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 (1987{2004) by the GAP Group,incorporating the Copyright c
 1999, 2000 by School of Mathematical and Computational Sciences, Univer-sity of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotlandbeing the Copyright c
 1992 by Lehrstuhl D f�ur Mathematik, RWTH, 52056 Aachen, Germany, transferredto St Andrews on July 21st, 1997.except for �les in the distribution, which have an explicit di�erent copyright statement. In particular, thecopyright of packages distributed with GAP is usually with the package authors or their institutions.GAP is free software; you can redistribute it and/or modify it under the terms of the GNU General PublicLicense as published by the Free Software Foundation; either version 2 of the License, or (at your option)any later version. For details, see the �le GPL in the etc directory of the GAP distribution or seehttp://www.gnu.org/licenses/gpl.htmlIf you obtain GAP please send us a short notice to that e�ect, e.g., an e-mail message to the addresssupport@gap-system.org, containing your full name and address. This allows us to keep track of thenumber of GAP users.If you publish a mathematical result that was partly obtained using GAP, please cite GAP, just as you wouldcite another paper that you used (see below for sample citation). Also we would appreciate if you couldinform us about such a paper.Speci�cally, please refer to[GAP] The GAP Group, GAP --- Groups, Algorithms, and Programming,Version 4.4.2; 2004(http://www.gap-system.org)GAP is distributed by us without any warranty, to the extent permitted by applicable state law. We distributeGAP as is without warranty of any kind, either expressed or implied, including, but not limited to, the impliedwarranties of merchantability and �tness for a particular purpose.The entire risk as to the quality and performance of the program is with you. Should GAP prove defective,you assume the cost of all necessary servicing, repair or correction.In no case unless required by applicable law will we, and/or any other party who may modify and redistributeGAP as permitted above, be liable to you for damages, including lost pro�ts, lost monies or other special,incidental or consequential damages arising out of the use or inability to use GAP.You are permitted to modify and redistribute GAP, but you are not allowed to restrict further redistribution.That is to say proprietary modi�cations will not be allowed. We want all versions of GAP to remain free.If you modify any part of GAP and redistribute it, you must supply a README document. This shouldspecify what modi�cations you made in which �les. We do not want to take credit or be blamed for yourmodi�cations.Of course we are interested in all of your modi�cations. In particular we would like to see bug-�xes, improve-ments and new functions. So again we would appreciate it if you would inform us about all modi�cationsyou make.



1 Preface
Welcome to GAP. This preface serves not only to introduce this manual, \the GAP Tutorial", but also asan introduction to the system as a whole, and in particular to changes between the current and previousversions.GAP stands for Groups, Algorithms and Programming. The name was chosen to re
ect the aim of thesystem, which is introduced in this tutorial manual. Since that choice, the system has become somewhatbroader, and you will also �nd information about algorithms and programming for other algebraic structures,such as semigroups and algebras.There are four further manuals in addition to this one: the \Reference Manual" containing detailed docu-mentation of the mathematical functionality of GAP; \Extending GAP" containing some tutorial materialon various aspects of GAP programming; \Programming in GAP 4" containing detailed documentation ofvarious aspects of the system of interest mainly to programmers; and \New Features for Developers" con-taining details of some newly introduced features which we may wish to change in a future release and so donot want to include in the main reference manual. Some of the functionality of the system and a number ofcontributed extensions are provided as \GAP packages" and each of these has its own manual. This preface,however, serves as an introduction to the whole system.Subsequent sections of this preface explain the structure of the system and the arrangements for the attri-bution of credit for authorship and maintenance of the system; acknowledge those who have made particularcontributions to this and previous releases and outline the changes from earlier versions.1.1 The GAP SystemGAP is a free, open and extensible software package for computation in discrete abstract algebra. Theterms \free" and \open" describe the conditions under which the system is distributed { in brief, it is freeof charge (except possibly for the immediate costs of delivering it to you), you are free to pass it onwithin certain limits, and all of the workings of the system are open for you to examine and change.Details of these conditions can be found in the Copyright Notice of the previous page.The system is \extensible" in that you can write your own programs in the GAP language, and use them injust the same way as the programs which form part of the system (the \library"). Indeed, we actively supportthe contribution, refereeing and distribution of extensions to the system, in the form of \GAP packages".Further details of this can be found in chapter 74 in the Reference Manual, and on our World Wide Website.Development of GAP began at Lehrstuhl D f�ur Mathematik, RWTH-Aachen, under the leadership of JoachimNeub�user in 1985. Version 2.4 was released in 1988 and version 3.1 in 1992. In 1997 coordination of GAPdevelopment, now very much an international e�ort, was transferred to St Andrews. A complete internalredesign and almost complete rewrite of the system was completed over the following years and version 4.1was released in July 1999.A sign of the further internationalization of the project is this release, 4.4, which has been coordinated fromColorado State University, Fort Collins.More information on the motivation and development of GAP to date, can be found on our Web pages in asection entitled \Release history and Prefaces".



Section 1. The GAP System 11For those readers who have used an earlier version of GAP, an overview of the changes from GAP 4.3, anda brief summary of changes from earlier versions is given in section 1.4 below.The system that you are getting now consists of a \core system" and a number of packages. The core systemconsists of four main parts.1. A kernel, written in C, which provides the user with{ automatic dynamic storage management, which the user needn't bother about in his programming;{ a set of time-critical basic functions, e.g. \arithmetic", operations for integers, �nite �elds, permu-tations and words, as well as natural operations for lists and records;{ an interpreter for the GAP language, an untyped imperative programming language with functionsas �rst class objects and some extra built-in data types such as permutations and �nite �eldelements. The language supports a form of object-oriented programming, similar to that supportedby languages like C++ and Java but with some important di�erences.{ a small set of system functions allowing the GAP programmer to handle �les and execute externalprograms in a uniform way, regardless of the particular operating system in use.{ a set of programming tools for testing, debugging, and timing algorithms.{ a \read-eval-view" style user interface.2. A much larger library of GAP functions that implement algebraic and other algorithms. Since thisis written entirely in the GAP language, the GAP language is both the main implementation languageand the user language of the system. Therefore the user can as easily as the original programmersinvestigate and vary algorithms of the library and add new ones to it, �rst for own use and eventuallyfor the bene�t of all GAP users.3. A library of group theoretical data which contains various libraries of groups, including the libraryof small groups (containing all groups of order at most 2000, except those of order 1024) and others.Large libraries of ordinary and Brauer character tables and Tables of Marks are included as packages.4. The documentation. This is available as on-line help, as printable �les in various formats and asHTML for viewing with a Web browser.Also included with the core system are some test �les and a few small utilities which we hope you will �nduseful.GAP packages are self-contained extensions to the core system. A package contains GAP code and its owndocumentation and may also contain data �les or external programs to which the GAP code provides aninterface. These packages may be loaded into GAP using the LoadPackage command, and both the packageand its documentation are then available just as if they were parts of the core system. Some packages maybe loaded automatically, when GAP is started, if they are present. Some packages, because they dependon external programs, may only be available on the operating systems where those programs are available(usually UNIX). You should note that, while the packages included with this release are the most recentversions ready for release at this time, new packages and new versions may be released at any time and canbe easily installed in your copy of GAP.With GAP there are two packages (the library of ordinary and Brauer character tables, and the library oftables of marks) which contain functionality developed from parts of the GAP core system. These have beenmoved into packages for ease of maintenance and to allow new versions to be released independently of newreleases of the core system. (For technical reasons the library of tables of marks is still distributed in themain system archive.) The library of small groups should also be regarded as a package, although it doesnot currently use the standard package mechanism. Other packages contain functionality which has neverbeen part of the core system.



12 Chapter 1. Preface1.2 Authorship and MaintenancePrevious versions of GAP have simply included the increasingly long list of all of the authors of the systemwith no indication as to who contributed what. With GAP 4.3 we have introduced a new concept: modules,to allow us to report the authorship of the system in more detail. A module is a part of GAP which providesidenti�able functionality and has reasonably clean interfaces with the rest of the system (usually it consistsof separate �les). Each module has its own lists of authors and maintainers, which are not necessarily thesame. A preliminary list of modules and their attributions appears in this manual. Note that we are still inthe process of identifying modules within the system, so large parts of the system do not yet fall into anymodule. Since also we all collaborate closely in designing, developing and debugging the system, it shouldnot be assumed that the list of modules in this manual represents all of everyone's contribution, or that itlists everyone who made any contribution at all to each module.All GAP packages are also considered to be modules and have their own authors and maintainers. It shouldhowever be noted that some packages provide interfaces between GAP and an external program, a copy ofwhich is included for convenience, and that, in these cases, we do not claim that the module authors ormaintainers wrote, or maintain, this external program. Similarly, some modules and packages include largedata libraries that may have been computed by many people. We try to make clear in each case what creditis attributable to whom.We have, for some time, operated a refereeing system for contributed packages, both to ensure the qualityof the software we distribute, and to provide recognition for the authors. We now consider this to be arefereeing system for modules, and we would note, in particular that, although it does not use the standardpackage interface, the library of small groups has been refereed and accepted on exactly the same basis asthe accepted packages.We also include with this distribution a number of packages which have not (yet) gone through our refereeingprocess. Some may be accepted in the future, in other cases the authors have chosen not to submit them.More information can be found on our World Wide Web site, see section 1.5.1.3 AcknowledgementsVery many people have worked on, and contributed to, GAP over the years since its inception. On our Website you will �nd the prefaces to the previous releases, each of which acknowledges people who have madespecial contributions to that release. Even so, it is appropriate to mention here Joachim Neub�user whosevision of a free, open and extensible system for computational algebra inspired GAP in the �rst place, andMartin Sch�onert, who was the technical architect of GAP 3 and GAP 4.In the past years GAP development has become a more and more widely distributed operation, and increas-ingly dependent on hard voluntary work by developers not solely or mainly employed to work on GAP.Nevertheless, the development process has remained constructive and friendly, even when wrangling overdi�cult technical decisions, or sensitive questions of attribution and credit and I must express our hugegratitude to everyone involved for this.The list of modules which appears in this manual now gives a partial idea of the contributions of di�erentpeople, but we would like to mention some people who have made important contributions to the developmentprocess over the last years that do not show up there:Steve Linton has been leading the GAP group in St Andrews over the last years and continues to be themain kernel maintainer and developer. The group in St Andrews also maintains most of the developmentinfrastructure and helps with user support.Thomas Breuer continues to develop many areas of the system, and to play a vital role in clarifying ourunderlying concepts, despite now working in industry.Frank L�ubeck set up a new system for automatic handling of packages and helped with various kernel issues.



Section 4. Changes from Earlier Versions 13Bettina Eick and her research group in Braunschweig have contributed much functionality, mainly in theform of packages.Max Neunh�o�er has brought much fresh insight to bear on the design of crucial parts of the system, and alsodone a lot of the ensuing work; Stefan Kohl and Volkmar Felsch have both brought enormous persistence topointing out errors and inconsistencies in code and documentation, improving error messages and generallypolishing the system; and very many others have contributed ideas, insight and hard work to produce thisrelease. Senior colleagues, especially Joachim Neub�user, Edmund Robertson, and Charley Wright, continueto provide encouragement support and constructive criticism.1.4 Changes from Earlier VersionsThe main changes between GAP 4.3 and GAP 4.4 are:Potentially Incompatible Changes{ The mechanism for the loading of Packages has changed to allow easier updates independent of mainGAP releases. Packages require a �le PackageInfo.g now. The new PackageInfo.g �les are availablefor all Packages with the new version of GAP.{ IsSimple returns false now for the trivial group.{ PrimeBlocks: The output format has changed.{ Division Rings: These are implemented as IsRingWithOne now.{ DirectSumOfAlgebras: p-th power maps are compatible with the input now.{ The print order for polynomials has been changed.These changes are, in some respects, departures from our policy of maintaining upward compatibility ofdocumented functions between releases. In the �rst case, we felt that the old behavior was su�cientlyinconsistent, illogical, and impossible to document that we had no alternative but to change it. In thecase of the package interface, the change was necessary to introduce new functionality. The planned andphased removal of a few unnecessary functions or synonyms is needed to avoid becoming buried in \legacy"interfaces, but we remain committed to our policy of maintaining upward compatibility whenever sensiblypossible.{ Groebner Bases:Buchberger's algorithm to compute Groebner Bases has been implemented in GAP. (A. Hulpke){ For large scale Groebner Basis computations there also is an interface to the Singular system availablein the Singular Package. (M. Costantini and W. de Graaf){ New methods for factorizing polynomials over algebraic extensions of the rationals have been imple-mented in GAP. (A. Hulpke){ For more functionality to compute with algebraic number �elds there is an interface to the Kant systemavailable in the Alnuth Package. (B. Assmann and B. Eick){ A new functionality to compute the minimal normal subgroups of a �nite group, as well as its socle,has been installed. (B. H�o
ing){ A fast method for recognizing whether a permutation group is symmetric or alternating is availablenow (A. Seress){ A method for computing the Galois group of a rational polynomial is available again. (A. Hulpke){ The algorithm for BrauerCharacterValue has been extended to the case where the splitting �eld isnot supported in GAP. (T. Breuer){ Brauer tables of direct products can now be constructed from the known Brauer tables of the directfactors. (T. Breuer)



14 Chapter 1. Preface{ Basic support for vector spaces of rational functions and of uea elements is available now in GAP. (T.Breuer and W. de Graaf){ Various new functions for computations with integer matrices are available, such as methods for com-puting normal forms of integer matrices as well as nullspaces or solutions systems of equations. (W.Nickel and F. Gaehler)New PackagesThe following new Packages have been accepted.{ Alnuth: Algebraic Number Theory and an interface to the Kant system. By B. Assmann and B. Eick{ LAGUNA: Computing with Lie Algebras and Units of Group Algebras. By V. Bovdi, A. Konovalov, R.Rossmanith, C. Schneider.{ NQ: The ANU Nilpotent Quotient Algorithm. By W. Nickel.{ KBMAG: Knuth-Bendix for Monoids and Groups. By D. Holt.{ Polycyclic: Computation with polycyclic groups. By B. Eick and W. Nickel{ QuaGroup: Computing with Quantized Enveloping Algebras. By W. de Graaf.Performance Enhancements{ The computation of irreducible representations and irreducible characters using the Baum-Clausenalgorithm and the implementation of the Dixon-Schneider algorithm have been speeded up.{ The algorithm for PossibleClassFusions has been changed: the e�ciency is improved and a newcriterion is used. The algorithm for PossibleFusionsCharTableTom has been speeded up. The methodfor PrimeBlocks has been improved following a suggestion of H. Pahlings.{ New improved methods for normalizer and subgroup conjugation in Sn have been installed and newimproved methods for IsNaturalSn/An have been implemented. These improve the available methodswhen groups of large degrees are given.{ The partition split method used in the permutation backtrack is now in the kernel. Transversal compu-tations in large permutation groups are improved. Homomorphisms from free groups into permutationgroups now give substantially shorter words for preimages.{ The membership test in SP and SU has been improved using the invariant forms underlying thesegroups.{ An improvement for the cyclic extension method for the computation of subgroup lattices has beenimplemented.{ A better method for MinimalPolynomial for �nite �eld matrices has been implemented.{ The display has changed and the arithmetic of multivariate polynomials has been improved.{ The LogMod function now uses Pollard's rho method combined with the Pohlig/Hellmann approach.{ Various functions for sets and lists have been improved following suggestions of L. Teirlinck. Theseinclude: Sort, Sortex, SortParallel, SortingPerm, NrArrangements.{ The methods for StructureConstantsTable and GapInputSCTable have been improved in the case ofa known (anti-) symmetry following a suggestion of M. Costantini.The improvements listed in this Section have been implemented by T. Breuer and A. Hulpke.New Programming and User Features{ The 2GB limit for workspace size has been removed and version numbers for saved workspaces havebeen introduced. (S. Linton and B. H�o
ing)



Section 4. Changes from Earlier Versions 15{ The limit on the total number of types created in a session has been removed. (S. Linton){ There is a new mechanism for loading packages available. Packages need a �le PackageInfo.g now. (T.Breuer and F. L�ubeck)Finally, as always, a number of bugs have been �xed. This release thus incorporates the contents of all thebug �xes which were released for GAP 4.3. It also �xes a number of bugs discovered since the last bug �x.The most important changes between GAP 4.2 and GAP 4.3 were:{ The performance of several routines has been substantially improved.{ The functionality in the areas of �nitely presented groups, Schur covers and the calculation of Repre-sentations has been extended.{ The data libraries of transitive groups, �nite integral matrix groups, character tables and tables ofmarks have been extended.{ The Windows installation has been simpli�ed for the case where you are installing GAP in its standardlocation.{ Many bugs have been �xed.The most important changes between GAP 4.1 and GAP 4.2 were:{ A much extended and improved library of small groups as well as associated IdGroup routines.{ The primitive groups library has been made more independent of the rest of GAP, some errors werecorrected.{ New (and often much faster) infrastructure for orbit computation, based on a general \dictionary"abstraction.{ New functionality for dealing with representations of algebras, and in particular for semisimple Liealgebras.{ New functionality for binary relations on arbitrary sets, magmas and semigroups.{ Bidirectional streams, allowing an external process to be started and then controlled \interactively" byGAP{ A prototype implementation of algorithms using general subgroup chains.{ Changes in the behavior of vectors over small �nite �elds.{ A �fth book \New features for Developers" has been added to the GAP manual.{ Numerous bug �xes and performance improvementsThe changes between the �nal release of GAP 3 (version 3.4.4) and GAP 4 are wide-ranging. The generalphilosophy of the changes is two-fold. Firstly, many assumptions in the design of GAP 3 revealed its authors'primary interest in group theory, and indeed in �nite group theory. Although much of the GAP 4 libraryis concerned with groups, the basic design now allows extension to other algebraic structures, as witnessedby the inclusion of substantial bodies of algorithms for computation with semigroups and Lie algebras.Secondly, as the scale of the system, and the number of people using and contributing to it has grown,some aspects of the underlying system have proved to be restricting, and these have been improved as partof comprehensive re-engineering of the system. This has included the new method selection system, whichunderpins the library, and a new, much more 
exible, GAP package interface.Details of these changes can be found in chapter 9 of this manual. It is perhaps worth mentioning a fewpoints here.Firstly, much remains unchanged, from the perspective of the mathematical user:



16 Chapter 1. Preface{ The syntax of that part of the GAP language that most users need for investigating mathematicalproblems.{ The great majority of function names.{ Data libraries and the access to them.A number of visible aspects have changed:{ Some function names that need �ner speci�cations now that there are more structures available in GAP.{ The access to information already obtained about a mathematical structure. In GAP 3 such informationabout a group could be looked up by directly inspecting the group record, whereas in GAP 4 functionsmust be used to access such information.Behind the scenes, much has changed:{ A new kernel, with improvements in memory management and in the language interpreter, as well asnew features such as saving of workspaces and the possibility of compilation of GAP code into C.{ A new structure to the library, based upon a new type and method selection system, which is able tosupport a broader range of algebraic computation and to make the structure of the library simpler andmore modular.{ New and faster algorithms in many mathematical areas.{ Data structures and algorithms for new mathematical objects, such as algebras and semigroups.{ A new and more 
exible structure for the GAP installation and documentation, which means, forexample, that a GAP package and its documentation can be installed and be fully usable without anychanges to the GAP system.Very few features of GAP 3 are not yet available in GAP 4.{ Not all of the GAP 3 packages have yet been converted for use with GAP 4 (although several newpackages are available only in GAP 4).{ The library of crystallographic groups which was present in GAP 3 is now part of a GAP 4 packagecrystcat.1.5 Further Information about GAPInformation about GAP is best obtained from the GAP Web pages that you �nd on:http://www.gap-system.organd its mirror at:http://www.math.rwth-aachen.de/~GAPThere you will �nd, amongst other things{ directions to the sites from which you can download the current GAP distribution, any bug-�xes, allaccepted GAP packages, and a selection of other contributions.{ the GAP manual and an archive of the gap-forum mailing list, formatted for reading with a Webbrowser, and indexed for searching.{ information about GAP developers, and about the email addresses available for comment, discussionand support.We would particularly ask you to note the following things:



Section 5. Further Information about GAP 17{ The GAP Forum { an email discussion forum for comments, discussions or questions about GAP. Youmust subscribe to the list before you can post to it, see the Web page for details. In particular we willannounce bug�xes in this mailing list.{ The email address support@gap-system.org to which you are asked to send any questionsor bug reports which do not seem likely to be of interest to the whole GAP Forum. Section 73.9 in theReference Manual tells you what to include in a bug report.{ We also ask you to send a brief message to support@gap-system.org when you install GAP.{ The correct form of citation of GAP, which we ask you use whenever you publish scienti�c resultsobtained using GAP.It �nally remains for me to wish you all pleasure and success in using GAP, and to invite your constructivecomment and criticism.Fort Collins, March 2004 Alexander Hulpke



2 A First Sessionwith GAP
This tutorial introduces you to the GAP system. It is written with users in mind who have just managedto start GAP for the �rst time on their computer and want to learn the basic facts about GAP by playingaround with some instructive examples. Therefore, this tutorial contains at many places several lines ofinput (which you should type on your terminal) followed by the corresponding output (which GAP producesas an answer to your input).This ``session protocol'' is indented and printed in typewriter style(like this paragraph) in this tutorial and should look exactly as itlooks on your text terminal or text window.This is to encourage you to actually run through these examples on your computer. This will support yourfeeling for GAP as a tool, which is the leading aim of this tutorial. Do not believe any statement in it as longas you cannot verify it for your own version of GAP. You will learn to distinguish between small deviationsof the behavior of your personal GAP from the printed examples and serious nonsense.Since the printing routines of GAP are in some sense machine dependent you will for instance encountera di�erent layout of the printed objects in di�erent environments. But the contents should always be thesame. In case you encounter serious nonsense it is highly recommended that you send a bug report tosupport@gap-system.org.The examples in this tutorial should explain everything you have to know in order to be able to use GAP.The reference manual then gives a more systematic treatment of the various types of objects that GAPcan manipulate. It seems desirable neither to start this systematic course with the most elementary (andmost boring) structures, nor to confront you with all the complex data types before you know how theyare composed from elementary structures. For this reason this tutorial wants to provide you with a basicunderstanding of GAP objects, on which the reference manual will then build when it explains everythingin detail. So after having mastered this tutorial, you can immediately plunge into the exciting parts of GAPand only read detailed information about elementary things (in the reference manual) when you really needthem.Each chapter of this tutorial contains an overview of its sections at the beginning, and a section withreferences to the reference manual at the end.2.1 Starting and Leaving GAPIf the program is correctly installed then you usually start GAP by simply typing gap at the prompt of youroperating system followed by the return key, sometimes this is also called the newline key.$ gapGAP answers your request with its beautiful banner and then it shows its own prompt gap> asking you forfurther input. (You can avoid the banner with the command line option -b; more command line options aredescribed in Section 3.1 in the reference manual.)gap>The usual way to end a GAP session is to type quit; at the gap> prompt. Do not omit the semicolon!



