
GAPRelease 4.418 March 2004
New Features for Developers

The GAP Grouphttp://www.gap-system.org

Acknowledgement
We would like to thank the many people who have made contributions ofvarious kinds to the development of GAP since 1986, in particular:Isabel M. Ara�ujo, Robert Arthur, Hans Ulrich Besche, Thomas Bischops,Oliver Bonten, Thomas Breuer, Frank Celler, Gene Cooperman, Bettina Eick,Volkmar Felsch, Franz G�ahler, Greg Gamble, Willem de Graaf,Burkhard H�o
ing, Jens Hollmann, Derek Holt, Erzs�ebet Horv�ath,Alexander Hulpke, Ansgar Kaup, Susanne Keitemeier, Steve Linton,Frank L�ubeck, Bohdan Majewski, Johannes Meier, Thomas Merkwitz,Wolfgang Merkwitz, J�urgen Mnich, Robert F. Morse, Scott Murray,Joachim Neub�user, Max Neunh�o�er, Werner Nickel,Alice Niemeyer, Dima Pasechnik, G�otz Pfei�er, Udo Polis,Ferenc R�ak�oczi, Sarah Rees, Edmund Robertson, Ute Schi�er,Martin Sch�onert, �Akos Seress, Andrew Solomon,Heiko Thei�en, Rob Wainwright, Alex Wegner, Chris Wensley and Charles Wright.
The following list gives the authors, indicated by A, who designed the code in the �rst place as well as thecurrent maintainers, indicated by M of the various modules of which GAP is composed.Since the process of modularization was started only recently, there might be omissions both in scope andin contributors. The compilers of the manual apologize for any such errors and promise to rectify them infuture editions.Kernel Frank Celler (A), Steve Linton (AM), Frank L�ubeck (AM), Werner Nickel (AM), Martin Sch�onert (A)Automorphism groups of �nite pc groupsBettina Eick (AM)Binary RelationsRobert Morse (AM), Andrew Solomon (A)Characters and Character Degrees of certain solvable groupsHans Ulrich Besche (A), Thomas Breuer (AM)Classes in nonsolvable groupsAlexander Hulpke (AM)Classical GroupsThomas Breuer (AM), Frank Celler (A), Stefan Kohl (AM), Frank L�ubeck (AM), Heiko Thei�en (A)

4 AcknowledgementCongruences of magmas, semigroups and monoidsRobert Morse (AM), Andrew Solomon (A)Cosets and Double CosetsAlexander Hulpke (AM)CyclotomicsThomas Breuer (AM)Dixon-Schneider AlgorithmAlexander Hulpke (AM)Documentation UtilitiesFrank Celler (A), Heiko Thei�en (A), Alexander Hulpke (A), Willem de Graaf (A), Steve Linton (A),Werner Nickel (A), Greg Gamble (AM)Factor groupsAlexander Hulpke (AM)Finitely presented groupsVolkmar Felsch (AM), Alexander Hulpke (AM), Martin Schoenert (A)Finitely presented monoids and semigroupsIsabel Ara�ujo (AM), Derek Holt (A), Alexander Hulpke (A), G�otz Pfei�er (A), Andrew Solomon (AM)GAP for MacOSBurkhard H�o
ing (AM)Group actionsHeiko Thei�en (A) and Alexander Hulpke (AM)Homomorphism searchAlexander Hulpke (AM)Homomorphisms for �nitely presented groupsAlexander Hulpke (AM)Identi�cation of Galois groupsAlexander Hulpke (AM)Intersection of subgroups of �nite pc groupsFrank Celler (A), Bettina Eick (AM)Irreducible Modules over �nite �elds for �nite pc groupsBettina Eick (AM)Isomorphism testing with random methodsHans Ulrich Besche (AM), Bettina Eick (AM)Lie algebrasThomas Breuer (A), Craig Struble (A), Juergen Wisliceny (A), Willem A. de Graaf (AM)Monomiality QuestionsThomas Breuer (AM), Erzs�ebet Horv�ath (A)Multiplier and Schur coverWerner Nickel (AM), Alexander Hulpke (AM)One-Cohomology and ComplementsFrank Celler (A) and Alexander Hulpke (AM)Partition Backtrack algorithmHeiko Thei�en (A), Alexander Hulpke (M)Permutation group composition series�Akos Seress (AM)

