CrystalSpace

Public API Reference

csgeom/vector2.h
Go to the documentation of this file.
00001 /*
00002     Copyright (C) 2000 by Jorrit Tyberghein
00003     Largely rewritten by Ivan Avramovic <ivan@avramovic.com>
00004 
00005     This library is free software; you can redistribute it and/or
00006     modify it under the terms of the GNU Library General Public
00007     License as published by the Free Software Foundation; either
00008     version 2 of the License, or (at your option) any later version.
00009 
00010     This library is distributed in the hope that it will be useful,
00011     but WITHOUT ANY WARRANTY; without even the implied warranty of
00012     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00013     Library General Public License for more details.
00014 
00015     You should have received a copy of the GNU Library General Public
00016     License along with this library; if not, write to the Free
00017     Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
00018 */
00019 
00020 #ifndef __CS_VECTOR2_H__
00021 #define __CS_VECTOR2_H__
00022 
00023 #include "csextern.h"
00024 #include "csqsqrt.h"
00025 
00033 class csString;
00034 
00038 class CS_CRYSTALSPACE_EXPORT csVector2
00039 {
00040 public:
00042   float x;
00044   float y;
00045 
00047   csVector2 () {}
00048 
00050   csVector2 (float v) 
00051     : x (v), y (v)
00052   {}
00053 
00055   csVector2 (float x, float y) 
00056     : x (x), y (y) 
00057   { }
00058 
00060   csVector2 (const csVector2& o) 
00061     : x (o.x), y (o.y)
00062   {}
00063 
00065   csString Description() const;
00066 
00068   inline void Set (float ix, float iy)
00069   { x = ix; y = iy; }
00070 
00072   inline void Set (csVector2 const& v)
00073   { x = v.x; y = v.y; }
00074 
00076   inline void Set (float const* v) { x = v[0]; y = v[1]; }
00077 
00079   inline void Set (float v) { x = y = v; }
00080 
00082   inline void Get (float* v) { v[0] = x; v[1] = y; }
00083 
00085   inline static float Norm (csVector2 const& v)
00086   { return csQsqrt(v * v); }
00087 
00089   inline float Norm () const
00090   { return csQsqrt(SquaredNorm()); }
00091 
00093   inline float InverseNorm () const
00094   { return csQisqrt(SquaredNorm()); }
00095 
00097   inline static csVector2 Unit (const csVector2& v) 
00098   { return v.Unit(); }
00099 
00105   inline csVector2 Unit () const 
00106   { return (*this)*(this->InverseNorm()); }
00107 
00109   inline void Normalize ()
00110   {
00111     float sqlen = SquaredNorm();
00112     if (sqlen < SMALL_EPSILON) return ;
00113 
00114     float invlen = csQisqrt (sqlen);
00115     *this *= invlen;
00116   }
00117 
00119   inline bool IsZero (float precision = SMALL_EPSILON) const
00120   { 
00121     return (fabsf(x) < precision) && (fabsf(y) < precision);
00122   }
00123 
00125   inline csVector2 UnitAxisClamped () const
00126   {
00127     if (IsZero())
00128       return csVector2(0, 0);
00129 
00130     if (fabsf(x) > fabsf(y))
00131       return csVector2(x / fabsf (x), 0); //X biggest
00132     else
00133       return csVector2(0, y / fabsf (y)); //Y biggest
00134   }
00135 
00137   inline float SquaredNorm () const
00138   { return x * x + y * y; }
00139 
00141   void Rotate (float angle);
00142 
00147   inline float IsLeft (const csVector2& p0, const csVector2& p1)
00148   {
00149     return (p1.x - p0.x)*(y - p0.y) - (x - p0.x)*(p1.y - p0.y);
00150   }
00151 
00153   inline csVector2& operator+= (const csVector2& v)
00154   { x += v.x;  y += v.y;  return *this; }
00155 
00157   inline csVector2& operator-= (const csVector2& v)
00158   { x -= v.x;  y -= v.y;  return *this; }
00159 
00161   inline csVector2& operator*= (float f) 
00162   { x *= f;  y *= f;  return *this; }
00163 
00165   inline csVector2& operator/= (float f)
00166   {
00167     f = 1.0f / f;
00168     x *= f;
00169     y *= f;
00170     return *this;
00171   }
00172 
00174   inline csVector2 operator+ () const 
00175   { return *this; }
00176 
00178   inline csVector2 operator- () const 
00179   { return csVector2 (-x,-y); }
00180 
00182   inline friend csVector2 operator+ (const csVector2& v1, const csVector2& v2)
00183   { return csVector2 (v1.x + v2.x, v1.y + v2.y); }
00184 
00186   inline friend csVector2 operator- (const csVector2& v1, const csVector2& v2)
00187   { return csVector2 (v1.x - v2.x, v1.y - v2.y); }
00188 
00190   inline friend float operator* (const csVector2& v1, const csVector2& v2)
00191   { return v1.x * v2.x + v1.y * v2.y; }
00192 
00194   inline friend csVector2 operator* (const csVector2& v, float f)
00195   { return csVector2 (v.x * f, v.y * f); }
00196 
00198   inline friend csVector2 operator* (float f, const csVector2& v)
00199   { return csVector2 (v.x * f, v.y * f); }
00200 
00202   inline friend csVector2 operator/ (const csVector2& v, float f)
00203   {
00204     f = 1.0f / f;
00205     return csVector2 (v.x * f, v.y * f);
00206   }
00207 
00209   inline friend bool operator== (const csVector2& v1, const csVector2& v2)
00210   { return (v1.x == v2.x) && (v1.y == v2.y); }
00211 
00213   inline friend bool operator!= (const csVector2& v1, const csVector2& v2)
00214   { return (v1.x != v2.x) || (v1.y != v2.y); }
00215 
00217   inline friend bool operator< (const csVector2& v, float f)
00218   { return ABS(v.x)<f && ABS(v.y)<f; }
00219 
00221   inline friend bool operator> (float f, const csVector2& v)
00222   { return ABS(v.x)<f && ABS(v.y)<f; }
00223 
00225   inline float operator[] (int n) const 
00226   { return !n?x:y; }
00227 
00229   inline float & operator[] (int n) 
00230   { return !n?x:y; }
00231 };
00232 
00235 #endif // __CS_VECTOR2_H__

Generated for Crystal Space 2.0 by doxygen 1.7.6.1