CHICKEN User's Manual - The User's Manual

CHICKEN User's Manual - The User's Manual
Chicken User's Manual

1 The User's Manual 1
2 Getting started 2
2l S NI .ttt e e e e e e e e e e e e e e eeeeeateeeeeaeaaeaaaaaaaaaaaanaaa———————————————————————————————o 2

A O 1 116) <= o RS RRORRT 2

2.3 Chicken repositories. websites. and COMMUIIEYceoveerteereerteenierieereeneenee e sieeseesieeseeesieesaeesaeeees 4

2.4 INStAllING CHICKEIL .. eeutteteitieieete ettt ettt ettt e bt e bt e bt e bt e s bt e s beesbe e bt e nbee bt e sbeesbeesbeanbeanaes 5

2.5 Development @NVITOMIEIIES.eveeuveereeteerteenteerteeteenseenteesseesseesseenseenseesseesseesseenseesseenseesseesseesseenseenses 5

2.6 The Read-Eval-Print 100D teotteteeiieiieieeie ettt ettt ettt ettt ettt et sbe e bt e bt e sbe e sbe e b e nbe e e 6

201 SCTIDES ettt ettt ettt ettt ettt et et e bt et e et e e bt e bt e bt e bt e be e bt e ebe e bt e bt e bt e bt e nbeeehee bt enbs 7

2.7 THE COMIPILET: ...t euteeutteie ettt ettt ettt et et e bt e bt e b e e bt et e et e e bt e bt enbe e bt e bt e bt eabee bt enbeebeenbeesbeesbeenseenses 8
2.8 INSTALIINZ AN EEG et euveeutteuieeie ettt ettt ettt ettt e bt e bt e bt eat e e ateeateeateeabeea bt eateeateeateeateeabeeabeeateeateeateeateeas 10
2.9 AcCSSING € TIDTATIES. 1. e euveeuteeuteeuteeiie et ettt ettt ettt et et e bt eat e e ateeateeateeateembeemeeeateeatesateeabeembeemeeentesaeesanaaas 10
3 Basic mode of operation 12
4 Using the compiler 13
4.1 Compiler command ling fOIMIAL.coueiiiiiiiieiieiiee ettt ettt et b e b b enaeeeean 13

4.2 RUNGIE ODEIOMS 1. teuteuteutentiesttesttestteette st testtesttesteesteesteesseanbtenbtesbeesbeeabeenbeebeanbeebeenbeebeanbeenseenseansean 17

G I 2. €:1111) (<1 SO OO USSP 18

4.3.1 A simple example (with one Source file)........cceveerierierienienieniereeeeeeeeeeee e 19

4.3.2 An example with multiple files........ccoieriirienieeeeee et 20

4.4 Extending the COMPILETei.iiiiiiiiiieetie ettt ettt et et e st e she e bt e bt e bt e bt e be e bt esbeenbe e beenbeeneean 21
4.5 Distributing cOmPiled C fIIESceuuiiuiiriieriieiieetiee ettt ettt ettt et et e st e e sbe e bt e bt e bt e bt e bt e beesbeenbe e beebeeneean 22
5 Using the interpreter 24
5.1 Interpreter command line fOIMIALcueeuiritieiiiieee ettt ettt e as 24

5.2 WIIting SCREIMIE SCIIDES ..-veeuveeuteeuteeteeteete et et et et e bt e bt e bt eabe e bt e bt ebeebeeabeenbeenbeenteenbeenbeenbeenseensean 25

5.3 TOPIEVEl COMIMEANASveeuveeuteeiieete ettt ettt ettt et et e bt e bt et e e bt e be e bt eabeenbeenbeenbeenbeenbeenbeenseensean 26

5.4 topleVel-COMMEANM.oitieieeie ettt ettt et ettt ete e bt e bt e bt e be e beenbeebeebeenbeensean 27

5.5 HISTOTY BCCESS. - +euveeureeuteeuteeteeute et et euteeuteeube e bt eabeeateeateeabeenbeeabeeabeenteeateeabeenbeenbeenbeenteenbeenbeenseenseensean 27

RIS 6 [STe 0=y o RN 28

5.7 Auto-completion and ©dIEIOM.veeveeueeteeteete et et et te et et et et e te e bt e bt e be e be et e ebeebe e bt e beeeean 28

5.8 AccesSiNg AOCUMEIEALION. 1. eeuveeuteeteeteeteete et et et et et e et e et et e e te e be e bt eabeenbeebeenteenbeenbeenbeenbeensean 28

6 Supported language 30
7 Deviations from the standard 31
8 Extensions to the standard. 33
9 Non-standard read syntax 37
9.1 Multiline BIOCK COMIMIENL.uuvvviiieiiieiieeeeeeeeeeetiteeeeeeeeeiareeeeeeeeeesaeeeeeeesssesaaseeeeesesasssreseeesssssnrereees 37

9.2 EXPression COMIMEIIEcc.uteutiiieiuieetieitteeiteeiteettestesttesttesttesatesutesaeesbeesaeesbeesutesseesatesbtesbeesbeesneesneens 37

9.3 External RePIESENMEALIONeeuveruteruiertieriteeite ettt etteeete st et sat e st esbtesatesheesatesatesatesbtesbeesbeesaeesbeenaes 37

9.4 SYNLAX EXDIESSTON. ¢ ueeruteiuieeuieetieeiie et te et et e et e et et eette s ateshtesatesaeesbeesbeesateshtesutesaeesatesbtesbtesbeesaeenbeenas 37

LI Do o7 1aT0]0 B 2h.q0) £l (0) 1 WEUUNUUN OSSOSO PT SRR 37

9.0 KEYWOI. ..ottt ettt st h e sh e e s ae e s ht e e bt e s bt e sheesheesute s st e satesbtesbeesheesaeenbeens 38

9.7 Multiling String COMSANT.veeuterutertierieeie ettt ete st te st et estte st e sbeesaeesaeesatesseesatesbeesbeesaeesseesneenaes 38

9.8 Multiline String Constant with Embedded EXPressions........ceveeeereerienienieniesie sttt 38

9.9 FOT@ign DIECIATE. ... eetueeiieieieeiie ettt sttt e s bt e shteshtesat e s bt e satesbtesbeesbeesatesaeenaes 39

9.10 Sharp Prefixed SYMDOL....c..coiiiiiiieie ettt st sttt 39

D11 BANG ittt ettt ettt e s et e b et e bt e e bt e e sab e e sa b e e eabeeeabeeebeeenbaeenates 39

CHICKEN User's Manual - The User's Manual

Chicken User's Manual
9 Non-standard read syntax

L I 1 710 T 0111110 1=) 1| SRR 39

9.11.2 EOf OBJECE . eeuteeiieeiieei ettt sttt sb e sbt e sat e sat e i e s bt e s bt e sbee s bt e bt e bt e nas 39

9.11.3 DSSSI. Formal Parameter List ANNOtAtION.cceeuvvvreeeeeieiieeeeeeeeeeeieeeeeeeeeeennreeeeeeeens 39

9.11.4 Read Mark INVOCALION. .. .uvvveeeeeiieitiieeeeeeeeeiieeeeeeeeeetieee e e e e eeaeeeeeeessesaasaeeeeessesnsaeeeeeeenns 39

9.12 Case SeNnSItiVe EXDIESSION. ¢ .verureruieruieruteitieitiertteette et te st e sttesttesttesutesutesatesatesbeesbeeshtesutesaeesbtesbeesbeesbeesneesaeenns 40
9.13 Case InSensitive EXPIESSIONueeteruierieiieetie ettt ettt sttt st e st e st e satesbt e sbeesaeesatesatesbtesbeesbeesaeesaeesneeais 40
9.14 Conditional EXPANSIONveeuteruieeiieiiieeieeiteee ettt ettt sttt e st e st e satesatesbtesbteshteshtesutesatesbtesbeesbeesaeesneenneenns 40
10 Non-standard macros and special forms 41
10.1 Making extra libraries and extensions available...........coceereiiieiiiiiieieee e 41

10.1.1 1@QUITE-EXEBMSION. .t euveeuteeuteeuteeuteeteeteeteeuteeuteeateesteeateeabeembeeaeeeaeeeaeesatesabeenbeensesneesanesnsenas 41

10.1.2 defiN@-EXLEMSION .cuvvvvreeeeieiitieeeeeeeeeeeieeeeeeeeeeeeteeeeeeeeeearaeeeeeeseesssaaeeeeessesssreeeeeeessnnraneeess 42

10.2 Binding forms for optional argUIMENLSeeueetteieeieete et ettt et et eteete et eabeeeeeateeabesabesabeeaeeeaaeeneesaeeans 43
1O.2. 1 ODEIOMNAL ..ottt ettt ettt ettt ettt ettt ettt et e e ateeabeeabesabeemteemeeeabeeateeateeabeeabeeabeenteeateeateeas 43

10.2.2 CASE-TAMDAA. ... eeeeiiiieiiiieeeee ettt e et e e e e e e et e e e s e et e e e e e e ettt e e e e e e e enraareeeeseennaaes 43

10.2.3 T@-ODHOMALS. .. e ettt ettt ettt ettt ettt ettt et e et e et e eabesabeeateemteeateeateeateeabeeabeeateenteeneeenteeas 43

10.2.4 Tet-0PHONALST. ... ittt ettt ettt ettt et et e et e et e e bt et e e bt et e eaeeeateeas 44

10.3 Other DINAING fOTIIS .. eeuveeuteeteetteie ettt ettt ettt et ettt et e e bt e bt eabeeateeateeateeateeabesateeabeemeeeateeaeeenneans 44
(OG0 Ve) = SRRt 44

| L0 T < TR RURURO PP RUPPRRPPPRROt 44

10.3.3 QUL uueeeeieeee ettt ettt e e ettt e e e e e et e e e e e e et e et e e e e e e ———teeeeaaa————teeeeeaanatatteeeseanraareeeeseanraaes 44

10.3.4 AefINE-VAIUES .. .coeeeeeeeeeiieeeee ettt e ettt e e e e e eee et e e e e e eeaaaaeeeeeseessaaeeeeeessessssteeeeeesssnssaareeeesssnnrenes 45

1O.3.5 TUIA-TEE. .o eeeeeeeieeee ettt e ettt e e e e e e e e e e e e eeaaaaeeeeeseesaaeeeeeessesssaeeseeesssnsraaneeeessennnrees 45

JO.3.60 TEE-VAIUES ..ccvveveeee ettt ettt e e e e et e e e e e et e e e e e eenaaaaeeeeeseesaaaeeeeessesssaeeseeesssnsrsareeeessannsrees 45

1O.3. 7 TEUEVAIUES .. vvvveieeeeeeeeeeee ettt e e e e et e e e e e eeaaaaeeeeeseeesaaaeeeeesssasaeeeseeesssnsnaareeeessanneens 45

1O.3.8 TEIIEC-VALUES. .vvvveeeeeeeeeeeeeeeeeeeeieeeeeeeeeeeaaee e e e e eeeesaaeeeeeeeessaaaaeeeesssssssaaseeeessasnsseeeseeesssnssaareeeessennrnees 45

10.3.9 DATAIEIETIZE .. euveeuveeuteeuteeteete et et eteeteetesateeateeateeateeaeeeateaatesabeemteemeeemseeaeesateeaseeasesmseensesaeesntenns 46

JO.3. 10 TECRIVE ..o e eeeveeeieee e ettt e e e e ettt e e e e ettt e e e e e esaaaeeeeeeeeeesaaaaeeeesssasssaaeeeeessaasseesseeesssnssanseeeessannenns 46

JO.3. 11 SEUI-VAIUES. c.vvvveeeeeeeeeeeieee e ettt e e eeee e e e e e et e e e e e e eeaaaaeeeeesseesaaaeeeessesssaaeeseeesssnssaaseesessannnrens 46

10.4 Substitution fOrms and IMACTOS.uuvveieiiiieieieiiieeeeeeeteeee e e e e eeeee e e e e e eeeaareeeeeessesasaeeeesesssssaaeeeeessanssnareseessaans 46
10.4.1 defiNE-COMSLANLceuvveeeeeeeeeieieeeeeeeeetee e e e e e e e e e e e e e e eeaaaeeeeeeesessaaeeeeeessesnssseeeeeesssnnsaareeeessennseens 46

10.4.2 defiNE-TNIINE. ...eeeeeeieeiiiieeee e eeeeeeee e ettt e e e e e ettt e e e e e eeaaaaeeeeessessaaaeeeeessessssseeseeesssnssaaeeeeessennrrees 47

10.4.3 dEfINE-TIIACTO. ..eeeeeeeieeeiieeee ettt e e e et e e e e e eeaaaae e e e e e eessaaaeeeesssesnsaaeeeeeesssnnsaareeeessennrenns 47

10.4.4 define-fOr-SYMEAK ... cccueeteeieete ettt ettt ettt ettt et e bt et e et e et e eateeatesateeabeeabeeaeeeneesaeesneeeas 47

J (0N @0 Te FaT) 0Tl 5 (0) 0 10 - P RRRRS 47
| (O T TS (e AU RRORROPPRUPPRRPPRRRRt 48

LO.5.2 UNLESS . ..eeeeieeeeieieee et eeeettee e e e eeee et e e e e e et e e e e e e e esaaaeeeeeeeeeaaaaaeeeeeseassaaaeeeeesseanbaaeseeeseannraareeeessanrraes 48

LT T4 1 1<) 1 OO URRORRORPRUPPRRPPRRROt 48

10.0 RECOTA SIIUCTUIES. .. eeeeeeieireieieeeeeeetteeeeeeeeeeeateeeeeeeeeesaaaeeeeeeesessaaaeesesssasssaresseessasnssseseesessssssaaseeeessanssnereseessnnns 48
10.6.1 dEfINE-TECOTA .. .eeeeiiieeiiieieee ettt e e e e e e e e e eeeaaae e e e e s eeeaaaeeeeeesssnssaareeeessennenes 48

10.6.2 define-TECOTA-DIIMIET .. .veeuteeuteeteeteeteete et eteeete et et eateeateeabeeabeemteeateeateeaeesaeesateeasesaeeeneesaeesnseans 49

10.6.3 defiNe-TECOTA-EYDE . uveeueeeuteetieteete ettt ettt ettt ettt ettt et e et e b e eateeateeatesateeabeeaeeenteeaeeeaeeeas 49

J (O 14 T3 i C0) & 0 1 TSRS 49
(O LT SO ORORRORPSUPPRRPPPRROt 49

10.7.2 CONA-@XPAINA .. uveeuteenteenie ettt ettt ettt ettt ettt ettt e ateeabesabeea bt eateeateeateeateeabeeabeeateenteeateenteeas 50

LO.7.3 EIISULE, ..o e eeeeeeeeeeeeeeeetttee e e e e e ettt e e e e e eeaaaeeeeeeeeessaaaeeeeeseeaaaaaeseesssasaaaeeeeesseasateeseeesesnnraareeeessannrrnes 50

LO. 7.4 @VAI-WIIEIL ...t e ettt e e e e et e e e e e e aaae e e e e e e e e bt e e eeee e e e naaareeeeseenraaes 50

(ORI 1 1 Te3 L T (=PRI 51

JO.7.6 IEN-VALUE. ...eveveieeeeeeeieeeee ettt ettt e e e e ettt e e e e e eeaaaeeeeeessesaaaeeeeessesssaeeeeeesssnssaareeeessannrrnns 51

O A 5 11 1RO RRRRRERRRRN 51

ii

CHICKEN User's Manual - The User's Manual
Chicken User's Manual

11 Pattern matching 52
11.1 Pattern Matching EXPIESSIONS . .. eveeuteeueeteetteteeieete et et et et et e et etesateeatestesateeabeeaeeeneeeaeesaeeeas 52
L1.2 PaAtlEITIS . .oeeeeieieeeeeiieeeeeeeteee e e e e e eeet ettt e e e e eeaaaeeeeeeeeesssaeeeeeeeesasaaaaeeeesssassssaeeeeessasnsseeeseeesssnnsenreeeessannrrnes 54
11.3 MAtCH FAIIULE, ...vvveeeeieeeieiieee ettt e e e ettt e e e e e ee e e e e e e eesaaaeeeeessesssteeseeessensnaaeeeeessenrenes 56
11.4 Record StrUuCtUIES Patler........ccuvvvviiieiiiiiiieeeee e ettt ee e e eeeteee e e e e eeeaaee e e e s eeeaaaeeeeeessssnaareeeessennnnes 56
11.5 COdE GENETALION.ceeeeuvvveeeeeeeeeeieeeeeeeeeeeaaeeeeeeeeesaaeeeeeeeessssaareeeesssassaaeeeeesssassseeeseeesssnsaareeeessennrnees 57

12 Declarations. 58
| B W6 (=T 1 (=R RPN 58
12.2 AlWAVS-DOUNG ...ttt ettt ettt et ettt et et e et e et e eateeateeateeateeateeateeabeeateenteeaeesnteens 58
| BRI o) (6 e PR RPN 58
12.4 BIOCK=GIODAL ..ttt ettt et et et ettt ettt e et et et e et et e eateeateens 58
T2.5 T cuevieieeeeee ettt ettt ettt e e et et e ettt e e e ettt e e ettt eeeaaaa e e s ettt eesaaaeeens 58
12.6 bOUNA-tO-PIOCEAUIE. ... eeeueieuiiiiieteete ettt ettt ettt ettt et eat e et e e ateeabeeateeaeeenteeaeeenteens 59
127 CoOPEIOMIS - teeuteeute et et et et et et e e bt et eateeateeaeeeateeateeateeateeaeeeateeabeeabeemteemeeeateeateeateeateembeeabeenteeaeeenteaas 59
12.8 CRECKoCoSYIEAX. e euteeuteeuteeite ettt ettt ettt et et et et et e e st et e eatesabeemeeemteeateeatesateeateeabeemeeemteeaeesateans 59
1 2.9 COMSLAME .. uuueeeieieeiietitttttetteteteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeeeeesesesasasaasasssssssssssssssssssssssnsssnsssnnnenerees 59
12,10 ©XIDOTE cuveeeuveeeneteeniteenuteestteette ettt ettt entteesuteesabeesabeeeabaeenbaeenateesabeesabeesabeeeabaeebaeenbbeenbbeenabeesabeesbaeenne 59
12,11 @It @XDOTES ¢ uveuteeuteeuteenteenteente et et et eateeaeeeateeateeabeemteeaeeeateembeeabeemteemeeemseeaeeeateeateeateemseentesneesaneeas 59
12.12 emit-exXternal-protOtyPES-TIISEeeoueeieeieiie ettt ettt ettt ettt ettt ettt eaee st ea 60
12.13 diSADIETMEETTUDES. ... eeuveeuteeteeteete et et et et ete et et e et e eateeabeeabesabeembeemeeeateeatesatesabeemtesaseeneesaeesnneans 60
12.14 diSADIE-WALTIIIE .. cuveeuteeueeenteete et et ettt et et e ate et e et eateeateeabesabeemteemeeeateeateeatesateeabesaseeneesasesnteans 60
1215 AITIDOTE e euteeuteeuteeute et et et et et et e e et e ateeaeeeateeateeaeeeateeateeateeabeeabeemteemeeemteeateeateeabeeabeeateenteeatesnteeas 60
T2 10 MIIIIE. ..vveieeieeeiieeiee ettt e e eeee et e e e e e et eeeeeesaaaeeeeeeeseasaaaaeeeeessassaaseeesssessaeeeseeesssnsraareeeessannnrnes 60
12,17 ININE-TIIIIE. cuvvvveiieeeeeeiiieeee e e e eeeitee e e e e e eeiaee e e e e e eeessaaeeeeeeeeeassaaaeeeesssssssaseeeeessassssereseeesssnnsanneeeessennrnnes 61
12.18 interruptS-NabIEd.eeiieiieie ettt ettt ettt ettt et ea 61
12.19 keep-ShadOWE-TNACTOS ... cuveeuveeteeteeieete ettt et ettt et te et e e et eateeateeatesatesabeeabeeaeeeneesaeesneeens 61
12.20 1amDAA-TITEevvviieeeeeeeieeeee et e e e e e e et e e e e e e ettt e e e e e e e e raarreeeeeenraaes 61
12.21 TINK-ODEIOMS: o euveeuteeuteeuteeuteete et et et et et e et eateeateeabeeateeaeeeateeabesabeemteameeemteeaeeeateeateeabesmseenteeaeesnneans 61
12.22 N0-AIZC-CRECKS. ... ettt ettt ettt ettt ettt et e et et et e et e e ateeateeabeeateeaeeenteeateenteens 62
12.23 NO-DOUNA-CRECKS ... oevviieieie ettt ettt e e e e e et e e e e e e esaaaeeeeessessaaeeeeeessennsaareeeessennenns 62
12.24 N0-PIOCEAUIE-CRECKS ... outteuteeuitettete ettt ettt ettt ettt et et e st eateeateeaeeeaeesaeeeas 62
12,25 DOSEDIOCESS ¢ uveeuveeuteeuteauteanteeuteeuteenteeuteeueeaaeeaateeateeateemteeaseemteaasesabeemseameeeaseemeeeateeaseeabeeaseensesneesnneans 62
12,26 DEOTILE ettt ettt ettt et ettt et e e a bt et e e bt eat e eateeateeateeabeeabeeateenteeateeateeas 62
12,27 DIUIIDETEYPIE ¢t euteeuteeute et et et et et et et et eateeateeateeateeateeateeateeabeeabeemteeateemteeatesaseeabeeaseentesaeesateans 62
12.28 fixXNUM-ATItRIIETIC. ..oovvvveeeeieeeeiieeeeee e ettt e e ettt e e e e e eeataee e e e e e eeaaaaeeeeessesssaeeeeeesssnnsaareeeessannrenns 63
12.29 rUN-UIME-TNIACTOSceeeuvvvereeeeeeeiieereeeeeeeseaeeeeeeseeassaeeeseeessassaaseseesssssssssseeeesssssssssseesssssssssseeeesssnnrsnes 63
12.30 Standard-DindingScveeoueeteeieeieete ettt ettt ettt ettt ettt e e te e bt et e e et et e eaeeenteens 63
12.31 eXtended-DINAIMES .. coveeeeeteeieeieete ettt ettt ettt ettt et ettt et e et e et e e tesate et e eateenteeateeateeas 63
12.32 USUAI-INEEETALIONS .- eeuveeuteenteeuteeteente et et eteeateeateeateeateeateeateeateeabeembeemeeeateeatesateeabeeabeemeeeneeeneesntenns 63
|G 1 IR0 11 SO RPN 64
L1234 UNISALE. ...oeee ittt e e e e e e e e e e e e ———eaeeeeea——rrteeeseanaaraeeeseanraaes 64
12,35 UIUSEA...oce ettt e et e e e e e e e e e e e eeaaaaeeeeeseesaaaeeeeeeeeaabteeseeeseannraareeeessanrrnes 64
12,30 USES uuueeeeieeieeeeteeeee e e eee ettt e e e e e e e e e e e e e ee e e eeeeeeea it e et eeeeea i ———teeeeeaa———tteeeeeaan—trtteeeseanraarreeeseenrraes 64

13 Parameters 65
13.1 MAKE-DATAIIEIEE. ¢...eeuteeuteeuteenie et et et et et et et e et et eat e eateeateeabesabeembeemteeateeaeeeateeabesaseemseeneeeaeesnteeas 65
13.2 CASE-SEIISIIVE. uvvvvveeeeieeereeeeeeeeeeeieeeeeeeeeeetaaeeeeeseeessaaeeeeeeeessaaaaeeeesssasssaaeeeesssaansseeeseeesssnnsenneeeessennrrens 65
13.3 dynamic-10ad-TIDIATIES.veeueeteeieeteeie ettt ettt ettt et ettt et et et e st e et e e et eneesaeeeaeeeas 65
13.4 command-lTiNE-arGUIMEIES.cccueetteuteeieeieeteete et et eteeteeteeatesabeeateeatesateeatesaeeeabesabesaseeneesaeesnseans 65
IR TSI 18 0= 1100 (=216 B 7210 (=PRI 66
13.6 €XTE-NANALET. ... evvviiiiiiieeieieee et e ettt e e e e e et e e e e e eeeaaae e e e e e eeeaaareeeeeseenatareeeeeeenraaes 66
13.7 @VAL-NANALEL. .. .vvviiiiiiieeeeeee et e e e e e e e e e e e ettt e e e s e e e bt a e e e e e s e e nraareeeeseenraaes 66

iii

CHICKEN User's Manual - The User's Manual
Chicken User's Manual

13 Parameters

13.8 FOICETIMALIZETS. c.vvveeeieeeeeeieeee ettt e e ettt e e e e e e e e e e e e e eeaaaaeeeeessessaeeeeeeesssnssaareeeesssnnrrnes 66

13.9 implicit-eXit-NanAIET. ... eeueieieeie ettt ettt ettt et ettt ettt et 66

13. 10 KEYWOTA-SEYIR ...ttt ettt ettt ettt ettt ettt et et e e et e et e ea b e et e eateeatesateeateeabeeaeeeneeeaeesateaas 66

13,11 JOAA-VEIDOSE .vvvvveeeeeeeeeieeee ettt ee ettt e e e e ettt e e e e e e e aaae e e e e e s eesaaaeeeeessessaaeeseeesssnnsanreeeessennsnnes 66

13.12 DIOGIAMITIAINC: . uveeuveeueeeuteenteenteeateeuteeuteeueeeaeeeateeuteeaeeemseameeeaseensesaseemseemseeaseeneeeateeasesasesmseensesneesnseans 67

13.13 T@DIoDIOMIDE. ettt ettt ettt ettt et et e bt et e bt eateeateeabesabeembeemeeeateeateemteeabeeabeeabeenteeaeeenteens 67

13,14 1€SEE-NANAIEL. .. .eeieiiieeiiiieeeee ettt ettt e e e e e et e e e e e e et e e e e e e eesaaaeeeeessesnaaaeereeessennaaareeeessanrraes 67

14 Unit library. 68
) N 14100 =1 5 (o RPN 68

) O I Ta (o B 0 o PR 68

14.1.2 Binary int@ger ODEIATIONS . .. eeuveeueeeuteeteeteeteeteenteeteesteeuteeueesseeeaeesntesseenseensesneesasessenas 68

I T o) Y1 oL PR 68

) S 4 5.4 11011 1 W/ OO 68

14.1.5 Arithmetic fiXNUM OPEIATIONS ..ceuveeuveeteeteeteeteete et eteete et eteeateeeeebeebeeseesaeesaeesneeeas 69

14.1.6 Arithmetic floating-point OPETAtIONS.cveeveevereerieereeteete et eeeeeeeteeteeeeeeeseeseeeas 69

T4 1.7 STGIUINL . .eeuteeuteenteeuteenteeute et et et eaeeeateeabeeateeateeaeeemteeateembeembeeaeeeaeeeaeeemeeeabeembeemteeaeesasesasaaas 70

O R 1 1 VL1 PSRRI 70

14.2 File INPUL/OUIDUL. ...ceuveeuteeuteeteete ettt ettt et et eateeaeeeateeateeabeeaeeeaeeeaeeeaeeembeemteemeeemeeeneeenseeabeeabeenseenneeneesnneans 70
14.2.1 CUITENE-OUIDUE-DOIE . eeruveeeuteeetieeiteeniteenteesatteeteeebeeenbteestteesabeesateesabeesnbeeenbaeensseessseesaseesbeesnseeanne 70

14.2.2 CUITENE-EITOT=DOI . ceuuveeruteeruteeeteeetteeniteesteesubtesteeeabeeebaeenuteesateesateesabeesnbeeenbaeensseensseesaseesbeesnseeanse 70

14.2.3 fTUSR-OUEDUE ..ottt ettt ettt et et e et e e bt e b e eateeate et e eabeeabeeateenteeateeateeas 70

14.2.4 DOTETIAIIIE: . eeuvveenvteenieeruteeeatte ettt ettt enteeesuteesabeesabeeeabeeenbaeenbteesabeesateesabeesabeeenbaeenbseensbeesaseesabeesbaeanne 71

14.2.5 DOTE-DOSTHIOM 1. euveeuteeuteeuteeate et et et et et et e bt eabeeabeeateeaeeeateeabesabeemteemeeeateemeeeateeateeaseemseentesaeesntaens 71

14.2.6 SEE-DOTETIAIMIEL ... e euteeutieuieeie et ettt ettt ettt ettt et e et e b e eateeabe et e eateeateeateeateeabeeabeeaeeenteeaeesateans 71

R 1 (SRR 71
I e =) (S 1= 1 (SRR 71

| I i1 (S,) £ APPSR 71

14.3.3 1€NAIMETILE. . .vvvviieiiieeeeee ettt e e e e e et e e e e e et et e e e e e e aaaraeeeeeenraaes 72

144 SEEIMNE DOTES . uvteuteeuteenteeteete et et euteeateeateeateeateeateeaeeeaeeeabeeateeaseeaeeeaeeeaeeamteaabeeaeeemseemeeeaeeembeembeeateemteenneeneesnneans 72
14.4. 1 GOt-OULDUE-SIIIIIG ¢ veeuteeuteenteenteete et et et et et e eate et eateeateeabeeabeeabeembeemeeeateeatesateeabeeaseemseentesaeesnteans 72

14.4.2 OPEN-INPUELSIIINEG . e euveeuteenteeteeteete et et eteeteeateeateeateeaeeeateeabesabeembeeasesaseeaeesatesaseenseemseenseeneesnseans 72

14.4.3 ODEN-OUEDUE-SEIIIIE ..o -veeuteeuteeuteeateete et et et eteeabe et eateeateeabeeabeeabeembeemeeeateeaeeeatesateembeemeeensesneesnnaans 72

| N Rl 1AL = 16 (50150 5 (=) 6 PR 72
T B U= 110 V=1 SRR 73

I U= 110V = SRR 73

14.5.3 1@@ISIET-ERAMIIE ... ettt ettt ettt ettt et e e et e et e eabeeabeeateenteeateeateens 73

14.5.4 Unre@iSter-fRAtIIELeitieieeie ettt ettt ettt et ettt et et e et e st et et e et e eateeateens 73

T4.6 KEVWWOTAS. ..ttt ettt ettt ettt et et et et e e a bt e a bt eateeateeaeeeateeabeembeemteemeeeateembeeabeembeemeeennesaeeentaans 73
14.6.1 GEEKEYWOIM. .. e uteeuiteiiieiie ettt ettt ettt ettt et e et e et e et e et e eateeateeateeateeabeeaseentesaeesnteeas 73

14.6.2 KEYWOTA Y. ...ttt ettt ettt ettt ettt e st et e eat e e abeem bt emteeateeateemteeateeabeeaseenteentesnteans 74

14.6.3 KEYWOTASTIIIG. ¢ e euveeuteeuteenieete et et et et et et e eabe et e bt eateeateeatesabeemteemeesateeaeeeateeateeabeemseentesaeesnteans 74

14.6.4 SIINGKEVWOIM.eueeeuteenieeie ettt ettt ettt ettt ettt et et e et eateeateeateeateeatesabeeaeeentesaeesnteaas 74

T4 7 EXCEPDIIOMS -+t euteeuteeuteeuteeute et et et et eateeateeabeeateeateeaeeeateeabeeabeeateemeeeaeeeaeeeateeabeeaeeemeeeaeeemteeabeeateeabeemeeenteentesnnaans 74
14.7.1 CONQILIOM-CASE: ...eeeeeeeeereeeeeeeeeeeieeeeeeeeeeeetaeeeeeeeeessaaeeeeeeeeessaaaeeeeesssassaaaeeeeesssasssseeseeesssnsseareeeessennrrens 74

14.7.2 DI@AKDOINE. -.cuveeuteeuteeite et ettt ettt ettt et et e bt et et e eaeeeateeabeeabeemteemeeeateeateeateeabeeabeembeentesaeesateeas 75

14.8 Environment information and SYStem INEITACEcveeveeieeiieieeie ettt 76
T8 1 AI@V. ettt ettt ettt ettt ettt et et e e et e et e e a bt e ateea bt ea et e a bt ea et e a bt e a bt eateeateeateeateeabeeabeeabeenteeateeateeas 76

| T« L SRRSO 76

14.8.3 DUIIA-DIALIOTINL 1.ttt ettt ettt et et ettt e et e et e et e eabeeabeeaeeenteeateeateeas 77

14.8.4 CHICKEN-VETSIOM. ...coeeevveeeeeeeeeeeieieeeeeeeeeee et e e e eeeetaaeeeeeeeeesaaaeeeeesssessaaaeeeesssaansssreseeesssnssaareesessannrnees 77

T =) 4 0 1 Lo NP 77

v

CHICKEN User's Manual - The User's Manual

Chicken User's Manual
14 Unit library

T4 8.0 GOIOIIV. .eueeeuteeuteeute et et et et et e et e bt et eat e et e eateeateeabeeateeateeabeeabeeabeem bt emteeabeeateeabeeabeeabeeabeenteeateenteens 77
14.8.7 MAChINE-DYEE-OTABEccueeeuieitieie ettt ettt et ettt et et e et e sateeabeeaeeeneeeaeesaeeeas 77
14.8.8 MACKINEEYDE .o outeeuteeuteenie ettt ettt ettt ettt et ettt et et e e bt st e embeeateeateeateeateeabeeabeeateenteeateeateeas 78
IR e =, | AR RRRRRRERRRN 78
14.8. 10 SOFEWATE DR+t euveeuteenteeteete et et et ettt et e et et et e eate et e eabesabeemteemteeatesateeateeateeabeemeeentesaeesnteans 78
14.8.11 SOFtWATE-VEISION uvvvevieeeeieitiieeieeeeeeiieeeeeeeeeesaeeeeeeeeesssaaeeeeesesesaaaeeeesssessssseeeeeesssssanreeeessannrnens 78
14.8. 12 CoTUINUIIIE .. .vvvvveeeeeeeeneeeeeeeeeeeeeiteeeeeeeeeesaaeeeeeseeessaaeseeeeeessaaaseeeesssasssasseeeessasnsseseseessssnnsasneeeesssnnrrees 79
T4.8.13 SYSTEIML ¢ euvveeutreeuteenuteerteeette ettt ettt entteesuteesabtesabeeeabeeenbaeenbbeesabeesateesabeesabaeebaeenbbeenbbeesabeesabeeanbaeanse 79
14.9 EXECULION LIITIE. c.uvvvveeeeeeeeieeeieeeeeeeeesteeeeeeeeeeesaseeeeeseesssaaeseeeessessaaseeeesssasssaresseessaanssseseesessssssanseeeesssnsssnseseessnans 79
1.9, 1 CDUTIINI e euteeuteeute et ettt ettt et et ettt et e e et eateeateeaeeeateeabeeabeembeeaeeeateeateeateeabeeabesaseentesaeesnneans 79
14.9.2 current-millISECOMNAS .. uuvveeeeeieeeiiirieeeeeeettee e e e e eeeeee e e e e e e eeaaeeeeeeeeeesaaeeeeeessesnssaeeeeeessssssaareeeessennrnnes 79
14.9.3 CUITENT-SECONAS.cooevvveieeeeeeeieeeeee e e eeette e e e e e eee et e e e e e eeaaaeeeeeessesssaaeeeeessesnssaeeseeesssnssaareeeessennrnens 80
14.9.4 current-ge-MillISECOMAS. . ..veeuveeuiieiieieeie ettt ettt ettt et e et eeaee et eas 80
14.10 Interrupts and error-NandliNg.........coeerueeriieiiee ettt ettt ettt et ettt ae e e 80
14.10.1 eNAbIE-WAITIIIEZS. .-+ eeuveeuteenteeteeteeteete et et et ete et eateeateeabeeabesabeeateeatesatesatesatesatesabeemeesntesaeesataans 80
L 102 CITOE cneeeieeeeeaaeasatttatrareaeeeeeeeeeeeeeeeeeeeeeeetesaeeeeaaaaeeeaeeeeeeeeeeeesesesasaaaasasssssssssssssssssssssssssssnsssnnnenerees 80
14.10.3 @et-CAll-CRAIN. .. e euteeiteeiie ettt et et et ettt et e st e et e et e et e eateeateeateeas 80
14.10.4 prnt-Call-CRAIMLeeeeeieeie ettt et ettt et et et e sttt e bt et e eaee et eas 81
14.10.5 DIINE-@ITOI-TIESSAZE: +euveeuveeureeureenteeteauteeeeateenteeateeuteeseeaateansesaseemseanseaaseaneesasesasesasesasesnsesasesnseans 81
14.10.6 procedure-infOrmMAION.cveeteeteeteete et et ettt et et eteeabesabeeateeateeateeaeeeateeabesabeeaseeneesneesnseaas 81
| O T) AU ORRO PP RRPPPRPPRRRRt 81
14108 WAITIIIIG. ¢ veeuveeuteeuteete et et et et e bt et et e bt e bt eateeateeateeateeateeateeabeembeemeeeateemteeateeateeaseeaseentesaeesntenns 81
14.10.9 SINIESEOP. .o uveeuteeuteeuteete ettt ettt ettt et et et et et e e et e ateeabesabeeateeateeateeateeateeateeabeeaseenteeaeesateans 81
14.11 GArbage COLIECHOM. .. e euveeuteeuteeuteett et et et et et et et et e be et e e et eaeeeaeeeabeembeeateeateeaeeeatesateembeembeeaeeenneeaeesnneans 82
0 1 I OO OO OO OO OO OO O OO P OO URRUURUPRUPRROONt 82
14.11.2 MEMOTY=SEALISTICS. o uveeuteeuteeuteeteete et et et eteeate et eateeaeeeateeabeeabesateemteeateeatesateeateeaseemseentesaeesnteaas 82
14.11.3 SEU-FINALIZET L ..eeeeiiiieiiieeie ettt e e e ettt e e e e e e aaa e e e e e e sessateeeeeesssnssaareeeessennrnes 82
14.11.4 SEL=GOTEPOTEL . .eeiuiieiiieitie ettt ettt ettt ettt e s bt e st e sabeesabeesabeeenbbeenbbeesbteesabeesabeeebeeanne 82
14.12 Other CONIIOL SIIUCTUIES ...v.vveeeeeierreeeeeeeeeeetteeeeeeeeeesateeeeeeeeesssaaeeeeessssssaeeeseessesssseessesesssssaaseeeessensssreeeessnnns 83
T4.12. 1 DIOIIIISEZ .o euteeuteeuteente et ettt et et et et et et e ate e bt e ateeateeateemteeabeembeemeeeateemteeateeateembeeaseentesatesnteans 83
14,13 SUINE UETIEIES .-+ eeuveeuteeuteeuteete ettt et et et et eat e e teeabeeabeeabeeaeeeaeeeateeateeabeemteemeeemeeenteemseemteeaseemteeaneeaeesnnaans 83
14.13.1 1@VEISELISISIIIMEG . eeuveeuteeuteeteeteete et et et et e et et eat e et eabeeabesabeembeemteeateeatesateeateeabesmeeenteeaeesnteans 83
14.14 Generating uninterned SYMDOIS.eiuiiiieiieie ettt ettt ettt ettt ettt et e et eeabeeateeateeaeeeaeesaeeeneeens 83
T4 T4 T GOISYIML .ueieuiteeiieeniieeeieeeutee ettt ettt e sttt e sateesabtesabeeeabeeenbaeenbbeesabeesabeesabeesabaeebaeenbbeenbbeesaseesabaesnbeeanne 83
14.14.2 stringuninterNed-SYIMIDOL ceouteiieiiiiiiie ettt ettt et et ettt st 83
14.15 Standard TNDUEH/OUEDUL.eoveeieeieeie ettt ettt ettt et et et e et e e ateeabeeabeeaeeeaeeeateeabesateembeeaeeeaneeneesaneans 84
LA 151 DOTED ettt ettt ettt ettt et e et et e ea et e ateeabe e abeea bt eat e eateeateeateeateeabeeateenteeateeateens 84
T4 152 DIIIE - .eeuteeuteeieete ettt ettt ettt et et et e et e eate et e eat e eateeateeabeeabeemteemteeateeateeateeateeabeeabeenteeateenteeas 84
T4 15.3 DIIIEX oottt ettt ettt et et et e e a e e at e eate e abeea bt eat e eateeateeateeabe et e eateenteeateeateens 84
14.16 User-defined Named CRATACLEIS .. .uvvvviiiiieeeieieiee ettt e e ettt e e e e et e e e e e e seasaaeeeeessensaareeeeeenans 84
) ST o) 0 1 0 0 L= SRR 84
) A 2 110 o TR 85
14.17. 1 NAKE-DIOD...uvviiiiiiiieiiiieee ettt e e ettt e e e e e e et aae e e e e e eesaaaeeeeessessateeeeeesssnnnaareeeessenrraes 85
| N o) (o) o RPN 85
| R I o) (o) o T 7= RPN 85
14174 DIODSIIIIG. + vt euteeuteeute et ettt ettt ettt et et e et et eateeaeeeateeatesabeembeemteeateemeeeateeabeeaseeaseentesaeesateans 85
14.17.5 SEENGDIOD. ..ttt ettt ettt ettt et et e bt et e eateeateeate et e eabeenteeateeaneeas 85
| A o) (o) o RO PR 86
O R I T ot 10 o PPN 86
T4.18.1 VOCLOT=COPY L ettt ettt ettt ettt ettt et ettt et et e eab e et e emteemteeateeatesateeateeabeemeeeneesaeesntaens 86
| R I R T oi 10) 6 (=) V=Y ORR RPN 86
14.19 The UNSPECITIEA VAIIE.veeuteeuiieieeie ettt ettt ettt ettt et e e et et e eabeeateeateeateeateeaeesateeas 86

CHICKEN User's Manual - The User's Manual

Chicken User's Manual
14 Unit library

L4191 VO iiiiiiiieeeiiee et e ettt e e e e e et e e e e e eeaaaaeeeeeseessaaaeeeeesseassaeeseeessansnaareeeessanrraes 86