Section 3. The Read Evaluate Print Loop 19gap> quit;$On some systems you could type ctl -D to yield the same e�ect. In any situation GAP is ended by typingctl -C twice within a second. Here as always, a combination like ctl -D means that you have to press the D keywhile you hold down the ctl key.On some systems (for example the Apple Macintosh) minor changes might be necessary. This is explainedin chapter 73 in the reference manual.In most places whitespace characters (i.e. spaces, tabs and returns) are insigni�cant for the meaning of GAPinput. Identi�ers and keywords must however not contain any whitespace. On the other hand, sometimesthere must be whitespace around identi�ers and keywords to separate them from each other and fromnumbers. We will use whitespace to format more complicated commands for better readability.A comment in GAP starts with the symbol # and continues to the end of the line. Comments are treatedlike whitespace by GAP. We use comments in the printed examples in this tutorial to explain certain linesof input or output.You should be able to reproduce the results of the examples of GAP sessions in this manual, in the followingsense. If you start the GAP session with the two commandsgap> SizeScreen( [ 80, ] ); LogTo( "logfile1" );(which are used to set the line length to 80 if this isn't already your default line length and to save a listingof the session on some �le), then choose any chapter and rerun its examples in one continuous session andin the given order, the GAP output should look like the output shown in the manual, except for a few linesof output which we have edited a little bit with respect to blanks or line breaks in order to improve thereadability. However, when random processes are involved, you may get di�erent results if you extract singleexamples and run them separately.2.2 Loading Source Code from a FileThe most convenient way of creating larger pieces of GAP code is to write them to some text �le { for thispurpose you can simply use your favorite text editor. You can load such a �le into GAP using the Readfunction:gap> Read("../../GAPProgs/Example.g");You can either give the full absolute path name of the source �le or its relative path name from the GAProot directory (the directory containing bin/, doc/, lib/, etc.).2.3 The Read Evaluate Print LoopGAP is an interactive system. It continuously executes a read evaluate print loop. Each expression you typeat the keyboard is read by GAP, evaluated, and then the result is shown.The interactive nature of GAP allows you to type an expression at the keyboard and see its value immediately.You can de�ne a function and apply it to arguments to see how it works. You may even write whole programscontaining lots of functions and test them without leaving the program.When your program is large it will be more convenient to write it on a �le and then read that �le into GAP.Preparing your functions in a �le has several advantages. You can compose your functions more carefully ina �le (with your favorite text editor), you can correct errors without retyping the whole function and youcan keep a copy for later use. Moreover you can write lots of comments into the program text, which areignored by GAP, but are very useful for human readers of your program text. GAP treats input from a �lein the same way that it treats input from the keyboard. Further details can be found in section 9.7.1 in theReference Manual.



20 Chapter 2. A First Session with GAPA simple calculation with GAP is as easy as one can imagine. You type the problem just after the prompt,terminate it with a semicolon and then pass the problem to the program with the return key. For example,to multiply the di�erence between 9 and 7 by the sum of 5 and 6, that is to calculate (9� 7) � (5 + 6), youtype exactly this last sequence of symbols followed by ; and return.gap> (9 - 7) * (5 + 6);22gap>Then GAP echoes the result 22 on the next line and shows with the prompt that it is ready for the nextproblem. Henceforth, we will no longer print this additional prompt.If you make a mistake while typing the line, but before typing the �nal return, you can use the delete key(or sometimes backspace key) to delete the last typed character. You can also move the cursor back andforward in the line with ctl -B and ctl -F and insert or delete characters anywhere in the line. The line editingcommands are fully described in section 6.8 of the reference manual.If you did omit the semicolon at the end of the line but have already typed return, then GAP has readeverything you typed, but does not know that the command is complete. The program is waiting for furtherinput and indicates this with a partial prompt >. This problem is solved by simply typing the missingsemicolon on the next line of input. Then the result is printed and the normal prompt returns.gap> (9 - 7) * (5 + 6)> ;22So the input can consist of several lines, and GAP prints a partial prompt > in each input line exceptthe �rst, until the command is completed with a semicolon. (GAP may already evaluate part of the inputwhen return is typed, so for long calculations it might take some time until the partial prompt appears.)Whenever you see the partial prompt and you cannot decide what GAP is still waiting for, then you have totype semicolons until the normal prompt returns. In every situation the exact meaning of the prompt gap>is that the program is waiting for a new problem.But even if you mistyped the command more seriously, you do not have to type it all again. Suppose youmistyped or forgot the last closing parenthesis. Then your command is syntactically incorrect and GAP willnotice it, incapable of computing the desired result.gap> (9 - 7) * (5 + 6;Syntax error: ) expected(9 - 7) * (5 + 6;̂Instead of the result an error message occurs indicating the place where an unexpected symbol occurredwith an arrow sign ^ under it. As a computer program cannot know what your intentions really were, this isonly a hint. But in this case GAP is right by claiming that there should be a closing parenthesis before thesemicolon. Now you can type ctl -P to recover the last line of input. It will be written after the prompt withthe cursor in the �rst position. Type ctl -E to take the cursor to the end of the line, then ctl -B to move thecursor one character back. The cursor is now on the position of the semicolon. Enter the missing parenthesisby simply typing ). Now the line is correct and may be passed to GAP by hitting the return key. Note thatfor this action it is not necessary to move the cursor past the last character of the input line.Each line of commands you type is sent to GAP for evaluation by pressing return regardless of the positionof the cursor in that line. We will no longer mention the return key from now on.Sometimes a syntax error will cause GAP to enter a break loop. This is indicated by the special promptbrk>. If another syntax error occurs while GAP is in a break loop, the prompt will change to brk 02>,brk 03> and so on. You can leave the current break loop and exit to the next outer one by either typingquit; or by hitting ctl -D. Eventually GAP will return to its normal state and show its normal prompt gap>again.



Section 4. Constants and Operators 212.4 Constants and OperatorsIn an expression like (9 - 7) * (5 + 6) the constants 5, 6, 7, and 9 are being composed by the operators+, * and - to result in a new value.There are three kinds of operators in GAP, arithmetical operators, comparison operators, and logical opera-tors. You have already seen that it is possible to form the sum, the di�erence, and the product of two integervalues. There are some more operators applicable to integers in GAP. Of course integers may be divided byeach other, possibly resulting in noninteger rational values.gap> 12345/25;2469/5Note that the numerator and denominator are divided by their greatest common divisor and that the resultis uniquely represented as a division instruction.We haven't met negative numbers yet. So consider the following self-explanatory examples.gap> -3; 17 - 23;-3-6The exponentiation operator is written as ^. This operation in particular might lead to very large numbers.This is no problem for GAP as it can handle numbers of (almost) any size.gap> 3^132;955004950796825236893190701774414011919935138974343129836853841The mod operator allows you to compute one value modulo another.gap> 17 mod 3;2Note that there must be whitespace around the keyword mod in this example since 17mod3 or 17mod would beinterpreted as identi�ers. The whitespace around operators that do not consist of letters, e.g., the operators* and -, is not necessary.GAP knows a precedence between operators that may be overridden by parentheses.gap> (9 - 7) * 5 = 9 - 7 * 5;falseBesides these arithmetical operators there are comparison operators in GAP. A comparison results in aboolean value which is another kind of constant. The comparison operators =, <>, <, <=, > and >=, test forequality, inequality, less than, less than or equal, greater than and greater than or equal, respectively.gap> 10^5 < 10^4;falseThe boolean values true and false can be manipulated via logical operators, i. e., the unary operator notand the binary operators and and or. Of course boolean values can be compared, too.gap> not true; true and false; true or false;falsefalsetruegap> 10 > 0 and 10 < 100;trueAnother important type of constants in GAP are permutations. They are written in cycle notation andthey can be multiplied.



22 Chapter 2. A First Session with GAPgap> (1,2,3);(1,2,3)gap> (1,2,3) * (1,2);(2,3)The inverse of the permutation (1,2,3) is denoted by (1,2,3)^-1. Moreover the caret operator ^ is usedto determine the image of a point under a permutation and to conjugate one permutation by another.gap> (1,2,3)^-1;(1,3,2)gap> 2^(1,2,3);3gap> (1,2,3)^(1,2);(1,3,2)The various other constants that GAP can deal with will be introduced when they are used, for examplethere are elements of �nite �elds such as Z(8), and complex roots of unity such as E(4).The last type of constants we want to mention here are the characters, which are simply objects in GAPthat represent arbitrary characters from the character set of the operating system. Character literals can beentered in GAP by enclosing the character in singlequotes '.gap> 'a';'a'gap> '*';'*'There are no operators de�ned for characters except that characters can be compared.In this section you have seen that values may be preceded by unary operators and combined by binary oper-ators placed between the operands. There are rules for precedence which may be overridden by parentheses.A comparison results in a boolean value. Boolean values are combined via logical operators. Moreover youhave seen that GAP handles numbers of arbitrary size. Numbers and boolean values are constants. Thereare other types of constants in GAP like permutations. You are now in a position to use GAP as a simpledesktop calculator.2.5 Variables versus ObjectsThe constants described in the last section are speci�ed by certain combinations of digits and minus signs(in the case of integers) or digits, commas and parentheses (in the case of permutations). These sequencesof characters always have the same meaning to GAP. On the other hand, there are variables, speci�ed bya sequence of letters and digits (including at least one letter), and their meaning depends on what has beenassigned to them. An assignment is done by a GAP command sequence of letters and digits := meaning ,where the sequence on the left hand side is called the identi�er of the variable and it serves as its name.The meaning on the right hand side can be a constant like an integer or a permutation, but it can also bealmost any other GAP object. From now on, we will use the term object to denote something that can beassigned to a variable.There must be no whitespace between the : and the = in the assignment operator. Also do not confuse theassignment operator with the single equality sign = which in GAP is only used for the test of equality.



Section 5. Variables versus Objects 23gap> a:= (9 - 7) * (5 + 6);22gap> a;22gap> a * (a + 1);506gap> a = 10;falsegap> a:= 10;10gap> a * (a + 1);110After an assignment the assigned object is echoed on the next line. The printing of the object of a statementmay be in every case prevented by typing a double semicolon.gap> w:= 2;;After the assignment the variable evaluates to that object if evaluated. Thus it is possible to refer to thatobject by the name of the variable in any situation.This is in fact the whole secret of an assignment. An identi�er is bound to an object and from this momentpoints to that object. Nothing more. This binding is changed by the next assignment to that identi�er. Anidenti�er does not denote a block of memory as in some other programming languages. It simply points toan object, which has been given its place in memory by the GAP storage manager. This place may changeduring a GAP session, but that doesn't bother the identi�er. The identi�er points to the object, notto a place in the memory.For the same reason it is not the identi�er that has a type but the object. This means on the other handthat the identi�er a which now is bound to an integer object may in the same session point to any otherobject regardless of its type.Identi�ers may be sequences of letters and digits containing at least one letter. For example abc and a0bc1are valid identi�ers. But also 123a is a valid identi�er as it cannot be confused with any number. Just 1234indicates the number 1234 and cannot be at the same time the name of a variable.Since GAP distinguishes upper and lower case, a1 and A1 are di�erent identi�ers. Keywords such as quitmust not be used as identi�ers. You will see more keywords in the following sections.In the remaining part of this manual we will ignore the di�erence between variables, their names (identi�ers),and the objects they point to. It may be useful to think from time to time about what is really meant byterms such as \the integer w".There are some prede�ned variables coming with GAP. Many of them you will �nd in the remaining chaptersof this manual, since functions are also referred to via identi�ers.You can get an overview of all GAP variables by entering NamesGVars(). Many of these are prede�ned.If you are interested in the variables you have de�ned yourself in the current GAP session, you can enterNamesUserGVars().gap> NamesUserGVars();[ "a", "w" ]This seems to be the right place to state the following rule: The name of every global variable in the GAPlibrary starts with a capital letter. Thus if you choose only names starting with a small letter for yourown variables you will not attempt to overwrite any prede�ned variable. (Note that most of the prede�nedvariables are read-only, and trying to change their values will result in an error message.)



24 Chapter 2. A First Session with GAPThere are some further interesting variables one of which will be introduced now.Whenever GAP returns an object by printing it on the next line this object is assigned to the variable last.So if you computedgap> (9 - 7) * (5 + 6);22and forgot to assign the object to the variable a for further use, you can still do it by the following assignment.gap> a:= last;22Moreover there are variables last2 and last3, you can guess their values.In this section you have seen how to assign objects to variables. These objects can later be accessed throughthe name of the variable, its identi�er. You have also encountered the useful concept of the last variablesstoring the latest returned objects. And you have learned that a double semicolon prevents the result of astatement from being printed.2.6 Objects vs. ElementsIn the last section we mentioned that every object is given a certain place in memory by the GAP storagemanager (although that place may change in the course of a GAP session). In this sense, objects at di�erentplaces in memory are never equal, and if the object pointed to by the variable a (to be more precise, thevariable with identi�er a) is equal to the object pointed to by the variable b, then we should better say thatthey are not only equal but identical. GAP provides the function IsIdenticalObj to test whether this isthe case.gap> a:= (1,2);; IsIdenticalObj( a, a );truegap> b:= (1,2);; IsIdenticalObj( a, b );falsegap> b:= a;; IsIdenticalObj( a, b );trueAs the above example indicates, GAP objects a and b can be unequal although they are equal from amathematical point of view, i.e., although we should have a = b. It may be that the objects a and b arestored in di�erent places in memory, or it may be that we have an equivalence relation de�ned on the setof objects under which a and b belong to the same equivalence class. For example, if a = x 3 and b = x�5are words in the �nitely presented group hx j x 2 = 1i, we would have a = b in that group.GAP uses the equality operator = to denote such a mathematical equality, not the identity of objects. Hencewe often have a = b although IsIdenticalObj( a, b ) = false. The operator = de�nes an equivalencerelation on the set of all GAP objects, and we call the corresponding equivalence classes elements. Phrasingit di�erently, the same element may be represented by various GAP objects.Non-trivial examples of elements that are represented by di�erent objects (objects that really look di�erent,not ones that are merely stored in di�erent memory places) will occur only when we will be consideringcomposite objects such as lists or domains.



Section 8. Help 252.7 About FunctionsA program written in the GAP language is called a function. Functions are special GAP objects. Most ofthem behave like mathematical functions. They are applied to objects and will return a new object dependingon the input. The function Factorial, for example, can be applied to an integer and will return the factorialof this integer.gap> Factorial(17);355687428096000Applying a function to arguments means to write the arguments in parentheses following the function.Several arguments are separated by commas, as for the function Gcd which computes the greatest commondivisor of two integers.gap> Gcd(1234, 5678);2There are other functions that do not return an object but only produce a side e�ect, for example changingone of their arguments. These functions are sometimes called procedures. The function Print is only calledfor the side e�ect of printing something on the screen.gap> Print(1234, "\n");1234In order to be able to compose arbitrary text with Print, this function itself will not produce a line breakafter printing. Thus we had another newline character "\n" printed to start a new line.Some functions will both change an argument and return an object such as the function Sortex that sortsa list and returns the permutation of the list elements that it has performed. You will not understand rightnow what it means to change an object. We will return to this subject several times in the next sections.A comfortable way to de�ne a function yourself is the maps-to operator -> consisting of a minus sign anda greater sign with no whitespace between them. The function cubed which maps a number to its cube isde�ned on the following line.gap> cubed:= x -> x^3;function( x ) ... endAfter the function has been de�ned, it can now be applied.gap> cubed(5);125More complicated functions, especially functions with more than one argument cannot be de�ned in thisway. You will see how to write your own GAP functions in Section 4.1.In this section you have seen GAP objects of type function. You have learned how to apply a function toarguments. This yields as result a new object or a side e�ect. A side e�ect may change an argument of thefunction. Moreover you have seen an easy way to de�ne a function in GAP with the maps-to operator.2.8 HelpThe content of the GAP manuals is also available as on-line help. A GAP session loads a long list of indexentries. This typically contains all chapter and section headers, all names of documented functions, operationsand so on, as well as some explicit index entries de�ned in the manuals.The format of a query is as follows.?[book:][?]topic



26 Chapter 2. A First Session with GAPA simple example would be to type ?help at the GAP prompt. If there is a single section with index entrytopic then this is displayed directly.If there are several matches you get an overview like in the following example.gap> ?setsHelp: several entries match this topic - type ?2 to get match [2][1] Tutorial: Sets[2] Reference: Sets[3] Reference: sets[4] Reference: Sets of Subgroups[5] Reference: setstabilizerGAP's manuals consist of several books, which are indicated before the colon in the list above. A helpquery can be restricted to one book by using the optional book : part. For example ?tut : sets will displaythe �rst of these help sections. More precisely, the parts of the string book which are separated by whitespace are interpreted as beginnings of the �rst words in the name of the book. Try ?books to see the list ofavailable books and their names.The search for a matching topic (and optional book) is done case insensitively. If there is another ? beforethe topic, then a substring search for topic is performed on all index entries. Otherwise the parts of topicwhich are separated by white space are considered as beginnings of the �rst words in an index entry.White space is normalized in the search string (and the index entries).Examples. All the following queries lead to the chapter of the reference manual which explains the use ofGAP's help system in more detail.gap> ?Reference: The Help Systemgap> ? REF : t h sgap> ?ref:? help systemThe query ??sets shows all help sections in all books whose index entries contain the substring sets.As mentioned in the example above a complete list of commands for the help system is available in Sec-tion ?Ref: The Help System of the reference manual. In particular there are commands to browse throughthe help sections, see ?Ref: Browsing through the Sections and there is a way to in
uence the wayhow the help sections are displayed, see ?Ref: SetHelpViewer. For example you can use an external pagerprogram, a Web browser, dvi-previewer and/or pdf-viewer for reading GAP's online help.2.9 Further Information introducing the SystemFor large amounts of input data, it might be advisable to write your input �rst into a �le, and then readthis into GAP; see 9.7.1, 6.9.1 for this.The de�nition of the GAP syntax can be looked up in Chapter 4. A complete list of command line editingfacilities is found in Section 6.8. The break loop is described in Section 6.3.Operators are explained in more detail in Sections 4.7 and 4.11. You will �nd more information about booleanvalues in Chapters 20 and 22. Permutations are described in Chapter 40 and characters in Chapter 26.Variables and assignments are described in more detail in 4.8 and 4.14. A complete list of keywords iscontained in 4.5.More about functions can be found in 4.10 and 4.15.



3 Lists and Records
Modern mathematics, especially algebra, is based on set theory. When sets are represented in a computer,they inadvertently turn into lists. That's why we start our survey of the various objects GAP can handlewith a description of lists and their manipulation. GAP regards sets as a special kind of lists, namely as listswithout holes or duplicates whose entries are ordered with respect to the precedence relation <.After the introduction of the basic manipulations with lists in 3.1, some di�culties concerning identity andmutability of lists are discussed in 3.2 and 3.3. Sets, ranges, row vectors, and matrices are introduced asspecial kinds of lists in 3.4, 3.5, 3.8. Handy list operations are shown in 3.7. Finally we explain how to userecords in 3.9.3.1 Plain ListsA list is a collection of objects separated by commas and enclosed in brackets. Let us for example constructthe list primes of the �rst 10 prime numbers.gap> primes:= [2, 3, 5, 7, 11, 13, 17, 19, 23, 29];[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ]The next two primes are 31 and 37. They may be appended to the existing list by the function Append whichtakes the existing list as its �rst and another list as a second argument. The second argument is appended tothe list primes and no value is returned. Note that by appending another list the object primes is changed.gap> Append(primes, [31, 37]);gap> primes;[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 ]You can as well add single new elements to existing lists by the function Add which takes the existing list asits �rst argument and a new element as its second argument. The new element is added to the list primesand again no value is returned but the list primes is changed.gap> Add(primes, 41);gap> primes;[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 ]Single elements of a list are referred to by their position in the list. To get the value of the seventh prime,that is the seventh entry in our list primes, you simply typegap> primes[7];17This value can be handled like any other value, for example multiplied by 2 or assigned to a variable. Onthe other hand this mechanism allows one to assign a value to a position in a list. So the next prime 43may be inserted in the list directly after the last occupied position of primes. This last occupied position isreturned by the function Length.



28 Chapter 3. Lists and Recordsgap> Length(primes);13gap> primes[14]:= 43;43gap> primes;[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43 ]Note that this operation again has changed the object primes. The next position after the end of a list isnot the only position capable of taking a new value. If you know that 71 is the 20th prime, you can enterit right now in the 20th position of primes. This will result in a list with holes which is however still a listand now has length 20.gap> primes[20]:= 71;71gap> primes;[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,,,,,, 71 ]gap> Length(primes);20The list itself however must exist before a value can be assigned to a position of the list. This list may bethe empty list [ ].gap> lll[1]:= 2;Variable: 'lll' must have a valuegap> lll:= []; lll[1]:= 2;[ ]2Of course existing entries of a list can be changed by this mechanism, too. We will not do it here becauseprimes then may no longer be a list of primes. Try for yourself to change the 17 in the list into a 9.To get the position of 17 in the list primes use the function Position which takes the list as its �rstargument and the element as its second argument and returns the position of the �rst occurrence of theelement 17 in the list primes. If the element is not contained in the list then Position will return the specialobject fail.gap> Position(primes, 17);7gap> Position(primes, 20);failIn all of the above changes to the list primes, the list has been automatically resized. There is no need foryou to tell GAP how big you want a list to be. This is all done dynamically.It is not necessary for the objects collected in a list to be of the same type.gap> lll:= [true, "This is a String",,, 3];[ true, "This is a String",,, 3 ]In the same way a list may be part of another list. A list may even be part of itself.