Acknowledgement 5Permutation group homomorphisms�Akos Seress (AM), Heiko Thei�en (A), Alexander Hulpke (M)Permutation Group PcgsHeiko Thei�en (A), Alexander Hulpke (M)Possible Permutation CharactersThomas Breuer (AM), G�otz Pfei�er (A)Possible Class Fusions, Possible Power Maps Thomas Breuer (AM)Primitive groups libraryHeiko Thei�en (A), Alexander Hulpke (M)Properties and attributes of �nite pc groupsFrank Celler (A), Bettina Eick (AM)Random Schreier-Sims�Akos Seress (AM)Rational FunctionsFrank Celler (A) and Alexander Hulpke (AM)Semigroup relationsIsabel Araujo (A), Robert F. Morse (AM), Andrew Solomon (A)Special Pcgs for �nite pc groupsBettina Eick (AM)Stabilizer Chains�Akos Seress (AM), Heiko Thei�en (A), Alexander Hulpke (M)Strings and CharactersMartin Sch�onert (A), Frank Celler (A), Thomas Breuer (A), Frank L�ubeck (AM)Subgroup latticeMartin Sch�onert (A), Alexander Hulpke (AM)Subgroup lattice for solvable groupsAlexander Hulpke (AM)Subgroup presentationsVolkmar Felsch (AM)The Help SystemFrank Celler (A), Frank L�ubeck (AM)Tietze transformationsVolkmar Felsch (AM)Transformation semigroupsIsabel Araujo (A), Robert Arthur (A), Robert F. Morse (AM), Andrew Solomon (A)Transitive groups libraryAlexander Hulpke (AM)Two-cohomology and extensions of �nite pc groupsBettina Eick (AM)

Contents
Copyright Notice 71 About the New Features Manual 82 Dictionaries and General HashTables (preliminary) 92.1 Dictionaries 92.2 General Hash Tables 102.3 General hash table de�nitions andoperations 102.4 Hash keys 112.5 Dense hash tables 112.6 Sparse hash tables 112.7 Fast access to last hash index . . 123 Quotient groups byhomomorphisms (preliminary) 133.1 Creating hom cosets and quotientgroups 143.2 Operations on hom cosets 144 Transversals of subgroups(preliminary) 164.1 General operations on transversals . 164.2 Transversals by Schreier tree . . . 164.3 Transversals by homomorphic images 174.4 Transversals by direct products . . 184.5 Transversals by Trivial subgroups . 184.6 Transversals by sift functions . . . 185 Chains of subgroups(preliminary) 19

5.1 Stabiliser chain subgroups 205.2 Hom coset chain subgroups . . . 215.3 Direct product chain subgroups . . 215.4 Trivial chain subgroups and siftfunction chain subgroups 21Bibliography 23Index 24

Copyright Notice
Copyright c
 (1987{2004) by the GAP Group,incorporating the Copyright c
 1999, 2000 by School of Mathematical and Computational Sciences, Univer-sity of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotlandbeing the Copyright c
 1992 by Lehrstuhl D f�ur Mathematik, RWTH, 52056 Aachen, Germany, transferredto St Andrews on July 21st, 1997.except for �les in the distribution, which have an explicit di�erent copyright statement. In particular, thecopyright of packages distributed with GAP is usually with the package authors or their institutions.GAP is free software; you can redistribute it and/or modify it under the terms of the GNU General PublicLicense as published by the Free Software Foundation; either version 2 of the License, or (at your option)any later version. For details, see the �le GPL in the etc directory of the GAP distribution or seehttp://www.gnu.org/licenses/gpl.htmlIf you obtain GAP please send us a short notice to that e�ect, e.g., an e-mail message to the addresssupport@gap-system.org, containing your full name and address. This allows us to keep track of thenumber of GAP users.If you publish a mathematical result that was partly obtained using GAP, please cite GAP, just as you wouldcite another paper that you used (see below for sample citation). Also we would appreciate if you couldinform us about such a paper.Speci�cally, please refer to[GAP] The GAP Group, GAP --- Groups, Algorithms, and Programming,Version 4.4.2; 2004(http://www.gap-system.org)GAP is distributed by us without any warranty, to the extent permitted by applicable state law. We distributeGAP as is without warranty of any kind, either expressed or implied, including, but not limited to, the impliedwarranties of merchantability and �tness for a particular purpose.The entire risk as to the quality and performance of the program is with you. Should GAP prove defective,you assume the cost of all necessary servicing, repair or correction.In no case unless required by applicable law will we, and/or any other party who may modify and redistributeGAP as permitted above, be liable to you for damages, including lost pro�ts, lost monies or other special,incidental or consequential damages arising out of the use or inability to use GAP.You are permitted to modify and redistribute GAP, but you are not allowed to restrict further redistribution.That is to say proprietary modi�cations will not be allowed. We want all versions of GAP to remain free.If you modify any part of GAP and redistribute it, you must supply a README document. This shouldspecify what modi�cations you made in which �les. We do not want to take credit or be blamed for yourmodi�cations.Of course we are interested in all of your modi�cations. In particular we would like to see bug-�xes, improve-ments and new functions. So again we would appreciate it if you would inform us about all modi�cationsyou make.