14.20 CONUMUALIONS. c.vvvvvveeeeeeeinerieeeeeeeeiiteeeeeeeeeeessaeeereesseesareseeeessssssaeseesessssssssssseessssssssssesesssmsssseseessmmssssseseessnnns 87
T4.20.1 CALl/CC oo iieeeeeeiiee ettt ettt e e e et e e e e e e et a e e e e e s eeeaaaaeeeeesseesaaeereeessennaaareeeessanraaes 87

14.20.2 CONUNUALION=CAPIUTE.e.teeuteeuteeuteeuteeuteeteeteeuteeateeuteeueeeateeasesateeateemsesaseeaeesateeasesnsesaseensesneesnseans 87

14.20.3 CONIMUALION D ...eeeiiieeieiieeeeee ettt e e e e e eeatee e e e e e eessaaeeeeeeeeessaaeeeeessessssaaeeeessssssssarsseeesssnsseaneeeessennrnees 87

14.20.4 cONtNUALION-ZIATT. ... eoueiiiieiieie ettt et ettt ettt et e st e et e et e et eeateeaeesaeeeas 87

14.20.5 CONtINUAION-TEIUITL . ..vvvveeeeeienieeeieeeeeeetteeeeeeeeeesssaeeeeeeeeessaareeeeessassseeeeesssesssseesseeessssssssseeeesssnnnees 87

| NS 1 1<) - ST RR 88
| B TS 1 1<) OO RSORRO PP RUPPRRPPPRRRt 88

14.21.2 GOtOI-WItHoSEULET ..o ouveeueeeuteeteete et et ettt et ettt et et et eab e e abe et eateeateeateeateeateeabeeaeeenneeneeeateens 88

| A N 16 (o =y, 1) 1 R 16 11 PPN 88
14.22.1 defIN@-TEAAET-CLOL....uvvvveeeeiieieieeieeeeeeeeee e e eeeee e e e e e ee e e e e e eseaaeeeeeessessaaeeeeeesssnssaareeeessannnnees 88

14.22.2 SEL-TEAA-SYIMEAX L. .eeiiiiiiiiiieiie ettt ettt ettt e stt e st e st esabeesabeeenbteesbbeesbbeesabeesabeeenbeeenne 88

14.22.3 set-sharp-read-SYIMEAKL......coouiiiiieiiee et ettt ettt et et ettt ettt ea 89

14.22 .4 set-parameterized-read-SYNaX L.coouiiiiiiiiiiiei ettt 89

14.22.5 COPY-TEAALADIE.eoueieuiieiiieie ettt ettt ettt et ettt et e et e et e eate et e eaeeeateeaeeeateeas 90

14.23 PIODEILY LISES. ¢ uveeuteeuteetteuttete et et et et et et eateeateeateeabeeateeabeeaeeeaeeeaeeeateeabeemeeemeeemeeemteaaseeabeemteeaseennesneesnneaas 90
L. 23, 1 @Ot ittt ettt ettt ettt et ettt ettt e a et et e ea bt et e e bt ea et eateeateeateeateeateeateenteeateeateeas 90
T4.23.2 DULL .ottt ettt ettt et ettt ettt e a et et e ea bt et e et e et e ea bt ea bt e bt eabeeabeeateenteeateeateens 90

14.23.3 TOIMPIOPL..eeuetieitteiieeeteeette ettt ettt e sttt e st e st tesabeeeabee ettt e sttt e sabeesabeesabeesabeeenbaeesbbeenbbeesaseesabeeenbaeanse 90

14.23.4 SYIMDOL-DIISE. e uteeuteeuteeite ettt ettt ettt ettt et ettt et et e et e s abeemt e et e eateeateeateeateeabeeaseenteeaeeenteeas 90

14.23.5 GOU-DIODEITICS. «-veeuveeuteeueeeuteeteeteeteeteeuteeteeateeuteeateeuteeaeeeatesabesabeemteemseeaseeneeeatesabeeabesaseentesaeesatenns 91

15 Unit eval 92
15.1 L0AING COAR. .. ueeutieuiieiiieit ettt ettt et ettt et et e bt et e et e et e eatesateeateeateeabeeaeeenteeatesateeas 92

ST 0 1 (G T PO 92

15.1.2 JOAA-TEIALIVE.cooeeeeveeieeee ettt ettt e e et e e e e e e e e e e s seasaaeeeeessesnnsteeeeeeessnnaraneeess 92

15.1.3 10AA-N0TSIIY: ¢ veeuteeuteeie ettt ettt et ettt ettt et ettt et et eaae et ea 93

15.1.4 10AA-TIDIAIY .. eeeuteeuteete ettt ettt ettt et et et ettt eat e e ate e be et e eateeaeeeneesateeas 93

15.1.5 set-dynamic-10ad-mOdeL........ccceeriiiiiiiieiee e 93

15.2 Read-Val-PIilt LOOD. ... ueeuteeteeieeieeie ettt ettt ettt ettt ettt et et e st e et e et e eateeateeateeabeeabeeabeeateeateeneeeaneeas 94
ST < o) SO OO O OO OO OO URRUURURRRPRROONt 94

ST I £ Vo3 (o PP 94
15.3.1 GEE-lIMETIUIIIDOL .. .eeeuteeutteuie ettt ettt ettt et ettt et e e et e et e et e eateeateeateeateeateeabeeaseeneesaeeeateeas 94

| ST I 11 F:1e) (o X AP RRRRRERRRN 94

15.3.3 MACTOCKDAIM - -veeuteeuteeutteute ettt et ettt et et et et et e eateeateeabeeabeemteemteeateemeeeateeateeabeemseentesaeesnteans 94

15.3.4 MACTOEXPANA= L. ..eutieutieiiieie ettt ettt ettt et et e et eat e eateeateeateeabeeabeeabeenteeateeateeas 95

15.3.5 UNAEfINE-TNACTOL ..ottt e e e e e e e e e e e eaaae e e e e s eeeaateeeeeesssnsaaeeeeessennrees 95

15.3.60 SYIEAKEITOE 1.t euteeuteeuteeuteeuteenteeuteeuteeuteeuteeaeeeateeateeateemteeaeeeateaabesabeemteemeeemseemteeateeabeeabeeasesntesasesntenns 95

15.4 L.oading eXtenSion TIDTATIESeveeteeteetteteete ettt ettt ettt et et e e ateeabe et e et e et e eateeabesateembeemeeeneeeaeesaneans 95
15.4.1 1@POSIEOTY=DALIL ...ecuteeitieiit ettt ettt ettt et et et et e bt et e et e sabeeabeeaeeenteeatesateeas 95

15.4.2 eXtenSiOoN-TNfOIMALION.cceiieeurririeeeeeeiiieeeeeeeeeee e e e e e e eetaeeeeeeeeesaaeeeeeeseesssaeeeeeeesssnssaareeeessennnnens 95

I5.4.3 DIOVIAE. ..eeueieuteeie ettt ettt ettt ettt ettt et ettt e a et e ateeate s abeemteeateeateeateemteeabeeabeeabeenteeabesateeas 96

15.4.4 DIOVIAEAZ. ...ttt ettt ettt et et e et e e bt et e eateeateeateeabeeabeeaeeentesatesateeas 96

I5.4.5 TRQUITE. ¢ veeueeeuteeuteeute et et et et et et et et e e et ea b e eateeabeeateeateeateeabesabeeabeemeeeateeaeeemteeabeeabeeabeentesaeesanaans 96

15.4.6 Set-eXtensSioN-SPECITIETLuiitieiietiee ettt ettt et ettt et 96

15.5 SySteM INFOIMIALION 1. eeuveeuteeuteeiie ettt ettt ettt ettt et et et e e et e eaeeeateeubeeateeateeaeeemteeateembeembeemeeeaneeneeenneans 97
15.5.1 CHICKEN-RIOMIE . ..ceiiiiiiiiieiee ettt e e e e e e e s e e eaaae e e e e s eeesaeeeeeeesssnnaareeeessenrenes 97

| ST CY A2 O PRRRN 97
ST YE =7 | SRRSO 97

Vi

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

16 Unit data-structures 98
|G 51T TP 98

O I I TS 4= AP PRR 98

16.1.2 aliSEUDAALE] ..eoueeeieieiieeie ettt ettt ettt et ettt ettt et et ettt e eateeateeaeeeas 98

LG IR 170) 1 o OO 98

LY I 7 1Yo Yo PSRRI 98

G T 01014 1Y PSRRI 99

L0, 1.0 CHOD . ettt ettt ettt ettt et et et ettt et e e bt e bt e bt et e eateeaneeateea 99

16.1.7 COIMIPIESS. - euveeueeeuteeuteeuteeteeuteeuteeteeateeabeeateeateeateemteeateeabesmbeeaeeeneeeaeeemsesabeenseenteeaeesasesasanas 99

L IR 1 0] WP 99

160. 1.9 TMEOTSDEISE: .o uveeuveeuteeuteeuteeuteeute et euteeuteeabeeabeeateeateemteeateembesmbeeaeeeneeeaeeemeeeabeenbeemteemeesanesataeas 99

L6110 JOIM. e euventeeeenieeeeteeetetee e et et et e ste et e et e be e st esteeesseeseense s e eseeneenseesesseensanseeseeneensenseeneensanes 100

oY I) 010 i (=SSR RRR 100

LO L T2 ATLT ettt ettt ettt e ettt e e e et e et bt e s ettt e e srtaeesatbeeeeraaeesnes 100

10.2 QUEUES ..o uetieeeeiiiee e ettt e e ettt e e ettt e e eetteeeeetteeeeeetteeeeatssaeeeabaeaeesssaeeassaseeaasssaeeassaeseassasasatssaeeasssaeeansasaeeasesaeenaes 100
160.2. 1 TISEQUEUER: .. uveeuteentieuieeteeteeateesteenbeebee bt esteesbe e bt ebeebeesbeesbea b ee bt e bt e sbeesbeesheeabea b teabeesbeesaeesaeesaeenas 100

16.2.2 MAKE-QUEUEeeuteeutietieieete et et et e bt e st e e sbe e bt e b te bt esbeesbeesbee bt e b eesbeesbeesbeesbeesbtenbtesbeesheesaeesaeenas 101

160.2.3 QUEUE? . .eeeueeeteeieeie ettt ettt e bt et et e e bt e s bt e bt e bt e bt e bt e e bt e bt e bt e bt e e bt e abeeeheeehe e bt e ebeenbeesheesheeentenas 101

160.2.4 QUEUETIST ..c.veeuveentietieteeie ettt ettt et et e et e bt e bt et e e s bt e s bt e sbee e bt e bt e sbeesbeesbeesbtesbteabeesbeesaeesaeesaeenas 101

16.2.5 qUEUE-AAAiiiiiiieeee ettt ettt b e bbbt e bt e bt e bt e sheesaeeeaeenas 101

16.2.6 QUEUE-CINPEY 2. c..eeiuiietieieeteet et et et e steeste e bt e bt e bt e sbee s bt esbee e bt e sbeesbeesbeesbeesbeesbeeabtesbeesaeesheesaeenas 101

160.2.7 QUEUETITSE .eeuveeutieiieteeie ettt ettt ettt et e e bt e b e bt e s bt e s bt e s bt e e bt e bt e sbeesbeesbeesbeesbtesbeesbeesaeesaeesaeenas 101

16.2.8 QUETETASE ...eeuteeitieiiete ettt ettt ettt e sb e e bt e bt e bt e sb e e s bt e sbe e b e e bt e sbeesbeesheeebeenb e e ebeesbeeshtesheeeaeenaes 102

16.2.9 QUEUETEIMOVE ... eeutiitieiietieteet et et e st et e bt e bt et e e sb e e s bt e sbee s bt esbeesbeesbeesbeesbeesbeeabeesbeesaeesaeesaeenas 102

16.2.10 queue-push-Dackl......c..ooiiiieee ettt 102

16.2.11 queue-push-back-TISt].......coouiiiiiieiei ettt sttt sttt 102

10.3 SOTLIIE .- veeuteeuteeteettete et et et e e bt et e e bt e bt e bt e bt e bt e bt eab e e bt e bt e bt e st e e eh e e bt e bt e bt e abeesbeesheeebeeebeenbeesbeesheesaeesneenas 102
LO0.3. T THIEIEE. . e ueeeuteeuteentienteete et e bt e bt e bt et e e be e bt e bt e bt e bt e bt enbee s bt e bt e bt e bt e abeesbeeebeeebeenbteabeesbeesaeesaeesneenns 102

10.3.2 SOTT.uuuveieeeeeeieeeeeeeeeeeee et e e e e eet ettt e e e e e e aaeaeeeeessaaaaaaeeeeesseenbataeeeeseaaaataeeeeeseanaaaareeeeeeaartareeeeeeennnrres 103

16.3.3 SOTEEA T ..ottt e e e e et e e e e e e e e e s seesaaeeeeessesaateeeeeeessnaaaaeeesesesnraarreeeesennneres 103

IO B 1 a o) 0T 100 0010y - 103
Y 0 I 10 e [0 1 1 Y=Y KRR 103

10,5 SHIIMES. ¢ uteeuteeuteeteettent et e bt e bt e bt e bt e bt e bt e bt e bt e bt e bt eab e e bt e bt e bt e sbeeeheeab e e bt e bt e bt e sbeeehteebteeseeabeesbeeshtesaeeeneenns 103
G oo s Lo SRR 103

10.5.2 SIIIIG. v eeuveeuveeuteenteeteete e it e bt e bt e bt et e e bt e bt e bt e bt e bt e bt e b e e sbee bt e bt e bt e abeesbeeabeeebee bt enbeesbeesheesheesaeennes 104

16.5.3 SIINE-CRIOD. ottt ettt ettt ettt e b e st e e s bt e s bt e s bt e bt e sbeesbeesbeesbeesbteabeesbeesaeesaeesaeenas 104

16.5.4 SIING-CROMIPD. -+eeutteuteetteie ettt ettt ettt e et e st e e s bt e bt e bt e sbeesbeesbeesbeesbeesbtesbeesbeesaeesaeesaeenaes 104

16.5.5 SIING-COMPATES. ... eetietteiteeteerteertterttestee bt esteesbeenbeesteesbeesbeeabeesbeesbeesbeesbeesbeesstesbtesbeesaeesaeesneenns 104

16.5.6 SN G- INIETSDEISE ... eeuveeureereeteenteenteerteesteenteesseesseanseesseesseesseenseesseesseesseesseesseesstesseesseesseesseesssennes 104

16.5.7 SIIMESPLIE veeuveeutienieeteeie ettt ettt et et e bt e bt e bt et e esbe e s bt e sb e e bt e bt e sbeesbeesbeesbeesbteabeesbeesaeesaeesaeenns 105

16.5.8 SIING-LIANSIALE. .. eeuteeutieiieteet ettt ettt ettt et b e e b e b e bt e sb e e sbeesbeesbeesb e e sbeesbeesaeesaeesaeeeas 105

16.5.9 String-transSIate™cc.iiiiiieieee ettt bttt h ettt sae et eas 105

16.5.10 SUDSIIIIZIZZ ..ottt ettt ettt et e st e e bt e bt e bt e bt e sbeesbeesbeesbeesbteabeesbeesatesaeesaeenas 105

16.5.11 SUDSHIINGANAEX ¢ -veeuteenieeteetieteet ettt ettt et e bt e b e b e b e sbeesbeesbeesbeesbtesbeesbeesaeesaeesaeeeas 106

LS O0] 101011100) &R 106
LO.6. 1 MY 2.ttt ettt ettt b ettt e bt e bt e bt e bt e bt e bt e e bt e bt e bt e bt e bt e eh e e eh e e ehe e bt e ebeeebeeshteshteeaeenas 106

LAY 110 1 =PRSS 106

160.6.3 AlWAYST ..ottt ettt ettt ettt e bt e bt e bt e bt e bt e e bt e bt e bt e bt e eb e e eh e e eh e e eh e e eh e e ebeesbeeehteshteeatenaes 106

LO.0. 4 MEVEID oot e e e et e e e e e e e e e e s ee e sataeeeeseasaateeeeeees s aaaaeeeeeseeanrareeeeeeennnrres 106

16.6.5 COMSEAMELY. ...t euteeutienieeteete ettt ettt e st e et e bt e bt e bt e st e e s bt e sbee e bt e bt e sbtesbeesbeesbeesbteabtesbeesaeesaeesneenas 107

16.6.60 COMPIEIMEIL. .. ceuteeuteeteeteeteete et et et e st e bt e bt esbte bt esbeesbeesbee bt esbeesbeesbeesbeesbeesbtesbeesbeesaeesaeesaeenas 107

16.6.7 COIMIPOSE. .. uveeuveentieuteenteateeateeteenbeebeebee bt eabe e bt e bt e bt enbeeabeeabee bt e bt eabeesbeeabeeebee st eabeesbeesheesaeesneennes 107

16.6.8 COMIOII. c-veuteenteentienteeteeteeste et e e bt et e e bt e bt e bt e bt e bt e bt esbeeebeeabee bt e bt e abeesbeesheesbeenbtesbeesbeesaeesaeesneenas 107

vii

CHICKEN User's Manual - The User's Manual

Chicken User's Manual
16 Unit data-structures

16.6.9 dISTOMM. ¢ttt ettt ettt ettt et e e bt e bt e bt e bt e bt e s b e e s bt e bt e bt e bt e bt e ebeeeheeehe e bt e nbeesbeeshtesheeeatenaes 107

OO Y8 L =Y. Te] o RPN 108

XY i T o OSSR UUUPR 108

10.6. 12 TA@IEILY. .o euveeuveenteenteeteeteente et e et e e bt e bt esbe e s bt e bt e bt e bt esbeesbe e b ee bt e bt eabeesbeesbeesbeesbtenbeesbeesaeesaeesneenns 108

10.6. 13 DIOJECL. .eeuteeuteenteeteete et et et et et e bt e st e e s bt e bt e bt e bt e st e e sbeesbee bt e bt e sbeesbeesbeeebee bt eebeesbeesatesheesaeenaes 108

O T N Y o) APPSR 109

L0.6. 15 TOOP .+ utteuteenteeteett et et et e bt e bt et e bt e sbe e bt e bt e bt e bt esbeeebe e bt e bt e bt e abeeebeeeheeebe e bt e ebeeebeeshtesheeeatenas 109

ST KXo TSRS 109

LY A (=5 Y =Tei 5 (o) 1 TSROSO 109

16.6. 18 TGN SECIOMN. +euveeutteuteeteenteeteet et et e e bt e bt e bt e bt et e e sbeesbeesbee bt enbtesbeesbeesbeesbeesbtesbeesbeesaeesaeesaeenas 109

16.7 BiNAry SEATCHIIEZ. .. veeteeteetietietteste et et et et e st e e bt esb e e bt e bt e bt e st e e sbeesbee bt e bt esbeesbeesbtesbeesbeasbeesbeesaeesaeesaeenns 110
16.7.1 DINATY-SEAICKH . ..c..eeutietietiete ettt ettt h e b e b e s bt e s bt e sbe e s bt e bt e sbeesbeesatesaee et e eas 110

17 Unit ports. 111
17.1 Input/Output POTE EXEEMSIOMS .+ euveeuveeureeteerteenteenteerteenteesteesteesteesseesseesseesbeesseesseesstesseesseesaeesaeesasennes 111

17.1.1 With-OUEDULEO-DOIE ... eeutientieteeteeiteeeteet et ee st ettt et et e bt e st e sbeesbeesbeesbtesbeesaeesaeesaeenas 111

17.1.2 MAK@ANDUEDOIE ¢ euveeuteentietieteeste et et et et e sbe e st e e s bt e bt e bt e bt e sbeesbeesbeesbeenbeesbeesaeesaeesaeenas 111

17.1.3 MAKE-OUEDULDOTL c..eeeneteeriieertieeiee ettt ettt et ee st e st e e beeebeeenbteesabeesabeesabeesabeeenbeeenaneenanes 111

17.1.4 With-€IrOr-0UtPULEO-DOIL. ..eeuveeteetietietietiesttente et et te st e st esbeesbee st e sbeesbtesbeesaeesaeesaeenas 111

17.1.5 With-inPUt-fTOMIDOTIE . .o..eeteeteertieitietiert ettt ettt ettt et sb e st e st et e bt e sbee st esaeesaeeeas 112

17.2 StriNG-DOIt EXLEMSIOMNS. ¢.uveeuteeuteeteenteerteerteerteerteesteesteesseesstenseenseesseesseeaseesseasseesseesbeesseesstesstasseesseesseesseesssennes 112
17.2.1 call-With-INDULSIIIIE,. ... veeveeteeteeteerteeste et et et te st te st e e sbeesbte bt e sbeesbeesbeesbeesbeesbtesbeesbeesaeesaeesaeenas 112

17.2.2 call-With-QUEDUL-SIIIMNZ. .. eeoveeteetietteiteeste ettt ettt te st et et et e sbte s bt e sbeesbeesbeesbeesbeesbeesaeesaeesaeeeas 112

17.2.3 With-input-frOmMI-SIIINZ. .. eeoveeteetietiete ettt ettt ettt et e bt e sbeesbeesbeesbtesbeesbeesaeesaeesaeeeas 112

17.2.4 With-OUEDULO-SIIIME . +eeuveeuveenteeteeteenteenteesteesttenttenteesteesteesteesbeesbeesbeesbeesbeesbeesbtesbeesbeesaeesaeesaeennes 112

R 0 A 1= 2100 ¢ U 113
17.3.1 POTEFOT-@ACK. .ottt ettt b e s bt e s bt e sbe e s bt e s bt e s bt e sbeesaeesaeesaeeeas 113

17.3.2 DOTE-INIAN . .eeeeuvteentteeniteeniteeeteeetee ettt enbteesubeesabeesateeeabeeenbeeenbteenbbeenbteesabeesabaeenbeeenbaeenbaeenmseesabeesabeenn 113

17.3.3 DOTEFOIA. ettt b e bt b e bt s bt e bt e sh e bt e bt e e bt bt e satesaeeeaeeeas 113

17.4 FUDKY DOIES. . eeuteeeitieeiieeetee ettt ettt stt e sttt e sttt e satee sttt ebte ettt ebaeesateesabeesabeeeabeesabeeenbaeessbeesabeesabeesabeesnbaeenseeenns 113
17.4.1 MAaKe-broadCast=DOIL. ... cccoueerrueeeriieinitieniee it eteeetee ettt ettt e sibeesateesabeesbeeebeeebaeenbaeesabeesabeesabeens 113

17.4.2 make-concatenaAted=POLt........cueeruereriieriieniieeieeeiee ettt e sttt e st e sbeeebeeebeeenbaeenbaeesabeesabeesabeens 113

18 Unit files. 115
18.1 Pathname ODEIATIONS. . .veeveeteeteeteettenteenteenttenteesttenteesteesbeesbeesbeesbeesbeesbeesbeesbeesstesbeesbeesaeesaeesasenaes 115

18.1.1 absolute-pathnamE?.......cooueerteerieitietiet ettt ettt ettt et e st e bt e sbeesbeesbtesbee et e saeesaeeeas 115

18.1.2 decoOmMPOSE-PANMAMIE. .. ceuveeuteetieniietietiet et ettt ettt et e sbeesbeesbeesbeesbtesbeesaeesaeesaeesas 115

18.1.3 MAaKe-PAtNNAIIEveeteetietieteeste ettt ettt ettt et sb e e bt e s bt e bt e sbtesbtesbeesaee st enas 115

18.1.4 make-absolute-pathNamIE.ceoveeruieruieiieiiertterte ettt 115

18.1.5 PAthNAME-AITECIOTY. ..+ eeuveeuteeteerteentienteent et te st et et et et e bt e sbeesbeesbeesbeesbtesbeesaeesaeesaeesas 115

18.1.6 PAthNAME-FTIE. ... eeveetieiietiee ettt sttt ettt e st e st e e 116

18.1.7 PAthNAME-EXEENSION. -+ eeuveeuteenteentierteentienteenteesttesttenteestee bt esbeesbeesbeesbeesbeesbtesbeesaeesaeesaeenas 116

18.1.8 pathname-1eplace-dIr@CIOTY. ...c.ueertteruiertiertiertienteenttent e rtte e st et e st e bt e sbtesbee st esaee e enas 116

18.1.9 pathname-replace-file.........cooeerirrierieieiete ettt 116

18.1.10 pathname-1eplace-eXtENSION. .. verveereerreertiertiertientientienteerteesteesteesieesbeesbtesbeesaeesaeesaeenas 116

18.1.11 pathname-StriP-dir@CtOIY . . eerveereeteetiertterttenie ettt et et e st e bt e bt e st e s e e e 116

18.1.12 pathname-StriP-@XIEMSIOM .. eerveerreerreerteenteerteenteentienteenteesteesteesteesseesseesstesbeesaeesaeesneenaes 116

18.1.13 direCtOrY-IUIIZ. .. .eotieiieiieeee ettt ettt ettt et sb e bt e sbeesbe e bt e sbeesaeesaeesaeeeas 117

A NS 1010101 2 A i1 1<) SO USSR SRR 117
18.2.1 create-temMPOTATY=fIlE......ceieeitiertietieieeste ettt et ettt sb e bt e sb e e sbe e bt e bt e bt e sbeesaeesaeesaeeeas 117

18.3 Deleting a file without SIgNAIlING AN BITOL.eerteerteertiertiertienteerteesitesteesteesteesttesteesbeesaeesseesstesseesaeesaeesseenaes 117
TG e =) (S 1= 1 (SRR 117

viii

CHICKEN User's Manual - The User's Manual

Chicken User's Manual
18 Unit files
18.4 Fle IIOVE/CODY . eeuvteuteeuteeteeteenteenteesteentee bt e bt esbe e bt enbee bt e bt e beesbeesbeeabee bt e bt eabeesbeesheeebtesbeeabtesbeesheesaeesneenas 117
T 1 (ST 0 o L/ USRS SURUTRR 117
I B 1 1S 110 7= P RRRRRRRRRN 118
19 Unit extras 119
19.1 FOrmMAtted OULDULuvvvvvrrrrreiireeieieeieieeieeseaeasassssssssssssssssssssssssssrsssssenenens 119
| 0 o) 6 1115 S TSRO SRRSO PRRRR PR 119
L I) 1111 TSSO 119
19.1.3 SPIIMEE . ..eeeeeeee ettt ettt b e sb e bt e bt e bt e bt e sb e sae e saee st nas 119
| 5 0 1 -1 PSRRI 120
J LS 216 (o) 1 00100 0010y - 120
J KSR I 106 [0 1 0 Y=Y KRR O RRRRRRRRN 120
RSN v 11 s (o) 1 1 WSRO 120
19.2.3 TANAOINIZE ... vvvvveieeeeeeieeeeee e e eeetteee e e e e e e ettt e e e e e e eaaa e e e eesseesareeeeeseasssaseeeeesssssssaaseesessssnsseseeeessannneres 121
19.3 INDUL/OULPUL EXEEISIOMS. -+.-veeuveenteeteerteenteenteerteesteesteesseesseesseasseesseesseesseesseesseesseesseesstesseesseesseesseesseesseesseennes 121
LG TR 0] (=02 o) 11 L SO SO TUO USSR 121
19.3.2 pretty-print-Widthcooieieeeeee ettt bt sttt 121
19.3.3 18AA-DYEIE. ¢ .veeuteentieie ettt ettt e b e b e bt e bt e sb e bt e bt e bt e bt e eb e e eb e e eh e e ehee bt e ebeesheeshtesheeeaeenaes 121
19.3.4 WEIEEDYEE .. ettt ettt ettt et et b e sb e bt e bt e bt e e bt e s bt e sbeesh e e ehe e bt e e bt e nbteshtesheeeaeeeaes 121
IR T (=7 16 I 1 (RPN 121
19.3.6 TEAA-TINE. ...cvvveveeie ettt e e ettt e e e e e et e e e e s eesaaeeeeeseessaaeeeeeessssnnaaeeesesessnaaseeeeesennnenes 122
19.3.7 WITLE-TIIIE, .. vvvvveeeee oottt eee e e eeette ettt e e e e ettt eeeeeeeaaaaeeeeessesssaeeeeeeseassaseeeeessesnnsaaneesessssnsasseesesssnnnnres 122
19.3.8 TEAA-TIIIESuvveveeieeeeeeeteeeiee e e eeettt et e e e e e et e e e e e e eeaaaeeeeeseessareeeeessasssaaeeeeessssnssasseesesssssaaseeeeessnnnnres 122
LSRRI (=7 16 T 1 SRR 122
19.3.10 1@AA-SIIME L ..eeuteeutieteeieete ettt ettt et et e bt e bt e bt e st e e s bt e sbe e s bt e sbtesbeesbeesbeesbeesbtesbeesbeesaeesheesaeenas 122
19.3. 11 WIIEE-SEIIIIE ..t euveeuteenteeteenteetee bt et e e bt esbeesbe e bt e bt et e esbeesbeesb e e bt e bt e sbeesbeesbeesbeesbtesbeesbeesaeesaeesneenns 122
19.3.12 1EAA-LOKEM. .uvuveeiririiiriiitrireeeeeeiee et e ettt ee e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeaesaasssssssssssssssssssssssssssssenssennnees 123
20 Unit srfi-1 124
21 Unit srfi-4 125
A I 117:) o, 9.0, Q=T oi 10) RO RPRRERRS 125
A AR L AL e100) 4) (6] o RO RPRRRERRRRE 125
A R IY A Te1 10) 4 o) (o) o NN RO RPRRRERRRRRE 125
P B B LN =Tei 0014 0) (o) o KRR 125
21.5 STOVECLOIDIOD . ..uuviiiiieeiiiiieee ettt ettt e e e ettt e e e e et e e e e e eeeaaaeeeeeessesssaaseeeesssnssareeeeessnnnnnes 125
P8 IR R AT To10)0) (o) o RO SPRRRRRRRE 125
P8 AR WA Te1 701 40 (o) o YRR 126
A RIS P ALTe 0014) (0) o NRuuR RO RPRRRERRRRE 126
A RIS 0 A =Te100) 0] (0) o NRuuuU RSO RPRRRERRRRE 126
21.10 UBVECLOIDIOD/SNATEMeeeeieieeeeeieeeeee ettt e e e et e e e e s e aaaae e e e e e s esastaeeeeeeeeennnes 126
21.11 S8VECLOIDIOD/SHATEd. .. .vvveieiieieiiieeeee ettt e e e e e e et e e e e e e s eesaaeeeeeeseennnes 126
21.12 u16VECtOrblOD/SHATEDceieeeeeeeeeieee ettt e e e e e e et e e e e e s sesaaeeeeeeesennnes 126
21.13 ST16VECtOIDIOD/SNATEA.eeeiiiieeiieeeieeeeeeeeee ettt e e e e e e et e e e e e s sestaaeeeeeseennnes 126
21.14 u32veCtOrblOD/SNATEMccoeieeeeieiieeeeeeeeee ettt e e e e e e et e e e e s et r e e e e e eeaaaes 126
21.15 832veCtOrDIOD/SRATEA.ceeieieeeeeeeeee ettt e e e et e e e s et arr e e e e e e enaaes 126
21.16 £32VectOrblOD/SNATEd.coiiieeeieiieee ettt e e e et e e e e s era e e e e e e e enaaes 126
21.17 fOAVECtOrbIOD/SNATEd.eeeieieeeeeeeieee et e e e et e e e e s eeaaaeeeee e e eenanes 126
2 B R) (6] 10 e ATt o) RO RPRRRRRRE 127
P B L) (6] s TRl (o) RSP 127
21.20 DIODUTOVECHOT. .. eeiieeeeeieeeeeeeeeeiteeeeeeeeeete e e e e e eeeaaaeeeeeeseesareeeeesseessaseseeeesssssaaseeeessssssrareeeesssnnnnes 127
8 A W) (6] s 10 0N =T ea () SRRSO 127

X

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

21 Unit srfi-4
A A) (6) 10 WA=l o) VRS PRRRRRRE 127
A AR N) () s R I A Z=Tea (0} SRR 127
A B2 0) (6)) I WAt o) PO RPRRRERRRRE 127
21.25 DIODEOAVECTOL . vveeiieeeieieieee ettt e e e e ettt e e e e e e e e e e e s e e aaaeeeeeessesasaaseeeesssnsrareeeeesennnnes 128
21.26 DIODUBVECLOI/SNATEM ... veeeeeieieeeiieiiee ettt e e e e e e e e e e e eeaaaareeeeesssnraaeeeeeeennnnnes 128
21.27 DIODSBVECIOI/SHATEd. .. .vvveieeieeeeieieeeee ettt ettt e e e e e et e e e e e e eeaaaaeeeeeesssanraeeeeeesennnnnes 128
21.28 DIODUTOVECLOI/SNATEMeeeeeeeeieeeeeeee ettt e e e e et e e e e s eeaaaaeeeeeessssraaeeeeeseennnaes 128
21.29 DIODSTOVECLOI/SNATE. .. .eeeeiiieeeiiieeeeee ettt e e e e et e e e e s et e e e e e e s eestaaeeeeesennnnnes 128
21.30 bIOBUB2VECLOI/SNATEMeeeeeeeeeeeeeeeeee ettt e e e e e et e e e e s eeaaaaeeeeeeseeasraeeeeeessnnnnaes 128
21.31 bIOBS32VECLOI/SNATE. .. .eeeeiieieeeiieeeee ettt e e e e e e e e e e e aaaae e e e e e s seasrareeeeessnnnnaes 128
A BRI) (6)0) I AN Tt 16) V) 0 T2 (T MRS 128
21.33 DIOBOAVECLOI/SNATED.eeeeeeieeeeeeeieeee ettt e e e e e e et e e e e e s eestaeeeeeeseennnaes 128
21 .32 SUDUBVECEOE ... uuvuueeurerieieririrereereeeeeeeeeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseasassssssssssssssssssssessssssresnssrsenens 129
21.35 SUDULOVECLOE .vvveeeieeeieieeeee e ettt e e ettt e e e e e ettt e e e e s eeaaaeeeeeseeesaaeeeeeessssssaaseeeessasnraseeeeesennnnnes 129
21.30 SUDUS2VECLOL uvvveeieeeeeeieeiee e e eeetttee e e e e eette e e e e e eeea et e e e e seesateeeeessesssasseeeeessssssaaseesessssnsreseeeessennnnnes 129
21 .37 SUDSBVECIOT. .. uuuuuuereriruiurririrereesaeasasssssssssssssssssssssssessrsrssnsserenens 129
21.38 SUDSTOVECTOT . .uvviiieieeeeieeeeeeeeeeieeeeeeeeeetteeeeeeeeeeaaaeeeeeesessaaeeeeesseassasseeeeesssssaaseesessssssraseeeeessnnnnes 129
21.39 SUDS3 2V ECHOT . . uuuuurururrurrrerererereesseseassssssssssssssssssssssssssssrsrnssrrenens 129
2140 SUDT32VECLOL. ..uvviiiieeeeeeeieee ettt ettt e e e ettt e e e s eea e e e e e e e aateeeeeeseeanaaaareeeesanrrareeeeeeaanaaes 129
2141 SUDTOAVECLOL. ...vveiiieeeeeieeeee ettt e e e ettt e e e e eeaa et e e e e e e aateeeeeeesensaaaereeessansrareeeessennnnnes 129
2142 TEAA-UBVECLO . ..vveeiieeeeeieeeee ettt e e e e ettt e e e s eea e e e e e s eeeaaaeeeeeessesssaaneesessasssareeeeessnnnnnes 130
21.43 1EAA-UBVECLOI L. eiiieeeieeieee ettt e e e ettt e e e e e et e e e e eeesesnsaaareeeessssrareeeeesennnnaes 130
2144 WITE-UBVECLOE .. eeeeeeeeeieeeieeeeeeite e e e e eeete et e e e e e eetaae et e e e eeetateeeeeeseessaaeeeeeessssssaaseesessssnrraseeeessennnnnes 130
22 Unit srfi-13 131
23 Unit srfi-14 132
24 Unit srfi-69 133
24.1 HaSh Table PrOCEAUIES.cccoeieureeieeeeeeeeieeeeee e e ettt e e e eeeate et e e e e e eaaae e e e e e eseenaaaaeesessssnsareeeeesennnnnes 133
2 U I 0 1) G 1 T £ 721) (= RS 133
R A 1) o e 721 o) (= SRS 133
R B (7. o 721 o) (s /= SRR 133
24.1.4 hash-table-equivalence-fUNCHOMcerteruierierierierie ettt 134
24.1.5 hash-table-hash-fUNCHIOMNvviiiiiiiieiieee e 134
24.1.6 hash-table-miN-I0AG..........cccuverieieiieeeeeee e e e e e e e e e s eeaaeneeeas 134
24.1.7 hash-table-maX-I0Ad........ccccuueriiiiiiiieiiee e e e e e e e e aaaaee s 134
24.1.8 hash-table-WeaK-KEVS.......cceouiiiiiieiie ettt 134
24.1.9 hash-table-WeaK-VAIUES..........eeeeeiiieiieiieee et e e e et e e e e s eenaeneeeas 134
24.1.10 hash-table-has-TNItIalZ.....c.uuvveeiiiiiiieiieee et e e e e e e e e enaeneeeas 135
24.1.11 hash-table-TNItIALcoovierreeieee et eeeee e e e e e e e e e s eaarae e e e e e s esanaeneeeas 135
24.1.12 hash-tablE-KEVS. ...eoteiuieiiieiieiie ettt 135
24.1.13 haSh-taDIE-VALUES.eeeeeeeerieeieeeeeeeeeeeee et e e ettt e e e e et e e e s e enarae e e e e e s ennaeeeeeas 135
O O) o 2 o) [T 1] SRR 135
P B IS TF 1 T34 0T 4 7 1) (<R 135
24.1.16 hash-tabIe-TEEoviiiiiieieeeee e 136
24.1.17 hash-table-ref/defaull.............ooovviiueeeiieieeeeeeee e 136
P B T o 2 o) (o, 1 X AR 136
P O O) o 2 o) (<Y SRS 136
24.1.20 hash-table-update ..ottt 136
24.1.21 hash-table-update!/default..........ccocerieiiiiiiie e 137
24.1.22 Dash-taDlE-COPY .. etueeeuteeiiiriieitie ittt ettt ettt et e bt e bbb e bbb bean 137

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

24 Unit srfi-69
24.1.23 haSh-table-dEIELEL.......ccoieereeeieeee ettt e e e e e e e e e e naeneeeas 137
24.1.24 hash-table-TEMOVEooioiieeieee et e e e e e e e e e e e s eenaaneeeas 137
LR BRI (T 2 o) (<o) (T2 RS 137
24.1.26 hash-table-TNEIZE ... coveeuieeiieiiieiiie ettt ettt et e bt e sbe e b e bt e b e beeeean 138
24.1.27 hash-table-MEIZe L. ...cccueiiiiieiieiie ettt ettt 138
24.1.28 hash-table-TNaAMcoueiieeieiie ettt ettt b et 138
24.1.29 hash-table-fOld........uvviiiiiiiiieieeeeeeee e e e e 138
24.1.30 hash-table-fOr-€aCh.ccovverieiiieeeeeeee e e e e e eaaaaee s 138
24.1.31 haSh-tabIE-WaLKcoeiiiiiiieeieee ettt e e e e e e ettt e e e e e e enaraeeeas 139
24.2 Hashing FUNCHOMS. ... ceeueeiuteeiieeiiei ettt sttt et e bt e b e s bt e sb e e sb e e sheesbeesbe e bt e sbe e beesbeeabeenbeenbeebeensean 139
24.2.1 NUMDEI-RASH . ..eiiiiiiiiiiiiieeeeee ettt ettt e et e e et e e e e —————————————————————————— 139
24.2.2 0bJeCt-UId-RaSH . ..c.eiiiiiiiee ettt ettt an 139
24.2.3 SYMDOI-NASHL ..ooiiiiiiii et et 139
24.2.4 KEYWOIA-DASK ..ottt sttt b bbbt e b e bbb e s 139
24.2.5 SNG-NASH ...ttt ettt e b e b e b et be b an 140
24.2.6 SNG-CI=NASN. ... ettt ettt s bbbt be e an 140
24.2.7 @G 7-NASN. .ottt et b e bt bbbt e bt e bt e bt e bt ebean 140
24.2.8 @QV2-NASN. ..ottt ettt b e bt b e e bt e be e b ebean 140
24.2.9 eqUAIZ-RASN. .. ciiiii ettt b e bbbt e bt e bt e bt e bt eaean 140
A L T 1) o RO RPRERRRRRE 140
24.2.11 hash-DY-IdentitY. .. .ccueeteriieiieeiie ettt sttt et b e b e b e bt e bt e bt e bt e bt e bt e beebean 141
25 Unit match 142
26 Unit regex 143
P T B4 11 o OSSPSR 143
P A4 10]0) (o34 o TSRS 143
20.3 GIOD Y. ottt h e bt bt bt e bt e e bt e bt e bt e bt e bt e ebe e bt e bt e bt ebeebean 143
P T (0.4 o PSPPSRI 144
P T (0.4 0 LS S USRS UPUSRUSS 144
P N SR (0.4 0 J A PSSR 145
20.7 T@ZEXPOPUIIIIZE. ¢ veuveeeeetertieriteetteetteetteattesttesutesuteeueesatesbtesbtesbeesbeeabeeabee bt e bt anbeesbeesbeenbeenbeabeensean 145
26.8 SIINZTNALCH. . .eueeeeieeiieeiie ettt e b e s b e s bt e s bt e sheesbe e bt e bt e beesbeesbe e bt e beebeenbean 145
26.9 StriNg-MAtCh-DOSITIOMS . e.uvertteruteetieetieetteette et tesitestteettestte st tesbtesteesbeesbeesbeesbee bt enbeesbeesbeenbeebeanbeeneean 146
26.10 SIING=SEATCIL. ... eteiieeiieete ettt ettt e bt e s b e s bt e s bt e s bt e sbe e bt e bt e nbeesbeesbe e bt e bt ebeeneean 146
26.11 String-S€arCh-POSILIONS. .. ceeveeruteruieeuieetiertterttestte st e et esttesttesttesbeesbeesbeesbeesbeesbeesbeesbeesbeenbeenbeanbeensean 146
26.12 SiN@-SPLE-TIOIAS ... eeeueeieieieieeiie ettt sttt b e b e b e bbbt e bt b e b e s 146
26.13 SIING-SUDSHIULEeeeuteieiertieriieeite ettt ettt et e et e st e st te st e e s bt e sbeesbeesbeesbeesbeesbeesbeenbeenbeebeabeeneean 147
26.14 SIING-SUDSHIULE™c..eiitiiitieiie ettt ettt e st e bt e s bt e s bt e bt e bt e sbeesbeesbeesbeenbeenbeebeeneean 147
20. 15 TO@OXPESCAPE e -veueeueerrtertterutestteauteauteastesttesutesutesuteaseeabteabeesbtesbeeaheeabee bt enbeebeeabeesbeenbeebeebeenbean 147
26.16 make-anchored-PAttEIN.cevtiruierieeiiiet ettt ettt et e bt e bt e bt e sbe e sbeesbeesbeenbeenbeeneean 147
27 Unit srfi-18 149
27.1 thread-STZNAll.......c.oiiiiiiiiie ettt ettt e bbbt bbbt e bt e bt e b e beebean 149
27.2 thread-QUANTUINLeeorutieiiie ittt ettt ettt et ee et e bt e e sat e e sbbeesabeesabeeeabeeebeeebaeenabeesabeesabeeas 149
27.3 thread-qUanTUMI=SEEL...c.eeieiiiieiie ettt sttt e bt e bt e bt e bt e bt e bt e bt e bt e bt e beebeeeean 150
27.4 thread-SUSPEIAL.......ceoiiiiieiieee ettt sttt b e b e be e sbe e bt e bt e be e b ebean 150
27.5 tIEAd-TESUIMEooiiieeeeieieee ettt e e e e te et e e e e eeaateeeeeeesssssaareeeesssssssaseeeesssnnnnnes 150
27.6 thread-WaTt-TOr-1/01 ... eveeeeieiieeeeeeeee ettt e e e et e e e e e s e aaaaeeeeeessssrareeeessennnnnes 150
27.7 UMEMIIIISECONAS.eeeeeeeeieieeeeeettee et e e eeete et e e e e eee e e e eeeeeeraaeeeeesseessateeeeeesssssasseeeesssssrrareeeesssnnnnes 150
27.8 MIIlISECONASHITIE,eeeeevvveeeeeeeeeiieeeeeeeeeeitteeeeeeeeeeaaeeeeeeeeeeaaaeeeeesseessaseseeeessssssasseesessssssseseeeesssnnnnes 150

