CrystalSpace

Public API Reference

csgeom/vector4.h

Go to the documentation of this file.
00001 /*
00002     Copyright (C) 1998,1999,2000 by Jorrit Tyberghein
00003     Largely rewritten by Ivan Avramovic <ivan@avramovic.com>
00004     Extended (and some methods removed) to 4 component by Marten Svanfeldt
00005     Templatized by Frank Richter
00006 
00007     This library is free software; you can redistribute it and/or
00008     modify it under the terms of the GNU Library General Public
00009     License as published by the Free Software Foundation; either
00010     version 2 of the License, or (at your option) any later version.
00011 
00012     This library is distributed in the hope that it will be useful,
00013     but WITHOUT ANY WARRANTY; without even the implied warranty of
00014     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00015     Library General Public License for more details.
00016 
00017     You should have received a copy of the GNU Library General Public
00018     License along with this library; if not, write to the Free
00019     Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
00020 */
00021 
00022 #ifndef __CS_VECTOR4_H__
00023 #define __CS_VECTOR4_H__
00024 
00032 #include "csextern.h"
00033 #include "csgeom/vector3.h"
00034 #include "csutil/csstring.h"
00035 
00039 template<typename T>
00040 class csVector4T
00041 {
00042 public:
00043 #if !defined(__STRICT_ANSI__) && !defined(SWIG)
00044   union
00045   {
00046     struct 
00047     {
00048 #endif
00049 
00050       T x;
00052       T y;
00054       T z;
00056       T w;
00057 #if !defined(__STRICT_ANSI__) && !defined(SWIG)
00058     };
00060     T m[4];
00061   };
00062 #endif
00063   /* Note: since T is used in an union above, it cannot have custom ctors.
00064    * So be careful when creating new Ts; e.g.: don't use T(x), but something
00065    * like T y = x.
00066    */
00067   
00072   csVector4T () {}
00073 
00079   csVector4T (const T& m) : x(m), y(m), z(m), w(m) {}
00080 
00082   csVector4T (const T& ix, const T& iy, const T& iz = T(0), 
00083     const T& iw = T(1))
00084         : x(ix), y(iy), z(iz), w(iw) {}
00085 
00087   csVector4T (const csVector4T& v) : x(v.x), y(v.y), z(v.z), w(v.w) {}
00088 
00090   csVector4T (const csVector3 &v) : x(v.x), y(v.y), z(v.z), w(1.0f) {}
00091 
00093   template<typename T2>
00094   csVector4T& operator= (const csVector4T<T2>& other)
00095   {
00096     x = other.x;
00097     y = other.y;
00098     z = other.z;
00099     w = other.w;
00100     return *this;
00101   }
00102 
00104   csString Description() const
00105   { 
00106     csString str;
00107     str << x << "," << y << "," << z << "," << w;
00108     return str;
00109   }
00110     
00112   inline friend csVector4T operator+ (const csVector4T& v1, 
00113     const csVector4T& v2)
00114   { return csVector4T(v1.x+v2.x, v1.y+v2.y, v1.z+v2.z, v1.w+v2.w); }
00115 
00117   inline friend csVector4T operator- (const csVector4T& v1, 
00118     const csVector4T& v2)
00119   { return csVector4T(v1.x-v2.x, v1.y-v2.y, v1.z-v2.z, v1.w-v2.w); }
00120 
00121 