1
About the New
Features Manual

This is a supplementary volume to the four main parts of the GAP documentation: the GAP ReferenceManual, which describes all the main features of GAP for users, the GAP Tutorial, a beginner's introductionto GAP, Programming in GAP and Extending GAP, which provide information for those who want towrite their own GAP extensions.This manual, New Features for Developers, describes certain features of GAP, which meet the followingconditions:� They are new. Usually they were introduced at the last major release of GAP� They are likely to be of more interest to GAP programmers and package developers than to interactiveusers� We wish to retain the freedom to make some changes in them at the time of the next releaseWe would encourage users to employ these features in their own GAP programs or packages, but ask themto let us know that they are doing so. We will then invite feedback from them, and, as we approach thenext release, discuss with them any changes to the features that might be desirable for inclusion in the nextrelease. Unless substantial problems are found, we would normally expect to move the documentation intothe reference manual at that time, and regard the documented behaviour as �xed from that time onwards.

2
Dictionaries and

General Hash
Tables (preliminary)

People and computers spend a large amount of time with searching. Dictionaries are an abstract datastructure which facilitates searching for certain objects. An important way of implementing dictionaries isvia hash tables.The functions and operations described in this chapter have been added very recently andare still undergoing development. It is conceivable that names of variants of the functionalitymight change in future versions. If you plan to use these functions in your own code, pleasecontact us.2.1 Dictionaries
1I IsDictionary(obj) CA dictionary is a growable collection of objects that permits to add objects (with associated values) and tocheck whether an object is already known.
2I IsLookupDictionary(obj) CA lookup dictionary is a dictionary, which permits not only to check whether an object is contained, butalso to retrieve associated values, using the operation LookupDictionary.
3I KnowsDictionary(dict, key) Ochecks, whether key is known to the dictionary dict , and returns true or false accordingly. key must bean object of the kind for which the dictionary was speci�ed, otherwise the results are unpredictable.
4I LookupDictionary(dict, key) Olooks up key in the lookup dictionary dict and returns the associated value. If key is not known to thedictionary, fail is returned.There are several ways how dictionaries are implemented: As lists, as sorted lists, as hash tables or via binarylists. A user however will just have to call NewDictionary and obtain a \suitable" dictionary for the kindof objects she wants to create. It is possible however to create hash tables (see 2.3) and dictionaries usingbinary lists (see 2.1.6).
5I NewDictionary(obj, look[, objcoll]) Fcreates a new dictionary for objects such as obj . If objcoll is given the dictionary will be for objects onlyfrom this collection, knowing this can improve the performance. If objcoll is given, obj may be replaced byfalse, i.e. no sample object is needed.The function tries to �nd the right kind of dictionary for the basic dictionary functions to be quick. If lookis true, the dictionary will be a lookup dictionary, otherwise it is an ordinary dictionary.

10 Chapter 2. Dictionaries and General Hash Tables (preliminary)The use of two objects, obj and objcoll to parametrize the objects a dictionary is able to store might lookconfusing. However there are situations where either of them might be needed:The �rst situation is that of objects, for which no formal \collection object" has been de�ned. A typicalexample here might be subspaces of a vector space. GAP does not formally de�ne a \Grassmannian" oranything else to represent the multitude of all subspaces. So it is only possible to give the dictionary a\sample object".The other situation is that of an object which might represent quite varied domains. The permutation(1; 106) might be the nontrivial element of a cyclic group of order 2, it might be a representative of S106 . Inthe �rst situation the best approach might be just to have two entries for the two possible objects, in thesecond situation a much more elaborate approach might be needed.An algorithm that creates a dictionary will usually know a priori, from what domain all the objects will be,giving this domain permits to use a more e�cient dictionary.This is particularly true for vectors. From a single vector one cannot decide whether a calculation will takeplace over the smallest �eld containing all its entries or over a larger �eld.As there are situations where the approach via binary lists is explicitly desired, such dictionaries can becreated deliberately.
6I DictionaryByPosition(list, lookup) Fcreates a new (lookup) dictionary which uses PositionCanonical in list for indexing. The dictionary willhave an entry dict!.blist which is a bit list corresponding to list indicating the known If look is true, thedictionary will be a lookup dictionary, otherwise it is an ordinary dictionary.2.2 General Hash TablesThis chapter describes hash tables for general objects. We hash by keys and also store a value. Keys cannotbe removed from the table, but the corresponding value can be changed. Fast access to last hash index allowsyou to e�ciently store more than one array of values { this facility should be used with care.This code works for any kind of object, provided you have a DenseIntKey or KeyIntSparse method to convertthe key into a positive integer. These methods should ideally be implemented e�ciently in the core.Note that, for e�ciency, it is currently impossible to create a hash table with non-positive integers.2.3 General hash table de�nitions and operations
1I IsHash(obj) CThe category of hash tables for arbitrary objects (provided an IntKey function is de�ned).
2I PrintHashWithNames(hash, keyName, valueName) OPrint a hash table with the given names for the keys and values.
3I GetHashEntry(hash, key) OIf the key is in hash, return the corresponding value. Otherwise return fail. Note that it is not a good ideato use fail as a value.
4I AddHashEntry(hash, key, value) OAdd the key and value to the hash table.
5I RandomHashKey(hash) OReturn a random Key from the hash table (Random returns a random value).
6I HashKeyEnumerator(hash) OEnumerates the keys of the hash table (Enumerator enumerates values).