X1

CHICKEN User's Manual - The User's Manual
Chicken User's Manual

28 Unit posix. 152
28.1 COMSLANESceouvvvveeeeeeeeitieeeeeeeeeetteeeeeeeeesataeeeeeesseasaaeeeeessaasaseeseesseassaseseeeessssssasnsesesssssssereeeesssnnnnes 152

28.1.1 File-control COMMANGS.......uuvveeeeiiiiiieeieeeeeeiieeeeeeeeeeeraaeeeeeeeeeaaeeeeeessesnarereeeeesssnaeeeeess 152

28.1.2 Standard I/O file-deSCIiPLOTS ... eoueeruiertierientieetie sttt ettt e see st e e st et e b e b e nbeeeeas 152

28.1.3 OPEI FIAZS ettt ettt sttt et et b e bt s be e b e e bt e beebeebean 153

28.1.4 PErmiSSION DILS...ccvvvveiieeiiiiiieeeeeeeeeiiieeeeeeeeeeteeeeeeeeeeaaaeeeeeseesssaseeeeesssennrerreseesssnnnenreess 154

PRI D11 (= e 1) 6 (s SRR 155
28.2.1 CHAN@E-GITECLOIY e ueeetetieriteetie ettt ettt sttt et e bt e s b te s bt e s bt e sbtesbe e bt e bt enbeesbeesbe e bt ebeebeeneean 155

28.2.2 CUITENE-AITECLOIY . ¢ eeuteetertiertieette ettt et et et e st e eat et e e sb e e sb e e s bt e sbeesbeesbee bt e bt enbeesbeesbeenbeebeabeenbean 156

28.2.3 CIEALE-AITECIOTY. .o uveuteetertieriteette et e et et e st esttesuteeutesbtesb e e sbtesbeesbeesbee bt e bt e bt enbeesbeesbeebeebeabeensean 156

P A R [(S (o s L s ea 10 AT ST 156

28.2.5 QUTECLOTY. .o uveeueeruteeuieetie et ette et e et e et e e ut e s b tesh e e shtesh e e ebeeebeeabtesbtesbeesbeeehe e bt e bt e bt ebeesbeeabeebeebeabeenbean 156

28.2.0 QITECLOTY 7. .ottt ettt ettt h e s bt e s bt e ehtesb e e sb e e e bt e s bt e sbeeebeeebe e bt e bt e bt e sbeesbeenbeenbeebeenbean 156

28.2.7 GlOD. o ittt ettt ettt et et e bt en e et e ke estente b e eseen e et e seene et eseeneentenseeseeneennan 156

28.2.8 caNONICAI-PALIL .. .ottt ettt st et b bbb s 157

28.2.9 SEt-TOOL-ITECLOTY L.ttt b et e bt e bt e bt e bt e bt e bt e sbeesbeenbeenbeebeeneean 157

28,3 PAIDCS c . euteuieuteterteette et et e et e et e et e et e bt e n e et e te et e a e et e bt esten b e se st eatente st ent et e st ententente et e entense st eneenteseeneentennas 157
28.3.1 Call-With-TNDULDIDE. .- e veeeeeriieeiieeiie ettt ettt et et e st e sb e e s bt e sbe e bt e bt e bt esbeesbeesbe e bt enbeebeeneean 157

28.3.2 call-With-OUEPUL-DIPE. ... eerueeruieeiieeiieeiieet ettt ettt e st e bt e sbeesbeesbe e bt e bt e sbeesbeesbe e bt enbeenbeeneean 157

28.3.3 ClOSE-IMPULDIPE. .o..veeueeettertiertteetteetie et te st te st testtesuteeutesueesbtesbtesbeesbeesbeesbee bt enbeenbeesbeesbeenbeenbeebeenbean 158

28.3.4 ClOSE-OULDULDIDE. - euveveetieriieetiesiteeitesttesttesttesttesutesutesbtesbeesbeesbeesbeeabee bt e bt enbeesbeenbeanbeenbeanbeensean 158

28.3.5 CIOALEDIDE e uveeueeeuteauteeuterttesuteetteetteatte st te st tesbtesheeeueesbeesbteabteebeesbeeeheeeb e e bt e bt e beeebeeebe e bt e bt ebeenbean 158

28.3.6 OPEI-INDULDIDE: -+ veveeetertiertteetteetteettesttesttesttestteettesutesbtesbtesbeesbeeebeeabee bt enbeanbeesbeenbeenbeenbeabeensean 158

28.3.7 ODEN-OULDULDIDE .. eeuteetertierutestteetteetteattesttesutesttesttesseesbtesbtesbeesbeesbeesbeenbeenbeenbeesbeesbeanseenbeabeeneean 158

28.3.8 DIPE/DUL ...ttt ettt ettt et s e et et e teen e et e st ene et eseeneenteteeseeneennan 158

28.3.9 With-inPUL-TTOMI-DIPE. ... et rveereteeiieeiieeiiee ettt ettt e st e st esb e e sbt e bt e bt e bt e sbeesbeesbeesbeenbeebeeneean 159

28.3.10 With-OULPUL-LO-DIDE. +e.vveeeerueeruieeiieeiiestte et testtestteettesttesttesbtesteesbeesbeesbeesbeesbeesbeesbeesbeenbeenbeabeeneean 159

I N N 0 TSRS 159
I O o) (=21 = £ 1 Lo RO RPRRERRRRE 159

I A U1 (o Y RO RPRRERRRRRE 159

28.5 File descriptors and IoW-1eVel I/Q.........cooiiiiiiiiieiie ettt ettt et e b e sbe b e s 160
28.5.1 dUPLCALE-TIIEMO. .o.ueeeeeeieitie ittt ettt ettt e sb e s bt e sbe e s bt e bt e bt e bt e s beesbe e s bt e bt e bt ebeeneean 160

I i1 (S o] (o =PSRN 160

P T I 1 (S0 0)5) 1 ST 160

28.5.4 fIlE-TNKSIEIMIP. ..o uveuteeuieeiiertieette et ettt e st e st e shteeutesbeesbeesbtesbeesbeesbeesbee bt e bt e bt e sbeesbeenbeebeebeenbean 160

28.5.5 IIE-TEAQ......cuuvvveeeeeeeeeeeeeee ettt ettt e e e e ettt e e e e ee e ae e e e e e eeeaateeeeeeeeearaaaeeeeesaarrareeeeeeaannaaes 161

P TN N i1 (SY=) (1ol SRR 161

28, 5. T FTIEWIILE ...cevveeeeeeeeeeeee e ettt e e et e e e e e et et e e e e eesaaeeeeesseeaateeeeeessssssaaseesessanrtareeeeesennnnaes 161

TR i1 (S eTe) 4115 (0 PO RPRRRERRRRS 161

28.5.9 0pen-INPULFIIE™E. ..ottt ettt ettt b e an 161

28.5.10 0pen-outPUL-FIIE™E.oo.iiiiie ettt sttt an 162

P T T B I oo 3 i1 <) 110 YOO USRS 162

28.6 Retrieving file attIiDULES. ... ccoueiuieiieiierite ettt ettt ettt sb e sb e e sh e e bt e s bt e bt e s bt e bt e s bt e sbeebe e bt ebeebean 162
28.0.1 T18-ACCESSTIIMIE,eeevvvveeeeeeeeeeieeeee e e e eeette et e e e e eee et eeeeeeaateeeeesseassateeeeeessssssaeseeeessssssrareeeesssnnnnnes 162

28.6.2 file-CRANGEtIIIIE. ... eeeueeeetetieitte ettt ettt et et e sb e sb e e s bt e s bt e sbe e bt e s bt e sbeesbeesbe e bt e bt ebeeneean 162

28.6.3 file-mMOdIfICAION-tIINIEeeeeeeeereeeeeeee et e e e et e e e e et e e e e eeeaaaeeeeeeeeessaaaseeeessssssaseeeeesennnnnes 162

Y B 1 (S 72| AR RPRRRERRRRS 162

P N T 1 (S 001y 15 o) 1 OO 163

28.0.0 FTIE-SIZE.....cceeeeeeeeeeeeeeee ettt e e et e e e e et et e e e e s e et e e e e e e e e —areeeeeea——areeee s e rareeeeeeannnates 163

28.6.7 TEGUIATIIE ..ottt b e bt e bt e bbbt e be e bt e bt e bt e b ebean 163

28.0.8 FTIE-OWIIEE ... vvvveeeeeeeeieieeeee e e eeeeee e e e e e eeete e e e e e eeeaaae et e e s seesaaeeeeesseassateeeeeessssssaaseesessssssaseeeeessnnnnnes 163

28.6.9 f1l@-DEIMIISSIOMS -+ veveettertiertteetteette et e ette st testteshteeutesutesbtesbtesbeesbeesbeesbee bt e bt enbeesbeenbeenbeenbeanbeensean 163

28.0.10 fIle-TEA-ACCESES L. nnneeeeiiee ettt ettt e e e eee et e e e e e e e e e e eeesaateeeeeessesssaaareeesssnsrraseeeesssnnnnaes 164

Xii

CHICKEN User's Manual - The User's Manual

Chicken User's Manual
28 Unit posix

28.0. 11 fIlE-WITEE-ACCESS . e uvvvveeeeeeeeeeeeeee e e e eeetee e e e e e eee et eeeeeeaaeeeeesseessaaeeeeeessessaeseeeessassrareeeesssnnnnnes 164
28.0.12 f1lE-EXECULE-ACCESS T vvveeeieiereeeeeeeeeeeetteeeeeeeeeeteeeeeeeseesaaeeeeesseesaaereeeessessaeseesessssssrareeeessennnnes 164
28.6.13 StAL-TEGUIATT.ottt sttt b e sb e s bt e s bt e s bt e s bt e sbe e bt e bt e sbeesbe e bt e bt ebeebean 164
28.6. 14 StAt-AITECIOTYZ. . eueeuieeiieitie ettt ettt et et esa e b e s bt e s bt e sbeesbeesbe e bt e bt e bt e sbeesbeenbeebeanbeeneean 164
28.6.15 StAt-CRAT-AEVICE?. ... evvveieeeeeeeeeeeee ettt ettt e e e e et e e e e eeaaaeeeeeeeseensaaareeeesssssaseeeesssnnnnaes 164
28.6.16 StAt-DIOCK-AEVICE?. . .uuvveieiiiieiieeeieee e ettt e e ettt e e e e eeae e e e e e e eaaaeeeeeeesssssaaseeeesssssrareeeesssnnnnaes 164
oY WA 72 41 o X/ RO RPRRRERRR 164
28.6.18 Stat-SYIMIINKZ .. .ooiieiiiiieitie ettt ettt sb e bt e bt e s bt e bt e bt e s bt e s beesbeesbe e bt enbeebeeeean 164
28.0.19 SEAL-SOCKEL .. . eeiiieeeeeieiiie e ettt e e e e ettt e e e e e e ettt e e e s eeaaeeeeesseessateeeeeessssssaaseesessanrsareeeesssnnnnnes 164
28.7 Changing file AtIIIDULESveeuverueereiertieeite ettt ettt ettt e bt e sb e e sbe e bt e sbt e bt e sbe e bt e sbeesbeenbeenbeenbeeneean 165
T I 1 (S 5 0 0 Vo2 = RO 165
28.7.2 Set-file-POSTHOM ... eeuieeieitieitie ettt sttt b e bt bt e bt e bt et esbe e s bt e bt e bt enbeenbean 165
28.7.3 chan@e-file-TOAE.ceiueeruieriieeiieeie ettt sttt b e sb e bt e bt e s be e bt e bt e be e b eeean 165
28.7.4 Chan@e-fIl8-OWIRT.eeiuteiieitieeiie ettt ettt ettt e b e sb e sbeesbe e bt e bt e bt e sbeesbeesbe e bt enbeabeenbean 165
28.8 PrOCESSES. . vveeeiiieueeeeeeee e eeeee e e e et e ettt e e e e eeeataeeeeeseaaataeeeeesseanaaaaeeeeeseaaaataaeeeeeeaaataaeeeeeeaaaaaeeeeeeeanaaaareeeeaans 166
28.8.1 CUITENE-PIOCESS=T0. . eueiuiiieieitieeiie ettt e st e s bt e s bt e bt e bt e bt e bt e sbeesbeenbe e bt ebeeneean 166
PRI IVAR o121 151115 01 10161 Sioried (4 DRSO ST USRS 166
28.8.3 DIOCESS=GLOUP=I. . .eeueeeiertiertieetieeie ettt ettt et e b e s bt e sb e e sbeesbeesbe e bt e bt enbeesbeesbe e bt enbeebeeneean 166
28.8.4 DIOCESS=EXECULE: .. uveuvreetertieruterttentteattesstesttesutesstesutesseeastesbtesbeesbeeabeeabeenbeenbeenbeesbeesbeenbeenbeaseensean 166
28.8.5 PIOCESSTOTK. .eeuteiiieiieei ettt sttt b e b e b e b e be e s be e bt e bt be e b aean 166
28.8.0 DIOCESSTUIL . .eeureuteauteauterttesutestteatteaueesstesttesutesutesueasseeaseeabtesbeesbeeaseeabee bt enbeenbeesbeenbeenbeeseabeensean 167
28.8.7 PIOCESS=SIGNAL .. eiiutiiuiiieiiitie ittt ettt ettt b e sb e s bt e s bt e s bt e s bt e bt e bt e bt e sbe e bt e bt e beebeeaean 167
28.8.8 DIOCESS=WALL e.veuuveuteeuteeuterttertteetteetteatte st testteshtesuteeueesbeeabeesbtesbeesbeeebeeabee bt e bt enbeesbeesbeenbeebeanbeensean 167
28.8.9 PIOCESS. ...ciieuueeeeeeeeeeeet et eeeeeeeee et e e e e eeeaaeeeeeesseaaaaeeeeessaaaateeeeeeseaaataateeeee e rraareeeesaanrrareeeeeeaanrtes 167
28.8. 10 DIOCESS™. ..ottt ettt te ettt et ettt e sh e e shte s bt e e bt e ebeesb e e sb e e s bt e sheeehe e bt e bt e bt e beeebe e bt e bt e bt ebeenbean 168
Pt T B I (TS o OSSPSR 168
28.8.12 CIEALE-SESSIONL .. .eeeeuuerreeeeeeietieeeeeeeeeeetteeeeeessessaaeeeeessasssareeeeesseassarseeeeesssssssseesesssssrsereeeesssnnrnnes 168
28.9 Hard and SYMDOIIC TINKS.couueiuieiiiiieiie ettt b e sh e sbt e bt e bt e sbe e bt e s bt e sbeenbeenbeenbeenbean 168
28.9.1 SYMBOIICTINKT. ...c.eeiiiiieieeiie ettt sttt et b e be e bt e s bt e sbeesbe e bt e nbeenbeeeean 168
28.9.2 create-SYMDOIICTINK.eeiuiiiiiiiieiee ettt ettt et et b e as 169
28.9.3 1ead-SYMBOLIC-TINK ... eeiuiiiiiiiieeie ettt ettt as 169
28.9. 4 FIIE-TINKoovveeiiieeeeeeeeeee ettt e e ettt e e e e ettt e e e s e e ae e e e e s e e ettt e e e e eee e e aaaareeeesanrrareeeeeeaannaaes 169
28.10 Retrieving user & group infOrMAIONceueruterteriertiertieetieettesttesttestte st e steesbeesbeesbeesbeesbeesbeesbeenbeenseesean 169
28.10.1 CUITENT-USET-10ceocueeeiiieeeeeeieeeee ettt e e e eeeae et e e e e eeaae e e e e e eeeaaaeeeeeessssssaaseeeessasssraseeeeessnnnnees 169
28.10.2 current-effeCtiVe-USEI-10.......uuveeeeiiiieiiiiiee ettt e e ee et e e e e e e eaaaeeeeeeseestaeeeeesseennnes 169
28.10.3 USET-INFOIMIATION . .. uvvvvveieeeeieiiieeeeeee ettt e e e e e eeeeee e e e e e e eeaaaeeeeeeseesaaaeeeeeessesssasseeseesssnsrareeeesssnnnnes 170
28.10.4 CUITENE=ZIOUD =G, .. euteiieitieitie ettt ettt s b e sb e e s bt e sbe e bt e bt e s bt e bt e sbeesbeenbeenbeabeeneean 170
28.10.5 current-effective-group=id........cccceeeirierieiie ettt 170
28.10.6 group-infOIMIALION ... eeveertteruieetieetie ettt ettt e st e e sbeesbt e s bt e bt e bt e bt e sbeesbeesbeenbeebeeneean 170
28.10.7 GOL-GIOUDS. ...eeeuvteeruteeruteertteeteeeteeentttestteesateesateeeabeeebeeenbteensseensteesabeesabaeenbeeaseeensaeensseesseesaseens 170
28.11 Changing user & group iNfOIMATIONverteriertieitiertte ettt et et e st et et e bt e s bt e s bt e sbeesbeesbeenbeeneean 171
28. 111 SEL=GLOUPS L. eeieitieiiieiiite ettt ettt ettt ettt e st e st e eabee e bt e e bt e e sbbeesbbeesabeesabeeeabeeebaeebaeensbeesabeesabeens 171
28.11.2 INitIAlIZE=GIOUPS. .-veuvevteeierutertieeiteetteattesttesttesutesutesutesbtesbtesbeesbeeeueesbeesbee bt enbeesbeesbeenbeenbeanseeneean 171
28.11.3 Set-ProcesS-groUP-1dl......ccoiiiiiiiiiiiie ettt ettt ettt et b e b et be e an 171
28.12 RECOIA TOCKIME. .. ettt ettt sh et e b e s bt e s bt e s bt e sheesbeesbe e bt e sbeeabe e bt eabeenbeenbeanbeansean 171
T U I 51 (5 (e Yo RO RPRRRERRRRE 171
28.12.2 file-10CK/DIOCKIIE .. .eeveeeieriieeiieeiie ettt sttt et e b e sbe e bt e bt e sbeesbeenbeenbeebeeneean 172
28.12.3 fIlEESI-IOCK .. eeeeeeeeeeeieeee ettt e ettt e e e e ettt e e e e et e e e e e e eeeaaaeeeeeeesesasaaareeeesannrareeeeeeaannaaes 172
28.12.4 fIEUNIOCK . vvvveiieeeeeeeeee ettt e ettt e e e e e et e e e e e eeesateeeeeessssasaaseeeesssssraseeeeesennnnnes 172
28.13 Signal BANAIIIG. .. ee vttt ettt ettt h et e bt e bt sh e e bt e bt e bt e bt e bt e s bt e s bt e bt e nbeenbeebean 172
28.13.1 SEL-ALATTN . evvviiiiiieeeeiieee ettt e e e e ettt e e e e et e e e e e e e e et e e e e ee e e e raaareeeesaarrareeeeeeannaaes 172
28.13.2 set-signal-RandIer!........cccoiiiiii ettt 172

CHICKEN User's Manual - The User's Manual

Chicken User's Manual
28 Unit posix
28.13.3 SigNal-NANAIEEL. . ..eeiuieieieiiee ettt st b e be e an 173
28.13.4 set-8igNal-TNaSK Lceiiiiiiiiie ettt et b e ae s 173
28.13.5 SIGNAL-TNASK. ..eueeiiiieiieite ettt st et b bbbt e s be e bt e bt e bt e beebean 173
28.13.6 Signal-maskKed?.........ooiiiiiiieieee ettt ettt ettt et b e bt e bt e e b eean 173
28.13.7 Signal-askl ..ottt et e b e bbb b s 173
28.13.8 signal-unmaskl........oooiiiiiiie ettt st et b e e s 173
28.13.9 SIGNAI/EIIIL c..eueeeiieeiieeete ettt ettt et e bt e bt e s bt e s bt e sbeesheesbe e bt e bt enbeesbeesbeenbeebeebeenbean 174
28.13.10 SIGNAIKILL....eeueeniieieeieieie ettt ettt ettt ettt e e e te s st et et e eseesee s e se e st enseseeneensenseeseeneennens 174
28.13. 11 SIGNANIE. .. eeeueeeiieeiieeite ettt ettt et eeh e bt e s bt e s bt e sbeesbeesbee bt e bt e bt e sbeesbe e bt enbeebeenbean 174
28.13.12 SIZNAIIUD ..o eueeieitieiieieeie ettt ettt ettt et et e st e en et este et e eneenseeseeseenseseeneenseseeneensenseeseeneennans 174
28.13.13 SIGNAIEDE .. ettt ettt ettt h e h e bt bt bt e bt e b e bt e bt e be e b ebean 174
28.13.14 SIGNAI/LL ...veeeeeieeiieeieeee ettt ettt ettt et e et ee et e et e e st et et e e sees e et e st e st et e seeneentenseeseeneennans 174
28.13.15 SIGNAI/SEEV. ..ueiuieuieieieitie ettt ettt et e st e st e e bt e s bt e s bt e sb e e s bt e sbeeebeeebe e bt e bt e bt e ebeenbe e bt e bt ebeenbean 174
28.13.16 SIGNAIADIL. ..c.eeeueeeiieeiieeite ettt ettt ettt e s bt e s b e s bt e s bt e s bt e bt e bt e be e s bt e s bt e bt e beebeeeean 174
28.13.17 SIGNAIIAD . ..cueeeueeeeieiete ettt sttt e st e e uteeb e e sb e e s bt e s bt e sbeesbeeebe e bt e bt e bt e sbeenbeenbeebeebeenbean 174
28.13.18 SIGNAIGUIL. .eueeueeeieeeieetie et te ettt ettt ettt e st e e at e bt e sbtesb e e sbeesbeesbeesbee bt e bt enbeesbeesbeebeebeabeenbean 174
28.13.19 SIgNAI/AIIIN. ... ettt ettt ettt e b e s bt e s bt e sbe e s bt e bt e bt e bt e bt e sbeesbe e bt e bt ebeebean 174
28.13.20 SIgNAI/VEALIIIL. .c..eeuieieieitie ettt ettt et e bt e s bt e s bt e sbeesheesbe e bt e bt enbeesbeesbee bt e bt ebeenbean 175
28.13.21 SIZNAIDIOL . .etiiieeiieete ettt st b e bbbt b e b e bt e bt e bt e be e b ebean 175
28.13.22 SIZNAIIQ e ueeeuteeiieeiie ettt ettt st e s h e ht e bt e bt e s bt e bt e she e e bt e bt e bt e bt e bt e sbe e bt e bt e bt ebeenbean 175
28.13.23 SIGNAIUIZ. ..eeueeeuteeiieeiieette ettt ettt ettt esht e s bt e e bt e sb e e s bt e s bt e s bt e sbeesbeeebee bt e bt e bt e sbeeabe e bt ebeebeenbean 175
28.13.24 SigNAL/CRIA ... eeiiiieeieieie ettt ettt ettt ettt e teene et e aeeseeneennens 175
28.13.25 SIZNAI/CONE . .e..teuteeiieeeieette ettt st e s bt e at e st e e sb e e s bt e s bt e sbeesbeesbee bt e bt e bt e sbeesbe e bt enbeebeeneean 175
28.13.260 SIZNAI/SIOP. . uveuteueeetiertieetteette et et e st te st e e shteshteeutesbtesbtesbte s bt e sbeeebeeebee bt e bt e bt e sbeenbe e bt e bt ebeenbean 175
28.13.27 SIGIAIISED .- vt uveeuteeuteetieetteette et e ettt et e st e e shteshteeutesbtesbtesb e e s bt e sbeeebeeebe e bt e bt e bt e sbee bt e bt e bt ebeenbean 175
28.13.28 SIGNAIDIPE: -+ eveueeuteeutertiertteette ettt e et e st eshteshteeutesutesbtesbeesbeesbeeebeeebe e bt enbe e bt e sbeesbe e bt e bt ebeebean 175
28.13.20 SIGNAIKCDIL .. veuteuteetieetieeiteette et e et e et e e st e shteshteeutesbtesb e e sbeesbeesbeesheeebee bt e bt enbeesbeesbeenbeebeabeenbean 175
28.13.30 SIGNAIKESZ. .ttt st h e a e bt e b e bt e s bt e e bt e bt eb e e bt e bt e bt e bt e bt e bt e b ebean 175
28.13.31 SIGNAIUST L.ttt ettt sttt e sa e bt e s bt e s bt e sbe e s bt e sbe e bt e bt e bt e sbeesbeenbe e beebeenbean 176
28.13.32 SIGNAIUSID.eiiieeiieeiie ettt ettt e s ht e s hteeuteebeesbte s bt e s bt e sbeesheeebe e bt e bt enbeesbeeabe e bt enbeebeenbean 176
28.13.33 SIgNAI/WINCKL .. ettt ettt e bt bt e bt e bt e bt e s bt e s bt e bt e bt e beeeean 176
28.14 ENVITONIMENE ACCESS....ceuvvvvrieeeeieitreeeeeeeeeiitteeeeeesesssseeeseessaassesesesssesssrsseessssssssasseessssmsssseseesssssssssseesssnns 176
28.14.1 CUITENt-ENVITONINENLcceiieureereeeeeieiiieeeeeeeeeeraeeeeeeeeeetareeeeesseesareeeeeesssssaesreeessssssaseeeesssnnsnnes 176
28142 SELEIV....coieueeeeieeee ettt e e e e e et e e e e e e eete et e eeeseeaaaeeeeessassaaeeeeesseassateaeeeessanaraaareeeesaarrareeeeeeannnaaes 176
28. 14,3 UNSELENV. ..uuvvvveiieeeeeeeeieeeeeeeeeeete et e e e e eeetaeeeeeeeseeaaaeeeeessessaaeeeeesseassateaeeeessssssasseesessssnssaseeeeessnnnnes 176
28.15 Memory mMapPEd I/O.......coouiiiiiiiiiieiieeetee ettt ettt ettt sttt e be e st e st e e st e e sabeesabeeenbaeenne 177
28.15.1 memory-mapped-file2..........cooiiiiiiie ettt sttt an 177
28.15.2 MAD-TIlE-LO-MIBIIOLY: 1. tevteeteetieeiieeiteette et testte st e et e sttesbtesbtesbeesbeesueesbeesbee bt enbeesbeesbeenbeenbeabeeneean 177
28.15.3 memory-mappPed-file-DOINtOL.......coouirierierierieeiieeer ettt ettt sbe e be e 177
28.15.4 unmap-file-from-IMEIMIOTY. ... eeteeuieiiiiitieeite ettt sttt ettt ettt e sbe e be e b e beenbeeeean 177
28.16 Date and tiME TOULIIIES. ...uvvvveeeeieeireeeeeeeeeeeteeeeeeeeeeetteeeeeeeeeeaateeeeeeessssaaereesessesssaeeeesssassssareeeesssssnreseeesenans 177
28.16.1 SECONASIOCAI-TIIIIE . . .vvvvveeeeeieieieeeeee e ettt ee e e e e eeetee e e e e e e eeareeeeeseeeaaaeeeeeessssssaesreeesssssrraseeeeessnnnnnes 178
28.16.2 10CAI-HIMESECONAS .. vvvvveieeeeieieeeeeeeeeeeeieeeeeeeeeeeaaeeeeeeeeessaaeeeeesseessareeeeeesssssaeseeeesssssrrareeeeessnnnnes 178
28.16.3 10cal-timezZone-abDIEVIALION. .. .eveeeeieereeeeeeeeeeeeieeeeeeeeeeeeee e e e e eeeaaeeeeeeeeesaaaaeeeeeesesnsareeeeesennnnnes 178
28.16.4 SECONASSIIIME .. eueeueeutertieriteetieetie et e ette st testtesuteeutesutesbeesbeesbeesbeeebeesbee bt e bt enbeesbeesbeenbeenbeanbeensean 179
28.16.5 SECONASULCIINIE.uvvvvveieeeeiiiieeieeeeeeeiieeeeeeeeeeeaeeeeeeeeeeaaeeeeeeseessaaeeeeeessessssaseesessssnssareeeeessnnnnes 179
28.16.6 ULC-tIMESECONAS.....uvvvveeieeieeeitieeieeeeeeeitee e e e e eeeaee et e e e e eeaaeeeeeeeeassaaeeeeeesssssaesresessassrraseeeesssnnnnes 179
28.16.7 LMESIIIIG o uveeuveeuteeuteeetertteetteette et e et e st te st tesuteshteeueesueesbeesbtesbeesbeesbeeabee bt e bt abeesbeesbeenbeenbeabeensean 179
T A N, | AU PRRRN 179
T N =< | PRSP O SRR PR 179
28 18 ERRINO VAIUES .vvvveeeeieeetiiiieeeeeeeiieeeeeeeeeeatteeeeeeseeeaaaeeeeesssesaaaeeeesesesssaeseesesssnssaaesesessanssssseeessssnnnreeeeeeenans 180
28.18.1 EITNO/PEIIIL . .eeeuvteenreeruieeauiteetteeieeentteesuteesateesateeeabeeeabeeenbaeenateensteesabeesabaeeabeeenbaeebaeensseesabeesabeenn 180

X1V

CHICKEN User's Manual - The User's Manual

Chicken User's Manual
28 Unit posix

28 18.2 CITIIO/MIOECIIL .. uvvvvveveveeaererereeaseasasssssssssssssssssssssssssssrssnssrrenens 180

28.18.3 EITNO/SICH. ..ottt e e e e et e e e e s e et e et e e e s s eeaaaaeeeeeseertareeeeeeaannaaes 180

T R T =) w4 10 Y41 110 R RORPRRRRRRRE 180

T R T =3 w10 Y4 (o WSO RPRRRERRRRE 180

28.18.6 EITNO/MOEXEC. .. .cceeeeueeeeeeeeeeeeeteeeeeeeeeeeiteereeessessaaeeeeessassateeeeesseasareseeessssssaeseesesssssraseeeeessnnnnes 180

28.18.7 €ITNOMDAALoeoiieeeeeiee ettt e et e e e e e e e e s e aarreeeeeenaaes 180
28.18.8 €ITNO/CHIIAvviiiiiieiieiiee ettt e e e e et e e e e e e eaaaeeeeeessesaaaaeeeeeesssnraeeeeeesennnnaes 180
28.18.9 CITNO/MOIMIEIIL . uuvvvvvrrerrererreerreereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeessesesssssssssssssssssssssssssssssrsssssssenees 180

28 18. 10 CITIIO/ACCES. . uuuvverurrrrrrrrererereeereeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeasasssssssssssssssssssssssssrsrssnssesenens 180
281811 €ITNOMAUIL.....ooeiieeeiiiieie ettt e e et e e e e e e e e e e e e esaaaaareeeesssnraeeeeeesennneaes 181
28.18.12 EITIIO/DUSY..eeeuvteeuteeriieeeiteetee ettt ettt e sttt e st e st eeeabee ettt enbteesbbeessteesabeesabeeeabeeebeeebaeensbeesabeesabeeas 181
28.18.13 EITNO/MOUAIT. . .eeeeeeeiieieeeeeeeeeeee e e ettt e e e e et e e e e e eeaaaeeeeeseeesaaeeeeeesessssaaseeeesssenraseeeesssnnnnnes 181

28. 18,14 EITIO/ISAIL ..vvveeeeeeeeieieeee ettt ettt e e e e e ettt e e e e eeaateeeeesseesaaeeeeeessssssassreeesssssrareeeesssnnnnnes 181

28. 18,15 EITNOMNVAL....coiiiieeiiiiiie ettt e e eeete et e e e e e et e e e e e eeeaaaeeeeeessssssaasreeesssnsrareeeesssnnnnaes 181
28.18.16 €ITNO/MILE. .. .eeeeeeeeieeeiee ettt e e e e ettt e e e e e e aaaeeeeeeeseesaaaaeeeeesssnrareeeesssnnnnnes 181

28.18. 17 EITTIO/MOSDC ¢ uvveeureerureeruteeateeeieeeniteestteesateesateesabaeebeeensaeensseensteesaseesabaeenbeeeseeenseeensseesseesaseens 181
28.18.18 EITIIO/SDIPE. ¢ uveuteueeeuierttertteetteette et e st e e st e e sutestteeutesbtesbeesbeesbeesbeesbeeabee bt e bt enbeesbeenbeenbeebeabeensean 181
28.18.19 EITIIO/DIPE: .- uveueeuteeuieetieeite et e et e et e st te st e e sht e s hteeutesbtesbtesbtesbeesbeeebeeebee bt e bt e bt e sbeesbeebeenbeanbeenbean 181
28.18.20 EITIO/AZAIN. +...veuteuteeeieetteeite et et et et te st e st e suteeutesutesbtesbtesbeesbeeebeeebee bt e bt esbeesbeesbeenbeenbeabeenbean 181

28 18.21 EITIO/MOLS .vvveeieeeeeeeeee ettt e e e e ettt e e e e e ettt e e e e e e e s e aaaareeeeesaartareeeeeeennaaes 181
28.18.22 EITIIO/EXISE . vvvveeeeeeeeeeeeeeeeeeeeteeeeeeeeeetteeeeeeeeeeaaaeeeeessesssateeeeesseassarseeeeessssssaesresessasnsraseeeeesennnnes 182
28.18.23 errNO/WOULADIOCK ...vvvvieieeeeeiiieeeee ettt eeee e e e e e e e e e e e e eeaaaaeeeeessssasraaeeeeesennnnnes 182

28.19 FAINAING FILES. .- veueertteeueeeiie ettt ettt s b e sh e sh e e e bt e bt e s bt e sb e e sb e e sbeeebeesbe e bt e sbe e bt e sbeeabeebeenbeebeenbean 182
T I I 1T 1 (= RO RPRRRERRRRE 182

28.20 Getting the hostname and System iNfOrMAtION.cevtterierierieiieiteree sttt ettt e b sbeeneeas 182
28.20.1 GEL-NOSIIAINE .. eeruveeruteertieetee ettt ettt e rt e st e stee ettt ebe e e sttt esateesbteesabeesabeeenbeeebaeenbaeensseesabeesabeenn 182

28.20.2 SYSteM-TNFOITALION. ... vevtereteeiieetie ettt ettt ettt e sbe e s bt e bt e bt e bt e bt e sbeesbeenbeenbeebeeneean 182

28.21 Setting the file buffering mMOde.........cooueiiiiiiiiie ettt 183
28.21.1 set-buffering-moOde!.........ccooiiriiiiee ettt 183

28.22 TEIMUNAL POTES ..e.uveuteeuieeiieeeieeite ettt te et e et e et e st e e et e e sbteshtesheeeueeebeesbeesbtesbeesbeeebeeebe e bt enbeenbeesbeeabeenbeenbeebeensean 183
28.22. 1 terMINAL-TIAINE.coovvvveeeeeeeeeieeeeee e e e ettt e e e e e eeet e e e e e eeetaaeeeeeeseessareeeeeesssssassresessssnrrereeeeessnnnnes 183

28.22.2 teTMINAI-POIE?. .. eeiiieeieitie ettt sttt et e bt e s bt e s bt e s bt e sbe e bt e bt e bt e sbeesbeenbe e bt e bt ebeenbean 183

28.23 How Scheme procedures relate to UNIX C fUNCHONS . ..veeevverrieriieriieniiesiesieestesieesieesiee et esbe e e e 183
28.24 WindOWS SPECITIC TOLES. ..veuveuteuiertieriteeiteeiie ettt te st e st e st eett e bt e s bt e sbte s bt e sbeesbeesbe e bt e sbee bt esbeesbeenbeenbeenbeenbean 186
28.24.1 Procedure CRANEES.oouueiiiriieeieeiieei ettt ettt et e bt be e bt e bt e sbe e sbeesbeesbe e bt enbeeeean 186

28.24.2 Unsupported DefilitionSueeueeeureruierieriieriesiie ettt te st et e st e st e sbeesbeesbeesbeesbeesbeenbeenbeeeeas 187

28.24.3 Additional DefinitiOnS.cevvvvrrieeiiiiiieeieeeeeeieeeeeeeeeeeaeeeeeeeeeesareeeeeesessaaereeeesssssrrareeeessennnnes 188

28.24.4 DIOCESS=SPAWIL...ceuuveeureerureeauteeeieeentetentseessteesateesabeeebetessaeensseessteessseesabeeenseeenseeenseeensseesnseesnseens 188

29 Unit utils 189
29.1 ENVITONMIENE QBT .. cuteiutertieriieetieeiieeiteettesttesitesttesutesutesttesbtesbeesbeesueesbeesbeesbeesbeesbeesbeenseenbeanbeensean 189

20 . 1.1 APDTOPOS tuvvrererrrrrrererereeereeereereeteeeteeeteeeeeetteeeeeeteeteeeeeeeaaaasessssssssssssasssssrssrrarararararararrraaaaa 189

29.1.2 APTODOS=TISE. ...euteiieetie ettt ettt st e bt e bt e bt e bt e bt e bt e b e e bt e beebeebean 189

29.2 Iterating over input lines and fIleS.........cevieriiiiiiieiie ettt 189
A I I (0 T o] 1 11 4 L= YOS 189

29.2.2 fOr-€aCR-aIGV-lIN@....ueeiuiiiiieiiieeiie ettt et b et b e bt e bt e bt e be e b e s 190

29.3 Executing shell commands with formatstring and error checking.........c.oeeveereenienieniieniienieneesceeeenn 190
29.3. 1 SYSEEIIIE. .. ettt ettt e et et e b e e e bt e s bt e e eab e s be e e bt e e bt e e baeenabeesabeesabeean 190

29.4 Reading a file's COMBIIES .. ueeuteruteiuiertieitte ittt et et e et e st e s bt e sbe e s bt e sbeesbtesbe e bt e sbe e bt esbeesbeebeenbeebeanbean 190
P O I =Y. 16 . | | RO RPRRERRRRRS 190