Section 2. Identical Lists 29gap> lll[3]:= [4,5,6];; lll;[ true, "This is a String", [ 4, 5, 6 ],, 3 ]gap> lll[4]:= lll;[ true, "This is a String", [ 4, 5, 6 ], ~, 3 ]Now the tilde in the fourth position of lll denotes the object that is currently printed. Note that the resultof the last operation is the actual value of the object lll on the right hand side of the assignment. In factit is identical to the value of the whole list lll on the left hand side of the assignment.A string is a special type of list, namely a dense list of characters, where dense means that the listhas no holes. Here, characters are special GAP objects representing an element of the character set of theoperating system. The input of printable characters is by enclosing them in single quotes '. A string literalcan either be entered as the list of characters or by writing the characters between doublequotes ". Stringsare handled specially by Print. You can learn much more about strings in the reference manual.gap> s1 := ['H','a','l','l','o',' ','w','o','r','l','d','.'];"Hallo world."gap> s1 = "Hallo world.";truegap> s1[7];'w'Sublists of lists can easily be extracted and assigned using the operator list{ positions }.gap> sl := lll{ [ 1, 2, 3 ] };[ true, "This is a String", [ 4, 5, 6 ] ]gap> sl{ [ 2, 3 ] } := [ "New String", false ];[ "New String", false ]gap> sl;[ true, "New String", false ]This way you get a new list whose ith entry is that element of the original list whose position is the ithentry of the argument in the curly braces.3.2 Identical ListsThis second section about lists is dedicated to the subtle di�erence between equality and identity of lists.It is really important to understand this di�erence in order to understand how complex data structures arerealized in GAP. This section applies to all GAP objects that have subobjects, e.g., to lists and to records.After reading the section 3.9 about records you should return to this section and translate it into the recordcontext.Two lists are equal if all their entries are equal. This means that the equality operator = returns true forthe comparison of two lists if and only if these two lists are of the same length and for each position thevalues in the respective lists are equal.gap> numbers := primes;; numbers = primes;trueWe assigned the list primes to the variable numbers and, of course they are equal as they have both thesame length and the same entries. Now we will change the third number to 4 and compare the result againwith primes.gap> numbers[3]:= 4;; numbers = primes;trueYou see that numbers and primes are still equal, check this by printing the value of primes. The list primesis no longer a list of primes! What has happened? The truth is that the lists primes and numbers are not



30 Chapter 3. Lists and Recordsonly equal but they are also identical. primes and numbers are two variables pointing to the same list.If you change the value of the subobject numbers[3] of numbers this will also change primes. Variablesdo not point to a certain block of storage memory but they do point to an object that occupies storagememory. So the assignment numbers := primes did not create a new list in a di�erent place of memorybut only created the new name numbers for the same old list of primes.From this we see that the same object can have several names.If you want to change a list with the contents of primes independently from primes you will have to makea copy of primes by the function ShallowCopy which takes an object as its argument and returns a copy ofthe argument. (We will �rst restore the old value of primes.)gap> primes[3]:= 5;; primes;[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,,,,,, 71 ]gap> numbers:= ShallowCopy(primes);; numbers = primes;truegap> numbers[3]:= 4;; numbers = primes;falseNow numbers is no longer equal to primes and primes still is a list of primes. Check this by printing thevalues of numbers and primes.Lists and records can be changed this way because GAP objects of these types have subobjects. To clarifythis statement consider the following example.gap> i:= 1;; j:= i;; i:= i+1;;By adding 1 to i the value of i has changed. What happens to j? After the second statement j points tothe same object as i, namely to the integer 1. The addition does not change the object 1 but creates a newobject according to the instruction i+1. It is actually the assignment that changes the value of i. Thereforej still points to the object 1. Integers (like permutations and booleans) have no subobjects. Objects of thesetypes cannot be changed but can only be replaced by other objects. And a replacement does not change thevalues of other variables. In the above example an assignment of a new value to the variable numbers wouldalso not change the value of primes.Finally try the following examples and explain the results.gap> l:= [];; l:= [l];[ [ ] ]gap> l[1]:= l;[ ~ ]Now return to Section 3.1 and �nd out whether the functions Add and Append change their arguments.3.3 ImmutabilityGAP has a mechanism that protects lists against changes like the ones that have bothered us in Section 3.2.The function Immutable takes as argument a list and returns an immutable copy of it, i.e., a list which looksexactly like the old one, but has two extra properties: (1) The new list is immutable, i.e., the list itself andits subobjects cannot be changed. (2) In constructing the copy, every part of the list that can be changedhas been copied, so that changes to the old list will not a�ect the new one. In other words, the new list hasno mutable subobjects in common with the old list.



Section 4. Sets 31gap> list := [ 1, 2, "three", [ 4 ] ];; copy := Immutable( list );;gap> list[3][5] := 'w';; list; copy;[ 1, 2, "threw", [ 4 ] ][ 1, 2, "three", [ 4 ] ]gap> copy[3][5] := 'w';Lists Assignment: <list> must be a mutable listnot in any functionEntering break read-eval-print loop ...you can 'quit;' to quit to outer loop, oryou can 'return;' and ignore the assignment to continuebrk> quit;As a consequence of these rules, in the immutable copy of a list which contains an already immutable listas subobject, this immutable subobject need not be copied, because it is unchangeable. Immutable lists areuseful in many complex GAP objects, for example as generator lists of groups. By making them immutable,GAP ensures that no generators can be added to the list, removed or exchanged. Such changes would ofcourse lead to serious inconsistencies with other knowledge that may already have been calculated for thegroup.A converse function to Immutable is ShallowCopy, which produces a new mutable list whose ith entry isthe ith entry of the old list. The single entries are not copied, they are just placed in the new list. If the oldlist is immutable, and hence the list entries are immutable themselves, the result of ShallowCopy is mutableonly on the top level.It should be noted that also other objects than lists can appear in mutable or immutable form. Records (seeSection 3.9) provide another example.3.4 SetsGAP knows several special kinds of lists. A set in GAP is a list that contains no holes (such a list is calleddense) and whose elements are strictly sorted w.r.t. <; in particular, a set cannot contain duplicates. (Moreprecisely, the elements of a set in GAP are required to lie in the same family, but roughly this means thatthey can be compared using the < operator.)This provides a natural model for mathematical sets whose elements are given by an explicit enumeration.GAP also calls a set a strictly sorted list, and the function IsSSortedList tests whether a given list is aset. It returns a boolean value. For almost any list whose elements are contained in the same family, thereexists a corresponding set. This set is constructed by the function Set which takes the list as its argumentand returns a set obtained from this list by ignoring holes and duplicates and by sorting the elements.The elements of the sets used in the examples of this section are strings.gap> fruits:= ["apple", "strawberry", "cherry", "plum"];[ "apple", "strawberry", "cherry", "plum" ]gap> IsSSortedList(fruits);falsegap> fruits:= Set(fruits);[ "apple", "cherry", "plum", "strawberry" ]Note that the original list fruits is not changed by the function Set. We have to make a new assignmentto the variable fruits in order to make it a set.The operator in is used to test whether an object is an element of a set. It returns a boolean value true orfalse.



32 Chapter 3. Lists and Recordsgap> "apple" in fruits;truegap> "banana" in fruits;falseThe operator in can also be applied to ordinary lists. It is however much faster to perform a membershiptest for sets since sets are always sorted and a binary search can be used instead of a linear search. Newelements may be added to a set by the function AddSet which takes the set fruits as its �rst argumentand an element as its second argument and adds the element to the set if it wasn't already there. Note thatthe object fruits is changed.gap> AddSet(fruits, "banana");gap> fruits; # The banana is inserted in the right place.[ "apple", "banana", "cherry", "plum", "strawberry" ]gap> AddSet(fruits, "apple");gap> fruits; # fruits has not changed.[ "apple", "banana", "cherry", "plum", "strawberry" ]Note that inserting new elements into a set with AddSet is usually more expensive than simply adding newelements at the end of a list.Sets can be intersected by the function Intersection and united by the function Union which both taketwo sets as their arguments and return the intersection resp. union of the two sets as a new object.gap> breakfast:= ["tea", "apple", "egg"];[ "tea", "apple", "egg" ]gap> Intersection(breakfast, fruits);[ "apple" ]The arguments of the functions Intersection and Union could be ordinary lists, while their result is alwaysa set. Note that in the preceding example at least one argument of Intersection was not a set. The functionsIntersectSet and UniteSet also form the intersection resp. union of two sets. They will however not returnthe result but change their �rst argument to be the result. Try them carefully.3.5 RangesA range is a �nite arithmetic progression of integers. This is another special kind of list. A range isdescribed by the �rst two values and the last value of the arithmetic progression which are given in the form[�rst,second..last]. In the usual case of an ascending list of consecutive integers the second entry may beomitted.gap> [1..999999]; # a range of almost a million numbers[ 1 .. 999999 ]gap> [1, 2..999999]; # this is equivalent[ 1 .. 999999 ]gap> [1, 3..999999]; # here the step is 2[ 1, 3 .. 999999 ]gap> Length( last );500000gap> [ 999999, 999997 .. 1 ];[ 999999, 999997 .. 1 ]This compact printed representation of a fairly long list corresponds to a compact internal representation.The function IsRange tests whether an object is a range, the function ConvertToRangeRep changes therepresentation of a list that is in fact a range to this compact internal representation.



Section 6. For and While Loops 33gap> a:= [-2,-1,0,1,2,3,4,5];[ -2, -1, 0, 1, 2, 3, 4, 5 ]gap> IsRange( a );truegap> ConvertToRangeRep( a );; a;[ -2 .. 5 ]gap> a[1]:= 0;; IsRange( a );falseNote that this change of representation does not change the value of the list a. The list a still behaves inany context in the same way as it would have in the long representation.3.6 For and While LoopsGiven a list pp of permutations we can form their product by means of a for loop instead of writing downthe product explicitly.gap> pp:= [ (1,3,2,6,8)(4,5,9), (1,6)(2,7,8), (1,5,7)(2,3,8,6),> (1,8,9)(2,3,5,6,4), (1,9,8,6,3,4,7,2)];;gap> prod:= ();()gap> for p in pp do> prod:= prod*p;> od;gap> prod;(1,8,4,2,3,6,5,9)First a new variable prod is initialized to the identity permutation (). Then the loop variable p takes asits value one permutation after the other from the list pp and is multiplied with the present value of prodresulting in a new value which is then assigned to prod.The for loop has the following syntax
I for var in list do statements od;The e�ect of the for loop is to execute the statements for every element of the list . A for loop is astatement and therefore terminated by a semicolon. The list of statements is enclosed by the keywords doand od (reverse do). A for loop returns no value. Therefore we had to ask explicitly for the value of prodin the preceding example.The for loop can loop over any kind of list, even a list with holes. In many programming languages the forloop has the formfor var from �rst to last do statements od;In GAP this is merely a special case of the general for loop as de�ned above where the list in the loop bodyis a range (see 3.5):
I for var in [�rst..last] do statements od;You can for instance loop over a range to compute the factorial 15! of the number 15 in the following way.



34 Chapter 3. Lists and Recordsgap> ff:= 1;1gap> for i in [1..15] do> ff:= ff * i;> od;gap> ff;1307674368000The while loop has the following syntax
I while condition do statements od;The while loop loops over the statements as long as the condition evaluates to true. Like the for loop thewhile loop is terminated by the keyword od followed by a semicolon.We can use our list primes to perform a very simple factorization. We begin by initializing a list factorsto the empty list. In this list we want to collect the prime factors of the number 1333. Remember that a listhas to exist before any values can be assigned to positions of the list. Then we will loop over the list primesand test for each prime whether it divides the number. If it does we will divide the number by that prime,add it to the list factors and continue.gap> n:= 1333;;gap> factors:= [];;gap> for p in primes do> while n mod p = 0 do> n:= n/p;> Add(factors, p);> od;> od;gap> factors;[ 31, 43 ]gap> n;1As n now has the value 1 all prime factors of 1333 have been found and factors contains a completefactorization of 1333. This can of course be veri�ed by multiplying 31 and 43.This loop may be applied to arbitrary numbers in order to �nd prime factors. But as primes is not acomplete list of all primes this loop may fail to �nd all prime factors of a number greater than 2000, say.You can try to improve it in such a way that new primes are added to the list primes if needed.You have already seen that list objects may be changed. This of course also holds for the list in a loopbody. In most cases you have to be careful not to change this list, but there are situations where this isquite useful. The following example shows a quick way to determine the primes smaller than 1000 by a sievemethod. Here we will make use of the function Unbind to delete entries from a list, and the 'if' statementcovered in 4.2.gap> primes:= [];;gap> numbers:= [2..1000];;gap> for p in numbers do> Add(primes, p);> for n in numbers do> if n mod p = 0 then> Unbind(numbers[n-1]);> fi;> od;



Section 7. List Operations 35> od;The inner loop removes all entries from numbers that are divisible by the last detected prime p. This is doneby the function Unbind which deletes the binding of the list position numbers[n-1] to the value n so thatafterwards numbers[n-1] no longer has an assigned value. The next element encountered in numbers by theouter loop necessarily is the next prime.In a similar way it is possible to enlarge the list which is looped over. This yields a nice and short orbitalgorithm for the action of a group, for example.More about for and while loops can be found in the sections 4.17 and 4.19 of the reference manual.3.7 List OperationsThere is a more comfortable way than that given in the previous section to compute the product of a list ofnumbers or permutations.gap> Product([1..15]);1307674368000gap> Product(pp);(1,8,4,2,3,6,5,9)The function Product takes a list as its argument and computes the product of the elements of the list. Thisis possible whenever a multiplication of the elements of the list is de�ned. So Product executes a loop overall elements of the list.There are other often used loops available as functions. Guess what the function Sum does. The functionList may take a list and a function as its arguments. It will then apply the function to each element ofthe list and return the corresponding list of results. A list of cubes is produced as follows with the functioncubed from Section 4.gap> cubed:= x -> x^3;;gap> List([2..10], cubed);[ 8, 27, 64, 125, 216, 343, 512, 729, 1000 ]To add all these cubes we might apply the function Sum to the last list. But we may as well give the functioncubed to Sum as an additional argument.gap> Sum(last) = Sum([2..10], cubed);trueThe primes less than 30 can be retrieved out of the list primes from Section 3.1 by the function Filtered.This function takes the list primes and a property as its arguments and will return the list of those elementsof primes which have this property. Such a property will be represented by a function that returns a booleanvalue. In this example the property of being less than 30 can be represented by the function x -> x < 30since x < 30 will evaluate to true for values x less than 30 and to false otherwise.gap> Filtered(primes, x-> x < 30);[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ]We have already mentioned the operator { } that forms sublists. It takes a list of positions as its argumentand will return the list of elements from the original list corresponding to these positions.gap> primes{ [1 .. 10] };[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ]Finally we mention the function ForAll that checks whether a property holds for all elements of a list. Ittakes as its arguments a list and a function that returns a boolean value. ForAll checks whether the functionreturns true for all elements of the list.



36 Chapter 3. Lists and Recordsgap> list:= [ 1, 2, 3, 4 ];;gap> ForAll( list, x -> x > 0 );truegap> ForAll( list, x -> x in primes );falseYou will �nd more prede�ned for loops in chapter 21 of the reference manual.3.8 Vectors and MatricesThis section describes how GAP uses lists to represent row vectors and matrices. A row vector is a denselist of elements from a common �eld. A matrix is a dense list of row vectors over a common �eld and ofequal length.gap> v:= [3, 6, 2, 5/2];; IsRowVector(v);trueRow vectors may be added and multiplied by scalars from their �eld. Multiplication of row vectors of equallength results in their scalar product.gap> 2 * v; v * 1/3;[ 6, 12, 4, 5 ][ 1, 2, 2/3, 5/6 ]gap> v * v; # the scalar product of `v' with itself221/4Note that the expression v * 1/3 is actually evaluated by �rst multiplying v by 1 (which yields again v)and by then dividing by 3. This is also an allowed scalar operation. The expression v/3 would result in thesame value.Such arithmetical operations (if the results are again vectors) result in mutable vectors except if theoperation is binary and both operands are immutable; thus the vectors shown in the examples above are allmutable.So if you want to produce a mutable list with 100 entries equal to 25, you can simply say 25 + 0 * [ 1 ..100 ]. Note that ranges are also vectors (over the rationals), and that [ 1 .. 100 ] is mutable.A matrix is a dense list of row vectors of equal length.gap> m:= [[1,-1, 1],> [2, 0,-1],> [1, 1, 1]];[ [ 1, -1, 1 ], [ 2, 0, -1 ], [ 1, 1, 1 ] ]gap> m[2][1];2Syntactically a matrix is a list of lists. So the number 2 in the second row and the �rst column of the matrixm is referred to as the �rst element of the second element of the list m via m[2][1].A matrix may be multiplied by scalars, row vectors and other matrices. (If the row vectors and matricesinvolved in such a multiplication do not have suitable dimensions then the \missing" entries are treated aszeros, so the results may look unexpectedly in such cases.)



Section 8. Vectors and Matrices 37gap> [1, 0, 0] * m;[ 1, -1, 1 ]gap> [1, 0, 0, 2] * m;[ 1, -1, 1 ]gap> m * [1, 0, 0];[ 1, 2, 1 ]gap> m * [1, 0, 0, 2];[ 1, 2, 1 ]Note that multiplication of a row vector with a matrix will result in a linear combination of the rows of thematrix, while multiplication of a matrix with a row vector results in a linear combination of the columns ofthe matrix. In the latter case the row vector is considered as a column vector.A vector or matrix of integers can also be multiplied with a �nite �eld scalar and vice versa. Such productsresult in a matrix over the �nite �eld with the integers mapped into the �nite �eld in the obvious way.Finite �eld matrices are nicer to read when they are Displayed rather than Printed. (Here we write Z(q)to denote a primitive root of the �nite �eld with q elements.)gap> Display( m * One( GF(5) ) );1 4 12 . 41 1 1gap> Display( m^2 * Z(2) + m * Z(4) );z = Z(4)z^1 z^1 z^21 1 z^2z^1 z^1 z^2Submatrices can easily be extracted using the expression mat{rows}{columns}. They can also be assignedto, provided the big matrix is mutable (which it is not if it is the result of an arithmetical operation, seeabove).gap> sm := m{ [ 1, 2 ] }{ [ 2, 3 ] };[ [ -1, 1 ], [ 0, -1 ] ]gap> sm{ [ 1, 2 ] }{ [2] } := [[-2],[0]];; sm;[ [ -1, -2 ], [ 0, 0 ] ]The �rst curly brackets contain the selection of rows, the second that of columns.Matrices appear not only in linear algebra, but also as group elements, provided they are invertible. Herewe have the opportunity to meet a group-theoretical function, namely Order, which computes the order ofa group element.gap> Order( m * One( GF(5) ) );8gap> Order( m );infinityFor matrices whose entries are more complex objects, for example rational functions, GAP's Order methodsmight not be able to prove that the matrix has in�nite order, and one gets the following warning.#I Order: warning, order of <mat> might be infiniteIn such a case, if the order of the matrix really is in�nite, you will have to interrupt GAP by pressing ctl-C(followed by ctl-D or quit; to leave the break loop).To prove that the order of m is in�nite, we also could look at the minimal polynomial of m over the rationals.



38 Chapter 3. Lists and Recordsgap> f:= MinimalPolynomial( Rationals, m );; Factors( f );[ x_1-2, x_1^2+3 ]Factors returns a list of irreducible factors of the polynomial f. The �rst irreducible factor X � 2 revealsthat 2 is an eigenvalue of m, hence its order cannot be �nite.3.9 Plain RecordsA record provides another way to build new data structures. Like a list a record contains subobjects. In arecord the elements, the so-called record components, are not indexed by numbers but by names.In this section you will see how to de�ne and how to use records. Records are changed by assignments torecord components.Initially a record is de�ned as a comma separated list of assignments to its record components.gap> date:= rec(year:= 1997,> month:= "Jul",> day:= 14);rec( year := 1997, month := "Jul", day := 14 )The value of a record component is accessible by the record name and the record component name separatedby one dot as the record component selector.gap> date.year;1997Assignments to new record components are possible in the same way. The record is automatically resized tohold the new component.gap> date.time:= rec(hour:= 19, minute:= 23, second:= 12);rec( hour := 19, minute := 23, second := 12 )gap> date;rec( year := 1997, month := "Jul", day := 14,time := rec( hour := 19, minute := 23, second := 12 ) )We may use the Display function to illustrate the hierarchy of the record components.gap> Display( date );rec(year := 1997,month := "Jul",day := 14,time := rec(hour := 19,minute := 23,second := 12 ) )Records are objects that may be changed. An assignment to a record component changes the original object.The remarks made in Sections 3.2 and 3.3 about identity and mutability of lists are also true for records.Sometimes it is interesting to know which components of a certain record are bound. This information isavailable from the function RecNames, which takes a record as its argument and returns a list of names ofall bound components of this record as a list of strings.gap> RecNames(date);[ "year", "month", "day", "time" ]Now return to Sections 3.2 and 3.3 and �nd out what these sections mean for records.



Section 10. Further Information about Lists 393.10 Further Information about Lists(The following cross-references point to the GAP Reference Manual.)You will �nd more about lists, sets, and ranges in Chapter 21, in particular more about identical lists inSection 21.6. A more detailed description of strings is contained in Chapter 26. Fields are described inChapter 56, some known �elds in GAP are described in Chapters 16, 58, and 57. Row vectors and matricesare described in more detail in Chapters 23 and 24. Vector spaces are described in Chapter 59, furthermatrix related structures are described in Chapters 42, 60, and 61.You will �nd more list operations in Chapter 21.Records and functions for records are described in detail in Chapter 27.



4 Functions
You have already seen how to use functions in the GAP library, i.e., how to apply them to arguments.In this section you will see how to write functions in the GAP language. You will also see how to use the ifstatement and declare local variables with the local statement in the function de�nition. Loop constructionsvia while and for are discussed further, as are recursive functions.4.1 Writing FunctionsWriting a function that prints hello, world. on the screen is a simple exercise in GAP.gap> sayhello:= function()> Print("hello, world.\n");> end;function( ) ... endThis function when called will only execute the Print statement in the second line. This will print the stringhello, world. on the screen followed by a newline character \n that causes the GAP prompt to appear onthe next line rather than immediately following the printed characters.The function de�nition has the following syntax.

I function( arguments ) statements endA function de�nition starts with the keyword function followed by the formal parameter list argumentsenclosed in parenthesis '( )'. The formal parameter list may be empty as in the example. Several parametersare separated by commas. Note that there must be no semicolon behind the closing parenthesis. The functionde�nition is terminated by the keyword end.A GAP function is an expression like an integer, a sum or a list. Therefore it may be assigned to a variable.The terminating semicolon in the example does not belong to the function de�nition but terminates theassignment of the function to the name sayhello. Unlike in the case of integers, sums, and lists the value ofthe function sayhello is echoed in the abbreviated fashion function ( ) ... end. This shows the mostinteresting part of a function: its formal parameter list (which is empty in this example). The complete valueof sayhello is returned if you use the function Print.gap> Print(sayhello, "\n");function ( )Print( "hello, world.\n" );return;endNote the additional newline character "\n" in the Print statement. It is printed after the object sayhelloto start a new line. The extra return statement is inserted by GAP to simplify the process of executing thefunction.The newly de�ned function sayhello is executed by calling sayhello() with an empty argument list.gap> sayhello();hello, world.However, this is not a typical example as no value is returned but only a string is printed.



Section 3. Local Variables 414.2 If StatementsIn the following example we de�ne a function sign which determines the sign of a number.gap> sign:= function(n)> if n < 0 then> return -1;> elif n = 0 then> return 0;> else> return 1;> fi;> end;function( n ) ... endgap> sign(0); sign(-99); sign(11);0-11This example also introduces the if statement which is used to execute statements depending on a condition.The if statement has the following syntax.
I if condition then statements elif condition then statements else statements fiThere may be several elif parts. The elif part as well as the else part of the if statement may beomitted. An if statement is no expression and can therefore not be assigned to a variable. Furthermore anif statement does not return a value.Fibonacci numbers are de�ned recursively by f (1) = f (2) = 1 and f (n) = f (n�1)+ f (n�2) for n � 3. Sincefunctions in GAP may call themselves, a function fib that computes Fibonacci numbers can be implementedbasically by typing the above equations. (Note however that this is a very ine�cient way to compute f (n).)gap> fib:= function(n)> if n in [1, 2] then> return 1;> else> return fib(n-1) + fib(n-2);> fi;> end;function( n ) ... endgap> fib(15);610There should be additional tests for the argument n being a positive integer. This function fib might leadto strange results if called with other arguments. Try inserting the necessary tests into this example.4.3 Local VariablesA function gcd that computes the greatest common divisor of two integers by Euclid's algorithm will needa variable in addition to the formal arguments.