Section 6. Sparse hash tables 112.4 Hash keysThe crucial step of hashing is to transform key objects into integers such that equal objects produce thesame integer.
1I TableHasIntKeyFun(hash) PIf this �lter is set, the hash table has an IntKey function in its component hash!.intKeyFun.The actual function used will vary very much on the type of objects. However GAP provides already keyfunctions for some commonly encountered objects.
2I DenseIntKey(objcoll, obj) Oreturns a function that can be used as hash key function for objects such as obj in the collection objcoll .objcoll typically will be a large domain. If the domain is not available, it can be given as false in whichcase the hash key function will be determined only based on obj . (For a further discussion of these twoarguments see NewDictionary, section 2.1.5).The function returned by DenseIntKey is guaranteed to give di�erent values for di�erent objects. If nosuitable hash key function has been prede�ned, fail is returned.
3I SparseIntKey(objcoll, obj) Oreturns a function that can be used as hash key function for objects such as obj in the collection objcoll . Incontrast to DenseIntKey, the function returned may return the same key value for di�erent objects. If nosuitable hash key function has been prede�ned, fail is returned.2.5 Dense hash tablesDense hash tables are used for hashing dense sets without collisions, in particular integers. Stores keys as anunordered list and values as an array with holes. The position of a value is given by the attribute IntKeyFunor the function returned by DenseIntKey, and so KeyIntDense must be one-to-one.
1I DenseHashTable() FConstruct an empty dense hash table. This is the only correct way to construct such a table.2.6 Sparse hash tablesSparse hash tables are used for hashing sparse sets. Stores keys as an array with fail denoting an emptyposition, stores values as an array with holes. Uses HashFunct applied to the IntKeyFun (respectively theresult of calling SparseIntKey) of the key. DefaultHashLength is the default starting hash table length; thetable is doubled when it becomes half full.
1I SparseHashTable([intkeyfun]) FConstruct an empty sparse hash table. This is the only correct way to construct such a table. If the argumentintkeyfun is given, this function will be used to obtain numbers for the keys passed to it.
2I GetHashEntryIndex(hash, key) FIf the key is in hash, return its index in the hash array.
3I DoubleHashArraySize(hash) FDouble the size of the hash array and rehash all the entries. This will also happen automatically when thehash array is half full.In sparse hash tables, the integer obtained from the hash key is then transformed to an index position, thistransformation is done using the hash function HashFunct:
4I HashFunct(key, i, size) FThis will be a good double hashing function for any reasonable KeyInt (see Cormen, Leiserson and Rivest,Introduction to Algorithms, 1e, p. 235).

12 Chapter 2. Dictionaries and General Hash Tables (preliminary)2.7 Fast access to last hash indexThese functions allow you to use the index of last hash access or modi�cation. Note that this is globalacross all hash tables. If you want to have two hash tables with identical layouts, the following works:GetHashEntry(hashTable1, object); GetHashEntryAtLastIndex(hashTable2); These functions should beused with extreme care, as they bypass most of the inbuilt error checking for hash tables.
1I GetHashEntryAtLastIndex(hash) OReturns the value of the last hash entry accessed.
2I SetHashEntryAtLastIndex(hash, newValue) OResets the value of the last hash entry accessed.
3I SetHashEntry(hash, key, value) OResets the value corresponding to key .

3
Quotient groups

by homomorphisms
(preliminary)