XV

CHICKEN User's Manual - The User's Manual

Chicken User's Manual
30 Unit tcp
0 ot 1 1<) 1 VOSSPSR
0 ot s 1<) 1) o ST PUSRSS
B0.3 LD -ClOSE. e uveeeuteeeiteenitee ettt e ettt ettt ettt e sttt esabeesabeeeabee e bt e e bt e e bt e e bt e e eabeesabe e e be e e bb e e baeenabeesabeesabeenn
B304 LD ACCEPE +uveeeuveeetteenuteeeitee et te et te ettt e sttt esuteesateesateeeabeeeabeeenbbeesbb e e bt e e eabeesabee e be e e bbe e baeenateesabeesabeenn
30.5 £CP-ACCEPLTEAAY . ..eeeneieeiiieeiiieetie ettt ettt ettt et e et e et e e sttt e sab e e sbteesabeesabeeeabeeebbe e baeenabeesabeesabeean
10O o100 F 1<) 1S3 i 00 RO S P SO SUPUSRS
00 IR Cog o F 1<) 1S3 a1 (11 10 WU S PSS PUSRUSSR
30.8 LODCOMMECE -+ eeeuveeeuereenuteeriteeaiteette ettt estteestteesubeesateeeabeeeabeeenbbeenbeeensteesabeesabeeeabeeenbeeenbaeensseesabeesabeenn
30.9 tCP-AAAIESSES . uuvvurrrrrrrrrrrrererererreerrereeeeeeeeeeeeteteeeeeteeeeeeeeeeeeeeeeeeeeeeeeeseasassssssssssssssssssssssssssssresnssrrenen
30.10 tCD-DOTE-IUIMIDETS - ceuvveeruteeeuteeeteeeieeentteesiteesateesateeebeeebeeesbteesateensteessbeesabeeebeeensaeensaeensseesseesseens
00 e 0o Vi 1a (0] T o) TSP RUSRUS
30.12 tOP-DUFTBI-SIZ ..ottt et b e bt et b e bt e bt e bt e b e b aean
30.13 tOP-TEAA-IMIEOUL.eeuteetertieetieetie ettt ettt e st e sttesatestte st tesbtesbeesbeesbee bt e bt e bt enbeesbeenbeenbeebeebeensean
30.14 tCP-WIIEELIIMIBOUL.eeeeeiertieetteetie ettt ettt st e st e ett e st e e bt e sb e e s bt e sbeesbeesbe e bt e bt enbeesbeesbeebeebeabeeneean
30.15 tCP-CONMECEIMEOUL.....e.veeeieruteetieeiieeiteet e ettestte st e eatestte bt e sbtesbeesbeesbeesbeesbee bt enbeesbeenbeenbeenbeabeeneean
30.16 tCP-ACCEPLLIMIBOUL. ..cuueeetertiertieetieeiteetteette st testtestteettesutesbeesbeesbeesbeesbeesbeesbeesbeenbeesbeesbeenbeebeabeensean
3017 EXAMIPIC. .. uveeeuteeeiteeniteeeitee et teette ettt ettt e sttt e siteesabeeeabee sttt enbbeesbbeesbteesabeesabeeenbeeebeeebaeensbeesabeesabeenn
31 Unit lolevel
31.1 FOT@IGN POIILETS .. veueeueeietertieitteette ettt et te st e st e s ateeutesatesbtesbte s bt e sbeesbeeebee bt e bt enbeesbeesbeanbeebeabeensean
31.1.1 AdAIESSPOIMEET: .. eveeueeeueeeiieeiieeite st tesite et e et et e s tte s bt e sbtesbeesbee s bt e sbeesbeesbeesbeenbeenbeenbeenbeanbean
31 1.2 AILOCALE vvvvvvrererrieeeeeeeeeeeeeeee e et et e e e e e e e e e e e e e et eeeeeeeeeeeeeeeeaeaeeaeeaeaeseaasnaaaarraraar—a—a—————————————————.
R0 B I == RS
3114 DU POIILEL. .. ettt ettt ettt ettt e bt e s bt e sbt e s bt e s bt e s bt e sbeesbeesbeenbeebeenbeenbeanbean
31.1.5 NUIT-POINLETZ .ttt ettt e bt e s bt e sbt e s bt e bt e s bt e sbeesbeesbeesbeebeebeebeanbean
0 I O] o) <tet 6001 111 15) S SO S S SRURSRUSRS
O I AR 010 11115, ol TSRS USSR
O I 010 11115 3SR
31.1.9 DOINLETAAAIESS. . e veeeeeeiieeiieeiie ettt ettt sttt e st e bt e bt e bt e sbe e bt e sbeesbeebeebeebeeneean
31.1.10 DOINEETODIECE ..ceveerueeeiteeiieeite ettt ettt ettt et te st esh e e sbteebte s bt e s bt e sbeesbeesbeesbeenbeebeenbeansean
O 0 0 I 00 11153 0) i) OSSPSR
31.1.12 POINEET=USTEEee ettt b e s e b bbb beas
31.1.13 POINLEI=SB-TOE ..o eeeiie ettt b bbb s
31.1.14 poInter-UTO-TOE ...couieeiiieieee ettt st
311,15 POINLEI=STO-TEE ..ottt ettt sb e b e eeas
31.1.16 pOINtEr-UB2-TOEeouiiiiieiiee ettt sttt b e
31.1.17 POINEEI=S32-TEE ..ottt sttt et sb e bt e bt e b e bt e b e bt ebean
31.1.18 pOINter=F32-TOE .. .ottt
31.1.19 pOINtEr=-FOA-TEE. ..ottt
31.1.20 POINEET=US-SEEL ... eeiieiieeiieeete ettt ettt b et e bt e bt e sbeesbeesbeebee bt ebean
31.1.21 POIMEEI=SB-SELL .. .eiiieeiieeiieeete ettt ettt e b e sb e bt e bt e b e b e beebeeeean
31.1.22 pOINLEI=UTO-SEEL...cuiiiiieiiieieee ettt sbe e bbb b eeas
31.1.23 POINLEI=STO-SEEL...eruieiieeiieiie ettt ettt b e st e b e b e b e beeeean
31.1.24 pOINLEI=UB2-SEEL...euieiiiieiieeiie ettt sttt et et e bbbt b e b e b e b aean
31.1.25 POINLEI=8S32-SEEL ...euieiieeieiete ettt sttt ettt b e bbbt e b b e b e b ebean
31.1.26 POINLET=F32-SELL. . eeiuieeiiieiee ettt ettt b et
31.1.27 POINLET=FOA-SELL. ..ottt ettt b bbb
31.1.28 aligN-tO-WOId.....eeiuieeiieeiieeiieete ettt ettt e bt e bt e bt e bt e sbeesbeesbeebeenbeebean
0 I T (STa B 00 11 1¢) Y SRS U USRS
0 I B 7 1o 1) 11105 OSSPSR
R0 AR v 1o T 010) 111 15) oSSR

191
191
191
191
191
192
192
192
192
193
193
193
193
193
194
194
194
194

XVi

CHICKEN User's Manual - The User's Manual

Chicken User's Manual
31 Unit lolevel

31.3 Extending procedures With datal.........c.ceeiiiiiiiinieiie ettt ettt ettt e bt sb e sbe b eean 201
31.3.1 eXtENA-PIOCEAUIE.eeruviiriiieeiieeite ettt et ettt ettt ettt e sabeesabee e b e e bbeebeeenabeesabeesabeean 201

31.3.2 extended-ProCEAUIE?......couiiieiieeiie ettt ettt et e s bt e bt e bt e bt e s bt e s bt e bt e be e beebeebean 202

31.3.3 DrOCEAUIE-AALA.eeiuiiiiiieie ettt b e h e b e bt bbbt e bt e bt e be e b eeean 202

31.3.4 5et-procedure-datal.........ccceiiiiiiiiee ettt st e b et be e an 202

31.4 Data in UNMAaNAZed IMIEIMIOTY......ueeuteruteruteriteeuiertteattesttesttesttesutesttesstesbeesbeesbeesbeesseenbeesbeenbeesseesseenbeenseenseensean 202
0 0 0] o) ot T4 ot S ST RUSRUSS 202

R0 0] o) [<tol elon A Lot o (0 10 (0 o7 L T0 1 1 NN USRS 203

31.4.3 ODJECL-EVICEA? ...ttt ettt b e h e bt e bt e bt e bt e bt e bt e s bt e bt e bt e beebeeeean 203

0 e o) <ot) /= OSSPSR 203

0 I o] o) <tot o <) (<Y 1 TSSO 203

0 I Y] o) ot o 11 T4 o1 A ST RUSRRR 203

R0 B 0 1o 15 A 2= SO 204
31.5.1 MIAKETOCAIVE ...eeeeeeeeeieeeiee et ee e e e ettt e e e e e ettt e e e e eeaaaeeeeeseeesaaeeeeeessesssaaseeeessasstareeeeessnnnnaes 204

31.5.2 MAKE-WEAK-TOCAUVE.vvveeeeeeeieeeieeeeeeeiieeeeeeeeeeaee et e e e e eeaae e e e e s seeaaaeeeeeessesssaeseesesssssssareeeeesannnnnes 204

R0 T (o215 A 2= /RO RPRRRRRRRRRE 204

R0 I B (0 o215 A L= (=) RSO RPRRERRRRE 204

R0 BT (o215 A 2= 11 4 AR RPRRERRRRE 205

31.5.6 IOCAIVEODIECE .. .veuteuteeiteetie ittt ettt e sttt et e bt e sb e e s bt e s bt e sheesbe e bt e bt e nbeesbeesbeebe e bt ebeenbean 205

31.6 Accessing topleVEl VALIADIESueiutireiiiieiite ettt sttt et et b et b e bt e bt sbeenbeeaean 205
31.6.1 lobal-DOUNAY.....cueiiiiiieiie ettt sttt b et e be e bt e bt be e b eaean 205

31.6.2 GlODAL-TEE . ..ottt b e bbbt e b e b e be e b b an 205

31.6.3 GlODAI-SEEL ..ottt st e h e bt b e e bt e bt e be e bt e bt e bt e beebean 205

317 LOW-1EVEL AALA ACCESS. ... uvvvvvieeeeeeiieeeeeeeeeeeitteeeeeeeeeetaeeeeeeeeeaaeeeeeeeeessssteeeeeessssssaeeeesssesssaaeeseessssnnsrseeeesesans 206
R0 R 1 0) (o o) 5 = AP SRR 206

R0 B) (o o) = o PRSP 206

0 G I o) <ot 00 A ST 206

31.7.4 MAKE-TECOTA-TMSTANCE ... eeeeeeeerreeeeeeeeeeetteeeeeeeeeeteeeeeeeeeesaeeeeeeseesssareeeeeesssssaeneeeesssssrsareeeessensnnes 206

31.7.5 MOVETNEIMOTY L.ttt ettt ettt e b e s b e s bt e sbeesbe e bt e bt e bt e bt e sbeesbeenbeenbeebeeneean 207

31.7.6 NUMDEI=0f-DYEBSeeueeiieitie ettt ettt b e bt e bt e s bt e s bt e bt e bt e beesbe e bt e bt e beebeebean 207

31.7.7 NUMDET-0F-SI0tS ...eeeeueieieeee ettt ettt e e e e ettt e e e e eea e e e e e e eeeaaaeeeeeessssssasaeeeeesssstareeeeessnnnnaes 207

31.7.8 1€COTA-TNSIANCED ...cceeeevieeeeeeeeteeeeee e e e ettt e e e e e ettt e e e e eeaaaeeeeeeeeeaateeeeeessesssaeseeeessssssaseeeesssnnnnaes 207

R0 B (TeT0) (6 74Tt 10 USSR OURUPRRUPPPPPRt 207

31.8 Procedure-call- and variable reference NOOKScovvvviiiiiiiiiiieeiee ettt e e e e e e e e ens 208
31.8.1 set-invalid-procedure-call-Randler!...........ccoccoiiiiiiiiiiiiee e 208

31.8.2 unbound-variabIE-VAIUE.cc.uveeiiiiiieiieeeeee ettt e e e e e e e e e eaaae e e e e e s senaaeeeeeseeennaes 208

R0 I Y5 U SRR 208
31.9.1 ODJECE-DECOMIE! ... ittt sttt sb et b e bt e b e b et be e an 208

31.9.2 MULALE-DIOCEAULE.eeveeeieriieeiieetieette et st te st e sateeatesttesbtesbtesteesbeesbeesbee bt e bt esbeesbeesbeanbeenbeanbeeneean 209

32 Interface to external functions and variables 210
33 Accessing external objects 211
0 B (01 (S 41 o]0 16 L= OSSPSR 211

I IR (0] 151 241 221 L0 LSS USSR 211

I I (0] (51 41 6 5163 21 1= SO USSP 211

K I N 1<) 01 (o (0 (1 eq 1 4 0 S USSP R 211

33.5 define-foreign-variable.........ccooeiiiiiiie ettt sttt an 212

33.6 define-fOr igN-TECOIM.uerueeruieeiieeiie ettt ettt sb et e bt e bt e b et esbeesbeenbeenbeebeeeean 212

33.6.1 TYPENAME-SLOTNAMEciiiiiieieeeeeeeee ettt naaaee s 213

33.6.2 TYPENAME-SLOTNAME-SEL.....ouvviiiiiiiiieieee et 213

33.0.3 COMSIIUCTOT . ..vveeeeeeeiteeeeeeeeeeeteeeeeeeeeeteeeeeeeeeeetaaeeeeeeseaaaaeeeeesssasareeeeeessennsreaneeeesssnnreneeess 213

xXvil

CHICKEN User's Manual - The User's Manual

Chicken User's Manual
33 Accessing external objects

I I AT e 1= 5 8 ot (o) SRR 213
R AT (=11 14 1= SRS 214
33.7 define-fOr IGM-@IIUIIL. ... eeeuteeuteeeieette ettt ettt ettt sh et e b e bt e s bt e sb e e s bt e sbeesbe e bt e sbe e bt esbeesbeebeenbeebeenbean 214
I It (01153 a0 o P 1011 06 WSSV U USSR 215
33.9 £Oreign-1ambDAat......cc.ooiiiiie ettt h et h e bt bt e bt be e bt e bt e bt e bt e nbeebean 215
33.10 foreign-safe-TamBAa.ceeiirieiieee ettt bttt et b e be e bt e bt e nbeebean 216
33.11 foreign-safe-1ambdak..........cooiiiiiiiiie ettt et b e b e sbe b b an 216
I TR I 0]) 1o 1 o) 010 0115 4= SO U USSR 216
34 Foreign type specifiers 218
R o] 1155 1 1 S o) [A S PSS PUSRUSR 218
T oo o) FE R RRPRRRERRRRRE 218
34.3 byte UNSTENEA-DYLE .. ceiuiiiiiiiiiiiie ettt b e b e b e bttt sbe e sb e be e bt e b eean 218
34.4 char UNSIENEA-CRIALco.uiiiiiii ittt b et b e s bt e bt e bt e bt e b e e s 218
34.5 Short UNSTENEA=SHOTT.eiuiiitiiiiieeiie ettt sttt b e sb e bt e bt e sbe e s bt e sbeesbeenbeeeean 218
34.6 int unsigned-int int32 UNSIZNEA-TNE32.......coiiiiiiiiiiieieier ettt 218
34.7 integer unsigned-integer integer32 unsigned-integer32 integertd..........cceveereeneeneeneeneeneennenn 219
34.8 10Ng UNSIZNEA-TOMNG. .. cutieiiiiiiitieeiie ettt sttt e bt b e sbe e bt e bt e sbeesbe e bt e bt enbeebean 219
34.9 fIOAL AOUDIE. .. .vvvveeeeieeeeeeeee ettt e e e ettt e e e e e e e e e e e eaaaeeeeeessesasaaeeeeessasnrareeeeessnnnnaes 219
L 010000103 PRSP 219
L B 174111 oo) F O ST 219
T N o] 11111 1o 0101111 S S PSS TUPUSRRRS 219
34.13 NoNNUII-SChEME-POIMEIET. ... eeruteeuieeiieeiieeite ettt ettt ettt st e st e sbeesbe e s bt e bt e bt e sbeesbeesbeesbeenbeebeeneean 220
R o301 01115, PSSP 220
34.15 NONNUII-CoPOIMEEE.euteeietieetteetteette ettt te st e st e stteeutesbtesbtesbeesbeesbeesueesbeesbee bt enbeesbeesbeenbeebeabeensean 220
R 4N) (6 TSRS 220
R A 1o 17010) 0 o) o YRR 220
34.18 u8vector ul6vector ud2vector s8vector s16vector s32vector f32vector fédvector................... 220
34.19 nonnull-u8vector nonnull-ul6vector nonnull-u32vector nonnull-s8vector
nonnull-s16vector nonnull-s32vector nonnull-f32vector nonnull-f64vector...........coovvvvveeeevevnnene... 221
3420 CoSEIIIIG. ¢ veevteeuee ettt ettt ettt ettt ea e e bt e s bt e shte s bt e eh e e eh e e eb e e eb e e eh e e sheeehe e bt e bt e bt e bt e ebe e bt e bt e bt e bt enbean 221
34.21 NONNUII-CoSITIIE .. euveeteeetertteette et ettt e et e et e sttesateeut e bt e sb e e sbtesbeesbeesbeesbee bt enbeenbeesbeenbeebeebeabeeneean 221
34.22 [00NNUI-] CoSITIME™ ...ttt sttt e st e s bt e bt e bt e bt e bt e sbe e s bt e bt e bt ebeenbean 221
34.23 [nonnull-] unsigned-C-StENG[H].....ceeeiiiiiiieiie ettt 221
3424 CoSIIME-TISE oottt ettt ettt b e b e h e bt e bt e bt e bt e bt e bt e bt e s bt e bt e bt e nbeebean 221
34.25 CoSINE-TISEE ..ottt ettt b e bbbt e bt e bt e bt e b ebean 222
3420 VOIA..ueeeeiiieieeeeeiee ettt e e et e e e e et e e e e e e —— e et e e e e e ———reeeeeaa i ———reeeesaanraraeeeeeaanaaes 222
34.27 (CONSETYPE)....iiiiiiieieieie ettt e e e e e et e et e e e e eaaaeeeeeessssasaasreeesssssrrareeeesssnnnnnes 222
34.28 (enUM INAME)......coo oottt e e e e et e e e e e estaaeeeeeessesasaaseeeessssnstareeeesssnnnnaes 222
34.29 (c-pointer TYPE).. ..ottt b e sb et e bt e sbe e sbe e bt e bt e beebean 222
34.30 (nonnull-c-pointer TYPE)......coiiiiiiiiee ettt ettt sbe e as 222
RN =) i 0 &) TSPt 222
34.32 (SUCEINAIME). ... oottt e e e e et e e e e e e et e e e e eeesesasaaaeeeeesesstareeeesssnnnnnes 223
34.33 (template TYPE ARGTYPE ...} oottt st 223
34.34 (UNION NAME) ..ottt e ettt e e e e et e e e s e esaateeeeeeesssasaaeeeeeesesstareeeeessnnnnnes 223
34.35 (instance CNAME SCHEMECIASS)....oooiiiiiiieeiee ettt eeaaee e s eenaavee e e s s eenanes 223
34.36 (instance-ref CNAME SCHEMECLASS) ... oottt eenaavee e e e s eenanes 223
34.37 (function RESULTTYPE (ARGUMENTTYPET ... [..]) [CAILCONV D evvviiiiiiiieeieeeeeeennnes 223
3438 IMADDIIIES ¢+ veeuveeureeuteauteautesttesuteetteetteeueessteshtesueeshteeueesbeeabeeabtesbeeabeeehe e bt e bt e bt e bt e abe e bt e bt e bt ebeenbean 224

XViii

CHICKEN User's Manual - The User's Manual
Chicken User's Manual

35 Embedding

35.1 CHICKEN parse command LiN@........cceoeeruiriieeiieeiieieeie ettt
35.2 CHICKEN JNIHALZEuuveeeeeeeeeeieieieieieeseeessssesssessssnnnnnns

35.3 CHICKEN TUI .ettttteeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeseesrereeessseeaseeesesssasasrseeeessssenseeeees
354 TEUITIEOT10SE . ettt et e e e e e e e et eeeeeeeeeeee e e s e e e e e s eeesessesaeesannannnns

35.13 CHICKEN get eITOr IMESSAZE...ccueeuveeueereeeeerteenteeeeeeesteseeensesnsesnseseesneesaeans
35.14 CHICKEN VIEld....couieuieieieeiieieieeie ettt e ettt e e ene e s
35.15 CHICKEN CONUIIUE, ...uvvveeeeeeitreeeeeeeeieiteeeeeeeeeeeseeeeeeesssssereereesssssnnsseesesssssssseneees
35.16 CHICKEN NEW ZC TOOL....iitieiietietieieeie et eteeite et eiteeitesateesteeateeatesneesneesaeeeas
35.17 CHICKEN delete ZC TOOL.....ieiuieuiieiiiiieieeie ettt ettt ettt ettt
35.18 CHICKEN g€ TOOt T€F . ciiiiiiiiieiieiieie ettt
35.19 CHICKEN 8C TOOL SEL..iittetieieeiieieeieeie et et ettt et eite et ettt eeesaeesaeeeas
35.20 CHICKEN global 100KUD....eeuteieeiieiieieiieieeieie sttt
35.21 CHICKEN global Tef......cceeieieiiiieieieieeeeeeie et

36 Callbacks

36.1 defINE-EXEETTIAL .. .ueveeeeeiiieiieiieeeee ettt ettt et e et e e eee et eeeeeeeeeeee e e e e e e e e s eeesesseessesasnnnnnnes
360.2 € CAIIDACK ettt ettt e e et e e e et e e e e e e e e e e e e e e r e e e rarerrraa e e —————

36.3 C callback adjust StACK.......cccceriieriiriiiiiieii ettt

37 Locations

R[] 00 1S (o o= 1 o) s N TR
372 Tl OCALIOM . ettt et et e e et e eeeeeeeeeeeeeeeeeeeeeeeeeaereseseeesssesaaeasesannnnnnas
R AR I (o To:1 s T0) 1 FOUUUR TR

38 Other support procedures

39 Cinterface

39.10 € SIIME2 .c.ueeeuieeiieeiie ettt ettt ettt ettt et e et et e eate et e eatesateeateeabeeateeateeneeeneesateeas
LS O 11175 1 V2R
LS B G 11115, o 1 10 T TR

225
225
225
225
226
226
226
226
226
227
227
227
227
227
227
229
230
230
230
230
231
231
231

232
232
233
233

234
234
234
234

236
236

237
237
237
237
237
237
237
238
238
238
238
238
238
238
239
239

X1X

CHICKEN User's Manual - The User's Manual

Chicken User's Manual

39 Cinterface
I KX O 1100111 L1<) oSO ST 239
L WA G <Te] (o) AU UUUU SR OUPRPUPUPPPPPRt 239
LS T O T AR RPRRRERRRRRS 239
LS O | [T SRR PRRRERRRRE 239
39.20 C STZEOFE LIST ...ttt ettt e e e e e e e e e e s s e eaaaeeeeeessesssaaseeeessssssaseeeessennnnnes 240
39.21 C SIZEOF STRINGciiiitieeuieeeeeeeeeiiteeeeeeeeeeaeeeeeeeeeesaaeeeeessessaaeeeeeesssssseseesesssssrareeeesssnssnnes 240
39.22 C SIZEOFE VECTOR......ccot oottt ettt e e e e et et e e e e s e eaaaaeeeesssesraeeeeessssnnnnes 240
39.23 C SIZEOF INTERNED SYMBOL.....oooiiiiiiiiiiieiiiee ettt eeeaere e e s eenaaveeeeeseennnnes 240
39.24 C STZEQOFE PATR. ...ttt e e e eee et e e e s e et e et e e e s sesaaaaseeeeessssssaseeeessannnnes 240
39.25 C SIZEOF FLONUM......cottittttieie ettt eeeeetee et e e e e eeatee e e e e seesaaaeeeeeessssssaaseesesssssssaseesesssnnnnes 240
39.26 C SIZEOF POINTER......cottoottttieee ettt eeeee et e e ettt e e e s e et aeeeeesessaaaaeesessssnssaseeeeesssnnnnes 240
39.27 C SIZEOF LOCATIVE. ...ttt e et e e s eeaaa e e e e e s sesaaaeeeesssennanes 240
39.28 C SIZEOF TAGGED POINTERcutttiiiiiiiieeiiee ettt e et e e e eeaare e e e e s esnaaeeeeesssennnnes 241
RIIVAYK G« 1 F:1 ¢: o1 (=) t o0 ¢ [< RN OO UUUURUPRRUPPPRPRt 241
LS G0 O 11 1§ i 5, TP RO RPRRRRRRRRE 241
39.31 C flonum mMagIituAE.couueruiiiiieiieiiei ettt ettt sttt e bt sb e bt e bt e bt e bt e bt e be e b eaean 241
39.32 € € SUIMG . eeeueeeuteeiieeiie ettt te et et et e et e et e s bt e shte s hteeheesbeesb e e sbeesbeesbeeeheeebe e bt e bt e beeebe e bt e bt e bt ebeenbean 241
39.33 C NUIMNL L0 TMEeuviiiiiiiiiiiieiieeeeeieiteeeeeeeeeeeieeeeeeeeseetaaeeeeessessaseeeeesseessaseeeeeesssssssneesessssssseseeeesssnnnnes 241
I G 10 11115 16 (6 1 £ T OSSPSR 241
LS R N O 1 15T Ve (=) /=R RPRRRERRRRS 242
LSRR TS O 11T Ve (=3 a0 1 - RO RPRRRRRRE 242
LSRRI O o) (oY) [1 7=) 1 o YOS 242
LG T O VS | PRSP 242
LR O VS T | SRR 242
R G a 1 2 T 010111115 OSSPSR 242
39.41 C 1MAKE NEAEEL......ceouveeeiiee ettt eee e e e e e et e e e e e e e enaaae e e e e e s esnbareeeeeeennaaes 243
L K G 1111172 (=S UUUURU R OUPRPRPUPPPPPRRt 243
39.43 C SYMDOL VAIUC...ceiuteiiuiiiiiieetie ettt sttt te et ettt ettt e st e e sbteesabeesabeeeabeeebeeebaeenmbeesabeesabeens 243
39,44 C GO PIOLECE cuuuuuuuururreuererirererereeeereeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeasassssssssssssssssssssssssssrsrssnssesenens 243
39,45 C GO UNPIOLECE . uuuuvurururrrrerererteereeeeeeeeeeeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessassssssssssssssssssssssssssssrssnssssesens 243
39.46 C DIE GC NOOK ..iuiiiiiiiiitie ettt ettt st h e s b e s bt e bt e bt e bt e bt e s bt e bt e bt e bt e beebean 244
39.47 C POSE ZC NOOK....ceeueieiiieeeeeeeeeee ettt e e e e et e e e e e e et eeeeeesssnaaaareeessesrtaaeeeeeseannaaes 244
39.48 An example for simple calls to foreign code involving callbacks.........cccceereeneenienieneeneennen. 244
30,49 INOLES eveeeeeeeeeeeeeeee et eeee et eeeeeee e et e eeeeeebareeeeessassaaeeeeessaasaaeeseesseassasseeeeesssassaeseeeeesaasrareeeeesennnnnes 245
40 chicken-setup. 246
O I 25T 113 10 1 10 K10 21 6 (=TT 246
40.2 InStalling EXEEISIONS. - e euveeuteeuteeteeteeteete et eteete e bt eateeateeateeateeabeeabeeaeeeaseeaeeeatesabeeabeenseeneeensesnseans 246
40.2.1 Installing extensions that USe IIArIescueevereeriieeiiieiieie ettt 246
40.3 Creating EXLEMSIONS .o euveeureeureeuteeuteaueeauteeuteeuteeueeeueeaueeastesaseaaseeateaaseasseaaseamseeaseamseeaseaaseensesaseenseenseenseenseensasas 247
40.4 Procedures and macros available in SetUDP SCIIPLS.....ceoutetiriiriieieeie ettt ettt et ettt 247
A NI 721 | o5 AT 1 Ky o) 1 RO 247
40.4.2 INSEAII-DIOGIAIL ...t euteeuteeiteeite ettt ettt et ettt et et et e et e eateeabeeabeeabeeateeaeeemteeabeeabeembeeneeenteenteans 249
40.4.3 INSEAIISCIIDE. e uveeuteeute ettt ettt ettt ettt et ettt et et e e et eae e eabeeabeeabeeateeaeeeateeabeeabeenteenteenteenteens 249
R S B 41 s PSRRI 249
A0.4.5 COMPILE. ...t eueeeite ettt ettt ettt et e et et e eat e eabeeabeeabeeateeateeateeabeeabeenbeeneeenteenteens 249
030 11 21 (=TT 250
A0.4. 7 DALCHL ...ttt ettt ettt et e e bt et e e te e bt e beeabeeabeeateeateenteens 250
40.4.8 CODYTILE ..ottt et ettt ettt et et e et e e bt et et e et e et e e abe et e eateeteenteens 250
I 1 0 4 i] (=P 250
40.4. 10 TEMOVETTLE™ ... et e ettt e e e e e et e e e e s e e aaae e e e e s seesaaraeeesesennnseneeeas 250
40.4. 11 fINA-TIDIAIY. oottt et et et ettt et e e bt et e et e eateeateeateenteens 250

XX

CHICKEN User's Manual - The User's Manual
Chicken User's Manual

40 chicken-setup
N 0 0 Vo 2 1= 16 1<) O 251
40.4.13 t1Y-COMPILE ..o ettt ettt ettt ettt e et e e et e e b e eateeateeabeeabeembeenteenneeneeens 251
40.4.14 CIEatE-GITBCLOTY. .ot eueeeuteeute et ettt ettt ettt et et eate et e eateeabesabeeabeeateeateeateeabesabeemseeneeenseeneeans 251
40.4.15 ChICKEN-PIEEIX 1.ttt ettt ettt ettt ettt et et e et e e et e eateeabesabeeateemteenteeneeens 251
40.4.16 inStallation-DIETIX .. .cveeeeeieeteete ettt ettt ettt ettt et e et ea e et ea bt et e eate e be et e eateeateeteeneeens 251
40.4.17 PIrOGIAMDANeeeiieiiie ettt et ettt et ettt ettt et e eateeateens 251
40.4.18 SetUP-TOOL-AITEOIOTY - e uteeuteeuieeite ettt ettt ettt ettt et et e eabe e be et e ateeateeateeabeeabeemteemeeenneeneeens 252
40.4.19 SetuP-bUIld-QIr@COTY - . . veeuveeuteeteeieeie ettt ettt ettt ettt ettt ettt e et e e beeabeeateeneeeneeeneeens 252
40.4.20 SetuP-VErbOSE-TIAZ ... eeutiiieiieeie ettt ettt ettt ettt ettt et 252
40.4.21 setup-inStall-TIag.....cccueiiiiie ittt ettt et ettt ettt 252
40.4.22 1equired-chiCKeN-VEISION. .. . veeuteeuteeiiiteeie ettt ettt ettt ettt ettt e et e et e ebeeateeaeeeateeneeeas 252
40.4.23 1equired-eXteNSION-VEISIOM. 1. ueeuteeuteeuteeuteeteeteeteeteeuteeteeutesateeateeaeeeateeneesatesatesaseenseeneeensesneeans 253
& (0o 4V (o] (=) VRO 253
40.4.25 NOSt-EXEEIISION. c.vvvvveeeeeeeetieeeeeeeeeesitereeeeeeessstaeeeeeeseesareeeeeeesssssaaseesessassssaseesessessassseeessssssrsrneees 253
40.5 EXamples fOr @XIEMSIOMNS. . euvteuteeuieriteeieettete et et et eteeateeateeateeaeeeaeeeateeabeeabeeabeeaeeeaseesseanseeaseemseenseenteensaans 253
40.6 chicKen-SEIUP TEIEIEICE. . e veeuteeuteeiteeie et ettt ettt et et ettt et e e et e bt eateeabeeabeeaeeeateentesabeeabeembeemteenteenteans 256
A0.7 WINAOWS TIOES ...eeeiieeeeeeeieeeeeeteteeeeeeeeeetteeeeeeeeeesaaeeesesssasaresreeesssassarareeeessasssasesseessaansssssseessssnssssseesesssnnrsens 258
Z0.8 SEOUTILY. ¢t euteeuteeute et et et et ettt et et e bt e bt et e ae e e aeeeateeateeabeeateeaeeeaeeeateeabeeateemteeaeeemeeenteeaseembeemteenteenteenteens 258
40.9 Other MOdes Of INSLALTATIONL ... uvvvvvieeeeiiiiieeeeeeeeeeteee e e e e eeete e e e e e eea e e e e e e s sseaaaeeeeessessssaeeeeesssensaereesesesnsnsens 258
40.10 Linking exXtensions StAtICALLY. ... cooueeteritieieeieeie ettt ettt et ettt et ettt et et ete et ens 259
41 Data representation 260
41.1 IMMEIAtE ODJECLS. . euveeueeeuteeieete ettt ettt et ettt ettt e et e et e et e et e eaeeeateeabeeabeembeemeeennesneeens 260
41.2 NOn-immediate ODJECLS.......ueeuteeieeieeiieteeie ettt ettt ettt et e et eab e et et e eateeateeabeeabeeateeneeentesneeeas 260
42 Bugs and limitations 262
43 FAQ. 263
T € 1= 1 1= 2 RO 263
43.1.1 Why vet another Scheme implementation?.........cccceeeueeruierierrieriieeie e 263
43.1.2 Why call it "ChICKEN'2...c.eevieeieieieeiieceieete ettt ettt et te st et e b e sbeeseenaesesneeneeneas 263
43.1.3 What should I do if I find a Bug?......c.oooiiiiiiiii e 263
43.1.4 Why are values defined with define-foreign-variable or define-constant or
define-inline not seen outside of the containing source file?...........ccccevviirierienienienieneene 264
43.1.5 How does cond-expand know which features are registered in used units?............... 264
43.1.6 Why are constants defined by define-constant not honoured in case constructs?...... 264
43.1.7 How can I enable case sensitive reading/writing in user code?..........cecceevuerveeereeenenns 264
43.1.8 How can I change match-error-control during compilation?..........cecceeveeveerniensienneenns 264
43.1.9 Why doesn't CHICKEN support the full numeric tower by default?...............cc.... 265
43.1.10 How can I specialize a generic function method to match instances of every
CLASS T ettt e e e e e et e e e e ee———teeeesaa————teeesaaa———eeeeeeantarreeeeeannraaes 265
43.1.11 Does CHICKEN support native threads?..........coccoeieeiieieiieiiieieeie e 265
43.1.12 Does CHICKEN support Unicode StHNZS?.......ceoueeieeriieieiiieieeie et eie e 266
43.1.13 Why do I get an "Error: invalid syntax: ..." using 'match’ and 'syntax-case?........... 266
43.2 PlatfOrm SPECITIC. .+ uveeuveeuteeute ettt ettt et ettt ettt et et e e bt et et e et e e bt et e eabeeabe e teenteenteeas 266
43.2.1 How do I generate a DLL under MS Windows (£m) Z.....ccceeiieeiieiieiienieeie e 266
43.2.2 How do I generate a GUI application under Windows(tm)?........cceevueerieeiieniieenieeienieeieeienns 266
43.2.3 Compiling very large files under Windows with the Microsoft C compiler fails with a
message indicating insufficient heap SPACE........ccoveerueertieriiiriieie ettt 267
43.2.4 When I run csi inside an emacs buffer under Windows. nothing happens..........ccccceceeveeeene 267
43.2.5 I load compiled code dynamically in a Windows GUI application and it crashes................... 267
43.2.6 On Windows. csc.exe seems to be doing something Wrong........cccceevveevieeiieeiieesieesieeieeieeiene 267

XX1

CHICKEN User's Manual - The User's Manual
Chicken User's Manual

43 FAQ
43.2.7 On Windows source and/or output filenames with embedded whitespace are not found........ 267
43.3 CUSLOMIIZALION. v.veeeeeieueeeeeeeeeeeettteeeeeeeeesateeeeeeeeeesaseeeeeeseesaseseeeesssssassseeeesssasasesseessssnssasssesssssnssssssesesssnnrens 267
43.3.1 How do I run custom startup code before the runtime-system is invoked?...........cccecceevueeeene 268
43.3.2 How can I add compiled USEr PASSES?......cccueeuiriiriieiieieeie et ettt ettt ettt et et eee e eneeeas 268
43.4 COMPILEA IMACTOS +.-veeueeeuteeuteeuteeite ettt eite ettt et e et e et eateeabeeabeeateeaeeeaeeeabeeateeabeembeeaeeemseentesaseenseenseenseenteensaans 269
43.4.1 Why is define-macro complaining about unbound variables?............cceceeviriieieeienseneeiens 269
43.4.2 Why isn't load properly loading my library of macros?........ccceecueeieeiieieniieeiceieeeeeeeeeeee 269
43.4.3 Why is include unable to load my hygienic macroS?.......cccceeueeieeiieriiesieeie et 269
43.4.4 Why are macros not visible outside of the compilation unit in which they are defined?........ 269
43.5 Warnings a0 ©ITOTS . veeuveeuteeuteeteete et et ete et eteeateeateeateeateeateeaeeeateeateeateeabeemseeaeeeaseentesmseenseenseenteenseentenns 269
43.5.1 Why does my program crash when I use callback functions (from Scheme to C and back
10 SCHEME AGAIN) e nveetieiietiet ettt ettt et et e st esat e s et e e at e et e eateeaeeeaeeeatesateeateemteeneeeneeenteens 269
43.5.2 Why does the linker complain about a missing function C ... toplevel?.........cccceceeieenn. 270
43.5.3 Why does the linker complain about a missing function C toplevel?..........ccccceeveriiiieeinns 270
43.5.4 Why does my program crash when I compile a file with -unsafe or unsafe declarations?......270
43.5.5 Why do I get a warning when I define a global variable named match?...........cccoccoeiieiiein. 270
43.5.6 Why don't toplevel-continuations captured in interpreted code Work?..........cccecueeveeeveriicennns 271
43.5.7 Why does define-reader-ctor not work in my compiled program?..........cccceeveevieerieesienneenneenns 271
43.5.8 Why do built-in units. such as srfi-1. srfi-18. and posix fail to load?.........ccccceeveeiieriiiicenns 271
43.5.9 How can I increase the size of the trace shown when runtime errors are detected?................ 272
43,60 OPUIMIZATIOMNS - e euveeueeeureeuteeuteete et eiteeiteeteeateeuteeaeeeaeeesteeateaabeeateeaeeaaeeaateaaseeabeambeeaeeeaseensesaseeaseembeenseenteensanas 272
43.6.1 How can I obtain smaller €XeCUtabIEST........uvviiiiiiiiiieieiieeeeeeeeee e eeaanee s 272
43.6.2 How can I obtain faster eXeCULADIEST......ccoouvvveiieeieeiiiieieeee et e e e e e e e eanraneeees 272
43.6.3 Which non-standard procedures are treated specially when the extended-bindings or
usual-integrations declaration or compiler option is USEd?.........cceviiriiriiiiieiieeieee et 273
43.6.4 Can I load compiled code at TUNEME?......ccveeteeiieiieieeie ettt ettt et eee e 273
43.7 GArbaZGE COLIECTIOM. 1. euveeuteeutieuieeiie ettt ettt ettt ettt et et e bt et e eaeeeateeateeabeeabeeabeeateeateemtesmbeembeemteenteenteeneeans 274
43.7.1 Why does a loop that doesn't cons still trigger garbage collections?..........cceceeveeereeeiieeseeeeens 274
43.7.2 Why do finalizers not seem to work in simple cases in the interpeter?...........cccceeveerueeveeeeenns 274
F TR I 1115 00) U1 1<) RO OO OO OO OO OO OO PO RO TR PRUPROPRRRPOOt 275
43.8.1 Does CSI support history and autocompletion?...........ccceeueerieerieerieenieeieeie e eie e 275
43.8.2 Does code loaded with load run compiled or interpreted?...........coceevieerieeiieeiieeiieeieeieeieeene 275
F R 2 =) 113 (o) 1 SRRSO 275
43.9.1 How can I install Chicken eggs to a non-default 1ocation?............ccceceeveeeiieeiieesieesienieeieeee 275
43.9.2 Can [install chicken eggs as 8 NON-TOOL USEI?cccueruiriterieeieeieeteeteeteeteeteebe et eeeeee e ens 276
44 Acknowledgements 277
45 Bibliography. 279

Xxii

1 The User's Manual

This is the user's manual for the Chicken Scheme compiler, version 3.4.0

Getting started
What is CHICKEN and how do I use it?

Basic mode of operation
Compiling Scheme files.

Using the compiler
Explains how to use CHICKEN to compile programs and execute them.

Using the interpreter
Invocation and usage of €S1i, the CHICKEN interpreter

Supported language

The language implemented by CHICKEN (deviations from the standard and extensions).
Interface to external functions and variables

Accessing C and C++ code and data.

chicken-setup
Packaging and installing extension libraries.

Data representation
How Scheme data is internally represented.

Bugs and limitations
Yes, there are some.

FAQ
A list of Frequently Asked Questions about CHICKEN (and their answers!).

Acknowledgements
A list of some of the people that have contributed to make CHICKEN what it is.

Bibliography
Links to documents that may be of interest.

1 The User's Manual

2 Getting started

Chicken is a compiler that translates Scheme source files into C, which in turn can be fed to a C compiler to
generate a standalone executable. An interpreter is also available and can be used as a scripting environment
or for testing programs before compilation.

This chapter is designed to get you started with Chicken programming, describing what it is and what it will
do for you, and covering basic use of the system. With almost everything discussed here, there is more to the
story, which the remainder of the manual reveals. Here, we only cover enough to get you started. Nonetheless,
someone who knows Scheme already should be able to use this chapter as the basis for writing and running
small Chicken programs.

2.1 Scheme

Scheme is a member of the Lisp family of languages, of which Common Lisp and Emacs Lisp are the other
two widely-known members. As with Lisp dialects, Scheme features

¢ a wide variety of programming paradigms, including imperative, functional, and object-oriented
¢ a very simple syntax, based upon nested parenthesization
¢ the ability to extend the language in meaningful and useful ways

In contrast to Common Lisp, Scheme is very minimal, and tries to include only those features absolutely
necessary in programming. In contrast to Emacs Lisp, Scheme is not anchored into any one program (Emacs),
and has a somewhat more modern language design.

Scheme is defined in a document called The Revised"5 Report on the Algorithmic Language Scheme, or R5SRS
for short. (Yes, it really has been revised five times, so an expanded version of its name would be The Revised
Revised Revised Revised Revised Report.) A newer report, R6RS, was released in 2007, but this report has
attracted considerable controversy, and not all Scheme implementations will be made compliant with it.
Chicken essentially complies with RSRS.

Even though Scheme is consciously minimalist, it is recognized that a language must be more than a minimal
core in order to be useful. Accordingly, the Scheme community uses a process known as “Scheme Requests
For Implementation' (SRFI, pronounced "SUR-fee') to define new language features. A typical Scheme system

therefore complies with one of the Scheme reports plus some or all of the accepted SRFIs.

A good starting point for Scheme knowledge is http://www.schemers.org. There you will find the defining
reports, FAQs, lists of useful books and other resources, and the SRFIs.

The Chicken community is at present developing tutorials for programmers who are new to Scheme but
experienced with Python, Ruby, or other languages. These can be found on the Chicken wiki.