42 Chapter 4. Functionsgap> gcd:= function(a, b)> local c;> while b <> 0 do> c:= b;> b:= a mod b;> a:= c;> od;> return c;> end;function( a, b ) ... endgap> gcd(30, 63);3The additional variable c is declared as a local variable in the local statement of the function de�nition.The local statement, if present, must be the �rst statement of a function de�nition. When several localvariables are declared in only one local statement they are separated by commas.The variable c is indeed a local variable, that is local to the function gcd. If you try to use the value of cin the main loop you will see that c has no assigned value unless you have already assigned a value to thevariable c in the main loop. In this case the local nature of c in the function gcd prevents the value of thec in the main loop from being overwritten.gap> c:= 7;;gap> gcd(30, 63);3gap> c;7We say that in a given scope an identi�er identi�es a unique variable. A scope is a lexical part of a programtext. There is the global scope that encloses the entire program text, and there are local scopes that rangefrom the function keyword, denoting the beginning of a function de�nition, to the corresponding endkeyword. A local scope introduces new variables, whose identi�ers are given in the formal argument list andthe local declaration of the function. The usage of an identi�er in a program text refers to the variable inthe innermost scope that has this identi�er as its name.4.4 RecursionWe have already seen recursion in the function fib in Section 4.2. Here is another, slightly more complicatedexample.We will now write a function to determine the number of partitions of a positive integer. A partition of apositive integer is a descending list of numbers whose sum is the given integer. For example [4; 2; 1; 1] is apartition of 8. Note that there is just one partition of 0, namely [ ]. The complete set of all partitions ofan integer n may be divided into subsets with respect to the largest element. The number of partitions ofn therefore equals the sum of the numbers of partitions of n � i with elements less than or equal to i forall possible i . More generally the number of partitions of n with elements less than m is the sum of thenumbers of partitions of n � i with elements less than i for i less than m and n. This description yields thefollowing function.



Section 5. Further Information about Functions 43gap> nrparts:= function(n)> local np;> np:= function(n, m)> local i, res;> if n = 0 then> return 1;> fi;> res:= 0;> for i in [1..Minimum(n,m)] do> res:= res + np(n-i, i);> od;> return res;> end;> return np(n,n);> end;function( n ) ... endWe wanted to write a function that takes one argument. We solved the problem of determining the numberof partitions in terms of a recursive procedure with two arguments. So we had to write in fact two functions.The function nrparts that can be used to compute the number of partitions indeed takes only one argument.The function np takes two arguments and solves the problem in the indicated way. The only task of thefunction nrparts is to call np with two equal arguments.We made np local to nrparts. This illustrates the possibility of having local functions in GAP. It is howevernot necessary to put it there. np could as well be de�ned on the main level, but then the identi�er np wouldbe bound and could not be used for other purposes, and if it were used the essential function np would nolonger be available for nrparts.Now have a look at the function np. It has two local variables res and i. The variable res is used to collectthe sum and i is a loop variable. In the loop the function np calls itself again with other arguments. It wouldbe very disturbing if this call of np was to use the same i and res as the calling np. Since the new call ofnp creates a new scope with new variables this is fortunately not the case.Note that the formal parameters 'n' and 'm' of 'np' are treated like local variables.(Regardless of the recursive structure of an algorithm it is often cheaper (in terms of computing time) toavoid a recursive implementation if possible (and it is possible in this case), because a function call is notvery cheap.)4.5 Further Information about FunctionsThe function syntax is described in Section 5. The if statement is described in more detail in Section 4.16.More about Fibonacci numbers is found in Section 17.3.1 and more about partitions in Section 17.2.15.



5 Groups andHomomorphisms
In this chapter we will show some computations with groups. The examples deal mostly with permutationgroups, because they are the easiest to input. The functions mentioned here, like Group, Size or SylowSub-group, however, are the same for all kinds of groups, although the algorithms which compute the informationof course will be di�erent in most cases.5.1 Permutation groupsPermutation groups are so easy to input because their elements, i.e., permutations, are so easy to type: theyare entered and displayed in disjoint cycle notation. So let's construct a permutation group:gap> s8 := Group( (1,2), (1,2,3,4,5,6,7,8) );Group([ (1,2), (1,2,3,4,5,6,7,8) ])We formed the group generated by the permutations (1,2) and (1,2,3,4,5,6,7,8), which is well knownto be the symmetric group on eight points, and assigned it to the identi�er s8. Now the group S8 containsthe alternating group on eight points which can be described in several ways, e.g., as the group of all evenpermutations in s8, or as its derived subgroup.gap> a8 := DerivedSubgroup( s8 );Group([ (1,2,3), (2,3,4), (2,4)(3,5), (2,6,4), (2,4)(5,7), (2,8,6,4)(3,5) ])gap> Size( a8 ); IsAbelian( a8 ); IsPerfect( a8 );20160falsetrueOnce information about a group like s8 or a8 has been computed, it is stored in the group so that it cansimply be looked up when it is required again. This holds for all pieces of information in the previous example.Namely, a8 stores its order and that it is nonabelian and perfect, and s8 stores its derived subgroup a8. Hadwe computed a8 as CommutatorSubgroup( s8, s8 ), however, it would not have been stored, because itwould then have been computed as a function of two arguments, and hence one could not attribute it to justone of them. (Of course the function CommutatorSubgroup can compute the commutator subgroup of twoarbitrary subgroups.) The situation is a bit di�erent for Sylow p-subgroups: The function SylowSubgroupalso requires two arguments, namely a group and a prime p, but the result is stored in the group | namelytogether with the prime p in a list called ComputedSylowSubgroups, but we won't dwell on the details here.gap> syl2 := SylowSubgroup( a8, 2 );; Size( syl2 );64gap> Normalizer( a8, syl2 ) = syl2;truegap> cent := Centralizer( a8, Centre( syl2 ) );; Size( cent );192gap> DerivedSeries( cent );; List( last, Size );[ 192, 96, 32, 2, 1 ]



Section 1. Permutation groups 45We have typed double semicolons after some commands to avoid the output of the groups (which would beprinted by their generator lists). Nevertheless, the beginner is encouraged to type a single semicolon insteadand study the full output. This remark also applies for the rest of this tutorial.With the next examples, we want to calculate a subgroup of a8, then its normalizer and �nally determinethe structure of the extension. We begin by forming a subgroup generated by three commuting involutions,i.e., a subgroup isomorphic to the additive group of the vector space 23.gap> elab := Group( (1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8),> (1,5)(2,6)(3,7)(4,8) );;gap> Size( elab );8gap> IsElementaryAbelian( elab );trueAs usual, GAP prints the group by giving all its generators. This can be annoying, especially if there aremany of them or if they are of huge degree. It also makes it di�cult to recognize a particular group whenthere already several around. Note that although it is no problem for us to specify a particular group toGAP, by using well-chosen identi�ers such as a8 and elab, it is impossible for GAP to use these identi�erswhen printing a group for us, because the group does not know which identi�er(s) point to it, in fact therecan be several. In order to give a name to the group itself (rather than to the identi�er), you have to usethe function SetName. We do this with the name 2^3 here which re
ects the mathematical properties of thegroup. From now on, GAP will use this name when printing the group for us, but we still cannot use thisname to specify the group to GAP, because the name does not know to which group it was assigned (afterall, you could assign the same name to several groups). When talking to the computer, you must always useidenti�ers.gap> SetName( elab, "2^3" ); elab;2^3gap> norm := Normalizer( a8, elab );; Size( norm );1344Now that we have the subgroup norm of order 1344 and its subgroup elab, we want to look at its factorgroup. But since we also want to �nd preimages of factor group elements in norm, we really want to look atthe natural homomorphism de�ned on norm with kernel elab and whose image is the factor group.gap> hom := NaturalHomomorphismByNormalSubgroup( norm, elab );<action epimorphism>gap> f := Image( hom );Group([ (), (), (), (4,5)(6,7), (4,6)(5,7), (2,3)(6,7), (2,4)(3,5),(1,2)(5,6) ])gap> Size( f );168The factor group is again represented as a permutation group. However, the action domain of this factorgroup has nothing to do with the action domain of norm. (It only happens that both are subsets of thenatural numbers.) We can now form images and preimages under the natural homomorphism. The set ofpreimages of an element under hom is a coset modulo elab. We use the function PreImages here becausehom is not a bijection, so an element of the range can have several preimages or none at all.



46 Chapter 5. Groups and Homomorphismsgap> ker:= Kernel( hom );2^3gap> x := (1,8,3,5,7,6,2);; Image( hom, x );(1,7,5,6,2,3,4)gap> coset := PreImages( hom, last );RightCoset(2^3,(2,8,6,7,3,4,5))Note that GAP is free to choose any representative for the coset of preimages. Of course the quotient of tworepresentatives lies in the kernel of the homomorphism.gap> rep:= Representative( coset );(2,8,6,7,3,4,5)gap> x * rep^-1 in ker;trueThe factor group f is a simple group, i.e., it has no non-trivial normal subgroups. GAP can detect this fact,and it can then also �nd the name by which this simple group is known among group theorists. (Such namesare of course not available for non-simple groups.)gap> IsSimple( f ); IsomorphismTypeInfoFiniteSimpleGroup( f );truerec( series := "L", parameter := [ 2, 7 ],name := "A(1,7) = L(2,7) ~ B(1,7) = O(3,7) ~ C(1,7) = S(2,7) ~ 2A(1,7) = U(2\,7) ~ A(2,2) = L(3,2)" )gap> SetName( f, "L_3(2)" );We give f the name L 3(2) because the last part of the name string reveals that it is isomorphic to thesimple linear group L3(2). This group, however, also has a lot of other names. Names that are connectedwith a = sign are di�erent names for the same matrix group, e.g., A(2,2) is the Lie type notation for theclassical notation L(3,2). Other pairs of names are connected via ~, these then specify other classical groupsthat are isomorphic to that linear group (e.g., the symplectic group S(2,7), whose Lie type notation wouldbe C(1,7)).The group norm acts on the eight elements of its normal subgroup elab by conjugation, yielding a repre-sentation of L3(2) in s8 which leaves one point �xed (namely point 1). The image of this representation canbe computed with the function Action; it is even contained in the group norm and we can show that normis indeed a split extension of the elementary abelian group 23 with this image of L3(2).gap> op := Action( norm, elab );Group([ (), (), (), (5,6)(7,8), (5,7)(6,8), (3,4)(7,8), (3,5)(4,6),(2,3)(6,7) ])gap> IsSubgroup( a8, op ); IsSubgroup( norm, op );truetruegap> IsTrivial( Intersection( elab, op ) );truegap> SetName( norm, "2^3:L_3(2)" );By the way, you should not try the operator < instead of the function IsSubgroup. Something likegap> elab < a8;falsewill not cause an error, but the result does not signify anything about the inclusion of one group in another;< tests which of the two groups is less in some total order. On the other hand, the equality operator = infact does test the equality of its arguments.



Section 2. Actions of Groups 47Summary. In this section we have used the elementary group functions to determine the structure of anormalizer. We have assigned names to the involved groups which re
ect their mathematical structure andGAP uses these names when printing the groups.5.2 Actions of GroupsIn order to get another representation of a8, we consider another action, namely that on the elements of acertain conjugacy class by conjugation.In the following example we temporarily increase the line length limit from its default value 80 to 82 inorder to make the long expression �t into one line.gap> ccl := ConjugacyClasses( a8 );; Length( ccl );14gap> List( ccl, c -> Order( Representative( c ) ) );[ 1, 2, 2, 3, 6, 3, 4, 4, 5, 15, 15, 6, 7, 7 ]gap> SizeScreen([ 82, ]);;gap> List( ccl, Size );[ 1, 210, 105, 112, 1680, 1120, 2520, 1260, 1344, 1344, 1344, 3360, 2880, 2880 ]gap> SizeScreen([ 80, ]);;Note the di�erence between Order (which means the element order), Size (which means the size of theconjugacy class) and Length (which means the length of a list). We choose to let a8 operate on the class oflength 112.gap> class := First( ccl, c -> Size(c) = 112 );;gap> op := Action( a8, AsList( class ) );;We use AsList here to convert the conjugacy class into a list of its elements whereas we wrote Action(norm, elab ) directly in the previous section. The reason is that the elementary abelian group elab canbe quickly enumerated by GAP whereas the standard enumeration method for conjugacy classes is slowerthan just explicit calculation of the elements. However, GAP is reluctant to construct explicit element lists,because for really large groups this direct method is infeasible.Note also the function 'First', used to �nd the �rst element in a list which passes some test. See 21.20.20 inthe reference manual for more details.We now have a permutation representation op on 112 points, which we test for primitivity. If it is notprimitive, we can obtain a minimal block system (i.e., one where the blocks have minimal length) by thefunction Blocks.gap> IsPrimitive( op, [ 1 .. 112 ] );falsegap> blocks := Blocks( op, [ 1 .. 112 ] );;Note that we must specify the domain of the action. You might think that the functions IsPrimitiveand Blocks could use [1..112] as default domain if no domain was given. But this is not so easy, forexample would the default domain of Group( (2,3,4) ) be [1..4] or [2..4]? To avoid confusion, allaction functions require that you specify the domain of action. If we had speci�ed [1..113] in the primitivitytest above, point 113 would have been a �xpoint (and the action would not even have been transitive).Now blocks is a list of blocks (i.e., a list of lists), which we do not print here for the sake of saving paper(try it for yourself). In fact all we want to know is the size of the blocks, or rather how many there are (theproduct of these two numbers must of course be 112). Then we can obtain a new permutation group of thecorresponding degree by letting op act on these blocks setwise.



48 Chapter 5. Groups and Homomorphismsgap> Length( blocks[1] ); Length( blocks );256gap> op2 := Action( op, blocks, OnSets );;gap> IsPrimitive( op2, [ 1 .. 56 ] );trueNote that we give a third argument (the action function OnSets) to indicate that the action is not thedefault action on points but an action on sets of elements given as sorted lists. (Section 39.2 of the referencemanual lists all actions that are pre-de�ned by GAP.)The action of op on the given block system gave us a new representation on 56 points which is primitive,i.e., the point stabilizer is a maximal subgroup. We compute its preimage in the representation on eightpoints using the associated action homomorphisms (which of course are monomorphisms). We construct thecomposition of two homomorphisms with the * operator, reading left-to-right.gap> ophom := ActionHomomorphism( a8, op );;gap> ophom2 := ActionHomomorphism( op, op2 );;gap> composition := ophom * ophom2;;gap> stab := Stabilizer( op2, 2 );;gap> preim := PreImages( composition, stab );Group([ (1,4,2), (3,6,7), (3,8,5,7,6), (1,4)(7,8) ])The normalizer of an element in the conjugacy class class is a group of order 360, too. In fact, it is aconjugate of the maximal subgroup we had found before, and a conjugating element in a8 is found by thefunction RepresentativeAction.gap> sgp := Normalizer( a8, Subgroup(a8,[Representative(class)]) );;gap> Size( sgp );360gap> RepresentativeAction( a8, sgp, preim );(3,4)(7,8)So far we have seen a few applications of the functions Action and ActionHomomorphism. But perhapseven more interesting is the fact that the natural homomorphism hom constructed above is also an actionhomomorphism; this is also the reason why its image is represented as a permutation group: it is thenatural representation for actions. We will now look at this action homomorphism again to �nd out on whatobjects it operates. These objects form the so-called external set which is associated with every actionhomomorphism. We will mention external sets only super�cially in this tutorial, for details see 39.11 in thereference manual. For the moment, we need only know that the external set is obtained by the functionUnderlyingExternalSet.gap> t := UnderlyingExternalSet( hom );<xset:RightTransversal(2^3:L_3(2),Group([ (1,5)(2,6)(3,7)(4,8), (1,3)(2,4)(5,7)(6,8), (1,2)(3,4)(5,6)(7,8),(5,6)(7,8), (5,7)(6,8), (3,4)(7,8), (3,5)(4,6) ]))>For the natural homomorphism hom the external set is a right transversal of a subgroup U in norm, andaction on the right transversal really means action on the cosets of the subgroup U . When executing thefunction call NaturalHomomorphismByNormalSubgroup( norm, elab ), GAP has chosen a subgroup U forwhich the kernel of this action (i.e., the core of U in norm) is the desired normal subgroup elab. For thepurpose of operating on the cosets, the right transversal t contains one representative from each coset of U .Regarded this way, a transversal is simply a list of group elements, and you can make GAP produce this listby AsList(t). (Try it.)



Section 2. Actions of Groups 49The image of such a representative from AsList(t) under right multiplication with an element from normwill in general not be in AsList(t), because it will not be among the chosen representatives again. Henceright multiplication is not an action on AsList(t). However, GAP uses a special trick to be discussed belowto make this a well-de�ned action on the cosets represented by the elements of AsList(t). For now, it isimportant to know that the external set t is more than just the right transversal on which the group normoperates. Altogether three things are necessary to specify an action: a group G , a set D , and a functionopr :D �G ! D . We can access these ingredients with the following functions:gap> ActingDomain(t); # the group2^3:L_3(2)gap> Enumerator(t);RightTransversal(2^3:L_3(2),Group([ (1,5)(2,6)(3,7)(4,8), (1,3)(2,4)(5,7)(6,8), (1,2)(3,4)(5,6)(7,8),(5,6)(7,8), (5,7)(6,8), (3,4)(7,8), (3,5)(4,6) ]))gap> FunctionAction(t);function( pnt, elm ) ... endgap> NameFunction( last );"OnRight"The function which is named "OnRight" is also assigned to the identi�er OnRight, and it means multiplica-tion from the right; this is the usual way to operate on a right transversal. OnRight( d, g ) is de�ned asd * g .Observe that the external set t and its Enumerator are printed the same way, but be aware that an externalset also comprises the acting domain and the action function. The Enumerator itself, i.e., the right transver-sal, in turn comprises knowledge about the group norm and the subgroup U , and this is what allows thespecial trick promised above. As far as Position is concerned, the Enumerator behaves as an (immutable)list and you can ask for the position of an element in it.gap> elm := (1,4)(2,7)(3,6)(5,8);;gap> Position( Enumerator(t), elm );failgap> PositionCanonical( Enumerator(t), elm );5The result fail means that the element was not found at all in the list: it is not among the chosenrepresentatives. The di�erence between the functions Position and PositionCanonical is that the �rstsimply looks whether elm is contained among the representatives which together form the right transversalt, whereas the second really looks for the position of the coset described by the representative elm. In otherwords, it �rst replaces elm by a canonical representative of the same coset (which must be contained inEnumerator(t)) and then looks for its position, hence the name. The function ActionHomomorphism (andits relatives) always use PositionCanonical when they calculate the images of the generators of the sourcegroup (here, norm) under the homomorphism (here, hom). Therefore they can give a well-de�ned action onan enumerator , even if the action would not be well-de�ned on AsList( enumerator ).The image of the natural homomorphism is the permutation group f that results from the action of norm onthe right transversal. It can be calculated by either of the following commands. The second of them showsthat the external set t contains all information that is necessary for Action to do its work.gap> Action( norm, Enumerator(t), OnRight ) = f;truegap> Action( t ) = f;trueWe have speci�ed the action function OnRight in this example, but we have seen examples like Action(norm, elab ) earlier where this third argument was not given. If an action function is omitted, GAP



50 Chapter 5. Groups and Homomorphismsalways assumes OnPoints which is de�ned as OnPoints( d, g ) = d ^ g . This \caret" operator denotesconjugation in a group if both arguments d and g are group elements (contained in a common group), but italso denotes the natural action of permutations on positive integers (and exponentiation of integers as well,of course).Summary. In this section we have learned how groups can operate on GAP objects such as integers andgroup elements. We have used ActionHomomorphism, among others, to construct a natural homomorphism,in which case the group operated on the right transversal of a suitable subgroup. This right transversal gaveus an example for the use of PositionCanonical, which allowed us to specify cosets by giving representatives.5.3 Subgroups as StabilizersAction functions can also be used without constructing external sets. We will try to �nd several subgroups ina8 as stabilizers of such actions. One subgroup is immediately available, namely the stabilizer of one point.The index of the stabilizer must of course be equal to the length of the orbit, i.e., 8.gap> u8 := Stabilizer( a8, 1 );Group([ (2,3,4), (2,4)(3,5), (2,6,4), (2,4)(5,7), (2,8,6,4)(3,5) ])gap> Index( a8, u8 );8gap> Orbit( a8, 1 ); Length( last );[ 1, 3, 2, 4, 5, 6, 7, 8 ]8This gives us a hint how to �nd further subgroups. Each subgroup is the stabilizer of a point of an appropriatetransitive action (namely the action on the cosets of that subgroup or another action that is equivalent tothis action). So the question is how to �nd other actions. The obvious thing is to operate on pairs of points.So using the function Tuples we �rst generate a list of all pairs.gap> pairs := Tuples( [1..8], 2 );;Now we would like to have a8 operate on this domain. But we cannot use the default action OnPointsbecause list ^ perm is not de�ned. So we must tell the functions from the actions package how the groupelements operate on the elements of the domain. In our example we can do this by simply passing OnPairsas an optional last argument. All functions from the actions package accept such an optional argument thatdescribes the action. One example is IsTransitive.gap> IsTransitive( a8, pairs, OnPairs );falseThe action is of course not transitive, since the pairs [ 1, 1 ] and [ 1, 2 ] cannot lie in the same orbit.So we want to �nd out what the orbits are. The function Orbits does that for us. It returns a list of all theorbits. We look at the orbit lengths and representatives for the orbits.gap> orbs := Orbits( a8, pairs, OnPairs );; Length( orbs );2gap> List( orbs, Length );[ 8, 56 ]gap> List( orbs, o -> o[1] );[ [ 1, 1 ], [ 1, 2 ] ]The action of a8 on the �rst orbit (this is the one containing [1,1], try [1,1] in orbs[1]) is of courseequivalent to the original action, so we ignore it and work with the second orbit.



Section 3. Subgroups as Stabilizers 51gap> u56 := Stabilizer( a8, orbs[2][1], OnPairs );; Index( a8, u56 );56So now we have found a second subgroup. To make the following computations a little bit easier andmore e�cient we would now like to work on the points [1..56] instead of the list of pairs. The functionActionHomomorphism does what we need. It creates a homomorphism de�ned on a8 whose image is a newgroup that operates on [1..56] in the same way that a8 operates on the second orbit.gap> h56 := ActionHomomorphism( a8, orbs[2], OnPairs );;gap> a8_56 := Image( h56 );;We would now like to know if the subgroup u56 of index 56 that we found is maximal or not. As we haveused already in Section 5.2, a subgroup is maximal if and only if the action on the cosets of this subgroupis primitive.gap> IsPrimitive( a8_56, [1..56] );falseRemember that we can leave out the function if we mean OnPoints but that we have to specify the actiondomain for all action functions.We see that a8 56 is not primitive. This means of course that the action of a8 on orb[2] is not primitive,because those two actions are equivalent. So the stabilizer u56 is not maximal. Let us try to �nd its super-groups. We use the function Blocks to �nd a block system. The (optional) third argument in the followingexample tells Blocks that we want a block system where 1 and 14 lie in one block.gap> blocks := Blocks( a8_56, [1..56], [1,14] );[ [ 1, 3, 4, 5, 6, 14, 31 ], [ 2, 13, 15, 16, 17, 23, 24 ],[ 7, 8, 22, 34, 37, 47, 49 ], [ 9, 11, 18, 20, 35, 38, 48 ],[ 10, 25, 26, 27, 32, 39, 50 ], [ 12, 28, 29, 30, 33, 36, 40 ],[ 19, 21, 42, 43, 45, 46, 55 ], [ 41, 44, 51, 52, 53, 54, 56 ] ]The result is a list of sets, such that a8 56 operates on those sets. Now we would like the stabilizer of thisaction on the sets. Because we want to operate on the sets we have to pass OnSets as third argument.gap> u8_56 := Stabilizer( a8_56, blocks[1], OnSets );;gap> Index( a8_56, u8_56 );8gap> u8b := PreImages( h56, u8_56 );; Index( a8, u8b );8gap> IsConjugate( a8, u8, u8b );trueSo we have found a supergroup of u56 that is conjugate in a8 to u8. This is not surprising, since u8 is apoint stabilizer, and u56 is a two point stabilizer in the natural action of a8 on eight points.Here is a warning: If you specify OnSets as third argument to a function like Stabilizer, you have tomake sure that the point (i.e. the second argument) is indeed a set. Otherwise you will get a puzzlingerror message or even wrong results! In the above example, the second argument blocks[1] came from thefunction Blocks, which returns a list of sets, so everything was OK.Actually there is a third block system of a8 56 that gives rise to a third subgroup.