00123   inline friend float operator* (const csVector4T& v1, 
00124     const csVector4T& v2)
00125   { return v1.x*v2.x + v1.y*v2.y + v1.z*v2.z + v1.w*v2.w; }
00126 
00128   inline friend csVector4T operator% (const csVector4T& v1, 
00129     const csVector4T& v2)
00130   {
00131     return csVector4T<T> (
00132       (v1.x*v2.y-v1.y*v2.x) + (v1.x*v2.z-v1.z*v2.x) + (v1.y*v2.z-v1.z*v2.y),
00133       (v1.z*v2.y-v1.y*v2.z) + (v1.y*v2.w-v1.w*v2.y) + (v1.z*v2.w-v1.w*v2.z),
00134       (v1.x*v2.z-v1.z*v2.x) + (v1.w*v2.x-v1.x*v2.w) + (v1.z*v2.w-v1.w*v2.z),
00135       (v1.y*v2.x-v1.x*v2.y) + (v1.w*v2.x-v1.x*v2.w) + (v1.w*v2.y-v1.y*v2.w) );
00136   }
00137 
00139   void Cross (const csVector4T & v1, const csVector4T & v2)
00140   {
00141     x = (v1.x*v2.y-v1.y*v2.x) + (v1.x*v2.z-v1.z*v2.x) + (v1.y*v2.z-v1.z*v2.y);
00142     y = (v1.z*v2.y-v1.y*v2.z) + (v1.y*v2.w-v1.w*v2.y) + (v1.z*v2.w-v1.w*v2.z);
00143     z = (v1.x*v2.z-v1.z*v2.x) + (v1.w*v2.x-v1.x*v2.w) + (v1.z*v2.w-v1.w*v2.z);
00144     w = (v1.y*v2.x-v1.x*v2.y) + (v1.w*v2.x-v1.x*v2.w) + (v1.w*v2.y-v1.y*v2.w);
00145   }
00146 
00148   inline friend csVector4T operator* (const csVector4T& v, T f)
00149   { return csVector4T(v.x*f, v.y*f, v.z*f, v.w*f); }
00150 
00152   inline friend csVector4T operator* (float f, const csVector4T& v)
00153   { return csVector4(v.x*f, v.y*f, v.z*f, v.w*f); }
00154 
00156   inline friend csVector4T operator* (const csVector4T& v, int f)
00157   { T _f = f; return v * _f; }
00158 
00160   inline friend csVector4T operator* (int f, const csVector4T& v)
00161   { T _f = f; return v * _f; }
00162 
00164   inline friend csVector4T operator/ (const csVector4T& v, T f)
00165   { f = 1.0f/f; return csVector4T(v.x*f, v.y*f, v.z*f, v.w*f); }
00166 
00168   inline friend csVector4T operator/ (const csVector4T& v, int f)
00169   { T _f = f; return v / _f; }
00170 
00172   inline friend bool operator== (const csVector4T& v1, const csVector4T& v2)
00173   { return v1.x==v2.x && v1.y==v2.y && v1.z==v2.z && v1.w==v2.w; }
00174 
00176   inline friend bool operator!= (const csVector4T& v1, const csVector4T& v2)
00177   { return v1.x!=v2.x || v1.y!=v2.y || v1.z!=v2.z || v1.w!=v2.w; }
00178 
00180   inline friend csVector4T operator>> (const csVector4T& v1, const csVector4T& v2)
00181   { return v2*(v1*v2)/(v2*v2); }
00182 
00184   inline friend csVector4T operator<< (const csVector4T& v1, const csVector4T& v2)
00185   { return v1*(v1*v2)/(v1*v1); }
00186 
00188   inline friend bool operator< (const csVector4T& v, float f)
00189   { return ABS(v.x)<f && ABS(v.y)<f && ABS(v.z)<f && ABS(v.w)<f; }
00190 
00192   inline friend bool operator> (float f, const csVector4T& v)
00193   { return ABS(v.x)<f && ABS(v.y)<f && ABS(v.z)<f && ABS(v.w)<f; }
00194 
00196 #ifdef __STRICT_ANSI__
00197   inline float operator[] (int n) const 
00198   { return (n&2)?((n&1)?w:z):((n&1)?y:x); }
00199 #else
00200   inline float operator[] (int n) const { return m[n]; }
00201 #endif
00202 
00204 #ifdef __STRICT_ANSI__
00205   inline float & operator[] (int n) 
00206   { return (n&2)?((n&1)?w:z):((n&1)?y:x); }
00207 #else