2.2 Chicken

Chicken is an implementation of Scheme that has many advantages.

Chicken Scheme combines an optimising compiler with a reasonably fast interpreter. It
supports almost all of RSRS and the important SRFIs. The compiler generates portable C

2 Getting started 2

http://www.schemers.org

CHICKEN User's Manual - The User's Manual

code that supports tail recursion, first-class continuations, and lightweight threads, and the
interface to and from C libraries is flexible, efficient, and easy to use. There are hundreds of
contributed Chicken libraries that make the programmer's task easier. The interpreter allows
interactive use, fast prototyping, debugging, and scripting. The active and helpful Chicken
community fixes bugs and provides support. Extensive documentation is supplied.

Chicken was developed by Felix L. Winkelmann over the period from 2000 through 2007. In early 2008,
Felix asked the community to take over the responsibility of developing and maintaining the system, though
he still takes a strong interest in it, and participates actively.

Chicken includes

¢ a Scheme interpreter that supports almost all of RSRS Scheme, with only a few relatively minor
omissions, and with many extensions

® a compatible compiler whose target is C, thus making porting to new machines and architectures
relatively straightforward

¢ the C support allows Scheme code to include “embedded’ C code, thus making it relatively
easy to invoke host OS or library functions
¢ a framework for language extensions, library modules that broaden the functionality of the system

This package is distributed under the BSD license and as such is free to use and modify.

Scheme cognoscenti will appreciate the method of compilation and the design of the runtime-system, which

follow closely Henry Baker's CONS Should Not CONS Its Arguments. Part II: Cheney on the M.T.A. paper
and expose a number of interesting properties.

¢ Consing (creation of data on the heap) is relatively inexpensive, because a generational garbage
collection scheme is used, in which short-lived data structures are reclaimed extremely quickly.

® Moreover, call-with-current-continuation is practically for free and Chicken does not
suffer under any performance penalties if first-class continuations are used in complex ways.

The generated C code is fully tail-recursive.
Some of the features supported by Chicken:

* SRFIs 0, 1, 2, 4, 6-19, 23, 25-31, 37-40, 42, 43, 45, 47, 55, 57, 60-63, 66, 69, 72, 78, 85 and 95.
¢ Lightweight threads based on first-class continuations

e Pattern matching with Andrew Wright's match package

® Record structures

¢ Extended comment- and string-literal syntaxes

e Libraries for regular expressions, string handling

e UNIX system calls and extended data structures

e Create interpreted or compiled shell scripts written in Scheme for UNIX or Windows
e Compiled C files can be easily distributed

® Allows the creation of fully self-contained statically linked executables

® On systems that support it, compiled code can be loaded dynamically

Chicken has been used in many environments ranging from embedded systems through desktop machines to
large-scale server deployments. The number of language extensions, or eggs, will soon reach 400, including

¢ extended language features

¢ development tools, such as documentation generators, debugging, and automated testing libraries
e interfaces to other languages such as Java, Python, and Objective-C

2.2 Chicken

http://home.pipeline.com/~hbaker1/CheneyMTA.html

CHICKEN User's Manual - The User's Manual

e interfaces to database systems, GUIs, and other large-scale libraries,

¢ network applications, such as servers and clients for ftp, smtp/pop3, irc, and http

® web servers and related tools, including URL parsing, HTML generation, AJAX, and HTTP session
management

e data formats, including XML, JSON, and Unicode support

Chicken is supported by SWIG (Simplified Wrapper and Interface Generator), a tool that produces
quick-and-dirty interface modules for C libraries (http://www.swig.org).

This chapter provides you with an overview of the entire system, with enough information to get started
writing and running small Scheme programs. Subsequent chapters cover

¢ Basic mode of operation: Compiling Scheme files.

e Using the compiler: Explains how to use Chicken to compile programs and execute them.

e Using the interpreter: Invocation and usage of €S1, the Chicken interpreter

¢ Supported language: The language implemented by Chicken (deviations from the standard and
extensions).

e Interface to external functions and variables: Accessing C and C++ code and data.

e chicken-setup: Packaging and installing extension libraries.

¢ Data representation: How Scheme data is internally represented.

® Bugs and limitations: Yes, there are some.

e FAQ: A list of Frequently Asked Questions about Chicken (and their answers!).

* Acknowledgements: A list of some of the people that have contributed to make Chicken what it is.

e Bibliography: Links to documents that may be of interest.

2.3 Chicken repositories, websites, and community

At present, the URLs for Chicken information and download are somewhat confusing. It is envisaged that
everything will eventually be accessible via the domain chicken-scheme.org, but this hasn't been
completely done.

At present, the master Chicken website is http://www.call-with-current-continuation.org. Here you can find
basic information about Chicken, downloads, and pointers to other key resources.

The Chicken wiki (http://chicken.wiki.br) contains the most current version of the User's manual, along with
various tutorials and other useful documents. The list of eggs is at

http://chicken.wiki.br/Eggs%20Unlimited %203.

A very useful search facility for questions about Chicken is found at http://www.callcc.org. The Chicken issue
tracker is at http://trac.callcc.org.

The Chicken community has two major mailing lists. If you are a Chicken user, Chicken-Users
(http://lists.nongnu.org/mailman/listinfo/chicken-users) will be of interest. The crew working on the Chicken
system itself uses the very low-volume Chicken-Hackers list

(http://lists.nongnu.org/mailman/listinfo/chicken-hackers) for communication.

2.3 Chicken repositories, websites, and community 4

http://www.swig.org
http://www.call-with-current-continuation.org
http://chicken.wiki.br
http://chicken.wiki.br/Eggs%20Unlimited%203
http://www.callcc.org
http://trac.callcc.org
http://lists.nongnu.org/mailman/listinfo/chicken-users
http://lists.nongnu.org/mailman/listinfo/chicken-hackers

CHICKEN User's Manual - The User's Manual

2.4 Installing Chicken

Chicken is available in binary form for Windows and Linux/x86 systems, and in source form for all other
platforms. Refer to the README file in the distribution for instructions on installing it on your system.

Because it compiles to C, Chicken requires that a C compiler be installed on your system. (If you're not
writing embedded C code, you can pretty much ignore the C compiler once you have installed it.)

® On a Linux system, the GNU Compiler Collection (gCC) should be installed as part of the basic
operating system, or should be available through the package management system (e.g., APT,
Synaptic, RPM, or Yum, depending upon your Linux distribution).

® On Macintosh OS X, you will need the XCode tools, which are shipped on the OS X DVD with
recent versions of the operating system.

¢ On Windows, you have three choices.

+ Cygwin (http://sources.redhat.com/cygwin) provides a relatively full-featured Unix
environment for Windows. Chicken works substantially the same in Cygwin and Unix.

¢ The GNU Compiler Collection has been ported to Windows, in the MinGW system
(http://mingw.sourceforge.net). Unlike Cygwin, executables produced with MinGW do not
need the Cygwin DLLs in order to run. MSys is a companion package to MinGW:; it provides
a minimum Unix-style development/build environment, again ported from free software.

0 You can build Chicken either with MinGW alone or with MinGW plus MSys. Both
approaches produce a Chicken built against the mingw headers and import libraries.
The only difference is the environment where you actually run make.
Makefile.mingw is can be used in cmd . exe with the version of make that
comes with mingw. Makefile.mingw-msys uses unix commands such as Cp and
rm. The end product is the same.
¢ Microsoft Visual Studio will soon be supported, including the Express edition, which is a
non-free but no-cost compiler suite available from Microsoft
(http://www.microsoft.com/express/vc). Chicken supports command-line building using the
command-line C/C++ compiler.

¢ Visual Studio users will want to install the Unix Utilities, available at

http://www.call-with-current-continuation.org/tarballs/UnxUltils.zip, in order to get
suitable versions of make, tar, gzip, and similar commands.

Refer to the README file for the version you're installing for more information on the installation process.

2.5 Development environments

The simplest development environment is a text editor and terminal window (Windows: Command Prompt,
OSX: Terminal, Linux/Unix: xterm) for using the interpreter and/or calling the compiler. If you install the
readline_egg, you have all the benefits of command history in the interpreter, Emacs or vi-compatible line
editing, and customization.

You will need a text editor that knows Scheme; it's just too painful with editors that don't do parenthesis
matching and proper indentation. Some editors allow you to execute Scheme code directly in the editor. This
makes programming very interactive: you can type in a function and then try it right away. This feature is very
highly recommended.

2.4 Installing Chicken 5

http://sources.redhat.com/cygwin
http://mingw.sourceforge.net
http://www.microsoft.com/express/vc
http://www.call-with-current-continuation.org/tarballs/UnxUtils.zip
http://chicken.wiki.br/readline
http://chicken.wiki.br/readline

CHICKEN User's Manual - The User's Manual

As programmers have very specific tastes about editors, the editors listed here are shown in alphabetic order.
We aren't about to tell you which editor to use, and there may be editors not shown here that might satisfy
your needs. We would be very interested in reports of other editors that have been used with Chicken,
especially those that support interactive evaluation of forms during editing. Pointers to these (and to any editor
customization files appropriate) should be put on the Chicken wiki, and will likely be added to future editions
of this manual. (We have had a request for editors that support proportional fonts, in particular.)

® Emacs (http://www.gnu.org/software/emacs) is an extensible, customizable, self-documenting editor
available for Linux/Unix, Macintosh, and Windows systems; CHICKEN provides Emacs support out
of the box, with the hen. el Emacs Lisp file. Consult the “*Emacs Guide for Chicken Users' (which
will be available on the Chicken Wiki soon) for information on setting up and using Emacs with
Chicken.

¢ Epsilon (http://www.lugaru.com) is a commercial (proprietary) text editor whose design was inspired
by Emacs. Although Scheme support isn't provided, a Lisp mode is available on Lugaru's FTP site,
and could with some work be made to duplicate the Emacs support.

e SciTE (http://scintilla.sourceforge.net/SciTE.html), unlike Emacs or Vim, follows typical graphical
UI design conventions and control-key mappings, and for simple tasks is as familiar and easy to use
as Notepad, KEdit, TeachText etc. However it has many programming features such as multiple open
files, syntax highlighting for a large number of languages (including Lisps), matching of brackets,
ability to fold sections of code based on the matched brackets, column selections,
comment/uncomment, and the ability to run commands in the same directory as the current file (such
as make, grep, etc.) SciTE is written with the GTK toolkit and is portable to any GTK platform,
including Windows, Linux and MacOS. It uses the Scintilla text-editing component, which lends itself
well to embedding within other IDEs and graphical toolkits. It does not have any other
Scheme-specific features, but being open-source and modular, features like auto-formatting of
S-expressions could be added. The syntax highlighting can be configured to use different fonts for
different types of syntax, including proportional fonts.

¢ Vim (http://www.vim.org) is a highly configurable text editor built to enable efficient and fast text
editing. It is an improved version of the vi editor distributed with most UNIX systems. Vim comes
with generic Lisp (and therefore Scheme) editing capabilities out of the box. A few tips on using Vim
with Chicken can be found at http://cybertiggyr.com/gene/15-vim/.

In the rest of this chapter, we'll assume that you are using an editor of your choice and a regular terminal
window for executing your Chicken code.

2.6 The Read-Eval-Print loop

To invoke the Chicken interpreter, you use the CS1 command.

$ csi

CHICKEN

(c)2008 The Chicken Team

(c)2000-2007 Felix L. Winkelmann

Version 3.1.2 - macosx-unix-gnu-x86 [manyargs dload ptables applyhook]
SVN rev. 10185 compiled 2008-03-27 on argyre.local (Darwin)

#;1>

This brings up a brief banner, and then the prompt. You can use this pretty much like any other Scheme
system, e.g.,

#;1> (define (twice f) (lambda (x) (f (f x))))
#;2> ((twice (lambda (n) (* n 10))) 3)

2.5 Development environments 6

http://www.gnu.org/software/emacs
http://www.lugaru.com
http://scintilla.sourceforge.net/SciTE.html
http://www.vim.org
http://cybertiggyr.com/gene/15-vim/

CHICKEN User's Manual - The User's Manual
300

Suppose we have already created a file fact.scm containing a function definition.

(define (fact n)
(if (= n 0)
1
(* n (fact (- n 1)))))

We can now load this file and try out the function.

#:3> (load "fact.scm")
; loading fact.scm ...
#:4> (fact 3)

6

The read-eval-print loop (REPL) is the component of the Scheme system that reads a Scheme expression,
evaluates it, and prints out the result. The REPL's prompt can be customized (see the _Using the Interpreter')
but the default prompt, showing the number of the form, is quite convenient.

The REPL also supports debugging commands: input lines beginning with a , (comma) are treated as special
commands. (See the full list.) We can trace Tact to see how it works.

> ,tr fact
> (fact 3)
act 3)
fact 2)
(fact 1)
(fact 0)
fact -> 1
fact -> 1
fact -> 2
fact -> 6

—~ = U1 U1

The command number didn't increment, because the tr command isn't actually a Scheme form.

2.6.1 Scripts

You can use the interpreter to run a Scheme program from the command line. Here we create a program that
does a quick search-and-replace on an input file; the arguments are a regular expression and a replacement
string.

$ cat quickrep.dat

xyzabcghi

abxawxcgh

foonly

$ csi -ss quickrep.scm <quickrep.dat 'a.*c' A
xyzAghi

Agh

foonly

2.6 The Read-Eval-Print loop

http:Using%20the%20interpreter
http://galinha.ucpel.tche.br/Using the interpreter#Toplevel commands

CHICKEN User's Manual - The User's Manual

The -SS option sets several options that work smoothly together to execute a script. You can make the
command directly executable from the shell by inserting a “shebang line' at the beginning of the program.

regex, the regular expression library, is one of the libraries included with Chicken.

(use regex)
(define (process-line line re rplc)
(string-substitute re rplc line 'all))
(define (quickrep re rplc)
(let ((line (read-line)))
(if (not (eof-object? line))
(begin
(display (process-line line re rplc))
(newline)
(quickrep re rplc)))))
;73 Does a lousy job of error checking!
(define (main args)
(quickrep (regexp (car args)) (cadr args)))

The - SS option arranges to call a procedure named main, with the command line arguments, packed in a list,
as its arguments. (There are a number of ways this program could be made more idiomatic Chicken Scheme,
see the rest of the manual for details.)

2.7 The compiler
There are several reasons you might want to compile your code.

e Compiled code executes substantially faster than interpreted code.
® You might want to deploy an application onto machines where the users aren't expected to have
Chicken installed: compiled applications can be self-contained.

The Chicken compiler is provided as the command chicken, but in almost all cases, you will want to use
the CSC command instead. CSC is a convenient driver that automates compiling Scheme programs into C,
compiling C code into object code, and linking the results into an executable file. (Note: in a Windows
environment with Visual Studio, you may find that CSC refers to Microsoft's C# compiler. There are a
number of ways of sorting this out, of which the simplest is to rename one of the two tools, and/or to organize
your PATH according to the task at hand.)

Compiled code can be intermixed with interpreted code on systems that support dynamic loading, which
includes modern versions of *BSD, Linux, Mac OS X, Solaris, and Windows.

We can compile our factorial function, producing a file named fact. so (‘shared object' in Linux-ese, the
same file type is used in OS X and Windows, rather than dy1ib or d11, respectively).

chicken$ csc -dynamic fact.scm
chicken$ csi -quiet

#;1> (load "fact.so")

; loading fact.so

#;2> (fact 6)

720

2.6.1 Scripts 8

http://galinha.ucpel.tche.br/Using the interpreter#Writing Scheme scripts

CHICKEN User's Manual - The User's Manual

On any system, we can just compile a program directly into an executable. Here's a program that tells you
whether its argument is a palindrome.

(define (palindrome? x)
(define (check left right)
(if (>= left right)
#1
(and (char=? (string-ref x left) (string-ref x right))
(check (addl left) (subl right)))))
(check 0 (subl (string-length x))))
(let ((arg (car (command-line-arguments))))
(display
(string-append arg
(if (palindrome? arg)
" is a palindrome\n"
" isn't a palindrome\n"))))

We can compile this program using CSC, creating an executable named palindrome.

$ csc -o palindrome palindrome.scm
$./palindrome level

level is a palindrome

$./palindrome liver

liver isn't a palindrome

Chicken supports separate compilation, using some extensions to Scheme. Let's divide our palindrome
program into a library module (pal-proc.scm) and a client module (pal-user.scm).

Here's the external library. We declare that pal-proc is a “unit', which is the basis of
separately-compiled modules in Chicken. (Units deal with separate compilation, but don't involve separated
namespaces; namespaced module systems are available as eggs.)

;33 Library pal-proc.scm
(declare (unit pal-proc))
(define (palindrome? x)
(define (check left right)
(if (>= left right)
#1
(and (char=? (string-ref x left) (string-ref x right))
(check (addl left) (subl right)))))
(check 0 (subl (string-length x))))

Next we have some client code that “uses' this separately-compiled module.

;73 Client pal-user.scm
(declare (uses pal-proc))
(let ((arg (car (command-line-arguments))))
(display
(string-append arg
(if (palindrome? arg)
" is a palindrome\n"
" isn't a palindrome\n"))))

2.7 The compiler

CHICKEN User's Manual - The User's Manual

Now we can compile and link everything together. (We show the compile and link operations separately, but
they can of course be combined into one command.)

$ csc -c pal-proc.scm
$ csc -c pal-user.scm
$ csc -o pal-separate pal-proc.o pal-user.o
$./pal-separate level
level is a palindrome

2.8 Installing an egg

Installing eggs is quite straightforward on systems that support dynamic loading (again, that would include
*BSD, Linux, Mac OS X, Solaris, and Windows). The command chicken-setup will fetch an egg from
the master Chicken repository, and install it on your local system.

In this example, we install the uri egg, for parsing Uniform Resource Identifiers. The installation produces a
lot of output, which we have edited for space reasons.

$ chicken-setup uri

The extension uri does not exist.
Do you want to download it ? (yes/no/abort) [yes] yes
downloading uri.egg from (www.call-with-current-continuation.org eggs/3 80)
gzip -d -c ../uri.egg | tar xf -
/Users/vmanis/local/bin/csc -feature compiling-extension
-s -02 -dl uri.scm -0 uri.so -check-imports -emit-exports uri.exports
(lots of stuff elided)
rm -fr /Users/vmanis/project/chicken/uri.egg

First, chicken-setup asks us if we want to download the egg. It then uncompresses the egg, compiles the
code, and installs the egg in the local Chicken repository.

Now we can use our new egg.

#;1> (use uri)

; loading /Users/vmanis/local/lib/chicken/3/uri.so

; loading /Users/vmanis/local/lib/chicken/3/coerce-support.so

; loading /Users/vmanis/local/lib/chicken/3/misc-extn-1list-support.so

; loading /Users/vmanis/local/lib/chicken/3/synch-support.so

; loading /Users/vmanis/local/lib/chicken/3/1lookup-table.so

; loading /Users/vmanis/local/lib/chicken/3/misc-extn-control-support.so

#;2> (uri-host (uri "http://www.foobar.org/blah"))

"www.foobar.org"

2.9 Accessing C libraries

Because Chicken compiles to C, and because a foreign function interface is built into the compiler, interfacing
to a C library is quite straightforward. This means that nearly any facility available on the host system is
accessible from Chicken, with more or less work.

2.8 Installing an egg 10

http://www.foobar.org/blah

CHICKEN User's Manual - The User's Manual

Let's create a simple C library, to demonstrate how this works. Here we have a function that will compute and
return the nth Fibonacci number. (This isn't a particularly good use of C here, because we could write this
function just as easily in Scheme, but a real example would take far too much space here.)

int fib(int n) {
int prev = 0, curr = 1;
int next;
int 1i;
for (1 =0; 1 <n; i++) {

next = prev + curr;
prev = curr;
curr = next;

}

return curr;

}

Now we can call this function from Chicken.

#>
extern fib(int n);
<#
(define xfib (foreign-lambda int "fib" int))
(do ((1 0 (+11))) ((>110))
(printf "~A " (xfib 1i)))
(newline)

The syntax #>. . . <# allows you to include literal C (typically external declarations) in your Chicken code.
We access Tib by defining a foreign-lambda for it, in this case saying that the function takes one
integer argument (the int after the function name), and that it returns an integer result (the int before.) Now
we can invoke XT1b as though it were an ordinary Scheme function.

$ gcc -c fib.c

$ csc -0 fib-user fib.o fib-user.scm
$./fib-user

01123581321 3455

Those who are interfacing to substantial C libraries should consider using the easyffi egg, or SWIG.

Back to index.html Next: Basic mode of operation

2.9 Accessing C libraries 11

3 Basic mode of operation

The compiler translates Scheme source code into fairly portable C that can be compiled and linked with most
available C compilers. CHICKEN supports the generation of executables and libraries, linked either statically
or dynamically. Compiled Scheme code can be loaded dynamically, or can be embedded in applications
written in other languages. Separate compilation of modules is fully supported.

The most portable way of creating separately linkable entities is supported by so-called units. A unit is a
single compiled object module that contains a number of toplevel expressions that are executed either when
the unit is the main unit or if the unit is used. To use a unit, the unit has to be declareed as used, like this:

(declare (uses UNITNAME))

The toplevel expressions of used units are executed in the order in which the units appear in the uses
declaration. Units may be used multiple times and uses declarations may be circular (the unit is initialized at
most once). To compile a file as a unit, add a unit declaration:

(declare (unit UNITNAME))

When compiling different object modules, make sure to have one main unit. This unit is called initially and
initializes all used units before executing its toplevel expressions. The main-unit has no unit declaration.

Another method of using definitions in separate source files is to include them. This simply inserts the code in
a given file into the current file:

(include)

Macro definitions are only available when processed by include or require-for-syntax. Macro
definitions in separate units are not available, since they are defined at compile time, i.e the time when that
other unit was compiled (macros can optionally be available at runtime, see define-macro in Substitution
forms and macros).

On platforms that support dynamic loading of compiled code (Windows, most ELF based systems like Linux

or BSD, MacOS X, and others) code can be compiled into a shared object .d11, .so0, .dylib) and loaded
dynamically into a running application.

Previous: Getting started Next: Using the compiler

3 Basic mode of operation 12

http://galinha.ucpel.tche.br/Non-standard macros and special forms
http://galinha.ucpel.tche.br/Non-standard macros and special forms

4 Using the compiler

The interface to chicken is intentionally simple. System dependent makefiles, shell-scripts or batch-files
should perform any necessary steps before and after invocation of chicken. A program named CSC
provides a much simpler interface to the Scheme- and C-compilers and linker. Enter

csc -help

on the command line for more information.

4.1 Compiler command line format
chicken FILENAME {OPTION}

FILENAME is the complete pathname of the source file that is to be translated into C. A filename argument of
- specifies that the source text should be read from standard input. Note that the filename has to be the first
argument to chicken.

Possible options are:

-analyze-only
Stop compilation after first analysis pass.

-benchmark-mode
Equivalentto -no-trace -no-lambda-info -optimize-level 3
-fixnum-arithmetic -disable-interrupts -block -lambda-lift

-block
Enable block-compilation. When this option is specified, the compiler assumes that global variables
are not modified outside this compilation-unit. Specifically, toplevel bindings are not seen by eval
and unused toplevel bindings are removed.

-case-insensitive
Enables the reader to read symbols case insensitive. The default is to read case sensitive (in violation
of R5RS). This option registers the case-insensitive feature identifier.

-check-imports
Search for references to undefined global variables. For each library unit accessed via (declare
(uses ...)), the compiler will search a file named UNITNAME . exports in the current include
path and load its contents into the import-table (if found). Also, export-information for extensions
(accessed through (require-extension ...)) will be searched and stored in the import-table.
If a required extension does not provide explicit export-information a .exports file is searched (as
with used units). After the analysis phase of the compiler, referenced toplevel variables for which no
assignment was found will generate a warning. Also, re-assignments of imported variables will trigger
a warning.

-check-syntax
Aborts compilation process after macro-expansion and syntax checks.

-debug MODES
Enables one or more compiler debugging modes. MODES is a string of characters that select
debugging information about the compiler that will be printed to standard output.

show time needed for compilation

show breakdown of time needed for each compiler pass
show performed optimizations

show invocation parameters

S5 O T

4 Using the compiler 13

CHICKEN User's Manual - The User's Manual

show program-size information and other statistics
show node-matching during simplification

show execution of compiler sub-passes

show lambda-lifting information

show GC statistics during compilation

print the line-number database

print every expression before macro-expansion
lists all unassigned global variable references
display information about experimental features
when printing nodes, use node-tree output

show the real-name mapping table

show expressions after the secondary user pass
show database before lambda-lifting pass

show expressions after lambda-lifting

show unit-information and syntax-/runtime-requirements
show source expressions

show canonicalized expressions

show expressions converted into CPS

show database after each analysis pass

show expressions after each optimization pass
show expressions after each inlining pass

show expressions after complete optimization
show database after final analysis

show expressions after closure conversion

OCONOUUDNWNRIECOCZ20OX oS3 AT oOWn

-debug-level LEVEL
Selects amount of debug-information. LEVEL should be an integer.

-debug-level 0 is equivalent to -no-trace -no-lambda-info
-debug-level 1 is equivalent to -no-trace
-debug-level 2 does nothing (the default)

-disable-interrupts
Equivalent to the (disable-interrupts) declaration. No interrupt-checks are generated for
compiled programs.
-disable-compiler-macros
disable expansion of compiler macros.
-disable-stack-overflow-checks
Disables detection of stack overflows. This is equivalent to running the compiled executable with the
- 1 0 runtime option.
-disable-warning CLASS : Disables specific class of warnings, may be given multiple times. The following
classes are defined

usage warnings related to command-line arguments

type warnings related to type-conversion

ext warnings related to extension libraries

var warnings related to variable- and syntax-definitions and

const warnings related to constant-definitions

syntax syntax-related warnings

redef warnings about redefinitions of standard- or extended-bi

call warnings related to known procedure calls

ffi warnings related to the foreign function interface
-dynamic

4.1 Compiler command line format 14

CHICKEN User's Manual - The User's Manual

This option should be used when compiling files intended to be loaded dynamically into a running
Scheme program.

-epilogue FILENAME
Includes the file named FILENAME at the end of the compiled source file. The include-path is not
searched. This option may be given multiple times.

-emit-exports FILENAME
Write exported toplevel variables to FILENAME.

-emit-external-prototypes-first
Emit prototypes for callbacks defined with define-external before any other foreign
declarations. This is sometimes useful, when C/C++ code embedded into the a Scheme program has
to access the callbacks. By default the prototypes are emitted after foreign declarations.

-explicit-use
Disables automatic use of the units Library, eval and extras. Use this option if compiling a
library unit instead of an application unit.

-extend FILENAME
Loads a Scheme source file or compiled Scheme program (on systems that support it) before
compilation commences. This feature can be used to extend the compiler. This option may be given
multiple times. The file is also searched in the current include path and in the extension-repository.

-extension
Mostly equivalent to -prelude '(define-extension <NAME>)', where <NAME> is the
basename of the currently compiled file. Note that if you want to compile a file as a normal
(dynamically loadable) extension library, you should also pass the - shared option.

-feature SYMBOL
Registers SYMBOL to be a valid feature identifier for cond - expand. Multiple symbols may be
given, if comma-separated.

-fixnum-arithmetic
Equivalent to (fixnum-arithmetic) declaration. Assume all mathematical operations use small
integer arguments.

-heap-size NUMBER
Sets a fixed heap size of the generated executable to NUMBER bytes. The parameter may be followed
by a M (m) or K (K) suffix which stand for mega- and kilobytes, respectively. The default heap size is 5
kilobytes. Note that only half of it is in use at every given time.

-heap-initial-size NUMBER
Sets the size that the heap of the compiled application should have at startup time.

-heap-growth PERCENTAGE
Sets the heap-growth rate for the compiled program at compile time (see: - : hQ).

-heap-shrinkage PERCENTAGE
Sets the heap-shrinkage rate for the compiled program at compile time (see: - : hs).

-help
Print a summary of available options and the format of the command line parameters and exit the
compiler.

-import FILENAME

Read exports from linked or loaded libraries from given file. See also - check-imports. This is
equivalent to declaring (declare (import FILENAME)).Implies -check-imports.
-include-path PATHNAME
Specifies an additional search path for files included via the include special form. This option may
be given multiple times. If the environment variable CHLCKEN INCLUDE PATH is set, it should
contain a list of alternative include pathnames separated by ;.
-inline
Enable procedure inlining for known procedures of a size below the threshold (which can be set
through the -inline-1imit option).
-inline-limit THRESHOLD
Sets the maximum size of a potentially inlinable procedure. The default threshold is 10.
-keyword-style STYLE

4.1 Compiler command line format 15

CHICKEN User's Manual - The User's Manual

Enables alternative keyword syntax, where STYLE may be either prefix (as in Common Lisp),
suffix (asin DSSSL) or none. Any other value is ignored. The default is suffix.
-keep-shadowed-macros
Do not remove macro definitions with the same name as assigned toplevel variables (the default is to
remove the macro definition).
-lambda-lift
Enable the optimization known as lambda-lifting.
-no-lambda-info
Don't emit additional information for each Lambda expression (currently the argument-list, after
alpha-conversion/renaming).
-no-trace
Disable generation of tracing information. If a compiled executable should halt due to a runtime error,
then a list of the name and the line-number (if available) of the last procedure calls is printed, unless
-no-trace is specified. With this option the generated code is slightly faster.
-no-warnings
Disable generation of compiler warnings.
-nursery NUMBER
-stack-size NUMBER
Sets the size of the first heap-generation of the generated executable to NUMBER bytes. The parameter
may be followed by a M (m) or K (K) suffix. The default stack-size depends on the target platform.
-optimize-leaf-routines
Enable leaf routine optimization.
-optimize-level LEVEL
Enables certain sets of optimization options. LEVEL should be an integer.

-optimize-level 0 does nothing.

-optimize-level 1 is equivalent to -optimize-leaf-routines
-optimize-level 2 is currently the same as -optimize-level 1
-optimize-level 3 is equivalent to -optimize-leaf-routines -unsafe

-output-file FILENAME
Specifies the pathname of the generated C file. Default is FILENAME. c.

-postlude EXPRESSIONS
Add EXPRESSIONS after all other toplevel expressions in the compiled file. This option may be
given multiple times. Processing of this option takes place after processing of -epilogue.

-prelude EXPRESSIONS
Add EXPRESSIONS before all other toplevel expressions in the compiled file. This option may be
given multiple times. Processing of this option takes place before processing of -prologue.

-profile

-accumulate-profile
Instruments the source code to count procedure calls and execution times. After the program
terminates (either via an explicit ex1t or implicitly), profiling statistics are written to a file named
PROFILE. Each line of the generated file contains a list with the procedure name, the number of calls
and the time spent executing it. Use the chicken-profile program to display the profiling
information in a more user-friendly form. Enter chicken-profile with no arguments at the
command line to get a list of available options. The -accumulate-profile option is similar to
-profile, but the resulting profile information will be appended to any existing PROFILE file.
chicken-profile will merge and sum up the accumulated timing information, if several entries
for the same procedure calls exist.

-profile-name FILENAME
Specifies name of the generated profile information (which defaults to PROFILE. Implies
-profile.

-prologue FILENAME
Includes the file named FILENAME at the start of the compiled source file. The include-path is not

4.1 Compiler command line format 16

CHICKEN User's Manual - The User's Manual

searched. This option may be given multiple times.
-quiet
Disables output of compile information.
-raw
Disables the generation of any implicit code that uses the Scheme libraries (that is all runtime system
files besides runtime. c and chicken.h).
-require-extension NAME
Loads the extension NAME before the compilation process commences. This is identical to adding
(require-extension NAME) at the start of the compiled program. If -uses NAME is also
given on the command line, then any occurrences of - require-extension NAME are replaced
with (declare (uses NAME)). Multiple names may be given and should be separated by , .
-run-time-macros
Makes macros also available at run-time. By default macros are not available at run-time.
-to-stdout
Write compiled code to standard output instead of creating a . C file.
-unit NAME
Compile this file as a library unit. Equivalent to -prelude "(declare (unit NAME))"
-unsafe
Disable runtime safety checks.
-unsafe-libraries
Marks the generated file for being linked with the unsafe runtime system. This should be used when
generating shared object files that are to be loaded dynamically. If the marker is present, any attempt
to load code compiled with this option will signal an error.
-uses NAME
Use definitions from the library unit NAME. This is equivalent to -prelude "(declare (uses
NAME)) ". Multiple arguments may be given, separated by , .
-no-usual-integrations
Specifies that standard procedures and certain internal procedures may be redefined, and can not be
inlined. This is equivalent to declaring (not usual-integrations).
-version
Prints the version and some copyright information and exit the compiler.
-verbose
Prints progress information to standard output during compilation.

The environment variable CHICKEN OPTIONS can be set to a string with default command-line options for
the compiler.

4.2 Runtime options

After successful compilation a C source file is generated and can be compiled with a C compiler. Executables
generated with CHICKEN (and the compiler itself) accept a small set of runtime options:

-7

Shows a list of the available runtime options and exits the program.
- :aNUMBER
Specifies the length of the buffer for recording a trace of the last invoked procedures. Defaults to 16.

-:b

Enter a read-eval-print-loop when an error is encountered.
-:B

Sounds a bell (ASCII 7) on every major garbage collection.
-:C

4.2 Runtime options 17

CHICKEN User's Manual - The User's Manual

Forces console mode. Currently this is only used in the interpreter (CS1) to force output of the #; N>
prompt even if stdin is not a terminal (for example if running in an emacs buffer under Windows).
-:d
Prints some debug-information at runtime.
-:D
Prints some more debug-information at runtime.
- : TNUMBER
Specifies the maximal number of currently pending finalizers before finalization is forced.
- :hNUMBER
Specifies fixed heap size
- thgPERCENTAGE
Sets the growth rate of the heap in percent. If the heap is exhausted, then it will grow by
PERCENTAGE. The default is 200.
- thiNUMBER
Specifies the initial heap size
- :hmNUMBER
Specifies a maximal heap size. The default is (2GB - 15).
- thsPERCENTAGE
Sets the shrink rate of the heap in percent. If no more than a quarter of PERCENTAGE of the heap is
used, then it will shrink to PERCENTAGE. The default is 50. Note: If you want to make sure that the
heap never shrinks, specify a value of 0. (this can be useful in situations where an optimal heap-size is
known in advance).

-:0
Disables detection of stack overflows at run-time.
-ir
Writes trace output to stderr. This option has no effect with in files compiled with the -no-trace
options.
- : SNUMBER
Specifies stack size.
- : tNUMBER
Specifies symbol table size.
-W
Enables garbage collection of unused symbols. By default unused and unbound symbols are not
garbage collected.
-:X

Raises uncaught exceptions of separately spawned threads in primordial thread. By default uncaught
exceptions in separate threads are not handled, unless the primordial one explicitly joins them. When
warnings are enabled (the default) and - : X is not given, a warning will be shown, though.

The argument values may be given in bytes, in kilobytes (suffixed with K or K), in megabytes (suffixed with M
or M), or in gigabytes (suffixed with G or g). Runtime options may be combined, like - : dC, but everything

following a NUMBER argument is ignored. So - : wh64m is OK, but - : h64mw will not enable GC of unused
symbols.

4.3 Examples

4.3 Examples 18

CHICKEN User's Manual - The User's Manual

4.3.1 A simple example (with one source file)

To compile a Scheme program (assuming a UNIX-like environment) consisting of a single source file,
perform the following steps.

4.3.1.1 Writing your source file
In this example we will assume your source file is called foo.scm:
5 foo.scm
(define (fac n)
(1f (zero? n)
%* n (fac (- n1)))))

(write (fac 10))
(newline)

4.3.1.2 Compiling your program
Compile the file foo.scm:

% csc foo.scm

This will produce the T00 executable:

% 1s
foo foo.scm

4.3.1.3 Running your program
To run your newly compiled executable use:

% foo
3628800

If you geta foo: command not found error, you might want to try with . /00 instead (or, in Unix
machines, modify your PATH environment variable to include your current directory).

4.3.1 A simple example (with one source file)

CHICKEN User's Manual - The User's Manual

4.3.2 An example with multiple files

If multiple bodies of Scheme code are to be combined into a single executable, then we have to compile each
file and link the resulting object files together with the runtime system.

Let's consider an example where your program consists of multiple source files.

4.3.2.1 Writing your source files
The declarations in these files specify which of the compiled files is the main module, and which is the library
module. An executable can only have one main module, since a program has only a single entry-point. In this
case T00.scm is the main module, because it doesn't have a unit declaration:
5 foo.scm
; The declaration marks this source file as dependant on the symbols provided
;, by the bar unit:
(declare (uses bar))
(write (fac 10)) (newline)
bar.scm will be our library:
5 bar.scm
; The declaration marks this source file as the bar unit. The names of the
; units and your files don't need to match.
(declare (unit bar))
(define (fac n)
(if (zero? n)

1
(* n (fac (- n1)))))

4.3.2.2 Compiling and running your program
You should compile your two files with the following commands:

% CSC -C bar.scm
% csc -c foo.scm

That should produce two files, bar.o and T00. 0. They contain the code from your source files in compiled
form.

To link your compiled files use the following command:
% csc foo.o bar.o -o foo

This should produce the T00 executable, which you can run just as in the previous example. At this point you

4.3.2 An example with multiple files 20

CHICKEN User's Manual - The User's Manual

can also erase the * . O files.
You could avoid one step and link the two files just as T00. scm is compiled:

% CSC -C bar.scm
% csc foo.scm bar.o -o foo

Note that if you want to distribute your program, you might want it to follow the GNU Coding Standards. One
relatively easy way to achieve this is to use Autoconf and Automake, two tools made for this specific purpose.

4.4 Extending the compiler

The compiler supplies a couple of hooks to add user-level passes to the compilation process. Before
compilation commences any Scheme source files or compiled code specified using the - extend option are
loaded and evaluated. The parameters user-options-pass, user-read-pass,
user-preprocessor-pass, user-pass, user-pass-2anduser-post-analysis-pass
can be set to procedures that are called to perform certain compilation passes instead of the usual processing
(for more information about parameters see: Supported language.

[parameter] user-options-pass
Holds a procedure that will be called with a list of command-line arguments and should return two
values: the source filename and the actual list of options, where compiler switches have their leading
- (hyphen) removed and are converted to symbols. Note that this parameter is invoked before
processing of the -extend option, and so can only be changed in compiled user passes.

[parameter] user-read-pass
Holds a procedure of three arguments. The first argument is a list of strings with the code passed to
the compiler via - prelude options. The second argument is a list of source files including any files
specified by -prologue and -epilogue. The third argument is a list of strings specified using
-postlude options. The procedure should return a list of toplevel Scheme expressions.

[parameter] user-preprocessor-pass
Holds a procedure of one argument. This procedure is applied to each toplevel expression in the
source file before macro-expansion. The result is macro-expanded and compiled in place of the
original expression.

[parameter] user-pass
Holds a procedure of one argument. This procedure is applied to each toplevel expression after
macro-expansion. The result of the procedure is then compiled in place of the original expression.

[parameter] user-pass-2
Holds a procedure of three arguments, which is called with the canonicalized node-graph as its sole
argument. The result is ignored, so this pass has to mutate the node-structure to cause any effect.

[parameter] user-post-analysis-pass
Holds a procedure that will be called after every performed program analysis pass. The procedure
(when defined) will be called with seven arguments: a symbol indicating the analysis pass, the
program database, the current node graph, a getter and a setter-procedure which can be used to access
and manipulate the program database, which holds various information about the compiled program, a
pass iteration count, and an analysis continuation flag. The getter procedure should be called with two
arguments: a symbol representing the binding for which information should be retrieved, and a
symbol that specifies the database-entry. The current value of the database entry will be returned or
#T, if no such entry is available. The setter procedure is called with three arguments: the symbol and
key and the new value. The pass iteration count currently is meaningful only for the 'opt pass. The
analysis continuation flag will be #°f for the last 'opt pass. For information about the contents of the
program database contact the author.

4.4 Extending the compiler 21

CHICKEN User's Manual - The User's Manual

Loaded code (via the -extend option) has access to the library units extras, srfi-1, srfi-4,
utils, regex and the pattern matching macros. Multithreading is not available.

Note that the macroexpansion/canonicalization phase of the compiler adds certain forms to the source
program. These extra expressions are not seen by USer-preprocessor-pass but by user-pass.

4.5 Distributing compiled C files

It is relatively easy to create distributions of Scheme projects that have been compiled to C. The runtime
system of CHICKEN consists of only two handcoded C files (runtime. c and chicken. h), plus the file
chicken-config.h, which is generated by the build process. All other modules of the runtime system and
the extension libraries are just compiled Scheme code. The following example shows a minimal application,
which should run without changes on the most frequent operating systems, like Windows, Linux or FreeBSD:

Let's take a simple example.

; hello.scm

(print)

% chicken hello.scm -optimize-level 3 -output-file hello.c

Compiled to C, we get hello. c. We need the files chicken.h and runtime. c, which contain the basic
runtime system, plus the three basic library files Library.c, eval. c and extras. c which contain the
same functionality as the library linked into a plain CHICKEN-compiled application, or which is available by
default in the interpreter, CS1i:

cd /tmp
echo '(print "Hello World.")' > hello.scm

cp $CHICKEN BUILD/runtime.c

cp $CHICKEN BUILD/library.c

cp $CHICKEN BUILD/eval.c

cp $CHICKEN BUILD/extras.c

gcc -static -0s -fomit-frame-pointer runtime.c library.c eval.c \
extras.c hello.c -0 hello -1lm

o o o° o° o° of o°

Now we have all files together, and can create an tarball containing all the files:

[}
“

tar cf hello.tar Makefile hello.c runtime.c library.c eval.c extras.c chicken
% gzip hello.tar

This is naturally rather simplistic. Things like enabling dynamic loading, estimating the optimal stack-size and
selecting supported features of the host system would need more configuration- and build-time support. All

this can be addressed using more elaborate build-scripts, makefiles or by using autoconf/automake.