52 Chapter 5. Groups and Homomorphismsgap> blocks := Blocks( a8_56, [1..56], [1,13] );;gap> u28_56 := Stabilizer( a8_56, [1,13], OnSets );;gap> u28 := PreImages( h56, u28_56 );;gap> Index( a8, u28 );28We know that the subgroup u28 of index 28 is maximal, because we know that a8 has no subgroups of index2, 4, or 7. However we can also quickly verify this by checking that a8 56 operates primitively on the 28blocks.gap> IsPrimitive( a8_56, blocks, OnSets );trueStabilizer is not only applicable to groups like a8 but also to their subgroups like u56. So another methodto �nd a new subgroup is to compute the stabilizer of another point in u56. Note that u56 already leaves 1and 2 �xed.gap> u336 := Stabilizer( u56, 3 );;gap> Index( a8, u336 );336Other functions are also applicable to subgroups. In the following we show that u336 operates regularly onthe 60 triples of [4..8] which contain no element twice. We constuct the list of these 60 triples with thefunction Orbit (using OnTuples as the natural generalization of OnPairs) and then pass it as action domainto the function IsRegular. The positive result of the regularity test means that this action is equivalent tothe actions of u336 on its 60 elements from the right.gap> IsRegular( u336, Orbit( u336, [4,5,6], OnTuples ), OnTuples );trueJust as we did in the case of the action on the pairs above, we now construct a new permutation groupthat operates on [1..336] in the same way that a8 operates on the cosets of u336. But this time we let a8operate on a right transversal, just like norm did in the natural homomorphism above.gap> t := RightTransversal( a8, u336 );;gap> a8_336 := Action( a8, t, OnRight );;To �nd subgroups above u336 we again look for nontrivial block systems.gap> blocks := Blocks( a8_336, [1..336] );; blocks[1];[ 1, 43, 85 ]We see that the union of u336 with its 43rd and its 85th coset is a subgroup in a8 336, its index is 112.We can obtain it as the closure of u336 with a representative of the 43rd coset, which can be found asthe 43rd element of the transversal t. Note that in the representation a8 336 on 336 points, this subgroupcorresponds to the stabilizer of the block [ 1, 43, 85 ].gap> u112 := ClosureGroup( u336, t[43] );;gap> Index( a8, u112 );112Above this subgroup of index 112 lies a subgroup of index 56, which is not conjugate to u56. In fact, unlikeu56 it is maximal. We obtain this subgroup in the same way that we obtained u112, this time forcing twopoints, namely 7 and 43 into the �rst block.



Section 3. Subgroups as Stabilizers 53gap> blocks := Blocks( a8_336, [1..336], [1,7,43] );;gap> Length( blocks );56gap> u56b := ClosureGroup( u112, t[7] );; Index( a8, u56b );56gap> IsPrimitive( a8_336, blocks, OnSets );trueWe already mentioned in Section 5.2 that there is another standard action of permutations, namely theconjugation. E.g., since no other action is speci�ed in the following example, OrbitLength simply operatesvia OnPoints, and because perm1 ^ perm2 is de�ned as the conjugation of perm2 on perm1, in fact wecompute the length of the conjugacy class of (1,2)(3,4)(5,6)(7,8).gap> OrbitLength( a8, (1,2)(3,4)(5,6)(7,8) );105gap> orb := Orbit( a8, (1,2)(3,4)(5,6)(7,8) );;gap> u105 := Stabilizer( a8, (1,2)(3,4)(5,6)(7,8) );; Index( a8, u105 );105Note that although the length of a conjugacy class of any element elm in any �nite group G can becomputed as OrbitLength( G, elm ), the command Size( ConjugacyClass( G, elm ) ) is probablymore e�cient.gap> Size( ConjugacyClass( a8, (1,2)(3,4)(5,6)(7,8) ) );105Of course the stabilizer u105 is in fact the centralizer of the element (1,2)(3,4)(5,6)(7,8). Stabilizernotices that and computes the stabilizer using the centralizer algorithm for permutation groups. In the usualway we now look for the subgroups above u105.gap> blocks := Blocks( a8, orb );; Length( blocks );15gap> blocks[1];[ (1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8), (1,4)(2,3)(5,8)(6,7),(1,5)(2,6)(3,7)(4,8), (1,6)(2,5)(3,8)(4,7), (1,7)(2,8)(3,5)(4,6),(1,8)(2,7)(3,6)(4,5) ]To �nd the subgroup of index 15 we again use closure. Now we must be a little bit careful to avoid confusion.u105 is the stabilizer of (1,2)(3,4)(5,6)(7,8). We know that there is a correspondence between the pointsof the orbit and the cosets of u105. The point (1,2)(3,4)(5,6)(7,8) corresponds to u105. To get thesubgroup above u105 that has index 15 in a8, we must form the closure of u105 with an element of thecoset that corresponds to any other point in the �rst block. If we choose the point (1,3)(2,4)(5,8)(6,7),we must use an element of a8 that maps (1,2)(3,4)(5,6)(7,8) to (1,3)(2,4)(5,8)(6,7). The functionRepresentativeAction does what we need. It takes a group and two points and returns an element of thegroup that maps the �rst point to the second. In fact it also allows you to specify the action as an optionalfourth argument as usual, but we do not need this here. If no such element exists in the group, i.e., if thetwo points do not lie in one orbit under the group, RepresentativeAction returns fail.gap> rep := RepresentativeAction( a8, (1,2)(3,4)(5,6)(7,8),> (1,3)(2,4)(5,8)(6,7) );(2,3)(6,8)gap> u15 := ClosureGroup( u105, rep );; Index( a8, u15 );15u15 is of course a maximal subgroup, because a8 has no subgroups of index 3 or 5. There is in fact anotherclass of subgroups of index 15 above u105 that we get by adding (2,3)(6,7) to u105.



54 Chapter 5. Groups and Homomorphismsgap> u15b := ClosureGroup( u105, (2,3)(6,7) );; Index( a8, u15b );15gap> RepresentativeAction( a8, u15, u15b );failRepresentativeAction tells us that there is no element g in a8 such that u15 ^ g = u15b. Because ^ alsodenotes the conjugation of subgroups this tells us that u15 and u15b are not conjugate.Summary. In this section we have demonstrated some functions from the actions package. There is a wholeclass of functions that we did not mention, namely those that take a single element instead of a whole groupas �rst argument, e.g., Cycle and Permutation. These are fully described in Chapter 39 in the referencemanual.5.4 Group Homomorphisms by ImagesWe have already seen examples of group homomorphisms in the last sections, namely natural homomor-phisms and action homomorphisms. In this section we will show how to construct a group homomorphismG ! H by specifying a generating set for G and the images of these generators in H . We use the functionGroupHomomorphismByImages( G, H , gens, imgs ) where gens is a generating set for G and imgs is alist whose ith entry is the image of gens[ i ] under the homomorphism.gap> s4 := Group((1,2,3,4),(1,2));; s3 := Group((1,2,3),(1,2));;gap> hom := GroupHomomorphismByImages( s4, s3,> GeneratorsOfGroup(s4), [(1,2),(2,3)] );[ (1,2,3,4), (1,2) ] -> [ (1,2), (2,3) ]gap> Kernel( hom );Group([ (1,4)(2,3), (1,3)(2,4) ])gap> Image( hom, (1,2,3) );(1,2,3)gap> Image( hom, DerivedSubgroup(s4) );Group([ (1,3,2), (1,3,2) ])gap> PreImage( hom, (1,2,3) );Error, <map> must be an inj. and surj. mapping called from<function>( <arguments> ) called from read-eval-loopEntering break read-eval-print loop ...you can 'quit;' to quit to outer loop, oryou can 'return;' to continuebrk> quit;gap> PreImagesRepresentative( hom, (1,2,3) );(1,4,2)gap> PreImage( hom, TrivialSubgroup(s3) ); # the kernelGroup([ (1,4)(2,3), (1,3)(2,4) ])This homomorphism from S4 onto S3 is well known from elementary group theory. Images of elements andsubgroups under hom can be calculated with the function Image. But since the mapping hom is not bijective,we cannot use the function PreImage for preimages of elements (they can have several preimages). Instead,we have to use PreImagesRepresentative, which returns one preimage if at least one exists (and wouldreturn fail if none exists, which cannot occur for our surjective hom.) On the other hand, we can usePreImage for the preimage of a set (which always exists, even if it is empty).Suppose we mistype the input when trying to construct a homomorphism, as in the following example.



Section 4. Group Homomorphisms by Images 55gap> GroupHomomorphismByImages( s4, s3,> GeneratorsOfGroup(s4), [(1,2,3),(2,3)] );failThere is no such homomorphism, hence fail is returned. But note that because of this, GroupHomomor-phismByImages must do some checks, and this was also done for the mapping hom above. One can avoidthese checks if one is sure that the desired homomorphism really exists. For that, the function GroupHomo-morphismByImagesNC can be used; the NC stands for \no check".But note that horrible things can happen if GroupHomomorphismByImagesNC is used when the input doesnot describe a homomorphism.gap> hom2 := GroupHomomorphismByImagesNC( s4, s3,> GeneratorsOfGroup(s4), [(1,2,3),(2,3)] );[ (1,2,3,4), (1,2) ] -> [ (1,2,3), (2,3) ]gap> Size( Kernel(hom2) );24In other words, GAP claims that the kernel is the full s4, yet hom2 obviously has some non-trivial images!Clearly there is no such thing as a homomorphism which maps an element of order 4 (namely, (1,2,3,4)) toan element of order 3 (namely, (1,2,3)). But if you use the command GroupHomomorphismByImagesNC,GAP trusts you.gap> IsGroupHomomorphism( hom2 );trueAnd then it produces serious nonsense if the thing is not a homomorphism, as seen above!Besides the safe command GroupHomomorphismByImages, which returns fail if the requested homomor-phism does not exist, there is the function GroupGeneralMappingByImages, which returns a general mapping(that is, a possibly multi-valued mapping) that can be tested with IsGroupHomomorphism.gap> hom2 := GroupGeneralMappingByImages( s4, s3,> GeneratorsOfGroup(s4), [(1,2,3),(2,3)] );;gap> IsGroupHomomorphism( hom2 );falseBut the possibility of testing for being a homomorphism is not the only reason why GAP o�ers groupgeneral mappings. Another (more important?) reason is that their existence allows \reversal of arrows"in a homomorphism such as our original hom. By this we mean the GroupHomomorphismByImages with leftand right sides exchanged, in which case it is of course merely a GroupGeneralMappingByImages.gap> rev := GroupGeneralMappingByImages( s3, s4,> [(1,2),(2,3)], GeneratorsOfGroup(s4) );;Now we have a hom7�!b () b rev7�!a for a 2 s4 and b 2 s3. Since every such b has 4 preimages under hom, itnow has 4 images under rev. Just as the 4 preimages form a coset of the kernel V4 � s4 of hom, they alsoform a coset of the cokernel V4 � s4 of rev. The cokernel itself is the set of all images of One( s3 ) (it isa normal subgroup in the group of all images under rev). The operation 'One' returns the identity elementof a group, see 30.10.2 in the reference manual. And this is why GAP wants to perform such a reversal ofarrows: it calculates the kernel of a homomorphism like hom as the cokernel of the reversed group generalmapping (here rev).gap> CoKernel( rev );Group([ (1,4)(2,3), (1,3)(2,4) ])The reason why rev is not a homomorphism is that it is not single-valued (because hom was not injective).But there is another critical condition: If we reverse the arrows of a non-surjective homomorphism, we



56 Chapter 5. Groups and Homomorphismsobtain a group general mapping which is not de�ned everywhere, i.e., which is not total (although it willbe single-valued if the original homomorphism is injective). GAP requires that a group homomorphism beboth single-valued and total, so you will get fail if you say GroupHomomorphismByImages( G, H , gens,imgs ) where gens does not generate G (even if this would give a decent homomorphism on the subgroupgenerated by gens). For a full description, see Chapter 38 in the reference manual.The last example of this section shows that the notion of kernel and cokernel naturally extends even to thecase where neither hom2 nor its inverse general mapping (with arrows reversed) is a homomorphism.gap> CoKernel( hom2 ); Kernel( hom2 );Group([ (2,3), (1,3) ])Group([ (3,4), (2,3,4), (1,2,4) ])gap> IsGroupHomomorphism( InverseGeneralMapping( hom2 ) );falseSummary. In this section we have constructed homomorphisms by specifying images for a set of generators.We have seen that by reversing the direction of the mapping, we get group general mappings, which neednot be single-valued (unless the mapping was injective) nor total (unless the mapping was surjective).5.5 Nice MonomorphismsFor some types of groups, the best method to calculate in an isomorphic group in a \better" representation(say, a permutation group). We call an injective homomorphism, that will give such an isomorphic image a\nice monomorphism".For example in the case of a matrix group we can take the action on the underlying vector space (or asuitable subset) to obtain such a monomorphism:gap> grp:=GL(2,3);;gap> dom:=GF(3)^2;;gap> hom := ActionHomomorphism( grp, dom );; IsInjective( hom );truegap> p := Image( hom,grp );Group([ (4,7)(5,8)(6,9), (2,7,6)(3,4,8) ])To demonstrate the technique of nice monomorphisms, we compute the conjugacy classes of the permutationgroup and lift them back into the matrix group with the monomorphism hom. Lifting back a conjugacy classmeans �nding the preimage of the representative and of the centralizer; the latter is called StabilizerO-fExternalSet in GAP (because conjugacy classes are represented as external sets, see Section 37.9 in thereference manual).gap> pcls := ConjugacyClasses( p );; gcls := [ ];;gap> for pc in pcls do> gc:=ConjugacyClass(grp,PreImagesRepresentative(hom,Representative(pc)));> SetStabilizerOfExternalSet(gc,PreImage(hom,> StabilizerOfExternalSet(pc)));> Add( gcls, gc );> od;gap> List( gcls, Size );[ 1, 8, 12, 1, 8, 6, 6, 6 ]All the steps we have made above are automatically performed by GAP if you simply ask for Conjugacy-Classes( grp ), provided that GAP already knows that grp is �nite (e.g., because you asked IsFinite(



Section 5. Nice Monomorphisms 57grp ) before). The reason for this is that a �nite matrix group like grp is \handled by a nice monomor-phism". For such groups, GAP uses the command NiceMonomorphism to construct a monomorphism (suchas the hom in the previous example) and then proceeds as we have done above.gap> grp:=GL(2,3);;gap> IsHandledByNiceMonomorphism( grp );truegap> hom := NiceMonomorphism( grp );<action isomorphism>gap> p :=Image(hom,grp);Group([ (4,7)(5,8)(6,9), (2,7,6)(3,4,8) ])gap> cc := ConjugacyClasses( grp );; ForAll(cc, x-> x in gcls);truegap> ForAll(gcls, x->x in cc); # cc and gcls might be ordered differentlytrueNote that a nice monomorphism might be de�ned on a larger group than grp { so we have to use Im-age(hom,grp) and not only Image(hom).Nice monomorphisms are not only used for matrix groups, but also for other kinds of groups in whichone cannot calculate easily enough. As another example, let us show that the automorphism group of thequaternion group of order 8 is isomorphic to the symmetric group of degree 4 by examining the \nice object"associated with that automorphism group.gap> p:=Group((1,7,6,8)(2,5,3,4), (1,2,6,3)(4,8,5,7));;gap> aut := AutomorphismGroup( p );; NiceMonomorphism(aut);;gap> niceaut := NiceObject( aut );Group([ (1,2)(3,4), (3,4)(5,6), (1,5)(2,6)(3,4), (1,5,4)(2,6,3) ])gap> IsomorphismGroups( niceaut, SymmetricGroup( 4 ) );[ (1,2)(3,4), (3,4)(5,6), (1,5)(2,6)(3,4), (1,5,4)(2,6,3) ] ->[ (1,3)(2,4), (1,4)(2,3), (3,4), (1,4,2) ]The range of a nice monomorphism is in most cases a permutation group, because nice monomorphisms aremostly action homomorphisms. In some cases, like in our last example, the group is solvable and you mightprefer a pc group as nice object. You cannot change the nice monomorphism of the automorphism group(because it is the value of the attribute NiceMonomorphism), but you can compose it with an isomorphismfrom the permutation group to a pc group to obtain your personal nicer monomorphism. If you reconstructthe automorphism group, you can even prescribe it this nicer monomorphism as its NiceMonomorphism,because a newly-constructed group will not yet have a NiceMonomorphism set.gap> nicer := NiceMonomorphism(aut) * IsomorphismPcGroup(niceaut);;gap> aut2 := GroupByGenerators( GeneratorsOfGroup( aut ) );;gap> SetIsHandledByNiceMonomorphism( aut2, true );gap> SetNiceMonomorphism( aut2, nicer );gap> NiceObject( aut2 ); # a pc groupGroup([ f4, f3, f1*f2^2*f3*f4, f2^2*f3 ])The star * denotes composition of mappings from the left to the right, as we have seen in Section 5.2 above.Reconstructing the automorphism group may of course result in the loss of other information GAP hadalready gathered, besides the (not-so-)nice monomorphism.Summary. In this section we have seen how calculations in groups can be carried out in isomorphic imagesin nicer groups. We have seen that GAP pursues this technique automatically for certain classes of groups,e.g., for matrix groups that are known to be �nite.



58 Chapter 5. Groups and Homomorphisms5.6 Further Information about Groups and HomomorphismsGroups and the functions for groups are treated in Chapter 37. There are several chapters dealing with groupsin speci�c representations, for example Chapter 41 on permutation groups, 43 on polycyclic (including �nitesolvable) groups, 42 on matrix groups and 45 on �nitely presented groups. Chapter 39 deals with groupactions. Group homomorphisms are the subject of Chapter 38.



6 Vector Spacesand Algebras
This chapter contains an introduction into vector spaces and algebras in GAP.6.1 Vector SpacesA vector space over the �eld F is an additive group that is closed under scalar multiplication with elementsin F . In GAP, only those domains that are constructed as vector spaces are regarded as vector spaces . Inparticular, an additive group that does not know about an acting domain of scalars is not regarded as avector space in GAP.Probably the most common F -vector spaces in GAP are so-called row spaces. They consist of row vectors,that is, lists whose elements lie in F . In the following example we compute the vector space spanned by therow vectors [ 1, 1, 1 ] and [ 1, 0, 2 ] over the rationals.gap> F:= Rationals;;gap> V:= VectorSpace( F, [ [ 1, 1, 1 ], [ 1, 0, 2 ] ] );<vector space over Rationals, with 2 generators>gap> [ 2, 1, 3 ] in V;trueThe full row space F n is created by commands like:gap> F:= GF( 7 );;gap> V:= F^3; # The full row space over F of dimension 3.( GF(7)^3 )gap> [ 1, 2, 3 ] * One( F ) in V;trueIn the same way we can also create matrix spaces. Here the short notation �eld^[dim1,dim2] can be used:gap> m1:= [ [ 1, 2 ], [ 3, 4 ] ];; m2:= [ [ 0, 1 ], [ 1, 0 ] ];;gap> V:= VectorSpace( Rationals, [ m1, m2 ] );<vector space over Rationals, with 2 generators>gap> m1+m2 in V;truegap> W:= Rationals^[3,2];( Rationals^[ 3, 2 ] )gap> [ [ 1, 1 ], [ 2, 2 ], [ 3, 3 ] ] in W;trueA �eld is naturally a vector space over itself.gap> IsVectorSpace( Rationals );trueIf � is an algebraic extension of F , then � is also a vector space over F (and indeed over any sub�eld of �that contains F ). This �eld F is stored in the attribute LeftActingDomain. In GAP, the default is to view



60 Chapter 6. Vector Spaces and Algebras�elds as vector spaces over their prime �elds. By the function AsVectorSpace, we can view �elds as vectorspaces over �elds other than the prime �eld.gap> F:= GF( 16 );;gap> LeftActingDomain( F );GF(2)gap> G:= AsVectorSpace( GF( 4 ), F );AsField( GF(2^2), GF(2^4) )gap> F = G;truegap> LeftActingDomain( G );GF(2^2)A vector space has three important attributes: its �eld of de�nition, its dimension and a basis. We alreadyencountered the function LeftActingDomain in the example above. It extracts the �eld of de�nition of avector space. The function Dimension provides the dimension of the space. Here is one more example.gap> F:= GF( 9 );;gap> m:= [ [ Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, Z(3)^0 ] ];;gap> V:= VectorSpace( F, m );<vector space over GF(3^2), with 2 generators>gap> Dimension( V );2gap> W:= AsVectorSpace( GF( 3 ), V );<vector space over GF(3), with 4 generators>gap> V = W;truegap> Dimension( W );4gap> LeftActingDomain( W );GF(3)One of the most important attributes is a basis. For a given basis B of V , every vector v in V can beexpressed uniquely as v =Pb2B cbb, with coe�cients cb 2 F .In GAP, bases are special lists of vectors. They are used mainly for the computation of coe�cients and linearcombinations.Given a vector space V , a basis of V is obtained by simply applying the function Basis to V . The vectorsthat form the basis are extracted from the basis by BasisVectors.gap> m1:= [ [ 1, 2 ], [ 3, 4 ] ];; m2:= [ [ 1, 1 ], [ 1, 0 ] ];;gap> V:= VectorSpace( Rationals, [ m1, m2 ] );<vector space over Rationals, with 2 generators>gap> B:= Basis( V );SemiEchelonBasis( <vector space over Rationals, with 2 generators>, ... )gap> BasisVectors( Basis( V ) );[ [ [ 1, 2 ], [ 3, 4 ] ], [ [ 0, 1 ], [ 2, 4 ] ] ]The coe�cients of a vector relative to a given basis are found by the function Coefficients. Furthermore,linear combinations of the basis vectors are constructed using LinearCombination.