Given a group homomorphism, the cosets of its kernel correspond to elements in the image. Our hom cosetrepresentation stores the homomorphism and the element in the source group. The image is an attributewhich is computed as necessary. Two cosets are equal if their images are the same. Where ever practical acoset is identi�ed with its image. For example, if the homomorphism maps into a permutation group, thecosets are considered to be permutations. Since cosets can be multiplied, we can use them to form a quotientgroup. Any computation in this quotient group will be \shadowed" in the source group.The functions and operations described in this chapter have been added very recently andare still undergoing development. It is conceivable that names of variants of the functionalitymight change in future versions. If you plan to use these functions in your own code, pleasecontact us.
1I IsHomCoset(obj) CIsHomCoset has one category for each kind of image (and corresponding representations).
2I IsHomCosetToPerm(obj) C
3I IsHomCosetToPermRep(obj) R
4I IsHomCosetToMatrix(obj) Cgdc - We need HomCosetToMatrix to be in same family as Matrix, so that GAP allows vector � for Hom-CosetToMatrix and other algorithms that take elements of the HomCosetToMatrix. Unfortunately, I don'tknow how to set the family correctly for compatibility.
5I IsHomCosetToMatrixRep(obj) R
6I IsHomCosetToFp(obj) C
7I IsHomCosetToFpRep(obj) R
8I IsHomCosetToTuple(obj) C
9I IsHomCosetToTupleRep(obj) R
10I IsHomCosetToAdditiveElt(obj) CHere the image is an ADDITIVE group of matrices.
11I IsHomCosetToAdditiveEltRep(obj) R
12I IsHomCosetToObjectRep(obj) RThe generic representation.

14 Chapter 3. Quotient groups by homomorphisms (preliminary)It also has one property for each kind of source.
13I IsHomCosetOfPerm(obj) P
14I IsHomCosetOfMatrix(obj) P
15I IsHomCosetOfFp(obj) P
16I IsHomCosetOfTuple(obj) P
17I IsHomCosetOfAdditiveElt(obj) P3.1 Creating hom cosets and quotient groups
1I HomCoset(hom, elt) FCreates a hom coset. It is better to use one of the QuotientGroupBy... functions.
2I HomCosetWithImage(hom, srcElt, imgElt) FCreates a hom coset with given homomorphism hom, source element srcElt and image element imgElt . It isbetter to use one of the QuotientGroupBy... functions.
3I QuotientGroupHom(hom) AThe quotient group associated with the homomorphism hom. It is better to use one of the Quotient-GroupBy... functions.
4I QuotientGroupByHomomorphism(hom) FThe quotient group associated with the homomorphism hom.
5I QuotientGroupByImages(srcGroup, rangeGroup, srcGens, imgGens) Fcreates a quotient group from the homomorphism which takes maps srcGens[i] in srcGroup to imgGens[i]in rangeGroup.
6I QuotientGroupByImagesNC(srcGroup, rangeGroup, srcGens, imgGens) FSame as QuotientGroupByImages (see 3.1.5) but without checking that the homomorphism makes sense.3.2 Operations on hom cosets
1I Homomorphism(hcoset) O
I Homomorphism(Q) OThe homomorphism of a hom coset hcoset , respectively a hom quotient group Q .

2I SourceElt(hcoset) OThe source element of a hom coset hcoset .
3I ImageElt(hcoset) AThe image element of a hom coset hcoset .
4I CanonicalElt(hcoset) AA canonical element of a hom coset hcoset . Note that SourceElt may be di�erent for non-identical equalcosets. CanonicalElt gives the same element for di�erent representation of a coset. This will compute achain for the range group if one does not already exist.

Section 2. Operations on hom cosets 15
5I Source(Q) ASource group of a hom quotient group Q .
6I Range(Q) ARange group of a hom quotient group Q .
7I ImagesSource(Q) AImage group of a hom quotient group Q .

4
Transversals of

subgroups (preliminary)
This chapter describes the category of transversals of subgroups. This category has the following rep-resentations: TransvBySchreierTree, TransvByHomomorphism, TransvByDirProd, TransvByTrivSubgrp,TransvBySiftFunct.The functions and operations described in this chapter have been added very recently andare still undergoing development. It is conceivable that names of variants of the functionalitymight change in future versions. If you plan to use these functions in your own code, pleasecontact us.4.1 General operations on transversalsEvery kind of transversal has the following common operations/attributes: Size, Enumerator, Iterator,Random, TransversalElt, SiftOneLevel.

1I TransversalElt(ss, elt) Ofor a transversal ss and group element elt , returns the representative of the coset containing the elementelt . The representative is unique, i.e. TransversalElt will return the same thing for di�erent elements ofthe same coset.
2I SiftOneLevel(ss, g) OFor a transversal ss and group element g , the following relationship with TransversalElt (see 4.1.1) de�nesSiftOneLevel:SiftOneLevel(ss, g) = g * TransversalElt(ss, g)For some kinds of transversal TransversalElt is more e�cient, for others SiftOneLevel is.4.2 Transversals by Schreier treeFor transversals of stabiliser subgroups, we store a Schreier tree to allow us to �nd transversal elements.Note: SiftOneLevel is more e�cient that TransversalElt.Transversals can be extended as more generators are found for the stabiliser. Orbit generators are generatorsfor the original group, stored separately so we can add extra generators to form a shallower tree. Orbits arestored as hash tables.
1I SchreierTransversal(basePoint, Action, strongGens) Fcreates a transversal by Schreier tree for the subgroup stabilising the point basePoint (an object, typicallyan integer or vector) inside the group generated by strongGens (a list of strong generators for the group).This is the only correct way to create a transversal by Schreier tree.
2I OrbitGenerators(ss) OThe elements used to compute the orbit ss. These will be generators for the larger group, however there willoften be redundancies to keep the Schreier tree shallow.