Note also that the size of the application can still be reduced by removing extras and eval and compiling
hello.scm with the -explicit-use option.

For more information, study the CHICKEN source code and/or get in contact with the author.

Previous: index.html

4.5 Distributing compiled C files 22

CHICKEN User's Manual - The User's Manual

Next: Using the interpreter

4.5 Distributing compiled C files

23

5 Using the interpreter

CHICKEN provides an interpreter named CS1 for evaluating Scheme programs and expressions interactively.

5.1 Interpreter command line format
csi {FILENAME|OPTION}

where FILENAME specifies a file with Scheme source-code. If the extension of the source file is . SCm, it
may be omitted. The runtime options described in Compiler command line format are also available for the
interpreter. If the environment variable CSI OPTIONS is set to a list of options, then these options are
additionally passed to every direct or indirect invocation of CS1. Please note that runtime options (like

- I ...)can not be passed using this method. The options recognized by the interpreter are:

Ignore everything on the command-line following this marker. Runtime options (- : . . .) are still
recognized.

-1 -case-insensitive
Enables the reader to read symbols case insensitive. The default is to read case sensitive (in violation
of R5RS). This option registers the case-insensitive feature identifier.

-b -batch
Quit the interpreter after processing all command line options.

-e -eval EXPRESSIONS
Evaluate EXPRESSIONS. This option implies -batch and -quiet, so no startup message will be
printed and the interpreter exits after processing all - eval options and/or loading files given on the
command-line.

-p -print EXPRESSIONS
Evaluate EXPRESSIONS and print the results of each expression using print. Implies -batch and
-quiet.

-P -pretty-print EXPRESSIONS
Evaluate EXPRESSIONS and print the results of each expression using pretty-print. Implies
-batch and -quiet.

-D -feature SYMBOL
Registers SYMBOL to be a valid feature identifier for cond - expand and feature?.

-h -help
Write a summary of the available command line options to standard output and exit.

-I -include-path PATHNAME
Specifies an alternative search-path for files included via the include special form. This option may
be given multiple times. If the environment variable CHICKEN INCLUDE PATH is set, it should
contain a list of alternative include pathnames separated by ;.

-k -keyword-style STYLE
Enables alternative keyword syntax, where STYLE may be either prefix (as in Common Lisp) or
suffix (as in DSSSL). Any other value is ignored.

-n -no-init
Do not load initialization-file. If this option is not given and the file . /.csirc or $HOME/.csirc
exists, then it is loaded before the read-eval-print loop commences.

-W -no-warnings
Disables any warnings that might be issued by the reader or evaluated code.

-q -quiet
Do not print a startup message. Also disables generation of call-trace information for interpreted code.

-s -script PATHNAME

5 Using the interpreter 24

http://galinha.ucpel.tche.br/Using%20the%20compiler#Compiler%20command%20line%20format

CHICKEN User's Manual - The User's Manual

This is equivalent to -batch -quiet -no-init PATHNAME. Arguments following
PATHNAME are available by using command - line-arguments and are not processed as
interpreter options. Extra options in the environment variable CSI OPTIONS are ignored.

-ss PATHNAME
The same as -S PATHNAME but invokes the procedure main with the value of
(command-line-arguments) as its single argument. If the main procedure returns an integer
result, then the interpreter is terminated, returning the integer as the status code back to the invoking
process. Any other result terminates the interpreter with a zero exit status.

-R -require-extension NAME
Equivalent to evaluating (require-extension NAME).

-v -version
Write the banner with version information to standard output and exit.

5.2 Writing Scheme scripts

Since UNIX shells use the #! notation for starting scripts, anything following the characters #! is ignored,
with the exception of the special symbols #!optional, #!key, #!restand#!eof.

The easiest way is to use the - SCript option like this:

% cat foo

#! /usr/local/bin/csi -script

(print (eval (with-input-from-string
(car (command-line-arguments))
read)))

chmod +x foo
foo "(+ 3 4)"

~ 0@ o°

The parameter command - line-arguments is set to a list of the parameters that were passed to the
Scheme script. Scripts can be compiled to standalone executables (don't forget to declare used library units).

CHICKEN supports writing shell scripts in Scheme for these platforms as well, using a slightly different
approach. The first example would look like this on Windows:

C:>type foo.bat
@;csibatch %0 %1 %2 %3 %4 %5 %6 %7 %8 %9
(print (eval (with-input-from-string
(car (command-line-arguments))
read)))

C:>foo "(+ 3 4)"
7

Like UNIX scripts, batch files can be compiled. Windows batch scripts do not accept more than 8 arguments.

Since it is sometimes useful to run a script into the interpreter without actually running it (for example to test
specific parts of it), the option - SS can be used as an alternative to -script. -ss PATHNAME is
equivalent to -script PATHNAME but invokes (main (command-line-arguments)) after loading
all top-level forms of the script file. The result of main is returned as the exit status to the shell. Any
non-numeric result exits with status zero:

5.1 Interpreter command line format 25

CHICKEN User's Manual - The User's Manual

% cat hi.scm

(define (main args)

(print "Hi, " (car args))
0)

csi -ss hi.scm you
i, you

csi -q
;1> ,1 hi.scm
;2> (main (list "ye all"))
i, ye all

H O I H H ° I °

;3>

5.3 Toplevel commands

The toplevel loop understands a number of special commands:

9

Show summary of available toplevel commands.
J FILENAME ...
Load files with given FILENAMEs
,In FILENAME ...
Load files and print result(s) of each top-level expression.
,p EXP
Pretty-print evaluated expression EXP.
,d EXP
Describe result of evaluated expression EXP.
,du EXP
Dump contents of the result of evaluated expression EXP.
,dur EXP N
Dump N bytes of the result of evaluated expression EXP.
,.exn
Describes the last exception that occurred and adds it to the result history (it can be accessed using the
notation).
q
Quit the interpreter.
By
Show system information.
,s TEXT ...
Execute shell-command.
,t EXP
Evaluate form and print elapsed time.
x EXP
Pretty-print macroexpanded expression EXP (the expression is not evaluated).
,tr SYMBOL ...
Enables tracing of the toplevel procedures with the given names.

#;1> (fac 10) ==> 3628800
#;2> ,tr fac

#;3> (fac 3)

| (fac 3)

| (fac 2)

5.2 Writing Scheme scripts 26

CHICKEN User's Manual - The User's Manual

| (fac 1)

| (fac 0)

| fac -> 1

| fac ->1

| fac -> 2

| fac -> 6 ==> 6
#;4> ,utr fac

#,5> (fac 3) ==> 6

k

;utr SYMBOL ...
Disables tracing of the given toplevel procedures.

,br SYMBOL ...
Sets a breakpoint at the procedures named SYMBOL Breakpoint can also be trigged using the
breakpoint procedure.

,ubr SYMBOL ...
Removes breakpoints.

,C
Continues execution from the last invoked breakpoint.

,breakall
Enable breakpoints for all threads (this is the default).

,breakonly THREAD
Enable breakpoints only for the thread returned by the expression THREAD.

,info
Lists traced procedures and breakpoints.

,step EXPR
Evaluates EXPR in single-stepping mode. On each procedure call you will be presented with a menu
that allows stepping to the next call, leaving single-stepping mode or triggering a breakpoint. Note
that you will see some internal calls, and unsafe or heavily optimized compiled code might not be
stepped at all. Single-stepping mode is also possible by invoking the singlestep procedure.

You can define your own toplevel commands using the toplevel-command procedure:

5.4 toplevel-command
[procedure] (toplevel-command SYMBOL PROC [HELPSTRING])

Defines or redefines a toplevel interpreter command which can be invoked by entering , SYMBOL. PROC will
be invoked when the command is entered and may read any required argument via read (or read-line). If
the optional argument HELPSTRING is given, it will be listed by the , ? command.

5.5 History access

The interpreter toplevel accepts the special object #[INDEX] which returns the result of entry number
INDEX in the history list. If the expression for that entry resulted in multiple values, the first result (or an
unspecified value for no values) is returned. If no INDEX is given (and if a whitespace or closing paranthesis
character follows the #, then the result of the last expression is returned. Note that the value returned is
implicitly quoted.

5.3 Toplevel commands 27

CHICKEN User's Manual - The User's Manual

5.6 set-describer!
[procedure] (set-describer! TAG PROC)

Sets a custom description handler that invokes PROC when the , d command is invoked with a record-type
object that has the type TAG (a symbol). PROC is called with two arguments: the object to be described and an
output-port. It should write a possibly useful textual description of the object to the passed output-port. For
example:

#;1> (define-record point x vy)
#;2> (set-describer! 'point
(lambda (pt o)
(print "a point with x=" (point-x pt) " and y=" (point-y pt))))
#;3> ,d (make-point 1 2)
a point with x=1 and y=2

5.7 Auto-completion and edition

On platforms that support it, it is possible to get auto-completion of symbols, history (over different CSi
sessions) and a more feature-full editor for the expressions you type using the

http://www.call-with-current-continuation.org/eggs/readline.html egg by Tony Garnock Jones. It is very
useful for interactive use of csi.
To enable it install the egg and put this in your ~/ . cs1irc file:
(use readline regex)
(current-input-port (make-gnu-readline-port))
(gnu-history-install-file-manager

(string-append (or (getenv "HOME") ".") "/.csi.history"))

More details are available in the egg's documentation.

5.8 Accessing documentation
You can access the manual directly from €S1 using the man extension by Mario Domenech Goulart.
To enable it install the egg and put this in your ~/ . csirc file:

(use man)
(man:load)

Then, in CS1, you can search for definitions using man:search as in:

(man:search "case")

5.6 set-describer! 28

http://www.call-with-current-continuation.org/eggs/readline.html
http://www.call-with-current-continuation.org/eggs/readline.html
http://www.call-with-current-continuation.org/eggs/man.html

CHICKEN User's Manual - The User's Manual

Note that the search uses regular expressions. To view the documentation for one entry from the manual, use
man:help asin:

(man:help "case-lambda")

Note: Currently the documentation provided by the man extension corresponds to Chicken's 2.429, one of the
last releases whose documentation was in the texinfo format (the format the man extension parses).

Previous: Using the compiler
Next: Supported language

5.8 Accessing documentation 29

6 Supported language

¢ Deviations from the standard

¢ Extensions to the standard

¢ Non-standard read syntax

¢ Non-standard macros and special forms

¢ Pattern matchin

¢ Declarations

¢ Parameters

¢ Unit library basic Scheme definitions

¢ Unit eval evaluation and macro-handling
¢ Unit data-structures data structures

¢ Unit ports I/O ports

¢ Unit files File and pathname operations

¢ Unit extras useful utility definitions

® Unit srfi-1 list library

¢ Unit srfi-4 homogeneous numeric vectors
® Unit srfi-13 string library

¢ Unit srfi-14 character set library

¢ Unit srfi-69 hash tables

¢ Unit match pattern matching runtime-support
¢ Unit regex regular expressions

¢ Unit srfi-18 multithreading

¢ Unit posix Unix-like services

¢ Unit utils Shell scripting and file operations
¢ Unit tcp basic TCP-sockets

¢ Unit lolevel low-level operations

Previous: Using the interpreter

Next: Interface to external functions and variables

6 Supported language

7 Deviations from the standard

Identifiers are by default case-sensitive (see Compiler command line format).

[4.1.3] The maximal number of arguments that may be passed to a compiled procedure or macro is 120. A
macro-definition that has a single rest-parameter can have any number of arguments.

[4.2.2] Letrec does evaluate the initial values for the bound variables sequentially and not in parallel, that
is:

(letrec ((x 1) (y 2)) (cons x y))
is equivalent to

(let ((x (void)) (y (void)))
(set! x 1)
(set! y 2)
(cons x vy))

where RS5RS requires

(let ((x (void)) (y (void)))
(let ((tmpl 1) (tmp2 2))
(set! x tmpl)
(set! y tmp2)
(cons xvy)))

[4.3] syntax-rules macros are not provided but available separately.

[6.1] equal? compares all structured data recursively, while R5RS specifies that eqVv? is used for data other
than pairs, strings and vectors.

[6.2.4] The runtime system uses the numerical string-conversion routines of the underlying C library and so
does only understand standard (C-library) syntax for floating-point constants.

[6.2.5] There is no built-in support for rationals, complex numbers or extended-precision integers (bignums).
The routines complex?, real? and rational? are identical to the standard procedure number?. The
procedures numerator, denominator, rationalize, make-rectangular and make-polar are
not implemented. Fixnums are limited to A+230 (or A+262 on 64-bit hardware). Support for extended
numbers is available as a separate package, provided the GNU multiprecision library is installed.

[6.2.6] The procedure sString->number does not obey read/write invariance on inexact numbers.

[6.4] The maximum number of values that can be passed to continuations captured using
call-with-current-continuationis 120.

[6.5] Code evaluated in scheme-report-environment or null-environment still sees
non-standard syntax.

[6.6.2] The procedure char-ready? always returns #t for terminal ports. The procedure read does not
obey read/write invariance on inexact numbers.

[6.6.3] The procedures write and display do not obey read/write invariance to inexact numbers.

7 Deviations from the standard 31

http://galinha.ucpel.tche.br:8080/Using%20the%20compiler#Compiler%20command%20line%20format

CHICKEN User's Manual - The User's Manual

[6.6.4] The transcript-onand transcript-off procedures are not implemented.

Previous: Supported language

Next: Extensions to the standard

7 Deviations from the standard

32

8 Extensions to the standard

[2.1] Identifiers may contain special characters if delimited with | ... |.

[2.3] The brackets [...] and the braces { ... } are provided as an alternative syntax for (...). A
number of reader extensions is provided. See Non-standard read syntax.

[4] Numerous non-standard macros are provided. See Non-standard macros and special forms for more
information.

[4.1.4] Extended DSSSL style lambda lists are supported. DSSSL parameter lists are defined by the following
grammar:

<parameter-list> ==> <required-parameter>*

[(#'optional <optional-parameter>*)]

[(#!rest <rest-parameter>)]

[(#'key <keyword-parameter>*)]
<required-parameter> ==> <ident>
<optional-parameter> ==> <ident>

| (<ident> <initializer>)
<rest-parameter> ==> <ident>
<keyword-parameter> ==> <ident>

| (<ident> <initializer>)
<initializer> ==> <expr>

When a procedure is applied to a list of arguments, the parameters and arguments are processed from left to
right as follows:

¢ Required-parameters are bound to successive arguments starting with the first argument. It shall be an
error if there are fewer arguments than required-parameters.

¢ Next, the optional-parameters are bound with the remaining arguments. If there are fewer arguments
than optional-parameters, then the remaining optional-parameters are bound to the result of the
evaluation of their corresponding <initializer>, if one was specified, otherwise #f. The corresponding
<initializer> is evaluated in an environment in which all previous parameters have been bound.

e If there is a rest-parameter, then it is bound to a list containing all the remaining arguments left over
after the argument bindings with required-parameters and optional-parameters have been made.

o If #! key was specified in the parameter-list, there should be an even number of remaining
arguments. These are interpreted as a series of pairs, where the first member of each pair is a keyword
specifying the parameter name, and the second member is the corresponding value. If the same
keyword occurs more than once in the list of arguments, then the corresponding value of the first
keyword is the binding value. If there is no argument for a particular keyword-parameter, then the
variable is bound to the result of evaluating <initializer>, if one was specified, otherwise #f. The
corresponding <initializer> is evaluated in an environment in which all previous parameters have
been bound.

Needing a special mention is the close relationship between the rest-parameter and possible
keyword-parameters. Declaring a rest-parameter binds up all remaining arguments in a list, as described
above. These same remaining arguments are also used for attempted matches with declared
keyword-parameters, as described above, in which case a matching keyword-parameter binds to the
corresponding value argument at the same time that both the keyword and value arguments are added to the
rest parameter list. Note that for efficiency reasons, the keyword-parameter matching does nothing more than
simply attempt to match with pairs that may exist in the remaining arguments. Extra arguments that don't
match are simply unused and forgotten if no rest-parameter has been declared. Because of this, the caller of a
procedure containing one or more keyword-parameters cannot rely on any kind of system error to report

8 Extensions to the standard 33

CHICKEN User's Manual - The User's Manual

wrong keywords being passed in.
It shall be an error for an <ident> to appear more than once in a parameter-list.

If there is no rest-parameter and no keyword-parameters in the parameter-list, then it shall be an error for any
extra arguments to be passed to the procedure.

Example:

((lambda x x) 3 4 5 6) => (345 6)
((lambda (x y #!rest z) z)

345 6) => (5 6)

((lambda (x y #'optional z #!'rest r #!'key 1 (j 1))
(list x y z i: 1 j: j))
3451i:61:7) => (3451i: 6 j: 1)

[4.1.6] set! for unbound toplevel variables is allowed. set! (PROCEDURE ...) ...) issupported, as
CHICKEN implements SRFI-17. [4.2.1] The cond form supports SRFI-61.

[4.2.2] Tt is allowed for initialization values of bindings in a Let rec construct to refer to previous variables
in the same set of bindings, so

(letrec ((foo 123)
(bar foo))
bar)

is allowed and returns 123.
[4.2.3] (begin) is allowed in non-toplevel contexts and evaluates to an unspecified value.
[4.2.5] Delayed expressions may return multiple values.

[5.2.2] CHICKEN extends standard semantics by allowing internal definitions everywhere, and not only at the
beginning of a body. A set of internal definitions is equivalent to a Let rec form enclosing all following
expressions in the body:

(let ((foo 123))
(bar)
(define foo 456)
(baz foo))

expands into

(let ((foo 123))
(bar)
(letrec ((foo 456))
(baz foo)))

[5.2] define with a single argument is allowed and initializes the toplevel or local binding to an unspecified
value. CHICKEN supports curried definitions, where the variable name may also be a list specifying a name

and a nested lambda list. So

(define ((make-adder x) y) (+ x y))

8 Extensions to the standard 34

http://srfi.schemers.org/srfi-17/srfi-17.html
http://srfi.schemers.org/srfi-61

CHICKEN User's Manual - The User's Manual

is equivalent to
(define (make-adder x) (lambda (y) (+ x y)))

[6] CHICKEN provides numerous non-standard procedures. See the manual sections on library units for more
information.

[6.2.4] The special IEEE floating-point numbers +nan, +inf and -inf are supported, as is negative zero.

[6.3.4] User defined character names are supported. See char-name. Characters can be given in
hexadecimal notation using the #AxXX syntax where XX specifies the character code. Character codes above
255 are supported and can be read (and are written) using the AuXXXX and AUXXXXXXXX notations.

Non-standard characters names supported are #\tab, #\linefeed, #\return, #\alarm, #\vtab,
#\nul, #\page, #\esc, #\delete and #\backspace.

[6.3.5] CHICKEN supports special characters preceded with a backslash \ in quoted string constants. \n
denotes the newline-character, \r carriage return, \b backspace, \t TAB, \v vertical TAB, \a alarm, \f formfeed,
\xXX a character with the code XX in hex and \uXXXX (and \UXXXXXXXX) a unicode character with the code
XXXX. The latter is encoded in UTF-8 format.

The third argument to Substring is optional and defaults to the length of the string.

[6.4] Torce called with an argument that is not a promise returns that object unchanged. Captured
continuations can be safely invoked inside before- and after-thunks of a dynamic-wind form and execute
in the outer dynamic context of the dynamic-wind form.

Implicit non-multival continuations accept multiple values by discarding all but the first result. Zero values
result in the continuation receiving an unspecified value. Note that this slight relaxation of the behaviour of
returning mulitple values to non-multival continuations does not apply to explicit continuations (created with
call-with-current-continuation).

[6.5] The second argument to eval is optional and defaults to the value of
(interaction-environment). scheme-report-environment and null-environment
accept an optional 2nd parameter: if not #f (which is the default), toplevel bindings to standard procedures
are mutable and new toplevel bindings may be introduced.

[6.6] The tilde character (~) is automatically expanded in pathnames. Additionally, if a pathname starts with
$VARIABLE. . ., then the prefix is replaced by the value of the given environment variable.

[6.6.1] if the procedures current-input-port and current-output-port are called with an
argument (which should be a port), then that argument is selected as the new current input- and output-port,
respectively. The procedures open-input-file, open-output-file,with-input-from-file,
with-output-to-file, call-with-input-fileand call-with-output-file acceptan
optional second (or third) argument which should be one or more keywords, if supplied. These arguments
specify the mode in which the file is opened. Possible values are the keywords #: text, #:binary or
#:append.

[6.7] The exit procedure exits a program right away and does not invoke pending dynamic-wind thunks.

Previous: Deviations from the standard

Next: Non-standard read syntax

8 Extensions to the standard 35

CHICKEN User's Manual - The User's Manual

8 Extensions to the standard

36

9 Non-standard read syntax

9.1 Multiline Block Comment
... |#

A multiline block comment. May be nested. Implements SRFI-30

9.2 Expression Comment

#; EXPRESSION

Treats EXPRESSION as a comment. That is, the comment runs through the whole S-expression, regardless of

newlines, which saves you from having to comment out every line, or add a newline in the middle of your
parens to make the commenting of the last line work, or other things like that.

9.3 External Representation
#, (CONSTRUCTORNAME DATUM ...)

Allows user-defined extension of external representations. (For more information see the documentation for
SRFI-10)

9.4 Syntax Expression
#'EXPRESSION

An abbreviation for (syntax EXPRESSION).

9.5 Location Expression
#$EXPRESSION

An abbreviation for (location EXPRESSION).

9 Non-standard read syntax

37

http://srfi.schemers.org/srfi-30/srfi-30.html
http://srfi.schemers.org/srfi-10/srfi-10.html

CHICKEN User's Manual - The User's Manual
9.6 Keyword
#:SYMBOL

Syntax for keywords. Keywords are symbols that evaluate to themselves, and as such don't have to be quoted.

9.7 Multiline String Constant
#<<TAG

Specifies a multiline string constant. Anything up to a line equal to TAG (or end of file) will be returned as a
single string:

(define msg #<<END
"Hello, world!", she said.
END

)

is equivalent to

(define msg "\"Hello, world!\", she said.")

9.8 Multiline String Constant with Embedded Expressions
#<#TAG

Similar to #<<, but allows substitution of embedded Scheme expressions prefixed with # and optionally
enclosed in curly brackets. Two consecutive #s are translated to a single #:

(define three 3)

(display #<#EOF

This is a simple string with an embedded “##' character
and substituted expressions: (+ three 99) ==> #(+ three 99)
(three is "#{three}")

EOF

)

prints
This is a simple string with an embedded "#' character

and substituted expressions: (+ three 99) ==> 102
(three is "3")

9.6 Keyword 38

CHICKEN User's Manual - The User's Manual
9.9 Foreign Declare
#> ... <#

Abbreviation for foreign-declare " ... ").

9.10 Sharp Prefixed Symbol
#s. ..

Reads like a normal symbol.

9.11 Bang
#. ..

Interpretation depends on the directly following characters. Only the following are recognized. Any other case
results in a read error.

9.11.1 Line Comment

o [f followed by whitespace or a slash, then everything up the end of the current line is ignored

9.11.2 Eof Object

e If followed by the character sequence e0T, then the (self-evaluating) end-of-file object is returned

9.11.3 DSSSL Formal Parameter List Annotation

e If followed by any of the character sequences optional, rest or key, then a symbol with the
same name (and prefixed with #!) is returned

9.11.4 Read Mark Invocation

o If a read mark with the same name as the token is registered, then its procedure is called and the result
of the read-mark procedure will be returned

9.9 Foreign Declare 39

CHICKEN User's Manual - The User's Manual

9.12 Case Sensitive Expression
#cs. ..

Read the next expression in case-sensitive mode (regardless of the current global setting).

9.13 Case Insensitive Expression

#ci...

Read the next expression in case-insensitive mode (regardless of the current global setting).

9.14 Conditional Expansion
#+FEATURE EXPR

Equivalent to

(cond-expand (FEATURE EXPR) (else))

Previous: Extensions to the standard

Next: Non-standard macros and special forms

9.12 Case Sensitive Expression

40

10 Non-standard macros and special forms

10.1 Making extra libraries and extensions available

10.1.1 require-extension

[syntax] (require-extension ID ...)
[syntax] (use ID ...)

This form does all the necessary steps to make the libraries or extensions given in ID . .. available. It loads
syntactic extensions, if needed and generates code for loading/linking with core library modules or separately
installed extensions. USe is just a shorter alias for require-extension. This implementation of
require-extension is compliant with SRFI-55 (see the SRFI-55 document for more information).

During interpretation/evaluation require-extension performs one of the following:

e If ID names a built-in feature chicken srfi-0 srfi-2 srfi-6 srfi-8 srfi-9
srfi-10 srfi-17 srfi-23 srfi-30 srfi-39 srfi-55, then nothing is done.

e If ID names one of the syntactic extensions chicken-more-macros chicken-ffi-macros,
then this extension will be loaded.

e If ID names one of the core library units shipped with CHICKEN, then a (load-library 'ID)
will be performed.

e If ID names an installed extension with the syntax or require-at- runtime attribute, then the
equivalent of (require-for-syntax 'ID) is performed, probably followed by (require
. . .) for any run-time requirements.

e Otherwise, (require-extension ID) isequivalentto (require 'ID).

During compilation, one of the following happens instead:

e If ID names a built-in feature chicken srfi-0 srfi-2 srfi-6 srfi-8 srfi-9
srfi-10 srfi-17 srfi-23 srfi-30 srfi-39 srfi-55, then nothing is done.

e If ID names one of the syntactic extensions chicken-more-macros chicken-ffi-macros,
then this extension will be loaded at compile-time, making the syntactic extensions available in
compiled code.

e If ID names one of the core library units shipped with CHICKEN, or if the option -uses ID has
been passed to the compiler, then a (declare (uses ID)) is generated.

e If ID names an installed extension with the syntax or require-at- runtime attribute, then the
equivalent of (require-for-syntax 'ID) is performed, and code is emitted to (require

.) any needed run-time requirements.
e Otherwise (require-extension ID) isequivalentto (require 'ID).

To make long matters short - just use require-extension and it will normally figure everything out for
dynamically loadable extensions and core library units.

ID should be a pure extension name and should not contain any path prefixes (for example dir/lib...)is
illegal).

ID may also be a list that designates an extension-specifier. Currently the following extension specifiers are
defined:

10 Non-standard macros and special forms 41

http://srfi.schemers.org/srfi-55/srfi-55.html
http://srfi.schemers.org/srfi-55/srfi-55.html

CHICKEN User's Manual - The User's Manual

e (srfi NUMBER .. .) isrequired for SRFI-55 compatibility and is fully implemented
e (version ID NUMBER) is equivalent to ID, but checks at compile-time whether the extension
named ID is installed and whether its version is equal or higher than NUMBER. NUMBER may be a
string or a number, the comparison is done lexicographically (using String>=7?).
See also: set-extension-specifier!
When syntax extensions are loaded that redefine the global toplevel macro-expander (for example the

syntax-case extension), then all remaining expression in the same toplevel form are still expanded with the old
toplevel macro-expander.

10.1.2 define-extension

[syntax] (define-extension NAME CLAUSE ...)

This macro simplifies the task of writing extensions that can be linked both statically and dynamically. If
encountered in interpreted code or code that is compiled into a shared object (specifically if compiled with the
feature chicken-compile-shared, done automatically by €SC when compiling with the - shared or
-dynamic option) then the code given by clauses of the form

(dynamic EXPRESSION ...)

are inserted into the output as a begin form.

If compiled statically (specifically if the feature chicken-compile-shared has not been given), then
this form expands into the following:

(declare (unit NAME))
(provide 'NAME)

and all clauses of the form

(static EXPRESSION ...)

all additionally inserted into the expansion.
As a convenience, the clause

(export IDENTIFIER ...)

is also allowed and is identical to (declare (export IDENTIFIER ...)) (unless the
define-extension form occurs in interpreted code, in with it is simply ignored).

Note that the compiler option -extension NAME is equivalent to prefixing the compiled file with

(define-extension NAME)

10.1.1 require-extension 42

http://www.call-with-current-continuation.org/eggs/syntax-case.html

CHICKEN User's Manual - The User's Manual

10.2 Binding forms for optional arguments

10.2.1 optional
[syntax] (optional ARGS DEFAULT)

Use this form for procedures that take a single optional argument. If ARGS is the empty list DEFAULT is
evaluated and returned, otherwise the first element of the list ARGS. It is an error if ARGS contains more than
one value.

(define (incr x . i) (+ x (optional i 1)))
(incr 10) ==> 11
(incr 12 5) ==> 17

10.2.2 case-lambda
[syntax] (case-lambda (LAMBDA-LIST1 EXP1 ...) ...)
Expands into a lambda that invokes the body following the first matching lambda-list.

(define plus
(case-lambda
(() o)
(x) x)
(xy) (+ xvy))
(xy z) (+ (+ xy) z))
args (apply + args))))

X
X

(
(
(
(

(plus) ==> 0
(plus 1) ==> 1
(plus 1 2 3) => 6

For more information see the documentation for SRFI-16

10.2.3 let-optionals
[syntax] (let-optionals ARGS ((VAR1 DEFAULT1) ...) BODY ...)

Binding constructs for optional procedure arguments. ARGS should be a rest-parameter taken from a
lambda-list. Let-optionals binds VARL ... to available arguments in parallel, or to DEFAULT1 ...
if not enough arguments were provided. Llet-optionals* binds VAR1 ... sequentially, so every
variable sees the previous ones. it is an error if any excess arguments are provided.

(let-optionals '(one two) ((a 1) (b 2) (c 3))
(list a b c)) ==> (one two 3)

10.2 Binding forms for optional arguments 43

http://srfi.schemers.org/srfi-16/srfi-16.html

CHICKEN User's Manual - The User's Manual

10.2.4 let-optionals*
[syntax] (let-optionals* ARGS ((VAR1 DEFAULT1) ... [RESTVAR]) BODY ..

Binding constructs for optional procedure arguments. ARGS should be a rest-parameter taken from a

.)

lambda-list. Let-optionals binds VARL ... to available arguments in parallel, or to DEFAULT1 ...

if not enough arguments were provided. Llet-optionals* binds VAR1 ... sequentially, so every
variable sees the previous ones. If a single variable RESTVAR is given, then it is bound to any remaining
arguments, otherwise it is an error if any excess arguments are provided.

(let-optionals* '(one two) ((a 1) (b 2) (c a))
(list a b c)) ==> (one two one)

10.3 Other binding forms

10.3.1 and-let*
[syntax] (and-let* (BINDING ...) EXP1 EXP2 ...)

SRFI-2. Bind sequentially and execute body. BINDING can be a list of a variable and an expression, a list
with a single expression, or a single variable. If the value of an expression bound to a variable is #T, the

and- let* form evaluates to #f (and the subsequent bindings and the body are not executed). Otherwise the
next binding is performed. If all bindings/expressions evaluate to a true result, the body is executed normally

and the result of the last expression is the result of the and - Let* form. See also the documentation for
SRFI-2.

10.3.2 rec

[syntax] (rec NAME EXPRESSION)
[syntax] (rec (NAME VARIABLE ...) BODY ...)

Allows simple definition of recursive definitions. (rec NAME EXPRESSION) is equivalentto (letrec
((NAME EXPRESSION)) NAME) and (rec (NAME VARIABLE ...) BODY ...) isthe same as

(letrec ((NAME (lambda (VARIABLE ...) BODY ...))) NAME).

10.3.3 cut

[syntax] (cut SLOT ...)
[syntax] (cute SLOT ...)

Syntactic sugar for specializing parameters.

10.2.4 let-optionals*

44

http://srfi.schemers.org/srfi-2/srfi-2.html
http://srfi.schemers.org/srfi-26/srfi-26.html

CHICKEN User's Manual - The User's Manual

10.3.4 define-values
[syntax] (define-values (NAME ...) EXP)

Defines several variables at once, with the result values of expression EXP.

10.3.5 fluid-let
[syntax] (fluid-let ((VAR1 X1) ...) BODY ...)

Binds the variables VAR1 ... dynamically to the values X1 ... during execution of BODY ...

10.3.6 let-values
[syntax] (let-values (((NAME ...) EXP) ...) BODY ...)

Binds multiple variables to the result values of EXP All variables are bound simultaneously.

10.3.7 let*-values
[syntax] (let*-values (((NAME ...) EXP) ...) BODY ...)
Binds multiple variables to the result values of EXP The variables are bound sequentially.

(let*-values (((a b) (values 2 3))

((p) (+ ab)))
p) ==> 5

10.3.8 letrec-values
[syntax] (letrec-values (((NAME ...) EXP) ...) BODY ...)
Binds the result values of EXP . .. to multiple variables at once. All variables are mutually recursive.
(letrec-values (((odd even)
(values
(Lambda (n) (if (zero? n) #f (even (subl n))))

(Lambda (n) (if (zero? n) #t (odd (subl n)))))
(odd 17)) ==> #t

10.3.4 define-values

)

)

45

CHICKEN User's Manual - The User's Manual

10.3.9 parameterize

[syntax] (parameterize ((PARAMETER1 X1) ...) BODY ...)

Binds the parameters PARAMETERL . .. dynamically to the values X1 ... during execution of BODY

. . .. (see also: make - parameter in Parameters). Note that PARAMETER may be any expression that
evaluates to a parameter procedure.

10.3.10 receive

[syntax] (receive (NAME1l ... [. NAMEn]) VALUEEXP BODY ...)
[syntax] (receive VALUEEXP)

SRFI-8. Syntactic sugar for call-with-values. Binds variables to the result values of VALUEEXP and
evaluates BODY

The syntax
(receive VALUEEXP)

is equivalent to

(receive _ VALUEEXP)

10.3.11 set!-values
[syntax] (set!-values (NAME ...) EXP)

Assigns the result values of expression EXP to multiple variables.

10.4 Substitution forms and macros

10.4.1 define-constant
[syntax] (define-constant NAME CONST)

Define a variable with a constant value, evaluated at compile-time. Any reference to such a constant should
appear textually after its definition. This construct is equivalent to define when evaluated or interpreted.
Constant definitions should only appear at toplevel. Note that constants are local to the current compilation
unit and are not available outside of the source file in which they are defined. Names of constants still exist in
the Scheme namespace and can be lexically shadowed. If the value is mutable, then the compiler is careful to
preserve its identity. CONST may be any constant expression, and may also refer to constants defined via
define-constant previously. This for should only be used at top-level.

10.3.9 parameterize 46

CHICKEN User's Manual - The User's Manual

10.4.2 define-inline

[syntax] (define-inline (NAME VAR ... [. VAR]) BODY ...)
[syntax] (define-inline NAME EXP)

Defines an inline procedure. Any occurrence of NAME will be replaced by EXP or (lambda (VAR ...
[. VAR]) BODY ...).Thisis similar to a macro, but variable-names and -scope will be correctly
handled. Inline substitutions take place after macro-expansion. EXP should be a lambda-expression. Any
reference to NAME should appear textually after its definition. Note that inline procedures are local to the
current compilation unit and are not available outside of the source file in which they are defined. Names of
inline procedures still exist in the Scheme namespace and can be lexically shadowed. This construct is
equivalent to define when evaluated or interpreted. Inline definitions should only appear at toplevel.

10.4.3 define-macro

[syntax] (define-macro (NAME VAR ... [. VAR]) EXP1 ...)
[syntax] (define-macro NAME (lambda (VAR ... [. VAR]) EXP1 ...))
[syntax] (define-macro NAME1l NAME2)

Define a globally visible macro special form. The macro is available as soon as it is defined, i.e. it is
registered at compile-time. If the file containing this definition invokes eval and the declaration
run-time-macros (or the command line option - run-time-macros) has been used, then the macro is
visible in evaluated expressions during runtime. The second possible syntax for define-macro is allowed
for portability purposes only. In this case the second argument must be a lambda-expression or a macro name.
Only global macros can be defined using this form. (define-macro NAME1l NAME2) simply copies the
macro definition from NAME2 to NAME1, creating an alias.

Extended lambda list syntax (#!optional, etc.) can be used but note that arguments are source expressions
and thus default values for optional or keyword arguments should take this into consideration.

10.4.4 define-for-syntax

[syntax] (define-for-syntax (NAME VAR ... [. VAR]) EXP1 ...)
[syntax] (define-for-syntax NAME [VALUE])

Defines the toplevel variable NAME at macro-expansion time. This can be helpful when you want to define
support procedures for use in macro-transformers, for example.

10.5 Conditional forms

10.4.2 define-inline 47

CHICKEN User's Manual - The User's Manual

10.5.1 select
[syntax] (select EXP ((KEY ...) EXP1 ...) ... [(else EXPn ...)])

This is similar to case, but the keys are evaluated.

10.5.2 unless
[syntax] (unless TEST EXP1 EXP2 ...)
Equivalent to:

(if (not TEST) (begin EXP1 EXP2 ...))

10.5.3 when
[syntax] (when TEST EXP1 EXP2 ...)
Equivalent to:

(if TEST (begin EXP1 EXP2 ...))

10.6 Record structures

10.6.1 define-record
[syntax] (define-record NAME SLOTNAME ...)

Defines a record type. Call make - NAME to create an instance of the structure (with one
initialization-argument for each slot). (NAME? STRUCT) tests any object for being an instance of this
structure. Slots are accessed via (NAME-SLOTNAME STRUCT) and updated using
(NAME-SLOTNAME-set! STRUCT VALUE).

(define-record point x y)

(define pl (make-point 123 456))

(point? pl) ==> #t
(point-x pl) ==> 123
(point-y-set! pl 99)

(point-y pl) ==> 99

10.5.1 select 48

CHICKEN User's Manual - The User's Manual
10.6.2 define-record-printer

[syntax] (define-record-printer (NAME RECORDVAR PORTVAR) BODY ...)
[syntax] (define-record-printer NAME PROCEDURE)

Defines a printing method for record of the type NAME by associating a procedure with the record type. When
a record of this type is written using display, write or print, then the procedure is called with two
arguments: the record to be printed and an output-port.

(define-record foo x y z)
(define f (make-foo 1 2 3))
(define-record-printer (foo x out)
(fprintf out
(foo-x x) (foo-y x) (foo-z x)))

(define-reader-ctor 'foo make-foo)
(define s (with-output-to-string

(Lambda () (write f))))
S ==>
(equal? f (with-input-from-string

s read))) ==> #t

define-record-printer works also with SRFI-9 record types.

10.6.3 define-record-type

[syntax] (define-record-type NAME
(CONSTRUCTOR TAG ...)
PREDICATE
(FIELD ACCESSOR [MODIFIER]) ...)

SRFI-9 record types. For more information see the documentation for SRFI-9.

10.7 Other forms

10.7.1 assert

[syntax] (assert EXP [STRING ARG ...])

Signals an error if EXP evaluates to false. An optional message STRING and arguments ARG . .. may be
supplied to give a more informative error-message. If compiled in unsafe mode (either by specifying the

-unsafe compiler option or by declaring (unsafe)), then this expression expands to an unspecified value.
The result is the value of EXP.

10.6.2 define-record-printer 49

http://srfi.schemers.org/srfi-9/srfi-9.html

CHICKEN User's Manual - The User's Manual

10.7.2 cond-expand

[syntax] (cond-expand FEATURE-CLAUSE ...)

Expands by selecting feature clauses. This form is allowed to appear in non-toplevel expressions.

Predefined feature-identifiers are "situation" specific:

compile
eval, library, match, compiling, srfi-11, srfi-15,srfi-31, srfi-26,srfi-16,
utils, regex, srfi-4,match, srfi-1,srfi-69, srfi-28, extras, srfi-8,srfi-6,

srfi-2,srfi-0,srfi-10,srfi-9, srfi-55,srfi-61 chicken, srfi-23,srfi-30,
srfi-39,srfi-62,srfi-17,srfi-12.

load
srfi-69,srfi-28,extras,srfi-8,srfi-6,srfi-2,srfi-0,srfi-10,srfi-9,
srfi-55,srfi-61, chicken, srfi-23,srfi-30,srfi-39,srfi-62,srfi-17,
srfi-12. library is implicit.

eval

match, csi, srfi-11, srfi-15,srfi-31, srfi-26,srfi-16,srfi-69, srfi-28,
extras,srfi-8,srfi-6,srfi-2,srfi-0,srfi-10,srfi-9, srfi-55,srfi-61,
chicken,srfi-23,srfi-30,srfi-39,srfi-62,srfi-17,srfi-12. libraryis
implicit.
The following feature-identifiers are available in all situations: (machine-byte-order),
(machine-type), (software-type), (software-version), where the actual feature-identifier
is platform dependent.

In addition the following feature-identifiers may exist: applyhook, extraslot, ptables, dload.

For further information, see the documentation for SRFI-0.

10.7.3 ensure
[syntax] (ensure PREDICATE EXP [ARGUMENTS ...])

Evaluates the expression EXP and applies the one-argument procedure PREDICATE to the result. If the
predicate returns #T an error is signaled, otherwise the result of EXP is returned. If compiled in unsafe mode
(either by specifying the - unsafe compiler option or by declaring (unsafe)), then this expression
expands to an unspecified value. If specified, the optional ARGUMENTS are used as arguments to the
invocation of the error-signalling code, as in (error ARGUMENTS ...).If no ARGUMENTS are given, a
generic error message is displayed with the offending value and PREDICATE expression.

10.7.4 eval-when
[syntax] (eval-when (SITUATION ...) EXP ...)
Controls evaluation/compilation of subforms. SITUATION should be one of the symbols eval, compile

or Load. When encountered in the evaluator, and the situation specifier eval is not given, then this form is
not evaluated and an unspecified value is returned. When encountered while compiling code, and the situation

10.7.2 cond-expand 50

http://srfi.schemers.org/srfi-0/srfi-0.html

CHICKEN User's Manual - The User's Manual

specifier compile is given, then this form is evaluated at compile-time. When encountered while compiling
code, and the situation specifier Load is not given, then this form is ignored and an expression resulting into
an unspecified value is compiled instead.

