residue Class RingsInstallMethod( \-, "two elements in Z/nZ (ModulusRep)", ... );InstallMethod( \-, "Z/nZ-obj. (ModulusRep) and integer", ... );InstallMethod( \-, "integer and Z/nZ-obj. (ModulusRep)", ... );InstallMethod( \-, "Z/pZ-obj. (ModulusRep) and internal FFE", ... );InstallMethod( \-, "internal FFE and Z/pZ-obj. (ModulusRep)", ... );InstallMethod( \*, "Z/nZ-obj. (ModulusRep) and integer", ... );InstallMethod( \*, "integer and Z/nZ-obj. (ModulusRep)", ... );InstallMethod( \/, "two Z/nZ-objs. (ModulusRep, nonprime)", ... );InstallMethod( \/, "two Z/pZ-objs. (ModulusRep)", ... );InstallMethod( \/, "Z/nZ-obj. (ModulusRep) and integer", ... );InstallMethod( \/, "integer and Z/nZ-obj. (ModulusRep)", ... );InstallMethod( \/, "Z/pZ-obj. (ModulusRep) and internal FFE", ... );InstallMethod( \/, "internal FFE and Z/pZ-obj. (ModulusRep)", ... );InstallMethod( \^, "Z/nZ-obj. (ModulusRep, nonprime) & int.", ... );InstallMethod( \^, "Z/pZ-obj. (ModulusRep), and integer", ... );The call to NewType in MyZmodnZObj can be avoided by storing the required type, e.g., in the family. Butnote that it is not admissible to take the type of an existing object as �rst argument of Objectify. Forexample, suppose two objects in IsMyZmodnZObj shall be added. Then we must not use the type of one ofthe arguments in a call of Objectify, because the argument may have knowledge that is not correct for theresult of the addition. One may think of the property IsOne that may hold for both arguments but certainlynot for their sum.For comparing two objects in IsMyZmodpZObj via \<", we had to install a quite expensive method becauseof the compatibility with the comparison of �nite �eld elements that did already exist. In fact GAP supports�nite �elds with elements represented via discrete logarithms only up to a given size. So in principle we havethe freedom to de�ne a cheaper comparison via \<" for objects in IsMyZmodpZObj if the modulus is largeenough. This is possible by introducing two categories IsMyZmodpZObjSmall and IsMyZmodpZObjLarge,which are subcategories of IsMyZmodpZObj, and to install di�erent \< methods for pairs of objects in thesecategories.



6
An Example {

Designing Arithmetic
Operations

In this chapter, we give a {hopefully typical{ example of extending GAP by new objects with prescribedarithmetic operations.6.1 New Arithmetic Operations vs. New ObjectsA usual procedure in mathematics is the de�nition of new operations for given objects; here are a few typicalexamples. The Lie bracket de�nes an interesting new multiplicative structure on a given (associative) algebra.Forming a group ring can be viewed as de�ning a new addition for the elements of the given group, andextending the multiplication to sums of group elements in a natural way. Forming the exterior algebra of agiven vector space can be viewed as de�ning a new multiplication for the vectors in a natural way.GAP does not support such a procedure. The main reason for this is that in GAP, the multiplication in agroup, a ring etc. is always written as *, and the addition in a vector space, a ring etc. is always writtenas +. Therefore it is not possible to de�ne the Lie bracket as a \second multiplication" for the elements of agiven algebra; in fact, the multiplication in Lie algebras in GAP is denoted by *. Analogously, constructingthe group ring as sketched above is impossible if an addition is already de�ned for the elements; note thedi�erence between the usual addition of matrices and the addition in the group ring of a matrix group! (SeeChapter 63 in the Reference Manual for an example.) Similarly, there is already a multiplication de�ned forrow vectors (yielding the standard scalar product), hence these vectors cannot be regarded as elements ofthe exterior algebra of the space.In situations such as the ones mentioned above, GAP's way to deal with the structures in question is thefollowing. Instead of de�ning new operations for the given objects, new objects are created to which thegiven arithmetic operations * and + are then made applicable.With this construction, matrix Lie algebras consist of matrices that are di�erent from the matrices withassociative multiplication; technically, the type of a matrix determines how it is multiplied with othermatrices (see 24.1.1 in the Reference Manual). A matrix with the Lie bracket as its multiplication can becreated with the function LieObject from a matrix with the usual associative multiplication.Group rings (more general: magma rings, see Chapter 63 in the Reference Manual) can be constructed withFreeMagmaRing from a coe�cient ring and a group. The elements of the group are not contained in such agroup ring, one has to use an embedding map for creating a group ring element that corresponds to a givengroup element.It should be noted that the GAP approach to the construction of Lie algebras from associative algebrasis generic in the sense that all objects in the �lter IsLieObject use the same methods for their addition,multiplication etc., by delegating to the \underlying" objects of the associative algebra, no matter whatthese objects actually are. Analogously, also the construction of group rings is generic.