Section 3. Transversals by homomorphic images 17
3I OrbitGeneratorsInv(ss) OInverses of the orbit generators of the orbit ss.
4I BasePointOfSchreierTransversal(ss) OThe base point of transversal by Schreier tree ss, i.e. the point stabilised.
5I One(ss) AThe identity of group ss.
6I ExtendSchreierTransversal(st, newGens) F
I ExtendSchreierTransversal(st, newGens, newGensInv) FExtend a transversal by Schreier tree st with new generators newGens.

7I ExtendSchreierTransversalShortCube(ss, newGens) F
I ExtendSchreierTransversalShortCube(ss, newGens, newGensInv) Fgdc - Ideally, ExtendSchreierTransversal should be a �eld of the Schreier tree, chosen by Schreier-Transversal().gdc - This is the new function with the cube control tree.EXPERIMENTAL IDEA: IT WOULD NEED TO BE TUNED. NOT CURRENTLY COMPETITIVEWITH METHOD BELOW.

8I ExtendSchreierTransversalShortTree(ss, newGens) F
I ExtendSchreierTransversalShortTree(ss, newGens, newGensInv) Fgdc - This is the original function with the traditional control treeBASED ON: [CF94] \A Random Base Change Algorithm for Permutation Groups", G. Cooperman andL. Finkelstein, J. of Symbolic Computation 17, 1994, pp. 513{528

9I CompleteSchreierTransversal(ss) FComplete the transversal. In order to ensure that the Schreier tree does not become too deep, the Extend...functions do not complete the transversal. Rather they extend it by depth one.
10I PreferredGenerators(ss) Areturns the preferred generators of the transversal by Schreier tree ss. The preferred generators are alwaysused �rst when computing the Schreier tree.
11I SchreierTreeDepth(ss) FThe depth of Schreier tree ss.4.3 Transversals by homomorphic imagesFor the transversal of the kernel of a homomorphism, a quotient group for the kernel of a homomorphismis stored. Transversal elements are computed by �nding a chain for the image group and doing shadowedstripping.Note: TransversalElt is more e�cient that SiftOneLevel.
1I HomTransversal(h) Fcreates a hom transversal for the homomorphism h.
2I Homomorphism(homtr) OThe homomorphism of hom transversal homtr .

18 Chapter 4. Transversals of subgroups (preliminary)
3I QuotientGroup(homtr) AThe quotient group of hom transversal homtr .
4I ImageGroup(homtr) OThe image group of hom transversal homtr .4.4 Transversals by direct productsStores projection and injection for a direct product. The chain subgroup is the kernel of the projection.
1I Projection(dpt) OThe projection of the direct product transversal dpt .
2I Injection(dpt) OThe injection of a direct product transversal dpt .4.5 Transversals by Trivial subgroupsFor use when our group is small enough to enumerate.
1I TransversalByTrivial(G) Freturns a transversal by trivial subgroup for the group G .4.6 Transversals by sift functionsGiven a group, subgroup, and sift function from group to subgroup that is constant on cosets, this de�nes atransversal. One typically prefers a normalized sift function that is the the identity map on subgroups. Forsituations when there is a non-group theoretic method for computing the transversal element, e.g. using rowreduction for the stabiliser of an invariant subspace.Note: SiftOneLevel is more e�cient than TransversalElt.
1I TransversalBySiftFunction(supergroup, subgroup, sift) Freturns a transversal by sift function.

5
Chains of subgroups

(preliminary)
The functions and operations described in this chapter have been added very recently andare still undergoing development. It is conceivable that names of variants of the functionalitymight change in future versions. If you plan to use these functions in your own code, pleasecontact us.Data structures for storing general group chains. Note that this does not replace StabChain. The groupattribute ChainSubgroup(G) stores the next group down in the chain (i.e. the structure is recursive). Chain-Subgroup(G) should have an attribute Transversal which describes a transversal of ChainSubgroup(G)in G , as in gptransv.[gd,gi].The command ChainSubgroup will use the default method for computing chains { currently this is randomSchreier-Sims, unless the group is nilpotent. Warning: This algorithm is Monte-Carlo. ChainSubgroup ismutable, since it may start as the trivial subgroup, and then grow as elements are sifted in, and some stick.This allows us to do, if we want, things like:SetChainSubgroup(G, ClosureGroup(ChainSubgroup(G), siftee));Whether this code is used instead of previous methods is determined by 4 variables which control thebehaviour of the �lter IsChainTypeGroup. See the �le gap.../lib/grpchain.gd for details.