Section 2. Algebras 61gap> V:= VectorSpace( Rationals, [ [ 1, 2 ], [ 3, 4 ] ] );<vector space over Rationals, with 2 generators>gap> B:= Basis( V );SemiEchelonBasis( <vector space over Rationals, with 2 generators>, ... )gap> BasisVectors( Basis( V ) );[ [ 1, 2 ], [ 0, 1 ] ]gap> Coefficients( B, [ 1, 0 ] );[ 1, -2 ]gap> LinearCombination( B, [ 1, -2 ] );[ 1, 0 ]In the above examples we have seen that GAP often chooses the basis it wants to work with. It is alsopossible to construct bases with prescribed basis vectors by giving a list of these vectors as second argumentto Basis.gap> V:= VectorSpace( Rationals, [ [ 1, 2 ], [ 3, 4 ] ] );;gap> B:= Basis( V, [ [ 1, 0 ], [ 0, 1 ] ] );SemiEchelonBasis( <vector space over Rationals, with 2 generators>,[ [ 1, 0 ], [ 0, 1 ] ] )gap> Coefficients( B, [ 1, 2 ] );[ 1, 2 ]We can construct subspaces and quotient spaces of vector spaces. The natural projection map (constructedby NaturalHomomorphismBySubspace), connects a vector space with its quotient space.gap> V:= Rationals^4;( Rationals^4 )gap> W:= Subspace( V, [ [ 1, 2, 3, 4 ], [ 0, 9, 8, 7 ] ] );<vector space over Rationals, with 2 generators>gap> VmodW:= V/W;( Rationals^2 )gap> h:= NaturalHomomorphismBySubspace( V, W );<linear mapping by matrix, ( Rationals^4 ) -> ( Rationals^2 )>gap> Image( h, [ 1, 2, 3, 4 ] );[ 0, 0 ]gap> PreImagesRepresentative( h, [ 1, 0 ] );[ 1, 0, 0, 0 ]6.2 AlgebrasIf a multiplication is de�ned for the elements of a vector space, and if the vector space is closed under thismultiplication then it is called an algebra. For example, every �eld is an algebra:gap> f:= GF(8); IsAlgebra( f );GF(2^3)trueOne of the most important classes of algebras are sub-algebras of matrix algebras. On the set of all n � nmatrices over a �eld F it is possible to de�ne a multiplication in many ways. The most frequent are theordinary matrix multiplication and the Lie multiplication.Each matrix constructed as [ row1, row2, ... ] is regarded by GAP as an ordinary matrix, its multi-plication is the ordinary associative matrix multiplication. The sum and product of two ordinary matricesare again ordinary matrices.



62 Chapter 6. Vector Spaces and AlgebrasThe full matrix associative algebra can be created as follows:gap> F:= GF( 9 );;gap> A:= F^[3,3];( GF(3^2)^[ 3, 3 ] )An algebra can be constructed from generators using the function Algebra. It takes as arguments the �eldof coe�cients and a list of generators. Of course the coe�cient �eld and the generators must �t together; ifwe want to construct an algebra of ordinary matrices, we may take the �eld generated by the entries of thegenerating matrices, or a sub�eld or extension �eld.gap> m1:= [ [ 1, 1 ], [ 0, 0 ] ];; m2:= [ [ 0, 0 ], [ 0, 1 ] ];;gap> A:= Algebra( Rationals, [ m1, m2 ] );<algebra over Rationals, with 2 generators>An interesting class of algebras for which many special algorithms are implemented is the class of Liealgebras. They arise for example as algebras of matrices whose product is de�ned by the Lie bracket[A;B ] = A � B � B �A, where � denotes the ordinary matrix product.Since the multiplication of objects in GAP is always assumed to be the operation \* (resp. the in�x operator*), and since there is already the \ordinary" matrix product de�ned for ordinary matrices, as mentionedabove, we must use a di�erent construction for matrices that occur as elements of Lie algebras. Such Liematrices can be constructed by LieObject from ordinary matrices, the sum and product of Lie matrices areagain Lie matrices.gap> m:= LieObject( [ [ 1, 1 ], [ 1, 1 ] ] );LieObject( [ [ 1, 1 ], [ 1, 1 ] ] )gap> m*m;LieObject( [ [ 0, 0 ], [ 0, 0 ] ] )gap> IsOrdinaryMatrix( m1 ); IsOrdinaryMatrix( m );truefalsegap> IsLieMatrix( m1 ); IsLieMatrix( m );falsetrueGiven a �eld F and a list mats of Lie objects over F, we can construct the Lie algebra generated by matsusing the function Algebra. Alternatively, if we do not want to be bothered with the function LieObject,we can use the function LieAlgebra that takes a �eld and a list of ordinary matrices, and constructs theLie algebra generated by the corresponding Lie matrices. Note that this means that the ordinary matricesused in the call of LieAlgebra are not contained in the returned Lie algebra.gap> m1:= [ [ 0, 1 ], [ 0, 0 ] ];;gap> m2:= [ [ 0, 0 ], [ 1, 0 ] ];;gap> L:= LieAlgebra( Rationals, [ m1, m2 ] );<Lie algebra over Rationals, with 2 generators>gap> m1 in L;falseA second way of creating an algebra is by specifying a multiplication table. Let A be a �nite dimensionalalgebra with basis fx1; : : : ; xng, then for 1 � i ; j � n the product xixj is a linear combination of basiselements, i.e., there are ckij in the ground �eld such thatxixj = nX
k=1

ckij xk .



Section 2. Algebras 63It is not di�cult to show that the constants ckij determine the multiplication completely. Therefore, the ckijare called structure constants. In GAP we can create a �nite dimensional algebra by specifying an arrayof structure constants.In GAP such a table of structure constants is represented using lists. The obvious way to do this would beto construct a \three-dimensional" list T such that T[i][j][k] equals ckij . But it often happens that manyof these constants vanish. Therefore a more complicated structure is used in order to be able to omit thezeros. A multiplication table of an n-dimensional algebra is an n � n array T such that T[i][j] describesthe product of the i-th and the j-th basis element. This product is encoded in the following way. The entryT[i][j] is a list of two elements. The �rst of these is a list of indices k such that ckij is nonzero. The secondlist contains the corresponding constants ckij . Suppose, for example, that S is the table of an algebra withbasis fx1; : : : ; x8g and that S[3][7] equals [ [ 2, 4, 6 ], [ 1/2, 2, 2/3 ] ]. Then in the algebra wehave the relation x3x7 = (1=2)x2 + 2x4 + (2=3)x6.Furthermore, if S[6][1] = [ [ ], [ ] ] then the product of the sixth and �rst basis elements is zero.Finally two numbers are added to the table. The �rst number can be 1, -1, or 0. If it is 1, then the table isknown to be symmetric, i.e., ckij = ckji . If this number is -1, then the table is known to be antisymmetric (thishappens for instance when the algebra is a Lie algebra). The remaining case, 0, occurs in all other cases.The second number that is added is the zero element of the �eld over which the algebra is de�ned.Empty structure constants tables are created by the function EmptySCTable, which takes a dimension d , azero element z , and optionally one of the strings "symmetric", "antisymmetric", and returns an emptystructure constants table T corresponding to a d -dimensional algebra over a �eld with zero element z .Structure constants can be entered into the table T using the function SetEntrySCTable. It takes fourarguments, namely T , two indices i and j , and a list of the form [ck1ij ,k1,ck2ij ,k2,...]. In this call toSetEntrySCTable, the product of the i -th and the j -th basis vector in any algebra described by T is set toPl cklij xkl . (Note that in the empty table, this product was zero.) If T knows that it is (anti)symmetric, thenat the same time also the product of the j -th and the i -th basis vector is set appropriately.In the following example we temporarily increase the line length limit from its default value 80 to 82 inorder to make the long output expression �t into one line.gap> SizeScreen([ 82, ]);;gap> T:= EmptySCTable( 2, 0, "symmetric" );[ [ [ [ ], [ ] ], [ [ ], [ ] ] ], [ [ [ ], [ ] ], [ [ ], [ ] ] ], 1, 0 ]gap> SetEntrySCTable( T, 1, 2, [1/2,1,1/3,2] ); T;[ [ [ [ ], [ ] ], [ [ 1, 2 ], [ 1/2, 1/3 ] ] ],[ [ [ 1, 2 ], [ 1/2, 1/3 ] ], [ [ ], [ ] ] ], 1, 0 ]gap> SizeScreen([ 80, ]);;If we have de�ned a structure constants table, then we can construct the corresponding algebra by Alge-braByStructureConstants.gap> A:= AlgebraByStructureConstants( Rationals, T );<algebra of dimension 2 over Rationals>If we know that a structure constants table de�nes a Lie algebra, then we can construct the correspondingLie algebra by LieAlgebraByStructureConstants; the algebra returned by this function knows that it is aLie algebra, so GAP need not check the Jacobi identity.



64 Chapter 6. Vector Spaces and Algebrasgap> T:= EmptySCTable( 2, 0, "antisymmetric" );;gap> SetEntrySCTable( T, 1, 2, [2/3,1] );gap> L:= LieAlgebraByStructureConstants( Rationals, T );<Lie algebra of dimension 2 over Rationals>In GAP an algebra is naturally a vector space. Hence all the functionality for vector spaces is also availablefor algebras.gap> F:= GF(2);;gap> z:= Zero( F );; o:= One( F );;gap> T:= EmptySCTable( 3, z, "antisymmetric" );;gap> SetEntrySCTable( T, 1, 2, [ o, 1, o, 3 ] );gap> SetEntrySCTable( T, 1, 3, [ o, 1 ] );gap> SetEntrySCTable( T, 2, 3, [ o, 3 ] );gap> A:= AlgebraByStructureConstants( F, T );<algebra of dimension 3 over GF(2)>gap> Dimension( A );3gap> LeftActingDomain( A );GF(2)gap> Basis( A );CanonicalBasis( <algebra of dimension 3 over GF(2)> )Subalgebras and ideals of an algebra can be constructed by specifying a set of generators for the subalgebraor ideal. The quotient space of an algebra by an ideal is naturally an algebra itself.In the following example we temporarily increase the line length limit from its default value 80 to 81 inorder to make the long output expression �t into one line.gap> m:= [ [ 1, 2, 3 ], [ 0, 1, 6 ], [ 0, 0, 1 ] ];;gap> A:= Algebra( Rationals, [ m ] );;gap> subA:= Subalgebra( A, [ m-m^2 ] );<algebra over Rationals, with 1 generators>gap> Dimension( subA );2gap> SizeScreen([ 81, ]);;gap> idA:= Ideal( A, [ m-m^3 ] );<two-sided ideal in <algebra of dimension 3 over Rationals>, (1 generators)>gap> SizeScreen([ 80, ]);;gap> Dimension( idA );2gap> B:= A/idA;<algebra of dimension 1 over Rationals>The call B:= A/idA creates a new algebra that does not \know" about its connection with A. If we wantto connect an algebra with its factor via a homomorphism, then we �rst have to create the homomorphism(NaturalHomomorphismByIdeal). After this we create the factor algebra from the homomorphism by thefunction ImagesSource. In the next example we divide an algebra A by its radical and lift the centralidempotents of the factor to the original algebra A.



Section 2. Algebras 65gap> m1:=[[1,0,0],[0,2,0],[0,0,3]];;gap> m2:=[[0,1,0],[0,0,2],[0,0,0]];;gap> A:= Algebra( Rationals, [ m1, m2 ] );;gap> Dimension( A );6gap> R:= RadicalOfAlgebra( A );<algebra of dimension 3 over Rationals>gap> h:= NaturalHomomorphismByIdeal( A, R );<linear mapping by matrix, <algebra of dimension6 over Rationals> -> <algebra of dimension 3 over Rationals>>gap> AmodR:= ImagesSource( h );<algebra of dimension 3 over Rationals>gap> id:= CentralIdempotentsOfAlgebra( AmodR );[ v.3, v.2+(-3)*v.3, v.1+(-2)*v.2+(3)*v.3 ]gap> PreImagesRepresentative( h, id[1] );[ [ 0, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 1 ] ]gap> PreImagesRepresentative( h, id[2] );[ [ 0, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 0 ] ]gap> PreImagesRepresentative( h, id[3] );[ [ 1, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ]Structure constants tables for the simple Lie algebras are present in GAP. They can be constructed usingthe function SimpleLieAlgebra. The Lie algebras constructed by this function come with a root systemattached.gap> L:= SimpleLieAlgebra( "G", 2, Rationals );<Lie algebra of dimension 14 over Rationals>gap> R:= RootSystem( L );<root system of rank 2>gap> PositiveRoots( R );[ [ 2, -1 ], [ -3, 2 ], [ -1, 1 ], [ 1, 0 ], [ 3, -1 ], [ 0, 1 ] ]gap> CartanMatrix( R );[ [ 2, -1 ], [ -3, 2 ] ]Another example of algebras is provided by quaternion algebras. We de�ne a quaternion algebra overan extension �eld of the rationals, namely the �eld generated by p5. (The number EB(5) is equal to1=2(�1 +p5). The �eld is printed as NF(5,[ 1, 4 ]).)gap> b5:= EB(5);E(5)+E(5)^4gap> q:= QuaternionAlgebra( FieldByGenerators( [ b5 ] ) );<algebra-with-one of dimension 4 over NF(5,[ 1, 4 ])>gap> gens:= GeneratorsOfAlgebra( q );[ e, i, j, k ]gap> e:= gens[1];; i:= gens[2];; j:= gens[3];; k:= gens[4];;gap> IsAssociative( q );truegap> IsCommutative( q );falsegap> i*j; j*i;k



66 Chapter 6. Vector Spaces and Algebras(-1)*kgap> One( q );eIf the coe�cient �eld is a real sub�eld of the complex numbers then the quaternion algebra is in fact adivision ring.gap> IsDivisionRing( q );truegap> Inverse( e+i+j );(1/3)*e+(-1/3)*i+(-1/3)*jSo GAP knows about this fact. As in any ring, we can look at groups of units. (The function StarCyc usedbelow computes the unique algebraic conjugate of an element in a quadratic sub�eld of a cyclotomic �eld.)gap> c5:= StarCyc( b5 );E(5)^2+E(5)^3gap> g1:= 1/2*( b5*e + i - c5*j );(1/2*E(5)+1/2*E(5)^4)*e+(1/2)*i+(-1/2*E(5)^2-1/2*E(5)^3)*jgap> Order( g1 );5gap> g2:= 1/2*( -c5*e + i + b5*k );(-1/2*E(5)^2-1/2*E(5)^3)*e+(1/2)*i+(1/2*E(5)+1/2*E(5)^4)*kgap> Order( g2 );10gap> g:=Group( g1, g2 );;#I default `IsGeneratorsOfMagmaWithInverses' method returns `true' for[ (1/2*E(5)+1/2*E(5)^4)*e+(1/2)*i+(-1/2*E(5)^2-1/2*E(5)^3)*j,(-1/2*E(5)^2-1/2*E(5)^3)*e+(1/2)*i+(1/2*E(5)+1/2*E(5)^4)*k ]gap> Size( g );120gap> IsPerfect( g );trueSince there is only one perfect group of order 120, up to isomorphism, we see that the group g is isomorphicto SL2(5). As usual, a permutation representation of the group can be constructed using a suitable actionof the group.gap> cos:= RightCosets( g, Subgroup( g, [ g1 ] ) );;gap> Length( cos );24gap> hom:= ActionHomomorphism( g, cos, OnRight );;gap> im:= Image( hom );Group([ (2,3,5,9,15)(4,7,12,8,14)(10,17,23,20,24)(11,19,22,16,13),(1,2,4,8,3,6,11,20,17,19)(5,10,18,7,13,22,12,21,24,15)(9,16)(14,23) ])gap> Size( im );120To get a matrix representation of g or of the whole algebra q, we must specify a basis of the vector spaceon which the algebra acts, and compute the linear action of elements w.r.t. this basis.



Section 3. Further Information about Vector Spaces and Algebras 67gap> bas:= CanonicalBasis( q );;gap> BasisVectors( bas );[ e, i, j, k ]gap> op:= OperationAlgebraHomomorphism( q, bas, OnRight );<op. hom. AlgebraWithOne( NF(5,[ 1, 4 ]),[ e, i, j, k ] ) -> matrices of dim. 4>gap> ImagesRepresentative( op, e );[ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ]gap> ImagesRepresentative( op, i );[ [ 0, 1, 0, 0 ], [ -1, 0, 0, 0 ], [ 0, 0, 0, -1 ], [ 0, 0, 1, 0 ] ]gap> ImagesRepresentative( op, g1 );[ [ 1/2*E(5)+1/2*E(5)^4, 1/2, -1/2*E(5)^2-1/2*E(5)^3, 0 ],[ -1/2, 1/2*E(5)+1/2*E(5)^4, 0, -1/2*E(5)^2-1/2*E(5)^3 ],[ 1/2*E(5)^2+1/2*E(5)^3, 0, 1/2*E(5)+1/2*E(5)^4, -1/2 ],[ 0, 1/2*E(5)^2+1/2*E(5)^3, 1/2, 1/2*E(5)+1/2*E(5)^4 ] ]6.3 Further Information about Vector Spaces and AlgebrasMore information about vector spaces can be found in Chapter 59. Chapter 60 deals with the functionalityfor general algebras. Furthermore, concerning special functions for Lie algebras, there is Chapter 61.



7 Domains
Domain is GAP's name for structured sets. We already saw examples of domains in Chapters 5 and 6: thegroups s8 and a8 in Section 5.1 are domains, likewise the �eld f and the vector space v in Section 6.1 aredomains. They were constructed by functions such as Group and GF, and they could be passed as argumentsto other functions such as DerivedSubgroup and Dimension.7.1 Domains as SetsFirst of all, a domain D is a set. If D is �nite then a list with the elements of this set can be computed withthe functions AsList and AsSortedList. For in�nite D , Enumerator and EnumeratorSorted may work,but it is also possible that one gets an error message.Domains can be used as arguments of set functions such as Intersection and Union. GAP tries to return adomain in these cases, moreover it tries to return a domain with as much structure as possible. For example,the intersection of two groups is (either empty or) again a group, and GAP will try to return it as a group.For Union, the situation is di�erent because the union of two groups is in general not a group.gap> g:= Group( (1,2), (3,4) );;gap> h:= Group( (3,4), (5,6) );;gap> Intersection( g, h );Group([ (3,4) ])Two domains are regarded as equal w.r.t. the operator \=" if and only if they are equal as sets, regardlessof the additional structure of the domains.gap> mats:= [ [ [ 0*Z(2), Z(2)^0 ], [ Z(2)^0, 0*Z(2) ] ],> [ [ Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0 ] ] ];;gap> Ring( mats ) = VectorSpace( GF(2), mats );trueAdditionally, a domain is regarded as equal to the sorted list of its elements.gap> g:= Group( (1,2) );;gap> l:= AsSortedList( g );[ (), (1,2) ]gap> g = l;truegap> IsGroup( l ); IsList( g );falsefalse



Section 3. Notions of Generation 697.2 Algebraic StructureThe additional structure of D is constituted by the facts that D is known to be closed under certainoperations such as addition or multiplication, and that these operations have additional properties. Forexample, if D is a group then it is closed under multiplication (D � D ! D , (g; h) 7! g � h), under takinginverses (D ! D , g 7! g^-1) and under taking the identity g^0 of each element g in D ; additionally, themultiplication in D is associative.The same set of elements can carry di�erent algebraic structures. For example, a semigroup is de�ned asbeing closed under an associative multiplication, so each group is also a semigroup. Likewise, a monoid isde�ned as a semigroup D in which the identity g^0 is de�ned for every element g, so each group is a monoid,and each monoid is a semigroup.Other examples of domains are vector spaces, which are de�ned as additive groups that are closed under(left) multiplication with elements in a certain domain of scalars. Also conjugacy classes in a group D aredomains, they are closed under the conjugation action of D .7.3 Notions of GenerationWe have seen that a domain is closed under certain operations. Usually a domain is constructed as theclosure of some elements under these operations. In this situation, we say that the elements generate thedomain.For example, a list of matrices of the same shape over a common �eld can be used to generate an additivegroup or a vector space over a suitable �eld; if the matrices are square then we can also use the matrices asgenerators of a semigroup , a ring, or an algebra. We illustrate some of these possibilities:gap> mats:= [ [ [ 0*Z(2), Z(2)^0 ],> [ Z(2)^0, 0*Z(2) ] ],> [ [ Z(2)^0, 0*Z(2) ],> [ 0*Z(2), Z(2)^0 ] ] ];;gap> Size( AdditiveMagma( mats ) );4gap> Size( VectorSpace( GF(8), mats ) );64gap> Size( Algebra( GF(2), mats ) );4gap> Size( Group( mats ) );2Each combination of operations under which a domain could be closed gives a notion of generation. So eachgroup has group generators, and since it is a monoid, one can also ask for monoid generators of a group.Note that one cannot simply ask for \the generators of a domain", it is always necessary to specify whatnotion of generation is meant. Access to the di�erent generators is provided by functions with names of theform GeneratorsOfSomething. For example, GeneratorsOfGroup denotes group generators, Generator-sOfMonoid denotes monoid generators, and so on. The result of GeneratorsOfVectorSpace is of course tobe understood relative to the �eld of scalars of the vector space in question.gap> GeneratorsOfVectorSpace( GF(4)^2 );[ [ Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0 ] ]gap> v:= AsVectorSpace( GF(2), GF(4)^2 );;gap> GeneratorsOfVectorSpace( v );[ [ Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0 ], [ Z(2^2), 0*Z(2) ],[ 0*Z(2), Z(2^2) ] ]



70 Chapter 7. Domains7.4 Domain ConstructorsA group can be constructed from a list of group generators gens by Group( gens ), likewise one can constructrings and algebras with the functions Ring and Algebra.Note that it is not always or completely checked that gens is in fact a valid list of group generators, forexample whether the elements of gens can be multiplied or whether they are invertible. This means thatGAP trusts you, at least to some extent, that the desired domain Something( gens ) does exist.7.5 Forming Closures of DomainsBesides constructing domains from generators, one can also form the closure of a given domain with anelement or another domain. There are di�erent notions of closure, one has to specify one according to thedesired result and the structure of the given domain. The functions to compute closures have names suchas ClosureSomething. For example, if D is a group and one wants to construct the group generated by Dand an element g then one can use ClosureGroup( D, g ).7.6 Changing the StructureThe same set of elements can have di�erent algebraic structures. For example, it may happen that a monoidM does in fact contain the inverses of all of its elements, and thus M is equal to the group formed by theelements of M .gap> m:= Monoid( mats );;gap> m = Group( mats );truegap> IsGroup( m );falseThe last result in the above example may be surprising. But the monoid m is not regarded as a group inGAP, and moreover there is no way to turn m into a group. Let us formulate this as a rule:The set of operations under which the domain is closed is �xed in the construction of a domain,and cannot be changed later.(Contrary to this, a domain can acquire knowledge about properties such as whether the multiplication isassociative or commutative.)If one needs a domain with a di�erent structure than the given one, one can construct a new domain withthe required structure. The functions that do these constructions have names such as AsSomething, theyreturn a domain that has the same elements as the argument in question but the structure Something. Inthe above situation, one can use AsGroup.gap> g:= AsGroup( m );;gap> m = g;truegap> IsGroup( g );trueIf it is impossible to construct the desired domain, the AsSomething functions return fail.gap> AsVectorSpace( GF(4), GF(2)^2 );failThe functions AsList and AsSortedList mentioned above do not return domains, but they �t into thegeneral pattern in the sense that they forget all the structure of the argument, including the fact that it isa domain, and return a list with the same elements as the argument has.