64 Chapter 6. An Example { Designing Arithmetic Operations6.2 Designing new Multiplicative ObjectsThe goal of this section is to implement objects with a prescribed multiplication. Let us assume that we aregiven a �eld F , and that we want to de�ne a new multiplication * on F that is given by a �b = ab�a�b+2;here ab denotes the ordinary product in F .By the discussion in Section 6.1, we know that we cannot de�ne a new multiplication on F itself but haveto create new objects.We want to distinguish these new objects from all other GAP objects, in order to describe for example thesituation that two of our objects shall be multiplied. This distinction is made via the type of the objects.More precisely, we declare a new �lter, a function that will return true for our new objects, and false forall other GAP objects. This can be done by calling DeclareFilter (see 3.17.2), but since our objects willknow about the value already when they are constructed, the �lter can be created with DeclareCategory(see 3.17.2 and 3.1.1).DeclareCategory( "IsMyObject", IsObject );The idea is that the new multiplication will be installed only for objects that \lie in the category IsMyOb-ject".The next question is what internal data our new objects store, and how they are accessed. The easiestsolution is to store the \underlying" object from the �eld F . GAP provides two general possibilities how tostore this, namely record-like and list-like structures (for examples, see 3.9 and 3.10). We decide to store thedata in a list-like structure, at position 1. This representation is declared as follows.DeclareRepresentation( "IsMyObjectListRep", IsPositionalObjectRep, [ 1 ] );Of course we can argue that this declaration is super
uous because all objects in the category IsMyObjectwill be represented this way; it is possible to proceed like that, but often (in more complicated situations)it turns out to be useful that several representations are available for \the same element".For creating the type of our objects, we need to specify to which family (see 13.1 in the Reference Manual)the objects shall belong. For the moment, we need not say anything about relations to other GAP objects,thus the only requirement is that all new objects lie in the same family; therefore we create a new family.Also we are not interested in properties that some of our objects have and others do not have, thus we needonly one type, and store it in a global variable.MyType:= NewType( NewFamily( "MyFamily" ),IsMyObject and IsMyObjectListRep );The next step is to write a function that creates a new object. It may look as follows.MyObject:= val -> Objectify( MyType, [ Immutable( val ) ] );Note that we store an immutable copy of the argument in the returned object; without doing so, forexample if the argument would be a mutable matrix then the corresponding new object would be changedwhenever the matrix is changed (see 12.6 in the Reference Manual for more details about mutability).Having entered the above GAP code, we can create some of our objects.gap> a:= MyObject( 3 ); b:= MyObject( 5 );<object><object>gap> a![1]; b![1];35But clearly a lot is missing. Besides the fact that the desired multiplication is not yet installed, we see thatalso the way how the objects are printed is not satisfactory.



Section 2. Designing new Multiplicative Objects 65Let us improve the latter �rst. There are two GAP functions View and Print for showing objects on thescreen. View is thought to show a short and human readable form of the object, and Print is thought toshow a not necessarily short form that is GAP readable whenever this makes sense. We decide to show aas 3 by View, and to show the construction MyObject( 3 ) by Print; the methods are installed for theunderlying operations ViewObj and PrintObj.InstallMethod( ViewObj,"for object in `IsMyObject'",[ IsMyObject and IsMyObjectListRep ],function( obj )Print( "<", obj![1], ">" );end );InstallMethod( PrintObj,"for object in `IsMyObject'",[ IsMyObject and IsMyObjectListRep ],function( obj )Print( "MyObject( ", obj![1], " )" );end );This is the result of the above installations.gap> a; Print( a, "\n" );<3>MyObject( 3 )And now we try to install the multiplication.InstallMethod( \*,"for two objects in `IsMyObject'",[ IsMyObject and IsMyObjectListRep,IsMyObject and IsMyObjectListRep ],function( a, b )return MyObject( a![1] * b![1] - a![1] - b![1] + 2 );end );When we enter the above code, GAP runs into an error. This is due to the fact that the operation \* isdeclared for two arguments that lie in the category IsMultiplicativeElement. One could circumvent thecheck whether the method matches the declaration of the operation, by calling InstallOtherMethod in-stead of InstallMethod. But it would make sense if our objects would lie in IsMultiplicativeElement,for example because some generic methods for objects with multiplication would be available then, such aspowering by positive integers via repeated squaring. So we want that IsMyObject implies IsMultiplica-tiveElement. The easiest way to achieve such implications is to use the implied �lter as second argumentof the DeclareCategory call; but since we do not want to start anew, we can also install the implicationafterwards.InstallTrueMethod( IsMultiplicativeElement, IsMyObject );Afterwards, installing the multiplication works without problems. Note that MyType and therefore also aand b are not a�ected by this implication, so we construct them anew.