1I IsChainTypeGroup(G) Preturns true if the group G is \chain type", i.e. it is the kind of group where computations are best donewith chains.
2I ChainSubgroup(G) AMComputes the chain, if necessary, and returns the next subgroup in the chain. The current default is to usethe random Schreier-Sims algorithm, unless the group is known to be nilpotent, in which case MakeHomChainis used.
3I Transversal(G) AThe transversal of the group G in the previous subgroup of the chain.
4I IsInChain(G) OA group G is in a chain if it has either a ChainSubgroup or a Transversal.
5I GeneratingSetIsComplete(G) Preturns true if the generating set of the group G is complete. For example, for a stabiliser subgroup this istrue if our strong generators have been veri�ed.
6I SiftOneLevel(G, g) OSift g though one level of the chain.
7I Sift(G, g) OSift g through the entire chain.

20 Chapter 5. Chains of subgroups (preliminary)
8I SizeOfChainOfGroup(G) FUses the chain to compute the size of a group. Unlike Size(G), this does not set the Size attribute, whichis useful if the chain is not known to be complete.
9I TransversalOfChainSubgroup(G) FReturns the transversal of the next group in the chain, inside G .
10I ChainStatistics(G) FReturns a record containing useful statistics about the chain of G .
11I HasChainHomomorphicImage(G) FDoes G have a chain subgroup derived from a homomorphic image? This will be false for stabiliser, trivial,and sift function chain subgroups. It will be true for homomorphism and direct product chain subgroups.
12I ChainHomomorphicImage(G) FReturns the chain homomorphic image, or fail if no such image exists.5.1 Stabiliser chain subgroups
1I BaseOfGroup(G) AIf the group G has a chain consisting entirely of stabiliser subgroups, then this command returns the baseas a list. This command does not compute a base, however.
2I ExtendedGroup(G, g) OAdd a new Schreier generator for G .
3I StrongGens(G) FReturns a list of generating sets for each level of the chain.
4I ChainSubgroupByStabiliser(G, basePoint, Action) FForm a chain subgroup by stabilising basePoint under the given action. The subgroup will start with nogenerators, and will have a transversal by Schreier tree.
5I OrbitGeneratorsOfGroup(G) AGenerators used to compute the orbit of G . Used by baseim.[gd,gi].
6I RandomSchreierSims(G) FThe random Schreier-Sims algorithm.
7I ChangedBaseGroup(G) FWe assume we have a chain for G , which gives a complete BSGS. We are given a new base newBase and wishto �nd strong generators for it. Options are the same as for random Schreier-Sims. Note that this functiondoes not modify G , but returns a new group, isomorphic to G with the speci�ed base.

Section 4. Trivial chain subgroups and sift function chain subgroups 215.2 Hom coset chain subgroups
1I ChainSubgroupByHomomorphism(hom) FForm a chain subgroup by the kernel of hom. The subgroup will start with no generators, and will have ahom transversal.
2I ChainSubgroupByProjectionFunction(G, kernelSubgp, imgSubgp, projFnc) FWhen the homomorphism of a quotient group is a projection, then there is an internal semidirect product,for which TransversalElt() has a direct implementation as the projection. hom will be the projection, andelt -> ImageElm(hom, elt) is the map.
3I QuotientGroupByChainHomomorphicImage(quo[, quo2]) FThis function deals with quotient groups of quotient groups in a chain.
4I ChainSubgroupQuotient(G) AThe quotient by the chain subgroup.
5I MakeHomChain(G) OComputes a chain of subgroups for the group G which are kernels of homomorphisms. Currently onlyimplemented for nilpotent groups. We use the algorithm of E. Luks, Computing in Solvable Matrix Groups,FOCS/STOC.5.3 Direct product chain subgroups
1I ChainSubgroupByDirectProduct(proj, inj) FForm a chain subgroup by internal direct product.
2I ChainSubgroupByPSubgroupOfAbelian(G, p) FG is an abelian group, p a prime involved in G . Form a direct sum chain where the subgroup is the p-primepart of G .5.4 Trivial chain subgroups and sift function chain subgroups
1I ChainSubgroupByTrivialSubgroup(G) FForm a chain subgroup by enumerating the group.
2I ChainSubgroupBySiftFunction(G, subgroup, siftFnc) FForm a chain subgroup using a sift function.

22 Chapter 6. Chains of subgroups (preliminary)

Bibliography
[CF94] Gene Cooperman and Larry Finkelstein. A random base change algorithm for permutation groups.