Section 8. Further Information about Domains 717.7 SubdomainsIt is possible to construct a domain as a subset of an existing domain. The respective functions have namessuch as Subsomething, they return domains with the structure Something. (Note that the second s inSubsomething is not capitalized.) For example, if one wants to deal with the subgroup of the domain D thatis generated by the elements in the list gens, one can use Subgroup( D, gens ). It is not required that Dis itself a group, only that the group generated by gens must be a subset of D .The superset of a domain S that was constructed by a Subsomething function can be accessed as Parent(S ).gap> g:= SymmetricGroup( 5 );;gap> gens:= [ (1,2), (1,2,3,4) ];;gap> s:= Subgroup( g, gens );;gap> h:= Group( gens );;gap> s = h;truegap> Parent( s ) = g;trueMany functions return subdomains of their arguments, for example the result of SylowSubgroup( G ) is agroup with parent group G .If you are sure that the domain Something( gens ) is contained in the domain D then you can also callSubsomethingNC( D, gens ) instead of Subsomething( D, gens ). The NC stands for \no check", andthe functions whose names end with NC omit the check of containment.7.8 Further Information about DomainsMore information about domains can be found in Chapter 12.4. Many other other chapters deal with speci�ctypes of domain such as groups, vector spaces or algebras.



8 Operationsand Methods
8.1 AttributesIn the preceding chapters, we have seen how to obtain information about mathematical objects in GAP: Wehave to pass the object as an argument to a function. For example, if G is a group one can call Size( G), and the function will return a value, in our example an integer which is the size of G . Computing thesize of a group generally requires a substantial amount of work, therefore it seems desirable to store the sizesomewhere once it has been calculated. You should imagine that GAP stores the size in some place associatedwith the object G when Size( G ) is executed for the �rst time, and if this function call is executed againlater, the size is simply looked up and returned, without further computation.This means that the behavior of the function Size has to depend on whether the size for the argumentG is already known, and if not, that the size must be stored after it has been calculated. These two extratasks are done by two other functions that accompany Size( G ), namely the tester HasSize( G ) andthe setter SetSize( G, size ). The tester returns true or false according to whether G has alreadystored its size, and the setter puts size into a place from where G can directly look it up. The functionSize itself is called the getter, and from the preceding discussion we see that there must really be at leasttwo methods for the getter: One method is used when the tester returns false; it is the method which�rst does the real computation and then executes the setter with the computed value. A second method isused when the tester returns true; it simply returns the stored value. This second method is also called thesystem getter. GAP functions for which several methods can be available are called operations, so Sizeis an example of an operation.gap> G := Group( (1,2,3,4,5,6,7,8), (1,2) );;gap> Size( G ); time; # the time may of course vary on your machine4032030gap> Size( G ); time;403200The convenient thing for the user is that GAP automatically chooses the right method for the getter, i.e., itcalls a real-work getter at most once and the system getter in all subsequent occurrences. At most oncebecause the value of a function call like Size( G ) can also be set for G before the getter is called at all;for example, one can call the setter directly if one knows the size.The size of a group is an example of a class of things which in GAP are called attributes. Every attributein GAP is represented by a triple of a getter, a setter and a tester. When a new attribute is declared, allthree functions are created together and the getter contains references to the other two. This is necessarybecause when the getter is called, it must �rst consult the tester, and perhaps execute the setter in the end.Therefore the getter could be implemented as follows:



Section 2. Properties and Filters 73getter := function( obj )local value;if tester( obj ) thenvalue := system_getter( obj );elsevalue := real_work_getter( obj );setter( obj, value );fi;return value;end;The only function which depends on the mathematical nature of the attribute is the real-work getter, andthis is of course what the programmer of an attribute has to install. In both cases, the getter returns thesame value, which we also call the value of the attribute (properly: the value of the attribute for the objectobj). By the way: The names for setter and tester of an attribute are always composed from the pre�x Setresp. Has and the name of the getter.As a (not typical) example, note that the GAP function Random, although it takes only one argument, isof course not an attribute, because otherwise the �rst random element of a group would be stored by thesetter and returned over and over again by the system getter every time Random is called in the sequel.)There is a general important rule about attributes: Once the value of an attribute for an object hasbeen set, it cannot be reset, i.e., it cannot be changed any more. This is achieved by having twomethods not only for the getter but also for the setter: If an object already has an attribute value stored,i.e., if the tester returns true, the setter simply does nothing.gap> G := SymmetricGroup(8);; Size(G);40320gap> SetSize( G, 0 ); Size( G );40320Summary. In this section we have introduced attributes as triples of getter, setter and tester and we haveexplained how these three functions work together behind the scene to provide automatic storage and look-up of values that have once been calculated. We have seen that there can be several methods for the samefunction among which GAP automatically selects an appropriate one.8.2 Properties and FiltersCertain attributes, like IsAbelian, are boolean-valued. Such attributes are known to GAP as properties,because their values are stored in a slightly di�erent way. A property also has a getter, a setter and a tester,but in this case, the getter as well as the tester returns a boolean value. Therefore GAP stores both values inthe same way, namely as bits in a boolean list, thereby treating property getters and all testers (of attributesor properties) uniformly. These boolean-valued functions are called �lters. You can imagine a �lter as aswitch which is set either to true or to false. For every GAP object there is a boolean list which hasreserved a bit for every �lter GAP knows about. Strictly speaking, there is one bit for every simple �lter,and these simple �lters can be combined with and to form other �lters (which are then true if and only ifall the corresponding bits are set to true). For example, the �lter IsPermGroup and IsSolvableGroup ismade up from several simple �lters.Since they allow only two values, the bits which represent �lters can be compared very quickly, and thescheme by which GAP chooses the method, e.g., for a getter or a setter (as we have seen in the previoussection), is mostly based on the examination of �lters, not on the examination of other attribute values.Details of this method selection are described in chapter 2 of \Programming in GAP".We only present the following rule of thumb here: Each installed method for an attribute, say Size, hasa \required �lter", which is made up from certain simple �lters which must yield true for the argument



74 Chapter 8. Operations and Methodsobj for this method to be applicable. To execute a call of Size( obj ), GAP selects among all applicablemethods the one whose required �lter combines the most simple �lters; the idea behind is that the more analgorithm requires of obj , the more e�cient it is expected to be. For example, if obj is a permutation groupthat is not (known to be) solvable, a method with required �lter IsPermGroup and IsSolvableGroup isnot applicable, whereas a method with required �lter IsPermGroup can be chosen. On the other hand, if objwas known to be solvable, the method with required �lter IsPermGroup and IsSolvableGroup would bepreferred to the one with required �lter IsPermGroup.It may happen that a method is applicable for a given argument but cannot compute the desired value. Insuch cases, the method will execute the statement TryNextMethod();, and GAP calls the next applicablemethod. For example, [Sim90] describes an algorithm to compute the size of a solvable permutation group,which can be used also to decide whether or not a permutation group is solvable. Suppose that the functionsize solvable implements this algorithm, and that is returns the order of the group if it is solvable andfail otherwise. Then we can install the following method for Size with required �lter IsPermGroup.function( G )local value;value := size_solvable( G );if value <> fail then return value;else TryNextMethod(); fi;end;This method can then be tried on every permutation group (whether known to be solvable or not), and itwould include a mandatory solvability test.If no applicable method (or no next applicable method) is found, GAP stops with an error message of theformError, no method found! For debugging hints type ?Recovery from NoMethodFoundError, no 1st choice method found for `Size' on 1 arguments called from... lines deleted here ...You would get an error message as above if you asked for Size( 1 ). The message simply says that thereis no method installed for calculating the size of 1. Section 7.1 of the reference manual contains moreinformation on how to deal with these messages.Summary. In this section we have introduced properties as special attributes, and �lters as the generalconcept behind property getters and attribute testers. The values of the �lters of an object govern how theobject is treated in the selection of methods for operations.8.3 Immediate and True MethodsIn the example in Section 8.2, we have mentioned that the operation Size has a method for solvablepermutation groups that is so far superior to the method for general permutation groups that it seemsworthwhile to try it even if nothing is known about solvability of the group of which the Size is to becalculated. There are other examples where certain methods are even \cheaper" to execute. For example,if the size of a group is known it is easy to check whether it is odd, and if so, the Feit-Thompson theoremallows us to set IsSolvableGroup to true for this group. GAP utilizes this celebrated theorem by havingan immediate method for IsSolvableGroup with required �lter HasSize which checks parity of the sizeand either sets IsSolvableGroup or does nothing, i.e., calls TryNextMethod(). These immediate methodsare executed automatically for an object whenever the value of a �lter changes, so solvability of a group willautomatically be detected when an odd size has been calculated for it (and therefore the value of HasSizefor that group has changed to true).Some methods are even more immediate, because they do not require any calculation at all: They allow a�lter to be set if another �lter is also set. In other words, they model a mathematical implication like IsGroup



Section 4. Operations and Method Selection 75and IsCyclic ) IsSolvableGroup and such implications can be installed in GAP as true methods. Toexecute true methods, GAP only needs to do some bookkeeping with its �lters, therefore true methods aremuch faster than immediate methods.How immediate and true methods are installed is described in 2.6 and 2.7 in \Programming in GAP".8.4 Operations and Method SelectionThe method selection is not only used to select methods for attribute getters but also for arbitrary oper-ations, which can have more than one argument. In this case, there is a required �lter for each argument(which must yield true for the corresponding arguments).Additionally, a method with at least two arguments may require a certain relation between the arguments,which is expressed in terms of the families of the arguments. For example, the methods for ConjugateGroup(grp, elm ) require that elm lies in the family of elements from which grp is made, i.e., that the family ofelm equals the \elements family" of grp.For permutation groups, the situation is quite easy: all permutations form one family, PermutationsFamily,and each collection of permutations, for example each permutation group, each coset of a permutation group,or each dense list of permutations, lies in CollectionsFamily( PermutationsFamily ).For other kinds of group elements, the situation can be di�erent. Every call of FreeGroup constructs a newfamily of free group elements. GAP refuses to compute One( FreeGroup( 1 ) ) * One( FreeGroup( 1 )) because the two operands of the multiplication lie in di�erent families and no method is installed for thiscase.For further information on family relations, see 13.1 in the reference manual.If you want to know which properties are already known for an object obj , or which properties are known tobe true, you can use the functions KnownPropertiesOfObject(obj) resp. KnownTruePropertiesOfObject(obj ). This will print a list of names of properties. These names are also the identi�ers of the property getters,by which you can retrieve the value of the properties (and con�rm that they are really true). Analogously,there is the function KnownAttributesOfObject which lists the names of the known attributes, leaving outthe properties.Since GAP lets you know what it already knows about an object, it is only natural that it also lets youknow what methods it considers applicable for a certain method, and in what order it will try them (in caseTryNextMethod() occurs). ApplicableMethod( opr, [ arg1, arg2, : : : ] ) returns the �rst applicablemethod for the call opr( arg1, arg2, : : : ). More generally, ApplicableMethod( opr, [ : : : ], 0, nr) returns the nrth applicable method (i.e., the one that would be chosen after nr � 1 TryNextMethods) andif nr = "all", the sorted list of all applicable methods is returned. For details, see 2.3 in \Programming inGAP".If you want to see which methods are chosen for certain operations while GAP code is being executed, youcan call the function TraceMethods with a list of these operations as arguments.gap> TraceMethods( [ Size ] );gap> g:= Group( (1,2,3), (1,2) );; Size( g );#I Size: for a permutation group#I Setter(Size): system setter#I Size: system getter#I Size: system getter6The system getter is called once to fetch the freshly computed value for returning to the user. The secondcall is triggered by an immediate method. To �nd out by which, we can trace the immediate methods bysaying TraceImmediateMethods( true ).



76 Chapter 8. Operations and Methodsgap> TraceImmediateMethods( true );gap> g:= Group( (1,2,3), (1,2) );;#I immediate: Size#I immediate: IsCyclic#I immediate: IsCommutative#I immediate: IsTrivial#I immediate: IsStabChainViaChainSubgroup#I immediate: IsChainTypeGroupgap> Size( g );#I Size: for a permutation group#I immediate: IsNonTrivial#I immediate: Size#I immediate: IsStabChainViaChainSubgroup#I immediate: IsChainTypeGroup#I immediate: IsNonTrivial#I immediate: GeneralizedPcgs#I Setter(Size): system setter#I Size: system getter#I immediate: IsPerfectGroup#I Size: system getter#I immediate: IsEmpty6gap> TraceImmediateMethods( false );gap> UntraceMethods( [ Size ] );The last two lines switch o� tracing again. We now see that the system getter was called by the immediatemethod for IsPerfectGroup. Also the above-mentioned immediate method for IsSolvableGroup was notused because the solvability of g was already found out during the size calculation (cf. the example inSection 8.2).Summary. In this section and the last we have looked some more behind the scenes and seen that GAPautomatically executes immediate and true methods to deduce information about objects that is cheaplyavailable. We have seen how this can be supervised by tracing the methods.



9 Migrating to GAP 4
This chapter is intended to give users who have experience with GAP 3 some information about what haschanged in GAP 4.In particular, it informs about changed command line options (see 9.1), the new global variable fail (see 9.2),some functions that have changed their behaviour (see 9.3) or their names (see 9.4), and some conventionsused for variable names (see 9.5).Then the new concepts of GAP 4 are sketched, �rst that of mutability or immutability (see 3.3), with theexplanation of related changes in functions that copy objects (see 9.7), then the concepts of operations andmethod selection, which are compared with the use of operations records in GAP 3 (see 9.8, 9.10, and 9.11).More local changes a�ect the concepts of notions of generation (see 9.9), of parents (see 9.12), of homo-morphisms (see 9.13, 9.14, and 9.15), how elements in �nitely presented groups are treated (see 9.16), howinformation about progress of computations can be obtained (see 9.18), and how one gets information in abreak loop (see 9.19).While a \GAP 3 compatibility mode" is provided (see 9.20), its use will disable some of the new features ofGAP 4. Also it certainly can only try to provide partial compatibility.For a detailed explanation of the new features and concepts of GAP 4, see the manual \Programming inGAP".9.1 Changed Command Line OptionsIn GAP 4, the -l option is used to specify the root directory (see 9.2 in the Reference Manual) of theGAP distribution, which is the directory containing the lib and doc subdirectories. Note that in GAP 3 thisoption was used to specify the path to the lib directory.The -h option of GAP 3 has been removed, the path(s) for the documentation are deduced automatically inGAP 4.The option -g is now used to print information only about full garbage collections. The new option -g -ggenerates information about partial garbage collections too.9.2 FailThere is a new global variable

1I failin GAP 4. It is intended as a return value of a function for the case that it could not perform its task.For example, Inverse returns fail if it is called with a singular matrix, and Position returns fail if thesecond argument is not contained in the list given as �rst argument.GAP 3 handled such situations by either signalling an error, for example if it was asked for the inverse of asingular matrix, or by (mis)using false as return value, as in the example Position. Note that in the �rstexample, in GAP 3 it was necessary to check the invertibility of a matrix before one could safely ask for itsinverse, which meant that roughly the same work was done twice.



78 Chapter 9. Migrating to GAP 49.3 Changed FunctionalitySome functions that were already available in GAP 3 behave di�erently in GAP 4. This section lists them.
1I Orbit( G,pnt)The GAP 3 manual promised that pnt would be the �rst entry of the resulting orbit. This was wrong alreadythere in a few cases, therefore GAP 4 does not promise anything about the ordering of points in an orbit.
2I Order( g )only takes the element g and computes its multiplicative order. Calling Order with two arguments is permit-ted only in the GAP 3 compatibility mode, see 9.20. (Note that it does not make sense anymore to specifya group as �rst argument w.r.t. which the order of the second argument shall be computed, see 9.16.)
3I Position( list, obj )If obj is not contained in the list list then fail is returned in GAP 4 (see 9.2), whereas false was returnedin GAP 3.
4I PermGroupOps.ElementProperty( G, prop[, K] )In GAP 3, this function took either two or three arguments, the optional argument K being a subgroup of Gthat stabilizes prop in the sense that for any element g in G , either all elements or no element in the cosetg * K have the property prop.The GAP 4 function ElementProperty, however, takes between two and four arguments, and the subgroupK known from GAP 3 has to be entered as the fourth argument not the third. (The third argument in theGAP 4 function denotes a subgroup U stabilizing prop in the sense that either all elements or no element inright cosets U * g have the property prop.)(This discrepancy was discovered only in March 2002, short before the release of GAP 4.3.)
5I Print( obj, ... )Objects may appear on the screen in a di�erent way, depending on whether they are printed by the readeval print loop or by an explicit call of Print. The reason is that the read eval print loop calls the operationViewObj and not PrintObj, whereas Print calls PrintObj for each of its arguments. This permits theinstallation of methods for printing objects in a short form in the read eval print loop while retaining Printto display the object completely. See also Section 6.2 in the Reference Manual.(PrintObj is installed as standard method ViewObj, so it is not really necessary to have a ViewObj methodfor an object.)
6I PrintTo( �lename, obj, ... )In GAP 3, PrintTo could be (mis)used to \redirect" the text printed by a function (that is, not only theoutput of a function) to a �le by entering the function call as second argument. This was used mainly inorder to avoid many calls of AppendTo. In GAP 4, this feature has disappeared. One can use streams (seeChapter 10 in the Reference Manual) instead in order to write �les e�ciently.



Section 5. Naming Conventions 799.4 Changed Variable NamesSome functions have changed their name without changing the functionality. A { probably incomplete { listfollows GAP 3 GAP 4AgGroup PcGroup # (also composita)ApplyFunc CallFuncListBacktrace WhereCharTable CharacterTable # (also composita)Denominator DenominatorRatDepthVector PositionNotElements AsSSortedListIsBijection IsBijectiveIsFunc IsFunctionIsMat IsMatrixIsRec IsRecordIsSet IsSSortedListLengthWord LengthNOfCyc ConductorNumerator NumeratorRatNormedVector NormedRowVectorOperation Action # (also composita)Order(G,g) Order(g)OrderMat OrderOrderPerm OrderRandomInvertableMat RandomInvertibleMatRecFields RecNamesX IndeterminateSee Section 9.20 for a way to make the old names available again.9.5 Naming ConventionsThe way functions are named has been uni�ed in GAP 4. This might help to memorize or even guess namesof library functions.If a variable name consists of several words then the �rst letter of each word is capitalized.If the �rst part of the name of a function is a verb then the function may modify its argument(s) butdoes not return anything, for example Append appends the list given as second argument to the list givenas �rst argument. Otherwise the function returns an object without changing the arguments, for exampleConcatenation returns the concatenation of the lists given as arguments.If the name of a function contains the word By then the return value is thought of as built in a certain wayfrom the parts given as arguments. For example, GroupByGenerators returns a group built from its groupgenerators, and creating a group as a factor group of a given group by a normal subgroup can be doneby taking the image of NaturalHomomorphismByNormalSubgroup (see also 9.14). Other examples of \By"functions are GroupHomomorphismByImages and UnivariateLaurentPolynomialByCoefficients.If the name of a function contains the word Of then the return value is thought of as information deducedfrom the arguments. Usually such functions are attributes (see 8.1 in this Tutorial and 13.5 in the ReferenceManual). Examples are GeneratorsOfGroup, which returns a list of generators for the group entered asargument, or DiagonalOfMat.



80 Chapter 9. Migrating to GAP 4For the setter and tester functions of an attribute attr (see 9.8 in this Tutorial and 13.5 in the ReferenceManual) the names Setattr resp. Hasattr are available.If the name of a function fun1 ends with NC then there is another function fun2 with the same name exceptthat the NC is missing. NC stands for \no check". When fun2 is called then it checks whether its argumentsare valid, and if so then it calls fun1 . The functions SubgroupNC and Subgroup are a typical example.The idea is that the possibly time consuming check of the arguments can be omitted if one is sure that theyare unnecessary. For example, if an algorithm produces generators of the derived subgroup of a group thenit is guaranteed that they lie in the original group; Subgroup would check this, and SubgroupNC omits thecheck.Needless to say, all these rules are not followed slavishly, for example there is one operation Zero instead oftwo operations ZeroOfElement and ZeroOfAdditiveGroup.9.6 Immutable ObjectsGAP 4 supports \immutable" objects. Such objects cannot be changed, attempting to do so issues an error.Typically attribute values are immutable, and also the results of those binary arithmetic operations whereboth arguments are immutable, see Section 3.8. For example, [ 1 .. 100 ] + [ 1 .. 100 ] is a mutablelist and 2 * Immutable( [ 1 .. 100 ] ) is an immutable list, both are equal to the (mutable) list [ 2,4 .. 200 ].There is no way to make an immutable object mutable, one can only get a mutable copy by Shallow-Copy. The other way round, MakeImmutable makes a (mutable or immutable) object and all its subobjectsimmutable; one must be very careful to use MakeImmutable only for those objects that are really newlycreated, for such objects the advantage over Immutable is that no copy is made.More about immutability can be found in Sections 3.3 in this tutorial and 12.6 in the Reference Manual.9.7 CopyThe function Copy of GAP 3 is not supported in GAP 4. This function was used to create a copy cop of itsargument obj with the properties that cop and obj had no subobjects in common and that if two subobjectsof obj were identical then also the corresponding subobjects of cop were identical.The possibility of having immutable objects (see 3.3) can and should be used to avoid unnecessary copying.Namely, given an immutable object one needs to copy it only if one wants to get a modi�ed object, and insuch a situation usually it is su�cient to use ShallowCopy, or at least one knows how deep one must copyin order to do the changes one has in mind.For example, suppose you have a matrix group, and you want to construct a list of matrices by modifyingthe group generators. This list of generators is immutable, so you call ShallowCopy to get a mutable listthat contains the same matrices. If you only want to exchange some of them, or to append some othermatrices, this shallow copy is already what you need. So suppose that you are interested in a list of matriceswhere some rows are also changed. For that, you call ShallowCopy for the matrices in question, and you getmatrices whose rows can be changed. If you want to change single entries in some rows, ShallowCopy mustbe called to get mutable copies of these rows. Note that in all these situations there is no danger to change,i.e., to destroy the original generators of the matrix group.If one needs the facility of the Copy function of GAP 3 to get a copy with the same structure then one canuse the new GAP 4 function StructuralCopy. It returns a structural copy that has no mutable subobjectin common with its argument. So if StructuralCopy is called with an immutable object then this objectitself is returned, and if StructuralCopy is called with a mutable list of immutable objects then a shallowcopy of this list is returned.Note that ShallowCopy now is an operation. So if you create your own type of (copyable) objects then youmust de�ne what a shallow copy of these objects is, and install an appropriate method.