66 Chapter 6. An Example { Designing Arithmetic Operationsgap> MyType:= NewType( NewFamily( "MyFamily" ),> IsMyObject and IsMyObjectListRep );;gap> a:= MyObject( 3 );; b:= MyObject( 5 );;gap> a*b; a^27;<9><134217729>Powering the new objects by negative integers is not possible yet, because GAP does not know how tocompute the inverse of an element a, say, which is de�ned as the unique element a 0 such that both aa 0 anda 0a are \the unique multiplicative neutral element that belongs to a".And also this neutral element, if it exists, cannot be computed by GAP in our current situation. It does,however, make sense to ask for the multiplicative neutral element of a given magma, and for inverses ofelements in the magma.But before we can form domains of our objects, we must de�ne when two objects are regarded as equal;note that this is necessary in order to decide about the uniqueness of neutral and inverse elements. In oursituation, equality is de�ned in the obvious way. For being able to form sets of our objects, also an orderingvia \< is de�ned for them.InstallMethod( \=,"for two objects in `IsMyObject'",[ IsMyObject and IsMyObjectListRep,IsMyObject and IsMyObjectListRep ],function( a, b )return a![1] = b![1];end );InstallMethod( \<,"for two objects in `IsMyObject'",[ IsMyObject and IsMyObjectListRep,IsMyObject and IsMyObjectListRep ],function( a, b )return a![1] < b![1];end );Let us look at an example. We start with �nite �eld elements because then the domains are �nite, hencethe generic methods for such domains will have a chance to succeed.gap> a:= MyObject( Z(7) );<Z(7)>gap> m:= Magma( a );<magma with 1 generators>gap> e:= MultiplicativeNeutralElement( m );<Z(7)^2>gap> elms:= AsList( m );[ <Z(7)>, <Z(7)^2>, <Z(7)^5> ]gap> ForAll( elms, x -> ForAny( elms, y -> x*y = e and y*x = e ) );truegap> List( elms, x -> First( elms, y -> x*y = e and y*x = e ) );[ <Z(7)^5>, <Z(7)^2>, <Z(7)> ]So a multiplicative neutral element exists, in fact all elements in the magma m are invertible. But what aboutthe following.