J. Symbolic Comput., 17(6):513{528, 1994.

Index
This index covers only this manual. A page number in italics refers to a whole section which is devotedto the indexed subject. Keywords are sorted with case and spaces ignored, e.g., \PermutationCharacter"comes before \permutation group".AAddHashEntry, 10BBaseOfGroup, 20BasePointOfSchreierTransversal, 16CCanonicalElt, 14ChainHomomorphicImage, 20ChainStatistics, 20ChainSubgroup, 19ChainSubgroupByDirectProduct, 21ChainSubgroupByHomomorphism, 20ChainSubgroupByProjectionFunction, 20ChainSubgroupByPSubgroupOfAbelian, 21ChainSubgroupBySiftFunction, 21ChainSubgroupByStabiliser, 20ChainSubgroupByTrivialSubgroup, 21ChainSubgroupQuotient, 21ChangedBaseGroup, 20CompleteSchreierTransversal, 17Creating hom cosets and quotient groups, 14DDenseHashTable, 11Dense hash tables, 11DenseIntKey, 11Dictionaries, 9DictionaryByPosition, 10Direct product chain subgroups, 21DoubleHashArraySize, 11EExtendedGroup, 20ExtendSchreierTransversal, 17ExtendSchreierTransversalShortCube, 17ExtendSchreierTransversalShortTree, 17FFast access to last hash index, 11

GGeneral hash table de�nitions and operations, 10General Hash Tables, 10General operations on transversals, 16GeneratingSetIsComplete, 19GetHashEntry, 10GetHashEntryAtLastIndex, 12GetHashEntryIndex, 11HHasChainHomomorphicImage, 20HashFunct, 11HashKeyEnumerator, 10Hash keys, 10HomCoset, 14Hom coset chain subgroups, 20HomCosetWithImage, 14Homomorphism, for quotient groups byhomomorphisms, 14for subgroup transversals, 17HomTransversal, 17IImageElt, 14ImageGroup, 17ImagesSource, 14Injection, 18IsChainTypeGroup, 19IsDictionary, 9IsHash, 10IsHomCoset, 13IsHomCosetOfAdditiveElt, 13IsHomCosetOfFp, 13IsHomCosetOfMatrix, 13IsHomCosetOfPerm, 13IsHomCosetOfTuple, 13IsHomCosetToAdditiveElt, 13IsHomCosetToAdditiveEltRep, 13IsHomCosetToFp, 13

Index 25IsHomCosetToFpRep, 13IsHomCosetToMatrix, 13IsHomCosetToMatrixRep, 13IsHomCosetToObjectRep, 13IsHomCosetToPerm, 13IsHomCosetToPermRep, 13IsHomCosetToTuple, 13IsHomCosetToTupleRep, 13IsInChain, 19IsLookupDictionary, 9KKnowsDictionary, 9LLookupDictionary, 9MMakeHomChain, 21NNewDictionary, 9OOne, 17Operations on hom cosets, 14OrbitGenerators, 16OrbitGeneratorsInv, 16OrbitGeneratorsOfGroup, 20PPreferredGenerators, 17PrintHashWithNames, 10Projection, 18QQuotientGroup, 17QuotientGroupByChainHomomorphicImage, 20QuotientGroupByHomomorphism, 14QuotientGroupByImages, 14QuotientGroupByImagesNC, 14

QuotientGroupHom, 14RRandomHashKey, 10RandomSchreierSims, 20Range, 14SSchreierTransversal, 16SchreierTreeDepth, 17SetHashEntry, 12SetHashEntryAtLastIndex, 12Sift, for chains of subgroups, 19SiftOneLevel, for chains of subgroups, 19for subgroup transversals, 16SizeOfChainOfGroup, 19Source, 14SourceElt, 14SparseHashTable, 11Sparse hash tables, 11SparseIntKey, 11Stabiliser chain subgroups, 20StrongGens, 20TTableHasIntKeyFun, 11Transversal, 19TransversalBySiftFunction, 18TransversalByTrivial, 18TransversalElt, 16TransversalOfChainSubgroup, 20Transversals by direct products, 18Transversals by homomorphic images, 17Transversals by Schreier tree, 16Transversals by sift functions, 18Transversals by Trivial subgroups, 18Trivial chain subgroups and sift function chainsubgroups, 21

	
	Acknowledgement
	Contents
	Copyright Notice
	About the New Features Manual
	Dictionaries and General Hash Tables
	Dictionaries
	General Hash Tables
	General hash table definitions and operations
	Hash keys
	Dense hash tables
	Sparse hash tables
	Fast access to last hash index

	Quotient groups by homomorphisms
	Creating hom cosets and quotient groups
	Operations on hom cosets

	Transversals of subgroups
	General operations on transversals
	Transversals by Schreier tree
	Transversals by homomorphic images
	Transversals by direct products
	Transversals by Trivial subgroups
	Transversals by sift functions

	Chains of subgroups
	Stabiliser chain subgroups
	Hom coset chain subgroups
	Direct product chain subgroups
	Trivial chain subgroups and sift function chain subgroups

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T