Section 9. Di�erent Notions of Generation 819.8 Attributes vs. Record ComponentsIn GAP 3, many complex objects were represented via records, for example all domains. Information aboutthese objects was stored in components of these records. For the user, this was usually not relevant, sincethere were functions for computing information about the objects in question. For example, if one wasinterested in the size of a group then one could call Size.But since it was guaranteed that the size of a domain D was stored as value of the component size, itwas allowed to access D.size if this component was bound, and a check for this was possible via IsBound(D.size ).In GAP 4, only the access via functions is admissible. One reason is the following basic rule.From the information that a given GAP 4 object is for example a domain, one cannot concludethat this object has a certain representation.For attributes like Size, GAP 4 provides two related functions, the setter and the tester of the attribute,which can be used to set an attribute value and to check whether the value of an attribute is already storedfor an object (see also 13.5 in the Reference Manual). For example, if D is a domain in GAP 4 then HasSize(D ) is true if the size of D is already stored, and false otherwise. In the latter case, if you know that thesize of D is size then you may store it by SetSize( D, size ).Besides the 
exibility in the internal representation of objects, storing information only via function callshas also the advantage that GAP 4 is able to draw conclusions automatically. For example, as soon as it isstored that a group is nilpotent, it is also stored that it is solvable, see Chapters 13 in the Reference Manualand 2 in \Programming in GAP" for the details.As a consequence, you cannot put your favourite information into a domain D by assigning it to a newcomponent like D.myPrivateInfo. Instead you can introduce a new attribute and then use its setter,see 13.5 in the Reference Manual.9.9 Di�erent Notions of GenerationAs in GAP 3, a domain in GAP 4 is a structured set.The same set can have di�erent structures, for example a �eld can be regarded as a ring or as an algebra orvector space over a sub�eld.In GAP 3, however, an object representing a ring did not represent a �eld, and an object representing a�eld did not represent a ring. One reason for this was that the record component generators was used todenote the appropriate generators of the domain. For a ring R, the component R.generators was a list ofring generators, and for a �eld F , F.generators was a list of �eld generators.GAP 4 cleans this up, see 7.3. It supports many di�erent notions of generation, for example one can askfor magma generators of a group or for generators of a �eld as an additive group. A subtle but importantdistinction is that between generators of an algebra and of an algebra-with-one.So the attributes GeneratorsOfGroup, GeneratorsOfMagma, GeneratorsOfRing, GeneratorsOfField, Gen-eratorsOfVectorSpace, and so on, replace the access to the generators component.



82 Chapter 9. Migrating to GAP 49.10 Operations RecordsAlready in GAP 3 there were several functions that were applicable to many di�erent kinds of objects,for example Size could be applied to any domain, and the binary in�x multiplication * could be used tomultiply two matrices, an integer with a row vector, or a permutation with a permutation group. This wasimplemented as follows. Functions like Size and * tried to �nd out what situation was described by itsarguments, and then it called a more speci�c function to compute the desired information. These morespeci�c functions, let us call them methods as they are also called in GAP 4, were stored in so-calledoperations records of the arguments.For example, every domain in GAP 3 was represented as a record, and the operations record was stored inthe record component operations. If Size was called for the domain then the method to compute the sizeof the domain was found as value of the Size component of the operations record.This was �ne for functions taking only one argument, and in principle it is possible that for those functionsan object stored an optimal method in its operations record. But in the case of more arguments this is notpossible. In a multiplication of two objects in GAP 3, one had to choose between the methods stored in theoperations records of the arguments, and if for example the method stored for the left operand was called,this method had to handle all possible right operands.So operations records turned out to be not 
exible enough. In GAP 4, operations records are not supported(see 9.20 for a possibility to use your GAP 3 code that utilizes operations records, at least to some extent).A detailed description of the new mechanism to select methods can be found in Chapter 2 in \Programmingin GAP".An important point is that the new mechanism allows GAP to take the relation between arguments intoaccount. So it is possible (and recommended) to install di�erent methods for di�erent relations between thearguments. Note that such methods need not do the extensive argument checking that was necessary inGAP 3, because most of the checks are done already by the method selection mechanism.9.11 Operations vs. Dispatcher FunctionsGAP 3 functions like Size, CommutatorSubgroup, or SylowSubgroup did mainly call an appropriate method(see 9.10) after they had checked their arguments. Such functions were called dispatchers in GAP 3. InGAP 4, many dispatchers have been replaced by operations, due to the fact that methods are no longerstored in operations records (see 2 in \Programming in GAP" for the details).Most dispatchers taking only one argument were treated in a special way in GAP 3, they had the additionaltask of storing computed values and using these values in subsequent calls. For example, the dispatcher Size�rst checked whether the size of the argument was already stored, and if so then this value was returned;otherwise a method was called, the value returned by this method was stored in the argument, and thenreturned by Size.In GAP 4, computed values of operations that take one argument (these operations are called attributes)are also stored, only the mechanism to achieve this has changed, see 13.5 and 13.7 in the Reference Manual.So the behaviour of Size is the same in GAP 3 and GAP 4. But note that in GAP 4, it is not possible toaccess D.size, see 9.8. As described in 9.10, GAP 4 does not admit \bypassing the dispatcher" by callingfor example D.operations.Size. This was done in GAP 3 often for e�ciency reasons, but the methodselection mechanism of GAP 4 is fast enough to make this unnecessary.If you had written your own dispatchers and put your own methods into existing operations records thenthis code will not work in GAP 4. See 3 and 2 in \Programming in GAP" for a description of how to de�neoperations and to install methods.Finally, some functions in GAP 3 were hidden in operations records, e.g., PermGroupOps.MovedPoints. Thesefunctions became proper operations in GAP 4.



Section 14. Homomorphisms vs. Factor Structures 839.12 Parents and SubgroupsIn GAP 3 there was a strict distinction between parent groups and subgroups. The use of the name \parent"(instead of \supergroup") was chosen to indicate that the parent of an object was more than just usefulinformation. In fact the main reason for the introduction of parents was to provide a common roof forexample for all groups of polycyclic words that belonged to the same PC-presentation, or for all subgroupsof a �nitely presented group (see 9.16). A subgroup was never a parent group, and it was possible to createsubgroups only of parent groups.In GAP 4 this common roof is provided already by the concept of families, see 13.1 in the Reference Manual.Thus it is no longer compulsory to use parent groups at all. On the other hand, parents may be used inGAP 4 to provide information about an object, for example the normalizer of a group in its parent groupmay be stored as an attribute value. Note that there is no restriction on the supergroup that is set to bethe parent, it is possible to create a subgroup of any group, this group then being the parent of the newsubgroup. This permits for example chains of subgroups with respective parents, of arbitrary length.As a consequence, the Parent command cannot be used in GAP 4 to test whether the two arguments ofCommutatorSubgroup �t together, this is now a question that concerns the relation between the families ofthe groups. So the 2-argument version of Parent and the now meaningless function IsParent have beenabolished.9.13 Homomorphisms vs. General MappingsIn GAP 3 there had been a confusion between group homomorphisms and general mappings, as GroupHo-momorphismByImages created only a general mapping that did not store whether it was a mapping. Thiscaused expensive, unwanted, and unnecessary tests whether the mapping was in fact a group homomorphism.Moreover, the \o�cial" workaround to set some components of the mapping record was quite unwieldy.In GAP 4, GroupHomomorphismByImages checks whether the desired mapping is indeed a group homomor-phism; if so then this property is stored in the returned mapping, otherwise fail is returned. If you wantto avoid the checks then you can use GroupHomomorphismByImagesNC. If you want to check whether a gen-eral mapping that respects the group operations is really a group homomorphism, you can construct it viaGroupGeneralMappingByImages and then call IsGroupHomomorphism for it. (Note that IsGroupHomomor-phism returns true if and only if both IsGroupGeneralMapping and IsMapping do, so one does in factcheck IsMapping in this case.)There is no function IsHomomorphism in GAP 4, since there are several di�erent operations with respect towhich a mapping can be a homomorphism.9.14 Homomorphisms vs. Factor StructuresIf F is a factor structure of G , with kernel N , complete information about the connection between F andG is provided by the natural homomorphism.In GAP 3, the \o�cial way" to construct this natural homomorphism was to create �rst the factor structureF , and then to call NaturalHomomorphism with the arguments G and F . For that, the data necessary tocompute the homomorphism was stored in F when F was constructed.In GAP 4, factor structures are not treated in a special way, in particular they do not store informationabout a homomorphism. Instead, the more natural way is taken to construct the natural homomorphismfrom G and N by NaturalHomomorphismByNormalSubgroup if N is a normal subgroup of the group G , orby NaturalHomomorphismByIdeal if N is an ideal in the ring G . The factor F can then be accessed as theimage of this homomorphism, and of course G is the preimage and N is the kernel.Note that GAP 4 does not guarantee anything about the representation of the factor F , it may be a per-mutation group or a polycyclically presented group or another kind of group. Also note that a naturalhomomorphism need not be surjective.



84 Chapter 9. Migrating to GAP 4A consequence of this change is that GAP 4 does not allow you to construct a natural homomorphism fromthe groups G and F .The other common type of homomorphism in GAP 3, \operation homomorphisms", have been replaced(just a name change) by action homomorphisms, which are handled in a similar fashion. That is, anaction homomorphism is constructed from an acting group, an action domain, and a function describingthe operation. The permutation group arising by the induced action is then the image of this operationhomomorphism.The GAP 3 function Operation is still supported, under the name Action, but from the original group andthe result of Action it is not possible to construct the action homomorphism.9.15 Isomorphisms vs. Isomorphic StructuresIn GAP 3, a di�erent representation of a group could be obtained by calling AgGroup to get an isomorphicpolycyclically presented group, PermGroup to get an isomorphic permutation group, and so on. The returnedobjects stored an isomorphism in the record component bijection.For the same reason as in 9.14, GAP 4 puts emphasis on the isomorphism, and the isomorphic object inthe desired representation can be accessed as its image. So you can call IsomorphismPcGroup or Isomor-phismPermGroup in order to get an isomorphism to a polycyclically presented group or a permutation group,respectively, and then call Image to get the isomorphic group.Note that the image of an action homomorphism with trivial kernel is also an isomorphic permutationgroup, but an action homomorphism need not be surjective, since it may be easier to de�ne it into the fullsymmetric group.Further note that in GAP 3, a usual application of isomorphisms to polycyclically presented groups wasto utilize the usually more e�ective algorithms for solvable groups. However, the new concept of polycyclicgenerating systems in GAP 4 makes it possible to apply these algorithms to arbitrary solvable groups,independent of the representation. For example, GAP 4 can handle polycyclic generating systems of solvablepermutation groups. So in many cases, a change of the representation for e�ciency reasons may be notnecessary any longer.In general IsomorphismFpGroup will de�ne a presentation on generators chosen by the algorithm. Thecorresponding elements of the original group can be obtained by the commandgens:=List(GeneratorsOfGroup(Image(isofp)),i->PreImagesRepresentative(isofp,i));If a presentation in the given generators is needed, the command IsomorphismFpGroupByGenerators(G,gens) will produce one.9.16 Elements of Finitely Presented GroupsStrictly speaking, GAP 3 did not support elements of �nitely presented groups. Instead, the \words in abstractgenerators" of the underlying free groups were (mis)used. This caused problems whenever calculations withelements were involved, the most obvious ones being wrong results of element comparisons. Also functionsthat should in principle work for any group were not applicable to �nitely presented groups. In e�ect, a�nitely presented group had to be treated in a special way in GAP 3.GAP 4 distinguishes free groups and their elements from �nitely presented groups and their elements. Com-paring two elements of a �nitely presented group will yield either the correct result or no result at all.Note that in GAP 4, the arithmetic and comparison operations for group elements do not depend on acontext provided by a group that contains the elements. In particular, in GAP 4 it is not meaningful to callOrder( G, g ) for a group G and an element g .



Section 18. The Info Mechanism 859.17 PolynomialsIn GAP 3, polynomials were de�ned over a �eld. So a polynomial over GF(3) was di�erent from a polynomialover GF(9), even if the coe�cients were exactly the same.GAP 4 de�nes polynomials only over a characteristic. This makes it possible for example to multiply apolynomial over GF(3) with a polynomial over GF(9) without the need to convert the former to the larger�eld.However it has an e�ect on the result of DefaultRing for polynomials: In GAP 3 the default ring for apolynomial was the polynomial ring of the �eld over which the polynomial was de�ned. In GAP 4 no �eldis associated, so (to avoid having to de�ne the algebraic closure as the only other sensible alternative) thedefault ring of a polynomial is the DefaultRing of its coe�cients.This has an e�ect on Factors: If no ring is given, a polynomial is factorized over its DefaultRing and soFactors(poly) might return di�erent results.To be safe from this problem, if you are not working over prime �elds, rather call Factors(pring,poly) withthe appropriate polynomial ring and change your code accordingly.9.18 The Info MechanismSometimes it is useful to get information about the progress of a calculation. Many GAP functions containstatements to display such information under certain conditions.In GAP 3, these statements were calls to functions such as InfoGroup1 or InfoGroup2, and if the userassigned Print to these variables then this had the e�ect to switch on the printing of information. In-foGroup2 was used for more detailed information than InfoGroup1. One could switch o� the printing againby assigning Ignore to the variables, and Ignore was also the default value.GAP 4 uses one function Info for the same purpose, which is a function that takes as �rst argument aninfo class such as InfoGroup, as second argument an info level, and the print statements as remainingarguments. The level of an info class class is set to level by calling SetInfoLevel( class, level ). AnInfo statement is printed only if its second argument is smaller than or equal to the current info level. Forexample,gap> test:= function( obj )> Info( InfoGroup, 2, "This is useful, isn't it?" );> return obj;> end;;gap> test( 1 );1gap> SetInfoLevel( InfoGroup, 2 );gap> test( 1 );#I This is useful, isn't it?1As in GAP 3, if an info statement is ignored then its arguments are not evaluated.



86 Chapter 9. Migrating to GAP 49.19 DebuggingIf GAP 4 runs into an error or is interrupted, it enters a break loop. The command Where( number ), whichreplaces Backtrace of GAP 3, can be used to display number lines of information about the current functioncall stack.As in GAP 3, access is only possible to the variables of the current level in the function stack, but in GAP 4the function DownEnv, with a positive or negative integer as argument, permits one to step down or up inthe stack.When interrupting, the �rst line printed by Where actually may be one level higher, as the following exampleshowsgap> OnBreak := function() Where(0); end;; # eliminate back-tracing ongap> # entry to break loopgap> test:= function( n )> if n > 3 then Error( "!\n" ); fi; test( n+1 ); end;;gap> test( 1 );Error, !Entering break read-eval-print loop ...you can 'quit;' to quit to outer loop, oryou can 'return;' to continuebrk> Where();called fromtest( n + 1 ); called fromtest( n + 1 ); called fromtest( n + 1 ); called from<function>( <arguments> ) called from read-eval-loopbrk> n;4brk> DownEnv();brk> n;3brk> Where();called fromtest( n + 1 ); called fromtest( n + 1 ); called from<function>( <arguments> ) called from read-eval-loopbrk> DownEnv( 2 );brk> n;1brk> Where();called from<function>( <arguments> ) called from read-eval-loopbrk> DownEnv( -2 );brk> n;3brk> quit;gap> OnBreak := Where;; # restore OnBreak to its default valueFor purposes of debugging, it can be helpful sometimes, to see what information is stored within an object.In GAP 3 this was possible using RecFields because the objects in question were represented via records.For component objects, GAP 4 permits the same by NamesOfComponents( object ), which will list allcomponents present.



Section 20. Compatibility Mode 879.20 Compatibility ModeFor users who want to use GAP 3 code with as little changes as possible, a compatibility mode is providedby GAP 4. This mode must be turned on explicitly by the user.It should be noted that this compatibility mode has not been tested thoroughly.The compatibility mode can be turned on by loading some of the following �les with ReadLib. The di�erent�les address di�erent aspects of compatibility.compat3a.gmakes some GAP 3 function names available that were changed in GAP 4, and provides code forsome GAP 3 features that were deliberately left out from the GAP 4 library. For example, almostall variable names concerning character theory that are mentioned in the GAP 3 manual, such asCharTable and SubgroupFusions, are available after compat3a.g has been read; the only exceptionsare names of operations records.compat3b.gimplements the availability of \components" of domains; besides components that have no meaningfor the rest of the GAP 4 library, such as D.myInfo, there are components associated to attributes;for example D.size is redirected to the call of the attribute Size, IsBound( D.size ) to the callof its tester, and D.size:= val to the call of its setter. (An important special case is the componentoperations, see below.)compat3c.gpermits you to implement your own elements represented as records, and using operations recordsto provide a Print method and the basic arithmetic operations. When using operations records,it is probably a good idea to use immutable operations records; for example, if the results ofarithmetic operations are records with operations records then this avoids to create shallow copiesof the operations records in the call to Immutable for the results.The following features are accessible only via starting GAP with the command line option -O and maydamage some features of GAP 4 permanently for the current session.With this option, also the �les listed above are read automatically.compat3d.gprovides some GAP 3 functions like Domain, simulates the GAP 3 behaviour of IsString (to converta list to string representation if possible), and replaces fail by false; these changes destroy partsof the functionality of GAP 4.Some words concerning the simulation of operations records may be necessary.The operations records of the GAP 3 library, such as DomainOps and GroupOps, are available only for accessto their components, whose values are GAP 4 operations; for example, the value of both DomainOps.Sizeand GroupOps.Size is the operation Size. So it is not safely possible to delegate from a Size method inanother operations record to DomainOps.Size. Also it is not possible to change these prede�ned operationsrecords.If one wants to install individual methods for a given object obj via the mechanism of operations recordsthen one can construct a new operations record with OperationsRecord, assign the desired methods tocomponents of this record, and then assign the operations record to obj.operations. Whenever an operationthat is associated with a component nam of the operations record is called with obj as �rst argument, thevalue of nam is chosen as the method.In the case of the binary operations =, <, +, -, *, /, Comm, and LeftQuotient, this also happens if obj is theright-hand argument. As in GAP 3, if both arguments of one of the above binary operations have operations



88 Chapter 9. Migrating to GAP 4records containing a function for this operation, then the function in the operations record of the right-handargument is chosen.We give a small example how the compatibility mode works.Suppose we want to deal with new objects that are derived from known �eld elements by distorting theirmultiplication. Namely, let a 0 and b0 be the new objects corresponding to the �eld elements a, b, and de�nea 0 � b0 = ab � a � b + 2.In GAP 3, this problem was solved by representing each new object by a record that stored the corresponding\old" object and an operations record, where the latter was a record containing the functions applicableto the new object. After the library �le compat3c.g has been read, we can use this construction of theoperations record and of the new objects. Note that operations records must be created with the functionOperationsRecord (this was also the norm in GAP 3), starting with an empty record would not work. Forour intended application, we thus start with the following two lines of code.gap> ReadLib( "compat3c.g" );gap> MyOps:= OperationsRecord( "MyOps" );;HasMyOps := NewFilter( "HasMyOps" );In order to make the translation from GAP 3 code to GAP 4 easier, GAP prints the de�nition of �ltersassociated with operations records and the method installations for operations corresponding to componentsof the operations records. The output line printed by GAP after the call of OperationsRecord is one suchcase.Now we add our multiplication function to the operations record, and again GAP 4 prints a translation toGAP 4 code.gap> MyOps.\* := function( a, b )> return rec( x:= a.x * b.x - a.x - b.x + 2,> operations := MyOps );> end;;# If the following method installation matches the requirements# of the operation `PROD' then `InstallMethod' should be used.# It might be useful to replace the rank `SUM_FLAGS' by `0'.InstallOtherMethod( PROD,"for object with `MyOps' as first argument",true,[ HasMyOps, IsObject ], SUM_FLAGS,MyOps.\* );# For binary infix operators, a second method is installed# for the case that the object with `MyOps' is the right operand;# since this case has higher priority in GAP 3, the method is# installed with higher rank `SUM_FLAGS + 1'.InstallOtherMethod( PROD,"for object with `MyOps' as second argument",true,[ IsObject, HasMyOps ], SUM_FLAGS + 1,MyOps.\* );Let us look how this installation works.



Section 20. Compatibility Mode 89gap> a:= rec( x:= 3, operations:= MyOps );rec( x := 3, operations := MyOps )gap> b:= rec( x:= 5, operations:= MyOps );rec( x := 5, operations := MyOps )gap> a * b;rec( x := 9, operations := MyOps )(In more complicated cases, we might run into problems, but this was already the case in GAP 3. For example,suppose we want to support the multiplication of two operands having di�erent operations records; then itis not clear which of the two multiplication functions is to be chosen, and in GAP 3, the only way out wasto change the multiplication functions, in order to make them aware of such situations.)If we are now interested to translate the code to GAP 4 in the sense that no compatibility mode is needed,we can use what GAP 4 has printed above. (The same example is dealt with in Chapter 6 of \Programmingin GAP".)The objects will no longer be records with operations component. Instead of records we may use so-calledcomponent objects with record-like access to components, and instead of the operations component, wegive the objects a type that has the �lter HasMyOps set.HasMyOps := NewFilter( "HasMyOps" );MyType := NewType( NewFamily( "MyFamily" ),HasMyOps and IsComponentObjectRep );(More about families and representations in this context can be found in the chapter of \Programming inGAP" mentioned above.)The next step is to write a function that creates a new object. It may look as follows.MyObject := function( val )return Objectify( MyType, rec( x:= val ) );end;The multiplication function shall return an object with the �lter HasMyOp, so we change it as follows.gap> MyMult := function( a, b )> return MyObject( x:= a!.x * b!.x - a!.x - b!.x + 2 );> end;;Note that the component access for these objects works via !. instead of .; further note that no operationsrecord needs to appear here, the �lter takes its role.Finally, we install the multiplication for at least one argument with the new �lter, as had been printed byGAP 4 in the session shown above.InstallOtherMethod( PROD,"for object with `MyOps' as first argument",true,[ HasMyOps, IsObject ], 0,MyMult );InstallOtherMethod( PROD,"for object with `MyOps' as second argument",true,[ IsObject, HasMyOps ], 1,MyMult );And now the example works (again).



90 Chapter 9. Migrating to GAP 4gap> a:= MyObject( 3 );<object>gap> b:= MyObject( 5 );<object>gap> a * b;<object>gap> last!.x9We may install a method to print our objects in a nice way; we could have done this for the operationsrecord MyOps in the compatibility mode, the printed output would look similar to the following.InstallOtherMethod( PRINT_OBJ,"for object with `MyOps' as first argument",true,[ HasMyOps ], 0,function( obj ) Print( "MyObject( ", obj!.x, " )" ); end );Now the example behaves as follows.gap> a; b; a * b;MyObject( 3 )MyObject( 5 )MyObject( 9 )Maybe now we want to improve the installation. The multiplication function we want to use is apparentlythought only for the case that both operands have the �lter HasMyOps (and a component x). So it isreasonable to replace the two methods for the multiplication by one method for which both arguments arerequired to have the �lter.InstallOtherMethod( PROD,"for two objects with `MyOps'",true,[ HasMyOps, HasMyOps ], 0,MyMult );At �rst sight, the GAP 4 approach seems to be much more complicated. But the last example shows thatin GAP 4, each method can be installed more speci�cally for the appropriate situation. Moreover, it is forexample possible to install a method for the multiplication of an integer and a HasMyOps object; note that{contrary to the situation in GAP 3{ such a method is independent from already existing methods in thesense that these need not be changed when new functionality is added.Another example that uses this part of the compatibility mode can be found in the �le tst/compat3.tstof the GAP 4 distribution.
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