Section 2. Designing new Multiplicative Objects 67gap> b:= MyObject( Z(7)^0 ); m:= Magma( a, b );<Z(7)^0><magma with 2 generators>gap> elms:= AsList( m );[ <Z(7)^0>, <Z(7)>, <Z(7)^2>, <Z(7)^5> ]gap> e:= MultiplicativeNeutralElement( m );<Z(7)^2>gap> ForAll( elms, x -> ForAny( elms, y -> x*y = e and y*x = e ) );falsegap> List( elms, x -> b * x );[ <Z(7)^0>, <Z(7)^0>, <Z(7)^0>, <Z(7)^0> ]Here we found a multiplicative neutral element, but the element b does not have an inverse. If an additionwould be de�ned for our elements then we would say that b behaves like a zero element.When we started to implement the new objects, we said that we wanted to de�ne the new multiplicationfor elements of a given �eld F . In principle, the current implementation would admit also something likeMyObject( 2 ) * MyObject( Z(7) ). But if we decide that our initial assumption holds, we may de�nethe identity and the inverse of the object <a> as <2*e> and <a/(a-e)>, respectively, where e is the identityelement in F and / denotes the division in F ; note that the element <e> is not invertible, and that theabove de�nitions are determined by the multiplication de�ned for our objects. Further note that after theinstallations shown below, also One( MyObject( 1 ) ) is de�ned.(For technical reasons, we do not install the intended methods for the attributes One and Inverse but for theoperations OneOp and InverseOp. This is because for certain kinds of objects {mainly matrices{ one wantsto support a method to compute a mutable identity or inverse, and the attribute needs only a method thattakes this object, makes it immutable, and then returns this object. As stated above, we only want to dealwith immutable objects, so this distinction is not really interesting for us.)A more interesting point to note is that we should mark our objects as likely to be invertible, since we addthe possibility to invert them. Again, this could have been part of the declaration of IsMyObject, but wemay also formulate an implication for the existing category.InstallTrueMethod( IsMultiplicativeElementWithInverse, IsMyObject );InstallMethod( OneOp,"for an object in `IsMyObject'",[ IsMyObject and IsMyObjectListRep ],a -> MyObject( 2 * One( a![1] ) ) );InstallMethod( InverseOp,"for an object in `IsMyObject'",[ IsMyObject and IsMyObjectListRep ],a -> MyObject( a![1] / ( a![1] - One( a![1] ) ) ) );Now we can form groups of our (nonzero) elements.gap> MyType:= NewType( NewFamily( "MyFamily" ),> IsMyObject and IsMyObjectListRep );;gap>gap> a:= MyObject( Z(7) );<Z(7)>gap> b:= MyObject( 0*Z(7) ); g:= Group( a, b );<0*Z(7)><group with 2 generators>gap> Size( g );



68 Chapter 6. An Example { Designing Arithmetic Operations6We are completely free to de�ne an addition for our elements, a natural one is given by <a> + <b> =<a+b-1>. As we did for the multiplication, we �rst change IsMyObject such that the additive structure isalso known.InstallTrueMethod( IsAdditiveElementWithInverse, IsMyObject );Next we install the methods for the addition, and those to compute the additive neutral element and theadditive inverse.InstallMethod( \+,"for two objects in `IsMyObject'",[ IsMyObject and IsMyObjectListRep,IsMyObject and IsMyObjectListRep ],function( a, b )return MyObject( a![1] + b![1] - 1 );end );InstallMethod( ZeroOp,"for an object in `IsMyObject'",[ IsMyObject and IsMyObjectListRep ],a -> MyObject( One( a![1] ) ) );InstallMethod( AdditiveInverseOp,"for an object in `IsMyObject'",[ IsMyObject and IsMyObjectListRep ],a -> MyObject( a![1] / ( a![1] - One( a![1] ) ) ) );Let us try whether the addition works.gap> MyType:= NewType( NewFamily( "MyFamily" ),> IsMyObject and IsMyObjectListRep );;gap> a:= MyObject( Z(7) );; b:= MyObject( 0*Z(7) );;gap> m:= AdditiveMagma( a, b );<additive magma with 2 generators>gap> Size( m );7Similar as installing a multiplication automatically makes powering by integers available, multiplication withintegers becomes available with the addition.gap> 2 * a;<Z(7)^5>gap> a+a;<Z(7)^5>gap> MyObject( 2*Z(7)^0 ) * a;<Z(7)>In particular we see that this multiplication does not coincide with the multiplication of two of our objects,that is, an integer cannot be used as a shorthand for one of the new objects in a multiplication.(It should be possible to create a �eld with the new multiplication and addition. Currently this fails, dueto missing methods for computing several kinds of generators from �eld generators, for computing thecharacteristic in the case that the family does not know this in advance, for checking with AsField whethera domain is in fact a �eld, for computing the closure as a �eld.)



Section 2. Designing new Multiplicative Objects 69It should be emphasized that the mechanism described above may be not suitable for the situation that onewants to consider many di�erent multiplications \on the same set of objects", since the installation of a newmultiplication requires the declaration of at least one new �lter and the installation of several methods. Butthe design of GAP is not suitable for such dynamic method installations.Turning this argument the other way round, the implementation of the new arithmetics de�ned by the abovemultiplication and addition is available for any �eld F , one need not repeat it for each �eld one is interestedin.Similar to the above situation, the construction of a magma ring RM from a coe�cient ring R and a magmaM is implemented only once, since the de�nition of the arithmetic operations depends only on the givenmultiplication of M and not on M itself. So the addition is not implemented for the elements in M or {moreprecisely{ for an isomorphic copy. In some sense, the addition is installed \for the multiplication", and asmentioned in Section 6.1, there is only one multiplication \* in GAP.
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