The following table should make this clearer:

In compiled code In interpreted
code
eval ignore evaluate

compile evaluate at compile time ignore

load compile as normal ignore
The situation specifiers compile-time and run-time are also defined and have the same meaning as
compile and load, respectively.

10.7.5 include
[syntax] (include STRING)
Include toplevel-expressions from the given source file in the currently compiled/interpreted program. If the

included file has the extension . SCm, then it may be omitted. The file is searched in the current directory and,
if not found, in all directories specified in the -include-path option.

10.7.6 nth-value
[syntax] (nth-value N EXP)

Returns the Nth value (counting from zero) of the values returned by expression EXP.

10.7.7 time
[syntax] (time EXP1 ...)

Evaluates EXP1 ... and prints elapsed time and some values about GC use, like time spent in major GCs,
number of minor and major GCs.

Previous: Non-standard read syntax

Next: Pattern matching

10.7.4 eval-when 51

11 Pattern matching

(This description has been taken mostly from Andrew Wright's postscript document)

Pattern matching allows complicated control decisions based on data structure to be expressed in a concise
manner. Pattern matching is found in several modern languages, notably Standard ML, Haskell and Miranda.
These syntactic extensions internally use the match library unit.

Note: this pattern matching package is not compatible with hygienic macro-expanders like the
syntax-case extension (available separately).

The basic form of pattern matching expression is:
(match exp [pat body] ...)

where eXp is an expression, pat is a pattern, and body is one or more expressions (like the body of a
lambda-expression). The match form matches its first subexpression against a sequence of patterns, and
branches to the body corresponding to the first pattern successfully matched. For example, the following
code defines the usual map function:

(define map
(Lambda (f 1)
(match 1
[O) O]
[(x . y) (cons (f x) (map f y))])))
The first pattern () matches the empty list. The second pattern (X . Yy) matches a pair, binding X to the

first component of the pair and Y to the second component of the pair.

11.1 Pattern Matching Expressions

The complete syntax of the pattern matching expressions follows:

exp ::= (match exp clause ...)

| (match-lambda clause ...)

| (match-lambda* clause ...)

| (match-let ([pat exp] ...) body)

| (match-let* ([pat exp] ...) body)

| (match-letrec ([pat exp] ...) body)
| (match-let var ([pat exp] ...) body)
|

match-define pat exp)

clause ::= [pat body]
| [pat (=> identifier) body]

pat ::= identifier matches anything, and binds identifier as a variab
B anything

() itself (the empty list)

#t itself

#f itself

string an “equal?' string

11 Pattern matching 52

CHICKEN User's Manual - The User's Manual

| number an “equal?' number
| character an “equal?' character
| 's-expression an “equal?' s-expression
| (pat-1 ... pat-n) a proper list of n elements
| (pat-1 ... pat-n . pat-n+l)
a list of n or more elements
| (pat-1 ... pat-n pat-n+l ..Kk)
a proper list of n+k or more elements [1]
| #(pat-1 ... pat-n) a vector of n elements
| #(pat-1 ... pat-n pat-n+l ..Kk)
a vector of n+k or more elements
| ($ struct pat-1 ... pat-n)
a structure
| (= field pat) a field of a structure
| (and pat-1 ... pat-n)
if all of pat-1 through pat-n match
| (or pat-1 ... pat-n)
if any of pat-1 through pat-n match
| (not pat-1 ... pat-n)
if none of pat-1 through pat-n match
| (? predicate pat-1 ... pat-n)
if predicate true and pat-1 through pat-n all matc
| (set! identifier) anything, and binds identifier as a setter
| (get! identifier) anything, and binds identifier as a getter
| “gp a quasipattern
gp ::= () itself (the empty list)
| #t itself
| #f itself
| string an “equal?' string
| number an “equal?' number
| character an “equal?' character
| symbol an “equal?' symbol
| (gp-1 ... gp-n) a proper list of n elements
| (gp-1 ... gp-n . gp-n+l)
a list of n or more elements
| (gp-1 ... gp-n gp-n+l ..k)
a proper list of n+k or more elements
| #(gp-1 ... gp-n) a vector of n elements
| #(gp-1 ... gp-n gp-n+l ..k)
a vector of n+k or more elements
| ,pat a pattern
| ,@pat a pattern, spliced
The notation . . K denotes a keyword consisting of three consecutive dots (ie., . . .), or two dots and an
non-negative integer (eg., . . 1, . . 2), or three consecutive underscores (ie.,), or two underscores and a
non-negative integer. The keywords . . K and K are equivalent. The keywords . .., ,..0,and 0

are equivalent.
The next subsection describes the various patterns.

The match-lambda and match-1lambda* forms are convenient combinations of match and Lambda,
and can be explained as follows:

(match-lambda [pat body] ...) = (lambda (x) (match x [pat body] ...))

11.1 Pattern Matching Expressions 53

CHICKEN User's Manual - The User's Manual
(match-lambda* [pat body] ...) = (lambda x (match x [pat body] ...))

where X is a unique variable. The match-lambda form is convenient when defining a single argument
function that immediately destructures its argument. The match-lambda* form constructs a function that
accepts any number of arguments; the patterns of match-lambda* should be lists.

The match-let, match-let* match-letrec, and match-define forms generalize Scheme's let,
let*, letrec, and define expressions to allow patterns in the binding position rather than just variables.
For example, the following expression:

(match-let ([(x y z) (list 1 2 3)]) body ...)

binds X to 1, y to 2, and Z to 3 in body These forms are convenient for destructuring the result of a
function that returns multiple values as a list or vector. As usual for Letrec and define, pattern variables
bound by match-letrec and match-define should not be used in computing the bound value.

The match, match-lambda, and match-lambda* forms allow the optional syntax (=>
identifier) between the pattern and the body of a clause. When the pattern match for such a clause
succeeds, the identifier is bound to a “failure procedure' of zero arguments within the body. If this
procedure is invoked, it jumps back to the pattern matching expression, and resumes the matching process as
if the pattern had failed to match. The body must not mutate the object being matched, otherwise
unpredictable behavior may result.

11.2 Patterns

identifier: (excluding the reserved names ?, ,,=, ,and,or,not, set!,get!, ..., and ..k for
non-negative integers K) matches anything, and binds a variable of this name to the matching value in the

body.

_: matches anything, without binding any variables.

(), #t,#f, string, number, character,'s-expression: These constant patterns match themselves,
i.e., the corresponding value must be equal? to the pattern.

(pat-1 ... pat-n): matches a proper list of n elements that match pat -1 through pat-n.

(pat-1 ... pat-n . pat-n+1): matches a (possibly improper) list of at least n elements that ends in
something matching pat-n+1.

(pat-1 ... pat-n pat-n+1 ...):matches a proper list of N or more elements, where each element
of the tail matches pat-n+1. Each pattern variable in pat-n+1 is bound to a list of the matching values.
For example, the expression:

(match '(let ([x 11[y 2]1) z)
[('Let ((binding values) ...) exp) body])

binds binding to the list ' (X y), values tothelist\' (1 2), and exp to 'z in the body of the
match-expression. For the special case where pat-n+1 is a pattern variable, the list bound to that variable

may share with the matched value.

(pat-1 ... pat-n pat-n+1l): This pattern means the same thing as the previous pattern.

11.2 Patterns 54

CHICKEN User's Manual - The User's Manual

(pat-1 ... pat-n pat-n+1 ..K): This pattern is similar to the previous pattern, but the tail must be
at least K elements long. The pattern keywords . .0 and . . . are equivalent.

(pat-1 ... pat-n ~ pat-n+l K): This pattern means the same thing as the previous pattern.
#(pat-1 ... pat-n): matches a vector of length n, whose elements match pat- 1 through pat-n.
#(pat-1 ... pat-n pat-n+l ...):matches a vector of length n or more, where each element

beyond n matches pat-n+1.

#(pat-1 ... pat-n pat-n+l ..k): matches a vector of length n+k or more, where each element
beyond n matches pat-n+1.

($ struct pat-1 ... pat-n): matches a structure declared with define-record or
define-record-type

(= field pat): is intended for selecting a field from a structure. field may be any expression; it is applied
to the value being matched, and the result of this application is matched against pat.

(and pat-1 ... pat-n): matches if all of the subpatterns match. At least one subpattern must be
present. This pattern is often used as (and X pat) to bind X to to the entire value that matches pat (cf.
as-patterns in ML or Haskell).

(or pat-1 ... pat-n): matches if any of the subpatterns match. At least one subpattern must be
present. All subpatterns must bind the same set of pattern variables.

(not pat-1 ... pat-n): matches if none of the subpatterns match. At least one subpattern must be
present. The subpatterns may not bind any pattern variables.

(? predicate pat-1 ... pat-n):In this pattern, predicate must be an expression evaluating to
a single argument function. This pattern matches if predicate applied to the corresponding value is true,
and the subpatterns pat-1 ... pat-n all match. The predicate should not have side effects, as the

code generated by the pattern matcher may invoke predicates repeatedly in any order. The predicate
expression is bound in the same scope as the match expression, i.e., free variables in predicate are not
bound by pattern variables.

(set! identifier): matches anything, and binds identifier to a procedure of one argument that
mutates the corresponding field of the matching value. This pattern must be nested within a pair, vector, box,
or structure pattern. For example, the expression:

(define x (list 1 (list 2 3)))
(match x [(((set! setit))) (setit 4)])

mutates the cadadr of X to4, sothat xis ' (1 (2 4)).

(get! identifier): matches anything, and binds identifier to a procedure of zero arguments that
accesses the corresponding field of the matching value. This pattern is the complement to set!. As with
set!, this pattern must be nested within a pair, vector, box, or structure pattern.

Quasipatterns: Quasiquote introduces a quasipattern, in which identifiers are considered to be symbolic

constants. Like Scheme's quasiquote for data, unquote (,) and unquote-splicing (,@) escape back to
normal patterns.

11.2 Patterns 55

CHICKEN User's Manual - The User's Manual
11.3 Match Failure

If no clause matches the value, the default action is to invoke the procedure (match-error-procedure)
with the value that did not match. The default definition of (match-error-procedure) calls error
with an appropriate message:

#;1> (match 1 (2 2))

Failed match:
Error: no matching clause for : 1

For most situations, this behavior is adequate, but it can be changed by altering the value of the parameter
match-error-control

{procedure} match-error-control
(match-error-control [MODE])

Selects a mode that specifies how match. . . macro forms are to be expanded. With no argument this
procedure returns the current mode. A single argument specifies the new mode that decides what should
happen if no match-clause applies. The following modes are supported:

Signal an error. This is the default.
1. :error

Signal an error and output the offending form.
1. :match
Omits pair? tests when the consequence is to fail in car or cdr rather than to signal an error.
1. :fail
unspecified Non-matching expressions will either fail in car or cdr or return an unspecified value. This
mode applies to files compiled with the unsafe option or declaration.
When an error is signalled, the raised exception will be of kind (exn match).

[procedure] match-error-procedure
(match-error-procedure [PROCEDURE])
Sets or returns the procedure called upon a match error. The procedure takes one argument, the value which

failed to match. When the error control mode is #: match a second argument, the source form of the match
expression is available.

11.4 Record Structures Pattern

The $ pattern handles native record structures and SRFI-9 records transparently. Currently it is required that
SRFI-9 record predicates are named exactly like the record type name, followed by a ? (question mark)
character.

11.3 Match Failure 56

http://srfi.schemers.org/srfi-9/srfi-9.html
http://srfi.schemers.org/srfi-9/srfi-9.html

CHICKEN User's Manual - The User's Manual

11.5 Code Generation

Pattern matching macros are compiled into 1 f-expressions that decompose the value being matched with
standard Scheme procedures, and test the components with standard predicates. Rebinding or lexically
shadowing the names of any of these procedures will change the semantics of the match macros. The names
that should not be rebound or shadowed are:

null? pair? number? string? symbol? boolean? char? procedure? vector? list?
equal?

car cdr cadr cdddr ...

vector-length vector-ref

reverse length call/cc

Additionally, the code generated to match a structure pattern like ($ Foo pat-1 ... pat-n) refersto
the name F007?. This name also should not be shadowed.

Previous: Non-standard macros and special forms

Next: Declarations

11.5 Code Generation 57

12 Declarations

12.1 declare

[syntax] (declare DECLSPEC ...)

Process declaration specifiers. Declarations always override any command-line settings. Declarations are
valid for the whole compilation-unit (source file), the position of the declaration in the source file can be
arbitrary. Declarations are ignored in the interpreter but not in code evaluated at compile-time (by

eval-when or in syntax extensions loaded via require-extensionor require-for-syntax.
DECLSPEC may be any of the following:

12.2 always-bound
[declaration specifier] (always-bound SYMBOL ...)

Declares that the given variables are always bound and accesses to those have not to be checked.

12.3 block

[declaration specifier] (block)

Assume global variables are never redefined. This is the same as specifying the -block option.

12.4 block-global

12.5 hide

[declaration specifier] (block-global SYMBOL ...)
[declaration specifier] (hide SYMBOL ...)

Declares that the toplevel bindings for SYMBOL . .. should not be accessible from code in other compilation
units or by eval. Access to toplevel bindings declared as block global is also more efficient.

12 Declarations 58

CHICKEN User's Manual - The User's Manual

12.6 bound-to-procedure
[declaration specifier] (bound-to-procedure SYMBOL ...)

Declares that the given identifiers are always bound to procedure values.

12.7 c-options
[declaration specifier] (c-options STRING ...)

Declares additional C/C++ compiler options that are to be passed to the subsequent compilation pass that
translates C to machine code. This declaration will only work if the source file is compiled with the CSC
compiler driver.

12.8 check-c-syntax

[declaration specifier] (check-c-syntax)
[declaration specifier] (not check-c-syntax)

Enables or disables syntax-checking of embedded C/C++ code fragments. Checking C syntax is the default.

12.9 constant
[declaration specifier] (constant SYMBOL ...)

Declares the procedures with the names SYMBOL . . . as constant, that is, as not having any side effects.
This can help the compiler to remove non-side-effecting expressions.

12.10 export
[declaration specifier] (export SYMBOL ...)

The opposite of hide. All given identifiers will be exported and all toplevel variables not listed will be
hidden and not be accessible outside of this compilation unit.

12.11 emit-exports
[declaration specifier] (emit-exports STRING)

Write exported toplevel variables to file with name STRING.

12.6 bound-to-procedure 59

CHICKEN User's Manual - The User's Manual

12.12 emit-external-prototypes-first
[declaration specifier] (emit-external-prototypes-first)

Emit prototypes for callbacks defined with define-external before any other foreign declarations.
Equivalent to giving the -emit-external-prototypes-first option to the compiler.

12.13 disable-interrupts

[declaration specifier] (disable-interrupts)
[declaration specifier] (not interrupts-enabled)

Disable timer-interrupts checks in the compiled program. Threads can not be preempted in main- or
library-units that contain this declaration.

12.14 disable-warning
[declaration specifier] (disable-warning CLASS ...)

Disable warnings of type CLASS ... (equivalent to the -disable-warning CLASS compiler option).

12.15 import
[declaration specifier] (import SYMBOL-OR-STRING ...)

Adds new imports to the list of externally available toplevel variables. Arguments to this declaration may be
either strings (designating .exports files, without the file-extension) or symbols which directly designate
imported variables.

12.16 inline

inline)

not inline)

inline IDENTIFIER ...)

not inline IDENTIFIER ...)

[declaration specifier]
[declaration specifier]
[declaration specifier]
[declaration specifier]

P

If given without an identifier-list, inlining of known procedures is enabled (this is equivalent to the -inline
compiler option). When an identifier-list is given, then inlining is enabled only for the specified global
procedures. The negated forms (not inline) and (not inline IDENTIFIER) disable global
inlining, or inlining for the given global procedures only, respectively.

12.12 emit-external-prototypes-first 60

CHICKEN User's Manual - The User's Manual

12.17 inline-limit
[declaration specifier] (inline-limit THRESHOLD)

Sets the maximum size of procedures which may potentially be inlined. The default threshold is 10.

12.18 interrupts-enabled
[declaration specifier] (interrupts-enabled)

Enable timer-interrupts checks in the compiled program (the default).

12.19 keep-shadowed-macros
[declaration specifier] (keep-shadowed-macros)
Normally, when a toplevel variable is assigned or defined that has the same name as a macro, the

macro-definition will be removed (in addition to showing a warning). This declaration will disable the
removal of the macro.

12.20 lambda-lift

[declaration specifier] (lambda-1lift)

Enables lambda-lifting (equivalent to the - Lambda-1ift option).

12.21 link-options
[declaration specifier] (link-options STRING ...)
Declares additional linker compiler options that are to be passed to the subsequent compilation pass that links

the generated code into an executable or library. This declaration will only work if the source file is compiled
with the CSC compiler driver.

12.17 inline-limit 61

CHICKEN User's Manual - The User's Manual

12.22 no-argc-checks
[declaration specifier] (no-argc-checks)

Disables argument count checking.

12.23 no-bound-checks

[declaration specifier] (no-bound-checks)

Disables the bound-checking of toplevel bindings.

12.24 no-procedure-checks
[declaration specifier] (no-procedure-checks)

Disables checking of values in operator position for being of procedure type.

12.25 post-process

[declaration specifier] (post-process STRING ...)

Arranges for the shell commands STRING . . . to be invoked after the current file has been translated to C.
Any occurrences of the substring $@@ in the strings given for this declaration will be replaced by the

pathname of the currently compiled file, without the file-extension. This declaration will only work if the
source file is compiled with the CSC compiler driver.

12.26 profile
[declaration specifier] (profile IDENTIFIER ...)

Enable profiling exclusively for given identifiers. Normally the compiler enables profiling decorations for all
globally defined procedures. With this declaration, profiling can be enabled for selected procedures.

12.27 number-type

12.22 no-arge-checks 62

CHICKEN User's Manual - The User's Manual

12.28 fixnum-arithmetic

[declaration specifier] ([number-type] TYPE)
[declaration specifier] (fixnum-arithmetic)

Declares that only numbers of the given type are used. TYPE may be fixnum or generic (which is the
default).

12.29 run-time-macros
[declaration specifier] (run-time-macros)

Equivalent to the compiler option of the same name - macros defined in the compiled code are also made
available at runtime.

12.30 standard-bindings

[declaration specifier] (standard-bindings SYMBOL ...)
[declaration specifier] (not standard-bindings SYMBOL ...)

Declares that all given standard procedures (or all if no symbols are specified) are never globally redefined. If
not is specified, then all but the given standard bindings are assumed to be never redefined.

12.31 extended-bindings

[declaration specifier] (extended-bindings SYMBOL ...)
[declaration specifier] (not extended-bindings SYMBOL ...)

Declares that all given non-standard and CHICKEN-specific procedures (or all if no symbols are specified)
are never globally redefined. If not is specified, then all but the given extended bindings are assumed to be
never redefined.

12.32 usual-integrations

[declaration specifier] (usual-integrations SYMBOL ...)
[declaration specifier] (not usual-integrations SYMBOL ...)

Declares that all given standard and extended bindings (or all if no symbols are specified) are never globally
redefined. If not is specified, then all but the given standard and extended bindings are assumed to be never
redefined. Note that this is the default behaviour, unless the -no-usual-integrations option has been
given.

12.28 fixnum-arithmetic 63

CHICKEN User's Manual - The User's Manual
12.33 unit
[declaration specifier] (unit SYMBOL)

Specify compilation unit-name (if this is a library)

12.34 unsafe

[declaration specifier] (unsafe)
[declaration specifier] (not safe)

Do not generate safety-checks. This is the same as specifying the -unsafe option. Also implies

(declare (no-bound-checks) (no-procedure-checks) (no-argc-checks))

12.35 unused

[declaration specifier] (unused SYMBOL ...)

Disables any warnings when the global variable SYMBOL is not defined but used, or defined but never used
and not exported.

12.36 uses

[declaration specifier] (uses SYMBOL ...)
Gives a list of used library-units. Before the toplevel-expressions of the main-module are executed, all used
units evaluate their toplevel-expressions in the order in which they appear in this declaration. If a library unit

A uses another unit B, then B's toplevel expressions are evaluated before A's. Furthermore, the used symbols
are registered as features during compile-time, so cond -expand knows about them.

Previous: Pattern matching

Next: Parameters

12.33 unit 64

13 Parameters

Certain behavior of the interpreter and compiled programs can be customized via '‘parameters’', where a
parameter is a procedure of zero or one arguments. To retrieve the value of a parameter call the
parameter-procedure with zero arguments. To change the setting of the parameter, call the
parameter-procedure with the new value as argument:

(define foo (make-parameter 123))

(foo) ==> 123
(foo 99)

(foo) ==> 99

Parameters are fully thread-local, each thread of execution owns a local copy of a parameters' value.

CHICKEN implements SRFI-39.

13.1 make-parameter

[procedure] (make-parameter VALUE [GUARD])

Returns a procedure that accepts zero or one argument. Invoking the procedure with zero arguments returns
VALUE. Invoking the procedure with one argument changes its value to the value of that argument
(subsequent invocations with zero parameters return the new value). GUARD should be a procedure of a single

argument. Any new values of the parameter (even the initial value) are passed to this procedure. The guard
procedure should check the value and/or convert it to an appropriate form.

13.2 case-sensitive

If true, then read reads symbols and identifiers in case-sensitive mode and uppercase characters in symbols
are printed escaped. Defaults to #t.

13.3 dynamic-load-libraries

A list of strings containing shared libraries that should be checked for explicitly loaded library units (this
facility is not available on all platforms). See Load-library.

13.4 command-line-arguments

Contains the list of arguments passed to this program, with the name of the program and any runtime options
(all options starting with - :) removed.

13 Parameters 65

http://srfi.schemers.org/srfi-39/srfi-39.html

CHICKEN User's Manual - The User's Manual

13.5 current-read-table

A read-table object that holds read-procedures for special non-standard read-syntax (see
set-read-syntax! for more information).

13.6 exit-handler

A procedure of a single optional argument. When exit is called, then this procedure will be invoked with the
exit-code as argument. The default behavior is to terminate the program.

13.7 eval-handler

A procedure of one or two arguments. When eval is invoked, it calls the value of this parameter with the
same arguments. The default behavior is to evaluate the argument expression and to ignore the second
parameter.

13.8 force-finalizers

If true, force and execute all pending finalizers before exiting the program (either explicitly by exit or
implicitly when the last toplevel expression has been executed). Default is #t.

13.9 implicit-exit-handler

A procedure of no arguments. When the last toplevel expression of the program has executed, then the value
of this parameter is called. The default behaviour is to invoke all pending finalizers.

13.10 keyword-style

Enables alternative keyword syntax, where STYLE may be either #: prefix (as in Common Lisp) or
#:suffix (asin DSSSL). Any other value disables the alternative syntaxes.

13.11 load-verbose

A boolean indicating whether loading of source files, compiled code (if available) and compiled libraries
should display a message.

13.5 current-read-table 66

CHICKEN User's Manual - The User's Manual

13.12 program-name

The name of the currently executing program. This is equivalent to (car (argv)) for compiled programs
or the filename following the - SCript option in interpreted scripts.

13.13 repl-prompt

A procedure that should evaluate to a string that will be printed before reading interactive input from the user
in a read-eval-print loop. Defaults to (lambda () "#;N> ").

13.14 reset-handler

A procedure of zero arguments that is called via reset. The default behavior in compiled code is to invoke
the value of (exit-handler). The default behavior in the interpreter is to abort the current computation
and to restart the read-eval-print loop.

Previous: Declarations

Next: Unit library

13.12 program-name 67

14 Unit library

This unit contains basic Scheme definitions. This unit is used by default, unless the program is compiled with
the -explicit-use option.

14.1 Arithmetic

14.1.1 add1/sub1

[procedure] (add1 N)
[procedure] (subl N)

Adds/subtracts 1 from N.

14.1.2 Binary integer operations

Binary integer operations. arithmetic-shift shifts the argument N1 by N2 bits to the left. If N2 is
negative, than N1 is shifted to the right. These operations only accept exact integers or inexact integers in
word range (32 bit signed on 32-bit platforms, or 64 bit signed on 64-bit platforms).

[procedure] (bitwise-and N1 ...)

[procedure] (bitwise-ior N1 ...)

[procedure] (bitwise-xor N1 ...)

[procedure] (bitwise-not N)
[procedure] (arithmetic-shift N1 N2)

14.1.3 bit-set?
[procedure] (bit-set? N INDEX)

Returns #1 if the bit at the position INDEX in the integer N is set, or #f otherwise. The
rightmost/least-significant bit is bit O.

14.1.4 fixnum?
[procedure] (fixnum? X)

Returns #t if X is a fixnum, or #f otherwise.

14 Unit library 68

CHICKEN User's Manual - The User's Manual

14.1.5 Arithmetic fixnum operations

These procedures do not check their arguments, so non-fixnum parameters will result in incorrect results.

fxneg negates its argument.

On division by zero, X/ and fxmod signal a condition of kind (exn arithmetic).

fxshl and fxshr perform arithmetic shift left and right, respectively.

[procedure] (fx+ N1 N2)
[procedure] (fx- N1 N2)
[procedure] (fx* N1 N2)
[procedure] (fx/ N1 N2)
[procedure] (fxmod N1 N2)
[procedure] (fxneg N)
[procedure] (fxmin N1 N2)
[procedure] (fxmax N1 N2)
[procedure] (fx= N1 N2)
[procedure] (fx> N1 N2)
[procedure] (fx< N1 N2)
[procedure] (fx>= N1 N2)
[procedure] (fx N1 N2)
[procedure] (fxand N1 N2)
[procedure] (fxior N1 N2)
[procedure] (fxxor N1 N2)
[procedure] (fxnot N)
[procedure] (fxshl N1 N2)
[procedure] (fxshr N1 N2)

14.1.6 Arithmetic floating-point operations

In safe mode, these procedures throw a type error with non-float arguments (except flonum?, which returns
#T). In unsafe mode, these procedures do not check their arguments. A non-flonum argument in unsafe mode

can crash the system.

[procedure] (flonum? X)
[procedure] (fp+ X Y)
[procedure] (fp- X Y)
[procedure] (fp* X Y)
[procedure] (fp/ X Y)
[procedure] (fpneg X)
[procedure] (fpmin X Y)
[procedure] (fpmax X Y)
[procedure] (fp=XY)
[procedure] (fp> X Y)
[procedure] (fp< X Y)
[procedure] (fp>=XY)
[procedure] (fp X Y)

14.1.5 Arithmetic fixnum operations

69

CHICKEN User's Manual - The User's Manual

14.1.7 sighum
[procedure] (signum N)

Returns 1 if N is positive, - 1 if N is negative or 0 if N is zero. Signum is exactness preserving.

14.1.8 finite?
[procedure] (finite? N)

Returns #f if N is negative or positive infinity, and #t otherwise.

14.2 File Input/Output

14.2.1 current-output-port
[procedure] (current-output-port [PORT])
Returns default output port. If PORT is given, then that port is selected as the new current output port.

Note that the default output port is not buffered. Use [[http://galinha.ucpel.tche.br/Unit posix#Setting the file
buffering modelset -buffering-mode!]] if you need a different behavior.

14.2.2 current-error-port
[procedure] (current-error-port [PORT])

Returns default error output port. If PORT is given, then that port is selected as the new current error output
port.

Note that the default error output port is not buffered. Use [[http://galinha.ucpel.tche.br/Unit posix#Setting the
file buffering modelset-buffering-mode!]] if you need a different behavior.

14.2.3 flush-output
[procedure] (flush-output [PORT])

Write buffered output to the given output-port. PORT defaults to the value of (current-output-port).

14.1.7 signum 70

http://galinha.ucpel.tche.br/Unit
http://galinha.ucpel.tche.br/Unit

CHICKEN User's Manual - The User's Manual

14.2.4 port-name
[procedure] (port-name [PORT])

Fetch filename from PORT. This returns the filename that was used to open this file. Returns a special tag
string, enclosed into parentheses for non-file ports. PORT defaults to the value of
(current-input-port).

14.2.5 port-position
[procedure] (port-position [PORT])

Returns the current position of PORT as two values: row and column number. If the port does not support
such an operation an error is signaled. This procedure is currently only available for input ports. PORT
defaults to the value of (current-input-port).

14.2.6 set-port-name!
[procedure] (set-port-name! PORT STRING)

Sets the name of PORT to STRING.

14.3 Files

14.3.1 delete-file
[procedure] (delete-file STRING)

Deletes the file with the pathname STRING. If the file does not exist, an error is signaled.

14.3.2 file-exists?
[procedure] (file-exists? STRING)

Returns STRING if a file with the given pathname exists, or #f otherwise.

14.2.4 port-name

71

CHICKEN User's Manual - The User's Manual
14.3.3 rename-file
[procedure] (rename-file OLD NEW)

Renames the file or directory with the pathname OLD to NEW. If the operation does not succeed, an error is
signaled.

14.4 String ports

14.4.1 get-output-string
[procedure] (get-output-string PORT)

Returns accumulated output of a port created with (open-output-string).

14.4.2 open-input-string
[procedure] (open-input-string STRING)

Returns a port for reading from STRING.

14.4.3 open-output-string
[procedure] (open-output-string)

Returns a port for accumulating output in a string.

14.5 Feature identifiers

CHICKEN maintains a global list of features naming functionality available in the current system.
Additionally the cond - expand form accesses this feature list to infer what features are provided.
Predefined features are chicken, and the SRFIs (Scheme Request For Implementation) provided by the base
system: srfi-23, srfi-30, srfi-39.If the eval unitis used (the default), the features srfi-0,
srfi-2, srfi-6, srfi-8, srfi-9andsrfi-10 are defined. When compiling code (during
compile-time) the feature compiling is registered. When evaluating code in the interpreter (csi), the feature
CS1 is registered.

14.3.3 rename-file 72

CHICKEN User's Manual - The User's Manual

14.5.1 features
[procedure] (features)

Returns a list of all registered features that will be accepted as valid feature-identifiers by cond - expand.

14.5.2 feature?
[procedure] (feature? ID ...)
Returns #t if all features with the given feature-identifiers ID . .. are registered.

14.5.3 register-feature!
[procedure] (register-feature! FEATURE ...)

Register one or more features that will be accepted as valid feature-identifiers by cond-expand. FEATURE
. may be a keyword, string or symbol.

14.5.4 unregister-feature!
[procedure] (unregister-feature! FEATURE ...)

Unregisters the specified feature-identifiers. FEATURE . .. may be a keyword, string or symbol.

14.6 Keywords

Keywords are special symbols prefixed with #: that evaluate to themselves. Procedures can use keywords to
accept optional named parameters in addition to normal required parameters. Assignment to and bindings of
keyword symbols is not allowed. The parameter kKeyword-style and the compiler/interpreter option
-keyword-style can be used to allow an additional keyword syntax, either compatible to Common LISP,
or to DSSSL.

14.6.1 get-keyword
[procedure] (get-keyword KEYWORD ARGLIST [THUNK])
Returns the argument from ARGLIST specified under the keyword KEYWORD. If the keyword is not found,

then the zero-argument procedure THUNK is invoked and the result value is returned. If THUNK is not given,
#f is returned.

14.5.1 features 73

CHICKEN User's Manual - The User's Manual

(define (increase x . args)

(+ x (get-keyword #:amount args (Llambda () 1))))
(increase 123) ==> 124
(increase 123 #:amount 10) ==> 133

Note: the KEYWORD may actually be any kind of object.

14.6.2 keyword?
[procedure] (keyword? X)

Returns #t if X is a keyword symbol, or #f otherwise.

14.6.3 keywordstring
[procedure] (keyword->string KEYWORD)

Transforms KEYWORD into a string.

14.6.4 stringkeyword
[procedure] (string->keyword STRING)

Returns a keyword with the name STRING.

14.7 Exceptions

CHICKEN implements the (currently withdrawn) SRFI-12 exception system. For more information, see the
SRFI-12 document.

14.7.1 condition-case
[syntax] (condition-case EXPRESSION CLAUSE ...)

Evaluates EXPRESSION and handles any exceptions that are covered by CLAUSE . . ., where CLAUSE
should be of the following form:

CLAUSE = ([VARIABLE] (KIND ...) BODY ...)

If provided, VARIABLE will be bound to the signaled exception object. BODY . . . is executed when the
exception is a property- or composite condition with the kinds given KIND . .. (unevaluated). If no clause

14.6.1 get-keyword 74

http://srfi.schemers.org/srfi-12/srfi-12.html
http://srfi.schemers.org/srfi-12/srfi-12.html

CHICKEN User's Manual - The User's Manual

applies, the exception is re-signaled in the same dynamic context as the condition-case form.

(define (check thunk)
(condition-case (thunk)

[(exn file) (print)1
[(exn) (print)1
[var () (print)1))

(check (lambda () (open-input-file))) ; -> "file error"
(check (lambda () some-unbound-variable)) ,; -> "othererror"
(check (lambda () (signal 99))) ; -> "something else"

(condition-case some-unbound-variable
[(exn file) (print)]) , -> signals error

14.7.2 breakpoint
[procedure] (breakpoint [NAME])
Programmatically triggers a breakpoint (similar to the , br top-level csi command).

All error-conditions signaled by the system are of kind €Xn. The following composite conditions are
additionally defined:

(exn arity)

Signaled when a procedure is called with the wrong number of arguments.
(exn type)

Signaled on type-mismatch errors, for example when an argument of the wrong type is passed to a built-in
procedure.

(exn arithmetic)

Signaled on arithmetic errors, like division by zero.
(exn 1i/0)

Signaled on input/output errors.
(exn i/o0 file)

Signaled on file-related errors.
(exn i/0 net)

Signaled on network errors.
(exn bounds)

Signaled on errors caused by accessing non-existent elements of a collection.
(exn runtime)

Signaled on low-level runtime-system error-situations.

14.7.1 condition-case 75

CHICKEN User's Manual - The User's Manual

(exn runtime limit)

Signaled when an internal limit is exceeded (like running out of memory).
(exn match)

Signaled on errors raised by failed matches (see the section on match).
(exn syntax)

Signaled on syntax errors.
(exn breakpoint)

Signaled when a breakpoint is reached.
Notes:

o All error-exceptions (of the kind €Xn) are non-continuable.

e Error-exceptions of the exn kind have additional arguments and Location properties that
contain the arguments passed to the exception-handler and the name of the procedure where the error
occurred (if available).

® When the pOS1iX unit is available and used, then a user-interrupt (signal/int) signals an
exception of the kind user-interrupt.

e the procedure condition-property-accessor accepts an optional third argument. If the
condition does not have a value for the desired property and if the optional argument is given, no error
is signaled and the accessor returns the third argument.

¢ In composite conditions all properties are currently collected in a single property-list, so in the case
that to conditions have the same named property, only one will be visible.

14.8 Environment information and system interface

14.8.1 argv

[procedure] (argv)
Return a list of all supplied command-line arguments. The first item in the list is a string containing the name
of the executing program. The other items are the arguments passed to the application. This list is freshly

created on every invocation of (argv). It depends on the host-shell whether arguments are expanded
('globbed') or not.

14.8.2 exit
[procedure] (exit [CODE])
Exit the running process and return exit-code, which defaults to O (Invokes exit-handler).

Note that pending dynamic-wind thunks are not invoked when exiting your program in this way.

14.7.2 breakpoint 76

CHICKEN User's Manual - The User's Manual

14.8.3 build-platform
[procedure] (build-platform)

Returns a symbol specifying the toolset which has been used for building the executing system, which is one
of the following:

cygwin
mingw32
gnu

intel
unknown

14.8.4 chicken-version
[procedure] (chicken-version [FULL])

Returns a string containing the version number of the CHICKEN runtime system. If the optional argument
FULL is given and true, then a full version string is returned.

14.8.5 errno
[procedure] (errno)

Returns the error code of the last system call.

14.8.6 getenv
[procedure] (getenv STRING)

Returns the value of the environment variable STRING or #T if that variable is not defined.

14.8.7 machine-byte-order
[procedure] (machine-byte-order)

Returns the symbol little-endian or big-endian, depending on the machine's byte-order.

14.8.3 build-platform 77

CHICKEN User's Manual - The User's Manual
14.8.8 machine-type
[procedure] (machine-type)

Returns a symbol specifying the processor on which this process is currently running, which is one of the
following:

alpha
mips
hppa
ultrasparc
sparc
ppc
ppc64
iab64
x86
x86-64
unknown

14.8.9 on-exit
[procedure] (on-exit THUNK)
Schedules the zero-argument procedures THUNK to be executed before the process exits, either explicitly via

exit or implicitly after execution of the last top-level form. Note that finalizers for unreferenced finalized
data are run before exit procedures.

14.8.10 software-type
[procedure] (software-type)

Returns a symbol specifying the operating system on which this process is currently running, which is one of
the following:

windows
unix
macos

ecos
unknown

14.8.11 software-version
[procedure] (software-version)

Returns a symbol specifying the operating system version on which this process is currently running, which is
one of the following:

14.8.8 machine-type 78

CHICKEN User's Manual - The User's Manual

linux
freebsd
netbsd
openbsd
macosx
hpux
solaris
sunos
unknown

14.8.12 c-runtime
[procedure] (c-runtime)
Returns a symbol that designates what kind of C runtime library has been linked with this version of the

Chicken libraries. Possible return values are sStatic, dynamic or unknown. On systems not compiled
with the Microsoft C compiler, C - runtime always returns unknown.

14.8.13 system
[procedure] (system STRING)

Execute shell command. The functionality offered by this procedure depends on the capabilities of the host
shell. If the forking of a subprocess failed, an exception is raised. Otherwise the return status of the subprocess
is returned unaltered.

14.9 Execution time

14.9.1 cpu-time
[procedure] (cpu-time)
Returns the used CPU time of the current process in milliseconds as two values: the time spent in user code,

and the time spent in system code. On platforms where user and system time can not be differentiated, system
time will be always be 0.

14.9.2 current-milliseconds
[procedure] (current-milliseconds)

Returns the number of milliseconds since process- or machine startup.

14.8.11 software-version 79

CHICKEN User's Manual - The User's Manual

14.9.3 current-seconds
[procedure] (current-seconds)

Returns the number of seconds since midnight, Jan. 1, 1970.

14.9.4 current-gc-milliseconds
[procedure] (current-gc-milliseconds)

Returns the number of milliseconds spent in major garbage collections since the last call of
current-gc-milliseconds and returns an exact integer.

14.10 Interrupts and error-handling

14.10.1 enable-warnings
[procedure] (enable-warnings [BOOL])
Enables or disables warnings, depending on wether BOOL is true or false. If called with no arguments, this

procedure returns #t if warnings are currently enabled, or #f otherwise. Note that this is not a parameter. The
current state (whether warnings are enabled or disabled) is global and not thread-local.

14.10.2 error
[procedure] (error [LOCATION] [STRING] EXP ...)
Prints error message, writes all extra arguments to the value of (current-error-port) and invokes the

current exception-handler. This conforms to SRFI-23. If LOCATION is given and a symbol, it specifies the
location (the name of the procedure) where the error occurred.

14.10.3 get-call-chain

[procedure] (get-call-chain [START [THREAD]])

Returns a list with the call history. Backtrace information is only generated in code compiled without
-no-trace and evaluated code. If the optional argument START is given, the backtrace starts at this offset,
i.e. when START is 1, the next to last trace-entry is printed, and so on. If the optional argument THREAD is

given, then the call-chain will only be constructed for calls performed by this thread.

14.9.3 current-seconds 80

http://srfi.schemers.org/srfi-23/srfi-23.html

CHICKEN User's Manual - The User's Manual

14.10.4 print-call-chain
[procedure] (print-call-chain [PORT [START [THREAD]]])

Prints a backtrace of the procedure call history to PORT, which defaults to (current-output-port).

14.10.5 print-error-message
[procedure] (print-error-message EXN [PORT [STRING]])
Prints an appropriate error message to PORT (which defaults to the value of (current-output-port)

for the object EXN. EXN may be a condition, a string or any other object. If the optional argument STRING is
given, it is printed before the error-message. STRING defaults to "Error:".

14.10.6 procedure-information
[procedure] (procedure-information PROC)

Returns an s-expression with debug information for the procedure PROC, or #f, if PROC has no associated
debug information.

14.10.7 reset

[procedure] (reset)

Reset program (Invokes reset-handler).

14.10.8 warning
[procedure] (warning STRING EXP ...)

Displays a warning message (if warnings are enabled with enable-warnings) and continues execution.

14.10.9 singlestep
[procedure] (singlestep THUNK)

Executes the code in the zero-procedure THUNK in single-stepping mode.

14.10.4 print-call-chain 81

CHICKEN User's Manual - The User's Manual

14.11 Garbage collection

14.11.1 gc
[procedure] (gc [FLAG])
Invokes a garbage-collection and returns the number of free bytes in the heap. The flag specifies whether a

minor (#7T) or major (#1) GC is to be triggered. If no argument is given, #t is assumed. An explicit #t
argument will cause all pending finalizers to be executed.

14.11.2 memory-statistics
[procedure] (memory-statistics)
Performs a major garbage collection and returns a three element vector containing the total heap size in bytes,

the number of bytes currently used and the size of the nursery (the first heap generation). Note that the actual
heap is actually twice the size given in the heap size, because CHICKEN uses a copying semi-space collector.

14.11.3 set-finalizer!

[procedure] (set-finalizer! X PROC)

Registers a procedure of one argument PROC, that will be called as soon as the non-immediate data object X is
about to be garbage-collected (with that object as its argument). Note that the finalizer will not be called while

interrupts are disabled. This procedure returns X.

Finalizers are invoked asynchronously, in the thread that happens to be currently running.

14.11.4 set-gc-report!
[procedure] (set-gc-report! FLAG)

Print statistics after every GC, depending on FLAG. A value of #t shows statistics after every major GC. A
true value different from #t shows statistics after every minor GC. #f switches statistics off.