00208   inline float & operator[] (int n) { return m[n]; }
00209 #endif
00210 
00212   inline csVector4T& operator+= (const csVector4T& v)
00213   {
00214     x += v.x;
00215     y += v.y;
00216     z += v.z;
00217     w += v.w;
00218 
00219     return *this;
00220   }
00221 
00223   inline csVector4T& operator-= (const csVector4T& v)
00224   {
00225     x -= v.x;
00226     y -= v.y;
00227     z -= v.z;
00228     w -= v.w;
00229 
00230     return *this;
00231   }
00232 
00234   inline csVector4T& operator*= (T f)
00235   { x *= f; y *= f; z *= f; w *= f; return *this; }
00236 
00238   inline csVector4T& operator/= (T f)
00239   { f = 1.0f / f; x *= f; y *= f; z *= f; w *= f; return *this; }
00240 
00242   inline csVector4T operator+ () const { return *this; }
00243 
00245   inline csVector4T operator- () const { return csVector4(-x,-y,-z, -w); }
00246 
00248   inline void Set (T sx, T sy, T sz, T sw)
00249   { x = sx; y = sy; z = sz; w = sw; }
00250 
00252   inline void Set (csVector4T const& v) { x = v.x; y = v.y; z = v.z; w = v.w; }
00253 
00255   inline void Set (T const* v) { x = v[0]; y = v[1]; z = v[2]; w = v[3]; }
00256 
00258   inline void Set (T v) { x = y = z = w = v; }
00259 
00261   inline void Get (T* v) { v[0] = x; v[1] = y; v[2] = z; v[3] = w; }
00262 
00264   T Norm () const { return sqrtf (x * x + y * y + z * z + w * w); }
00265 
00267   T SquaredNorm () const
00268   { return x * x + y * y + z * z + w * w; }
00269 
00275   csVector4T Unit () const { return (*this)/(this->Norm()); }
00276 
00278   inline static T Norm (const csVector4T& v) { return v.Norm(); }
00279 
00281   inline static csVector4T Unit (const csVector4T& v) { return v.Unit(); }
00282 
00284   void Normalize ()
00285   {
00286     T sqlen = x * x + y * y + z * z + w * w;
00287     if (sqlen < SMALL_EPSILON) return ;
00288   
00289     T invlen = csQisqrt (sqlen);
00290     *this *= invlen;
00291   }
00292 
00293 
00295   inline bool IsZero (T precision = SMALL_EPSILON) const
00296   { return (ABS(x) < precision) && (ABS(y) < precision)
00297             && (ABS(z) < precision) &&  (ABS(w) < precision);
00298   }
00299 };
00300 
00304 class csVector4 : public csVector4T<float>
00305 {
00306 public:
00311   csVector4 () {}
00312 
00318   csVector4 (const float& m) : csVector4T<float> (m) {}
00319 
00321   csVector4 (float ix, float iy, float iz = 0, float iw = 1)
00322         : csVector4T<float> (ix, iy, iz, iw) {}
00323 
00325   csVector4 (const csVector4& v) : csVector4T<float> (v) {}
00326 
00328   csVector4 (const csVector4T<float>& v) : csVector4T<float> (v) {}
00329 
00331   csVector4 (const csVector3 &v) : 
00332     csVector4T<float> (v.x, v.y, v.z, 1.0f) {}
00333 
00335   csVector4& operator= (const csVector4T<float>& other)
00336   {
00337     Set (other.x, other.y, other.z, other.w);
00338     return *this;
00339   }
00340 
00342   csVector4& operator= (const csVector3& other)
00343   {
00344     Set (other.x, other.y, other.z, 1.0f);
00345     return *this;
00346   }
00347 };
00348 
00351 #endif // __CS_VECTOR3_H__

Generated for Crystal Space by doxygen 1.4.6