14.11 Garbage collection 82

CHICKEN User's Manual - The User's Manual

14.12 Other control structures

14.12.1 promise?
[procedure] (promise? X)

Returns #1 if X is a promise returned by delay, or #f otherwise.

14.13 String utilities

14.13.1 reverse-liststring
[procedure] (reverse-list->string LIST)

Returns a string with the characters in LIST in reverse order. This is equivalent to (list->string
(reverse LIST)), but much more efficient.

14.14 Generating uninterned symbols

14.14.1 gensym
[procedure] (gensym [STRING-OR-SYMBOL])

Returns a newly created uninterned symbol. If an argument is provided, the new symbol is prefixed with that
argument.

14.14.2 stringuninterned-symbol
[procedure] (string->uninterned-symbol STRING)

Returns a newly created, unique symbol with the name STRING.

14.12 Other control structures 83

CHICKEN User's Manual - The User's Manual

14.15 Standard Input/Output

14.15.1 port?
[procedure] (port? X)

Returns #t if X is a port object or #T otherwise.

14.15.2 print
[procedure] (print [EXP1 ...])

Outputs the optional arguments EXP1 . .. using display and writes a newline character to the port that is
the value of (current-output-port). Returns (void).

14.15.3 print*
[procedure] (print* [EXP1 ...])

Similar to print, but does not output a terminating newline character and performs a flush-output after
writing its arguments.

14.16 User-defined named characters

14.16.1 char-name
[procedure] (char-name SYMBOL-OR-CHAR [CHAR])

This procedure can be used to inquire about character names or to define new ones. With a single argument
the behavior is as follows: If SYMBOL - OR - CHAR is a symbol, then char-name returns the character with
this name, or #T if no character is defined under this name. If SYMBOL - OR - CHAR is a character, then the
name of the character is returned as a symbol, or #T if the character has no associated name.

If the optional argument CHAR is provided, then SYMBOL - OR - CHAR should be a symbol that will be the new
name of the given character. If multiple names designate the same character, then the write will use the
character name that was defined last.

(char-name 'space) ==> #\space
(char-name #\space) ==> space
(char-name 'bell) ==> #f
(char-name (integer->char 7)) ==> #f

14.15 Standard Input/Output 84

CHICKEN User's Manual - The User's Manual

(char-name 'bell (integer->char 7))

(char-name 'bell)
(char->integer (char-name 'bell))

14.17 Blobs

==> #\bell

"blobs" are collections of unstructured bytes. You can't do much with them, but allow conversion to and from

SRFI-4 number vectors.

14.17.1 make-blob

[procedure] (make-blob SIZE)

Returns a blob object of SIZE bytes, aligned on an 8-byte boundary, uninitialized.

14.17.2 blob?
[procedure] (blob? X)

Returns #t if X is a blob object, or #T otherwise.

14.17.3 blob-size
[procedure] (blob-size BLOB)

Returns the number of bytes in BLOB.

14.17.4 blobstring
[procedure] (blob->string BLOB)

Returns a string with the contents of BLOB.

14.17.5 stringblob
[procedure] (string->blob STRING)

Returns a blob with the contents of STRING.

14.16.1 char-name

85

CHICKEN User's Manual - The User's Manual

14.17.6 blob="?
[procedure] (blob=? BLOB1 BLOB2)

Returns #t if the two argument blobs are of the same size and have the same content.

14.18 Vectors

14.18.1 vector-copy!
[procedure] (vector-copy! VECTOR1 VECTOR2 [COUNT])

Copies contents of VECTOR1 into VECTOR2. If the argument COUNT is given, it specifies the maximal
number of elements to be copied. If not given, the minimum of the lengths of the argument vectors is copied.

Exceptions: (exn bounds)

14.18.2 vector-resize
[procedure] (vector-resize VECTOR N [INIT])

Creates and returns a new vector with the contents of VECTOR and length N. If N is greater than the original
length of VECTOR, then all additional items are initialized to INIT. If INIT is not specified, the contents are
initialized to some unspecified value.

14.19 The unspecified value

14.19.1 void
[procedure] (void)

Returns an unspecified value.

14.17.6 blob="? 86

CHICKEN User's Manual - The User's Manual

14.20 Continuations

14.20.1 call/cc
[procedure] (call/cc PROCEDURE)

An alias for call-with-current-continuation

14.20.2 continuation-capture
[procedure] (continuation-capture PROCEDURE)

Creates a continuation object representing the current continuation and tail-calls PROCEDURE with this
continuation as the single argument.

More information about this continuation API can be found in the paper

http://repository.readscheme.org/ftp/papers/sw2001/feeley.pdf A Better API for first class Continuations by
Marc Feeley.

14.20.3 continuation?
[procedure] (continuation? X)
Returns #t if X is a continuation object, or #T otherwise. Please note that this applies only to continuations

created by the Continuation API, but not by call/cc, i.e.: (call-with-current-continuation
continuation?) returns #f, whereas (continuation-capture continuation?) returns #t.

14.20.4 continuation-graft
[procedure] (continuation-graft CONT THUNK)

Calls the procedure THUNK with no arguments and the implicit continuation CONT.

14.20.5 continuation-return
[procedure] (continuation-return CONT VALUE ...)
Returns the value(s) to the continuation CONT. continuation-return could be implemented like this:

(define (continuation-return k . vals)
(continuation-graft

14.20 Continuations

http://repository.readscheme.org/ftp/papers/sw2001/feeley.pdf

CHICKEN User's Manual - The User's Manual

k
(Lambda () (apply values vals))))

14.21 Setters

SRFI-17 is fully implemented. For more information see: SRFI-17.

14.21.1 setter
[procedure] (setter PROCEDURE)

Returns the setter-procedure of PROCEDURE, or signals an error if PROCEDURE has no associated
setter-procedure.

Note that (set! (setter PROC) ...) fora procedure that has no associated setter procedure yet is a
very slow operation (the old procedure is replaced by a modified copy, which involves a garbage collection).

14.21.2 getter-with-setter
[procedure] (getter-with-setter GETTER SETTER)

Returns a copy of the procedure GETTER with the associated setter procedure SETTER. Contrary to the SRFI
specification, the setter of the returned procedure may be changed.

14.22 Reader extensions

14.22.1 define-reader-ctor
[procedure] (define-reader-ctor SYMBOL PROC)

Define new read-time constructor for #, read syntax. For further information, see the documentation for
SRFI-10.

14.22.2 set-read-syntax!
[procedure] (set-read-syntax! CHAR-OR-SYMBOL PROC)

When the reader encounters the non-whitespace character CHAR while reading an expression from a given

14.20.5 continuation-return 88

http://srfi.schemers.org/srfi-17/srfi-17.html
http://srfi.schemers.org/srfi-10/srfi-10.html

CHICKEN User's Manual - The User's Manual

port, then the procedure PROC will be called with that port as its argument. The procedure should return a
value that will be returned to the reader:

; A simple RGB color syntax:
(set-read-syntax! #\%
(Lambda (port)
(apply vector
(map (cut string->number <> 16)
(string-chop (read-string 6 port) 2)))))

(with-input-from-string read)
; ==> (1 2 #(240 240 240) 3)

If CHAR-OR-SYMBOL is a symbol, then a so-called read-mark handler is defined. In that case the handler
procedure will be called when a character-sequence of the form

#!1SYMBOL
1s encountered.

You can undo special handling of read-syntax by passing #f as the second argument (if the syntax was
previously defined via set-read-syntax!).

Note that all of CHICKEN's special non-standard read-syntax is handled directly by the reader. To disable
built-in read-syntax, define a handler that triggers an error (for example).

14.22.3 set-sharp-read-syntax!
[procedure] (set-sharp-read-syntax! CHAR-OR-SYMBOL PROC)

Similar to set-read-syntax!, but allows defining new #<CHAR> . .. reader syntax. If the first
argument is a symbol, then this procedure is equivalent to set-read-syntax!.

14.22.4 set-parameterized-read-syntax!
[procedure] (set-parameterized-read-syntax! CHAR-OR-SYMBOL PROC)

Similar to set-sharp-read-syntax!, but intended for defining reader syntax of the form

#<NUMBER><CHAR> The handler procedure PROC will be called with two arguments: the input port

and the number preceding the dispatching character. If the first argument is a symbol, then this procedure is
equivalent to set-read-syntax!.

14.22.2 set-read-syntax!

89

CHICKEN User's Manual - The User's Manual

14.22.5 copy-read-table
[procedure] (copy-read-table READ-TABLE)

Returns a copy of the given read-table. You can access the currently active read-table with
(current-read-table).

14.23 Property lists

As in other Lisp dialects, CHICKEN supports "property lists" associated with symbols. Properties are
accessible via a key that can be any kind of value but which will be compared using €q?.

14.23.1 get
[procedure] (get SYMBOL PROPERTY [DEFAULT])

Returns the value stored under the key PROPERTY in the property list of SYMBOL. If no such property is
stored, returns DEFAULT. The DEFAULT is optional and defaults to #f.

14.23.2 put!

[procedure] (put! SYMBOL PROPERTY VALUE)
[setter] (set! (get SYMBOL PROPERTY) VALUE)

Stores VALUE under the key PROPERTY in the property list of SYMBOL replacing any previously stored
value.

14.23.3 remprop!
[procedure] (remprop! SYMBOL PROPERTY)

Deletes the first property matching the key PROPERTY in the property list of SYMBOL. Returns #t when a
deletion performed, and #f otherwise.

14.23.4 symbol-plist

[procedure] (symbol-plist SYMBOL)
[setter] (set! (symbol-plist SYMBOL) LST)

Returns the property list of SYMBOL or sets it.

14.22.5 copy-read-table

CHICKEN User's Manual - The User's Manual

14.23.5 get-properties

[procedure] (get-properties SYMBOL PROPERTIES)
Searches the property list of SYMBOL for the first property with a key in the list PROPERTIES. Returns 3
values: the matching property key, value, and the tail of property list after the matching property. When no
match found all values are #T.
PROPERTIES may also be an atom, in which case it is treated as a list of one element.

Previous: Parameters

Next: Unit eval

14.23.5 get-properties

91

15 Unit eval

This unit has support for evaluation and macro-handling. This unit is used by default, unless the program is
compiled with the -explicit-use option.

15.1 Loading code

15.1.1 load
[procedure] (load FILE [EVALPROC])

Loads and evaluates expressions from the given source file, which may be either a string or an input port.
Each expression read is passed to EVALPROC (which defaults to eval). On platforms that support it
(currently native Windows, Linux ELF and Solaris), Load can be used to load compiled programs:

% cat x.scm

(define (hello) (print "Hello!"))
% CSC -S X.scm

% csi -q

#;1> (load "x.so")

; loading x.so

#:2> (hello)

Hello!

#,3>

The second argument to Load is ignored when loading compiled code. If source code is loaded from a port,
then that port is closed after all expressions have been read.

Compiled code can be re-loaded, but care has to be taken, if code from the replaced dynamically loaded
module is still executing (i.e. if an active continuation refers to compiled code in the old module).

Support for reloading compiled code dynamically is still experimental.

15.1.2 load-relative
[procedure] (load-relative FILE [EVALPROC])

Similar to Load, but loads FILE relative to the path of the currently loaded file.

15 Unit eval 92

CHICKEN User's Manual - The User's Manual
15.1.3 load-noisily
[procedure] (load-noisily FILE #'key EVALUATOR TIME PRINTER)

As load but the result(s) of each evaluated toplevel-expression is written to standard output. If EVALUATOR
is given and not #T, then each expression is evaluated by calling this argument with the read expression as
argument. If TIME is given and not false, then the execution time of each expression is shown (as with the
time macro). If PRINTER is given and not false, then each expression is printed before evaluation by
applying the expression to the value of this argument, which should be a one-argument procedure.

See also the load-verbose parameter.

15.1.4 load-library
[procedure] (load-library UNIT [LIBRARYFILE])

On platforms that support dynamic loading, Load- library loads the compiled library unit UNIT (which
should be a symbol). If the string LIBRARYFILE is given, then the given shared library will be loaded and
the toplevel code of the contained unit will be executed. If no LIBRARYFILE argument is given, then the
following libraries are checked for the required unit:

e a file named <UNIT>. so
e the files given in the parameter dynamic-load- libraries

If the unit is not found, an error is signaled. When the library unit can be successfully loaded, a
feature-identifier named UNIT is registered. If the feature is already registered before loading, the
load- library does nothing.

15.1.5 set-dynamic-load-mode!
[procedure] (set-dynamic-load-mode! MODELIST)

On systems that support dynamic loading of compiled code via the dlopen (3) interface (for example Linux
and Solaris), some options can be specified to fine-tune the behaviour of the dynamic linker. MODE should be
a list of symbols (or a single symbol) taken from the following set:

local
If Local is given, then any C/C++ symbols defined in the dynamically loaded file are not available
for subsequently loaded files and libraries. Use this if you have linked foreign code into your
dynamically loadable file and if you don't want to export them (for example because you want to load
another file that defines the same symbols).
global
The default is global, which means all C/C++ symbols are available to code loaded at a later stage.
now
If now is specified, all symbols are resolved immediately.
lazy

Unresolved symbols are resolved as code from the file is executed. This is the default.

15.1.3 load-noisily 93

http://chicken.wiki.br/Parameters#load-verbose

CHICKEN User's Manual - The User's Manual

Note that this procedure does not control the way Scheme variables are handled - this facility is mainly of
interest when accessing foreign code.

15.2 Read-eval-print loop

15.2.1 repl
[procedure] (repl)
Start a new read-eval-print loop. Sets the reset -handler so that any invocation of reset restarts the

read-eval-print loop. Also changes the current exception-handler to display a message, write any arguments to
the value of (current-error-port) and reset.

15.3 Macros

15.3.1 get-line-number
[procedure] (get-line-number EXPR)
If EXPR is a pair with the car being a symbol, and line-number information is available for this expression,

then this procedure returns the associated line number. If line-number information is not available, then #T is
returned. Note that line-number information for expressions is only available in the compiler.

15.3.2 macro?
[procedure] (macro? SYMBOL)

Returns #t if there exists a macro-definition for SYMBOL.

15.3.3 macroexpand
[procedure] (macroexpand X)

If X is a macro-form, expand the macro (and repeat expansion until expression is a non-macro form). Returns
the resulting expression.

15.1.5 set-dynamic-load-mode! 94

CHICKEN User's Manual - The User's Manual

15.3.4 macroexpand-1
[procedure] (macroexpand-1 X)

If X is a macro-form, expand the macro. Returns the resulting expression.

15.3.5 undefine-macro!
[procedure] (undefine-macro! SYMBOL)

Remove the current macro-definition of the macro named SYMBOL.

15.3.6 syntax-error
[procedure] (syntax-error [LOCATION] MESSAGE ARGUMENT ...)

Signals an exception of the kind (exn syntax). Otherwise identical to error.

15.4 Loading extension libraries

This functionality is only available on platforms that support dynamic loading of compiled code. Currently
Linux, BSD, Solaris, Windows (with Cygwin) and HP/UX are supported.

15.4.1 repository-path
[parameter] repository-path
Contains a string naming the path to the extension repository, which defaults to either the value of the

environment variable CHLCKEN REPOSITORY or the default library path (usually
/usr/local/lib/chicken on UNIX systems).

15.4.2 extension-information
[procedure] (extension-information ID)

If an extension with the name ID is installed and if it has a setup-information list registered in the extension
repository, then the info-list is returned. Otherwise extension-information returns #f.

15.3.4 macroexpand-1 95

CHICKEN User's Manual - The User's Manual

15.4.3 provide
[procedure] (provide ID ...)

Registers the extension IDs ID ... asloaded. This is mainly intended to provide aliases for certain
extension identifiers.

15.4.4 provided?
[procedure] (provided? ID ...)

Returns #1 if the extension with the IDs ID ... are currently loaded, or #f otherwise.

15.4.5 require

[procedure] (require ID ...)
[procedure] (require-for-syntax ID ...)

If the extension library ID is not already loaded into the system, then require will lookup the location of
the shared extension library and load it. If ID names a library-unit of the base system, then it is loaded via
load- library. If no extension library is available for the given ID, then an attempt is made to load the file
ID.soor ID.scm (in that order) from one of the following locations:

e the current include path, which defaults to the pathnames given in CHICKEN INCLUDE PATH.
¢ the current directory

ID should be a string or a symbol. The difference between require and require-for-syntaxis the
the latter loads the extension library at compile-time (the argument is still evaluated), while the former loads it
at run-time.

15.4.6 set-extension-specifier!
[procedure] (set-extension-specifier! SYMBOL PROC)

Registers the handler-procedure PROC as a extension-specifier with the name SYMBOL. This facility allows
extending the set of valid extension specifiers to be used with require-extension. When
register-extension is called with an extension specifier of the form (SPEC ...) and SPEC has
been registered with set-extension-specifier!, then PROC will be called with two arguments: the
specifier and the previously installed handler (or #T if no such handler was defined). The handler should
return a new specifier that will be processed recursively. If the handler returns a vector, then each element of
the vector will be processed recursively. Alternatively the handler may return a string which specifies a file to
be loaded:

(eval-when (compile eval)
(set-extension-specifier!
'my - package
(Lambda (spec old)

15.4.3 provide 96

CHICKEN User's Manual - The User's Manual

(make-pathname my-package-directory (->string (cadr spec))))))
(require-extension (my-package stuff)) ; --> expands into '(load "my-packag

Note that the handler has to be registered at compile time, if it is to be visible in compiled code.

15.5 System information

15.5.1 chicken-home
[procedure] (chicken-home)
Returns a string given the installation directory (usually /usr/local/share/chicken on UNIX-like

systems). As a last option, if the environment variable CHICKEN PREFIX is set, then chicken-home will
return $CHICKEN PREFIX/share.

15.6 Eval

15.6.1 eval
[procedure] (eval EXP [ENVIRONMENT])

Evaluates EXP and returns the result of the evaluation. The second argument is optional and defaults to the
value of (interaction-environment).

Previous: Unit library

Next: Unit extras

15.4.6 set-extension-specifier! 97

16 Unit data-structures

This unit contains a collection of procedures related to data structures. This unit is used by default, unless the
program is compiled with the -explicit-use option.

16.1 Lists

16.1.1 alist-ref
[procedure] (alist-ref KEY ALIST [TEST [DEFAULT]])

Looks up KEY in ALIST using TEST as the comparison function (or eqVv? if no test was given) and returns
the cdr of the found pair, or DEFAULT (which defaults to #7).

16.1.2 alist-update!

[procedure] (alist-update! KEY VALUE ALIST [TEST])

If the list ALIST contains a pair of the form (KEY . X), then this procedure replaces X with VALUE and
returns ALIST. If ALIST contains no such item, then alist-update! returns ((KEY . VALUE)

ALIST). The optional argument TEST specifies the comparison procedure to search a matching pair in
ALIST and defaults to eqv?.

16.1.3 atom?

[procedure] (atom? X)

Returns #1 if X is not a pair. This is identical to not-pair? from Unit srfi-1 but kept for historical reasons.

16.1.4 rassoc
[procedure] (rassoc KEY LIST [TEST])

Similar to asS0C, but compares KEY with the cdr of each pair in LIST using TEST as the comparison
procedures (which defaults to eqv?.

16 Unit data-structures 98

CHICKEN User's Manual - The User's Manual

16.1.5 butlast
[procedure] (butlast LIST)

Returns a fresh list with all elements but the last of LIST.

16.1.6 chop
[procedure] (chop LIST N)

Returns a new list of sublists, where each sublist contains N elements of LIST. If LIST has a length that is
not a multiple of N, then the last sublist contains the remaining elements.

cd)

==>

—_
—
Q
(e
@]
~
—_
o
~
~

16.1.7 compress
[procedure] (compress BLIST LIST)

Returns a new list with elements taken from LIST with corresponding true values in the list BLIST.

(define nums '(99 100 110 401 1234))
(compress (map odd? nums) nums) ==> (99 401)

16.1.8 flatten
[procedure] (flatten LIST1 ...)

Returns LIST1 ... concatenated together, with nested lists removed (flattened).

16.1.9 intersperse
[procedure] (intersperse LIST X)

Returns a new list with X placed between each element.

16.1.5 butlast 99

CHICKEN User's Manual - The User's Manual
16.1.10 join
[procedure] (join LISTOFLISTS [LIST])

Concatenates the lists in LISTOFLISTS with LIST placed between each sublist. LIST defaults to the empty
list.

(e))

(join '((a b) (c d) '
) (r (s) 1)) '

ab
(join ' ((p q) (
join could be implemented as follows:

(define (join lstoflsts #!optional (lst '()))
(apply append (intersperse lstoflists 1lst)))

16.1.11 shuffle
[procedure] (shuffle LIST RANDOM)

Returns LIST with its elements sorted in a random order given by procedure RANDOM.

16.1.12 tail?
[procedure] (tail? X LIST)

Returns true if X is one of the tails (cdr's) of LIST.

16.2 Queues

16.2.1 listqueue
[procedure] (list->queue LIST)

Returns LIST converted into a queue, where the first element of the list is the same as the first element of the
queue. The resulting queue may share memory with the list and the list should not be modified after this
operation.

16.1.10 join 100

CHICKEN User's Manual - The User's Manual

16.2.2 make-queue
[procedure] (make-queue)

Returns a newly created queue.

16.2.3 queue?
[procedure] (queue? X)

Returns #1t if X is a queue, or #f otherwise.

16.2.4 queuelist

[procedure] (queue->list QUEUE)

Returns QUEUE converted into a list, where the first element of the list is the same as the first element of the

queue. The resulting list may share memory with the queue object and should not be modified.

16.2.5 queue-add!
[procedure] (queue-add! QUEUE X)

Adds X to the rear of QUEUE.

16.2.6 queue-empty?
[procedure] (queue-empty? QUEUE)

Returns #1t if QUEUE is empty, or #T otherwise.

16.2.7 queue-first
[procedure] (queue-first QUEUE)

Returns the first element of QUEUE. If QUEUE is empty an error is signaled

16.2.2 make-queue

101

CHICKEN User's Manual - The User's Manual

16.2.8 queue-last
[procedure] (queue-last QUEUE)

Returns the last element of QUEUE. If QUEUE is empty an error is signaled

16.2.9 queue-remove!
[procedure] (queue-remove! QUEUE)

Removes and returns the first element of QUEUE. If QUEUE is empty an error is signaled

16.2.10 queue-push-back!
[procedure] (queue-push-back! QUEUE ITEM)

Pushes an item into the first position of a queue, i.e. the next queue-remove! will return ITEM.

16.2.11 queue-push-back-list!
[procedure] (queue-push-back-list! QUEUE LIST)

Pushes the items in item-list back onto the queue, so that (car LIST) becomes the next removable item.

16.3 Sorting

16.3.1 merge

[procedure] (merge LIST1 LIST2 LESS?)
[procedure] (merge! LIST1 LIST2 LESS?)

Joins two lists in sorted order. merge! is the destructive version of merge. LESS? should be a procedure of
two arguments, that returns true if the first argument is to be ordered before the second argument.

16.2.8 queue-last 102

CHICKEN User's Manual - The User's Manual
16.3.2 sort

[procedure] (sort SEQUENCE LESS?)
[procedure] (sort! SEQUENCE LESS?)

Sort SEQUENCE, which should be a list or a vector. SOrt! is the destructive version of sort.

16.3.3 sorted?
[procedure] (sorted? SEQUENCE LESS?)

Returns true if the list or vector SEQUENCE is already sorted.

16.4 Random numbers

16.4.1 random-seed
[procedure] (random-seed [SEED])

Seeds the random number generator with SEED (an exact integer) or (current-seconds) if SEED is not
given.

16.5 Strings

16.5.1 conc
[procedure] (conc X ...)

Returns a string with the string-represenation of all arguments concatenated together. COnc could be
implemented as

(define (conc . args)
(apply string-append (map ->string args)))

16.3.2 sort 103

CHICKEN User's Manual - The User's Manual
16.5.2 string
[procedure] (->string X)

Returns a string-representation of X.

16.5.3 string-chop
[procedure] (string-chop STRING LENGTH)
Returns a list of substrings taken by chopping STRING every LENGTH characters:

(string-chop 4) ==> ()

16.5.4 string-chomp
[procedure] (string-chomp STRING [SUFFIX])

If STRING ends with SUFFIX, then this procedure returns a copy of its first argument with the suffix
removed, otherwise returns STRING unchanged. SUFFIX defaults to "\n".

16.5.5 string-compare3

[procedure] (string-compare3 STRING1 STRING2)
[procedure] (string-compare3-ci STRING1 STRING2)

Perform a three-way comparison between the STRING1 and STRING2, returning either - 1 if STRING1I is

lexicographically less than STRINGZ2, O if it is equal, or 1 if it s greater. String- compare3- ci performs
a case-insensitive comparison.

16.5.6 string-intersperse
[procedure] (string-intersperse LIST [STRING])

Returns a string that contains all strings in LIST concatenated together. STRING is placed between each
concatenated string and defaults to " ",

(string-intersperse ' ())
is equivalent to

(apply string-append (intersperse ' ()))

16.5.2 string 104

CHICKEN User's Manual - The User's Manual

16.5.7 string-split

[procedure] (string-split STRING [DELIMITER-STRING [KEEPEMPTY]])

Split string into substrings separated by the given delimiters. If no delimiters are specified, a string comprising
the tab, newline and space characters is assumed. If the parameter KEEPEMPTY is given and not #f, then

empty substrings are retained:

(string-split) ==> ()
(string-split #t) ==> ()

16.5.8 string-translate
[procedure] (string-translate STRING FROM [TO])
Returns a fresh copy of STRING with characters matching FROM translated to TO. If TO is omitted, then

matching characters are removed. FROM and TO may be a character, a string or a list. If both FROM and TO are
strings, then the character at the same position in TO as the matching character in FROM is substituted.

16.5.9 string-translate*

[procedure] (string-translate* STRING SMAP)

Substitutes elements of STRING according to SMAP. SMAP should be an association-list where each element
of the list is a pair of the form (MATCH \. REPLACEMENT). Every occurrence of the string MATCH in
STRING will be replaced by the string REPLACEMENT:

(string-translate*

" :) (:) (:)))

=>

16.5.10 substring="?

[procedure] (substring=? STRING1 STRING2 [START1 [START2 [LENGTH]]])
[procedure] (substring-ci=? STRING1 STRING2 [START1 [START2 [LENGTH]]1])

Returns #t if the strings STRING1 and STRING2 are equal, or #T otherwise. The comparison starts at the

positions START1 and START2 (which default to 0), comparing LENGTH characters (which defaults to the
minimum of the remaining length of both strings).

16.5.7 string-split 105

CHICKEN User's Manual - The User's Manual
16.5.11 substring-index

[procedure] (substring-index WHICH WHERE [START])
[procedure] (substring-index-ci WHICH WHERE [START])

Searches for first index in string WHERE where string WHICH occurs. If the optional argument START is
given, then the search starts at that index. substring-index- ci is a case-insensitive version of
substring-index.

16.6 Combinators

16.6.1 any?
[procedure] (any? X)

Ignores its argument and always returns #t. This is actually useful sometimes.

16.6.2 none?
[procedure] (none? X)

Ignores its argument and always returns #f. This is actually useful sometimes.

16.6.3 always?
[procedure] (always? X)

Ignores its arguments and always returns #t. This is actually useful sometimes.

16.6.4 never?
[procedure] (never? X)

Ignores its arguments and always returns #f. This is actually useful sometimes.

16.5.11 substring-index 106

CHICKEN User's Manual - The User's Manual

16.6.5 constantly

[procedure] (constantly X ...)
Returns a procedure that always returns the values X . .. regardless of the number and value of its
arguments.

(constantly X) <=> (lambda args X)

16.6.6 complement
[procedure] (complement PROC)
Returns a procedure that returns the boolean inverse of PROC.

(complement PROC) <=> (lambda (x) (not (PROC x)))

16.6.7 compose
[procedure] (compose PROC1 PROC2 ...)
Returns a procedure that represents the composition of the argument-procedures PROC1 PROC2
(compose F G) <=> (lambda args
(call-with-values
(Lambda () (apply G args))
F))

(compose) is equivalent to values.

16.6.8 conjoin
[procedure] (conjoin PRED ...)

Returns a procedure that returns #t if its argument satisfies the predicates PRED . ..

((conjoin odd? positive?) 33) ==> #t
((conjoin odd? positive?) -33) ==> #f
16.6.9 disjoin

[procedure] (disjoin PRED ...)

Returns a procedure that returns #t if its argument satisfies any predicate PRED ...

16.6.5 constantly 107

CHICKEN User's Manual - The User's Manual

((disjoin odd? positive?) 32) ==> #t
((disjoin odd? positive?) -32) ==> #f
16.6.10 each

[procedure] (each PROC ...)

Returns a procedure that applies PROC . . . to its arguments, and returns the result(s) of the last procedure
application. For example

(each pp eval)

is equivalent to

(Lambda args
(apply pp args)
(apply eval args))

(each PROC) is equivalent to PROC and (each) is equivalent to noop.

16.6.11 flip
[procedure] (flip PROC)
Returns a two-argument procedure that calls PROC with its arguments swapped:

(flip PROC) <=> (lambda (x y) (PROC y x))

16.6.12 identity
[procedure] (identity X)

Returns its sole argument X.

16.6.13 project
[procedure] (project N)

Returns a procedure that returns its Nth argument (starting from 0).

16.6.9 disjoin 108

CHICKEN User's Manual - The User's Manual
16.6.14 list-of

[procedure] (list-of PRED)

Returns a procedure of one argument that returns #t when applied to a list of elements that all satisfy the

predicate procedure PRED, or #f otherwise.

((list-of even?) '(1 2 3)) ==> #Tf
((list-of number?) '(1 2 3)) ==> #t
16.6.15 noop

[procedure] (noop X ...)

Ignores it's arguments, does nothing and returns an unspecified value.

16.6.16 o

[procedure] (o PROC ...)

A single value version of compose (slightly faster). (0) is equivalent to identity.

16.6.17 left-section

[procedure] (left-section PROC ARGO ...)

Returns a procedure that partially applies some of its' arguments starting from the left.
PROC a procedure.

ARGO ... some prefix of the arguments for PROC.

16.6.18 right-section

[procedure] (right-section PROC ARGO ...)

Returns a procedure that partially applies some of its' arguments starting from the right.

PROC a procedure.

ARGO ... some reversed suffix of the arguments for PROC.

16.6.14 list-of

109

CHICKEN User's Manual - The User's Manual

16.7 Binary searching

16.7.1 binary-search

[procedure] (binary-search SEQUENCE PROC)

Performs a binary search in SEQUENCE, which should be a sorted list or vector. PROC is called to compare
items in the sequence, should accept a single argument and return an exact integer: zero if the searched value
is equal to the current item, negative if the searched value is /ess than the current item, and positive otherwise.

Returns the index of the found value or #T otherwise.

Previous: Unit eval

Next: Unit ports

16.7 Binary searching 110

17 Unit ports

This unit contains various extended port definitions. This unit is used by default, unless the program is
compiled with the -explicit-use option.

17.1 Input/output port extensions

17.1.1 with-output-to-port
[procedure] (with-output-to-port PORT THUNK)

Call procedure THUNK with the current output-port temporarily bound to PORT.

17.1.2 make-input-port

[procedure] (make-input-port READ READY? CLOSE [PEEK])

Returns a custom input port. Common operations on this port are handled by the given parameters, which
should be procedures of no arguments. READ is called when the next character is to be read and should return
a character or #! eof. READY? is called when char-ready? is called on this port and should return #t or
#f. CLOSE is called when the port is closed. PEEK is called when peek- char is called on this port and

should return a character or #!eof. if the argument PEEK is not given, then READ is used instead and the
created port object handles peeking automatically (by calling READ and buffering the character).

17.1.3 make-output-port

[procedure] (make-output-port WRITE CLOSE [FLUSH])

Returns a custom output port. Common operations on this port are handled by the given parameters, which
should be procedures. WRITE is called when output is sent to the port and receives a single argument, a string.

CLOSE is called when the port is closed and should be a procedure of no arguments. FLUSH (if provided) is
called for flushing the output port.

17.1.4 with-error-output-to-port
[procedure] (with-error-output-to-port PORT THUNK)

Call procedure THUNK with the current error output-port temporarily bound to PORT.

17 Unit ports 111

CHICKEN User's Manual - The User's Manual
17.1.5 with-input-from-port
[procedure] (with-input-from-port PORT THUNK)

Call procedure THUNK with the current input-port temporarily bound to PORT.

17.2 String-port extensions

17.2.1 call-with-input-string
[procedure] (call-with-input-string STRING PROC)

Calls the procedure PROC with a single argument that is a string-input-port with the contents of STRING.

17.2.2 call-with-output-string
[procedure] (call-with-output-string PROC)

Calls the procedure PROC with a single argument that is a string-output-port. Returns the accumulated
output-string.

17.2.3 with-input-from-string
[procedure] (with-input-from-string STRING THUNK)

Call procedure THUNK with the current input-port temporarily bound to an input-string-port with the contents

of STRING.

17.2.4 with-output-to-string
[procedure] (with-output-to-string THUNK)

Call procedure THUNK with the current output-port temporarily bound to a string-output-port and return the
accumulated output string.

17.1.5 with-input-from-port 112

CHICKEN User's Manual - The User's Manual

17.3 Port iterators

17.3.1 port-for-each
[procedure] (port-for-each FN THUNK)

Apply FN to successive results of calling the zero argument procedure THUNK until it returns #!eof,
discarding the results.

17.3.2 port-map
[procedure] (port-map FN THUNK)

Apply FN to successive results of calling the zero argument procedure THUNK until it returns #!eof,
returning a list of the collected results.

17.3.3 port-fold
[procedure] (port-map FN ACC THUNK)

Apply FN to successive results of calling the zero argument procedure THUNK, passing the ACC value as the
second argument. The FN result becomes the new ACC value. When THUNK returns #! eof, the last FN result
is returned.

17.4 Funky ports

17.4.1 make-broadcast-port
[procedure] (make-broadcast-port PORT ...)

Returns a custom output port that emits everything written into it to the ports given as PORT Closing
the broadcast port does not close any of the argument ports.

17.4.2 make-concatenated-port

[procedure] (make-concatenated-port PORT1 PORT2 ...)

17.3 Port iterators 113

CHICKEN User's Manual - The User's Manual

Returns a custom input port that reads its input from PORT1, until it is empty, then from PORT2 and so on.
Closing the concatenated port does not close any of the argument ports.

Previous: Unit data-structures

Next: Unit files

17.4.2 make-concatenated-port 114

18 Unit files

This unit contains file- and pathname-oriented procedures. It uses the regex unit.

18.1 Pathname operations

18.1.1 absolute-pathname?
[procedure] (absolute-pathname? PATHNAME)

Returns #1 if the string PATHNAME names an absolute pathname, and returns #f otherwise.

18.1.2 decompose-pathname
[procedure] (decompose-pathname PATHNAME)

Returns three values: the directory-, filename- and extension-components of the file named by the string
PATHNAME. For any component that is not contained in PATHNAME, #f is returned.

18.1.3 make-pathname

18.1.4 make-absolute-pathname

[procedure] (make-pathname DIRECTORY FILENAME [EXTENSION [SEPARATOR]])
[procedure] (make-absolute-pathname DIRECTORY FILENAME [EXTENSION [SEPARATORI]])

Returns a string that names the file with the components DIRECTORY, FILENAME and (optionally)
EXTENSION with SEPARATOR being the directory separation indicator (usually / on UNIX systems and \
on Windows, defaulting to whatever platform this is running on). DIRECTORY can be #f (meaning no

directory component), a string or a list of strings. FILENAME and EXTENSION should be strings or #f.
make-absolute-pathname returns always an absolute pathname.

18.1.5 pathname-directory

[procedure] (pathname-directory PATHNAME)

18 Unit files 115

CHICKEN User's Manual - The User's Manual
18.1.6 pathname-file

[procedure] (pathname-file PATHNAME)

18.1.7 pathname-extension

[procedure] (pathname-extension PATHNAME)

Accessors for the components of PATHNAME. If the pathname does not contain the accessed component, then

#7T is returned.

18.1.8 pathname-replace-directory

[procedure] (pathname-replace-directory PATHNAME DIRECTORY)

18.1.9 pathname-replace-file

[procedure] (pathname-replace-file PATHNAME FILENAME)

18.1.10 pathname-replace-extension
[procedure] (pathname-replace-extension PATHNAME EXTENSION)

Return a new pathname with the specified component of PATHNAME replaced by a new value.

18.1.11 pathname-strip-directory

[procedure] (pathname-strip-directory PATHNAME)

18.1.12 pathname-strip-extension
[procedure] (pathname-strip-extension PATHNAME)

Return a new pathname with the specified component of PATHNAME stripped.

18.1.6 pathname-file

116

CHICKEN User's Manual - The User's Manual

18.1.13 directory-null?

[procedure] (directory-null? DIRECTORY)

Does the DIRECTORY consist only of path separators and the period?

DIRECTORY may be a string or a list of strings.

18.2 Temporary files

18.2.1 create-temporary-file
[procedure] (create-temporary-file [EXTENSION])

Creates an empty temporary file and returns its pathname. If EXTENSION is not given, then . tmp is used. If
the environment variable TMPDIR, TEMP or TMP is set, then the pathname names a file in that directory.

18.3 Deleting a file without signalling an error

18.3.1 delete-file*
[procedure] (delete-file* FILENAME)

If the file FILENAME exists, it is deleted and #t is returned. If the file does not exist, nothing happens and
#f is returned.

18.4 File move/copy

18.4.1 file-copy
[procedure] (file-copy ORIGFILE NEWFILE #!optional CLOBBER BLOCKSIZE)

Copies ORIGFILE (a string denoting some filename) to NEWFILE, BLOCKSIZE bytes at a time.
BLOCKSIZE defaults to 1024, and must be a positive integer. Returns the number of bytes copied on success,
or errors on failure. CLOBBER determines the behaviour of file-copy when NEWFILE is already extant.
When set to #f (default), an error is signalled. When set to any other value, NEWFILE is overwritten.
file-copy will work across filesystems and devices and is not platform-dependent.

18.1.13 directory-null? 117

CHICKEN User's Manual - The User's Manual

18.4.2 file-move

[procedure] (file-move ORIGFILE NEWFILE #'optional CLOBBER BLOCKSIZE)
Moves ORIGFILE (a string denoting some filename) to NEWFILE, with the same semantics as
file-copy, above. file-move is safe across filesystems and devices (unlike file-rename). It is
possible for an error to be signalled despite partial success if NEWFILE could be created and fully written but
removing ORIGFILE fails.

Previous: Unit ports

Next: Unit extras

18.4.2 file-move 118

19 Unit extras

This unit contains a collection of useful utility definitions. This unit is used by default, unless the program is
compiled with the -explicit-use option.

19.1 Formatted output

19.1.1 printf

19.1.2 fprintf

19.1.3 sprintf

[procedure] (fprintf PORT FORMATSTRING ARG ...)
[procedure] (printf FORMATSTRING ARG ...)
[procedure] (sprintf FORMATSTRING ARG ...)

Simple formatted output to a given port (fprintf), the value of (current-output-port) (printf),
or a string (sprintf). The FORMATSTRING can contain any sequence of characters. There must be at least
as many ARG arguments given as there are format directives that require an argument in FORMATSTRING.

Extra ARG arguments are ignored. The character “~' prefixes special formatting directives:

~%

write newline character

~N

the same as ~%

~S

write the next argument

~A

display the next argument

~\n

skip all whitespace in the format-string until the next non-whitespace character

~B

write the next argument as a binary number

~0

19 Unit extras 119

CHICKEN User's Manual - The User's Manual

write the next argument as an octal number
~X

write the next argument as a hexadecimal number

~C

write the next argument as a character

display “~'

flush all pending output
~?

invoke formatted output routine recursively with the next two arguments as format-string and list of
parameters

19.1.4 format
[procedure] (format [DESTINATION] FORMATSTRING ARG ...)
The parameters FORMATSTRING and ARG ... are as for (printf/sprintf/fprintf).

The optional DESTINATION, when supplied, performs a (sprintf) for a #f, a (printf) for a #t, and a
(fprintf) for an output-port. When missing a (Sprintf) is performed.

19.2 Random numbers

19.2.1 random-seed
[procedure] (random-seed [SEED])

Seeds the random number generator with SEED (an exact integer) or (current-seconds) if SEED is not
given.

19.2.2 random
[procedure] (random N)

Returns an exact random integer from O to N-1.

19.1.3 sprintf 120

CHICKEN User's Manual - The User's Manual

19.2.3 randomize
[procedure] (randomize [X])

Set random-number seed. If X is not supplied, the current time is used. On startup (when the extras unit is
initialized), the random number generator is initialized with the current time.

19.3 Input/Output extensions

19.3.1 pretty-print

[procedure] (pretty-print EXP [PORT])
[procedure] (pp EXP [PORT])

Print expression nicely formatted. PORT defaults to the value of (current-output-port).

19.3.2 pretty-print-width

(Parameter) Specifies the maximal line-width for pretty printing, after which line wrap will occur.

19.3.3 read-byte

19.3.4 write-byte

[procedure] (read-byte [PORT])
[procedure] (write-byte BYTE [PORT])

Read/write a byte to the port given in PORT, which default to the values of (current-input-port) and
(current-output-port), respectively.

19.3.5 read-file

[procedure] (read-file [FILE-OR-PORT [READER [MAXCOUNT]]])

Returns a list containing all toplevel expressions read from the file or port FILE - OR-PORT. If no argument
is given, input is read from the port that is the current value of (current-input-port). After all

expressions are read, and if the argument is a port, then the port will not be closed. The READER argument
specifies the procedure used to read expressions from the given file or port and defaults to read. The reader

19.2.3 randomize 121

CHICKEN User's Manual - The User's Manual

procedure will be called with a single argument (an input port). If MAXCOUNT is given then only up to
MAXCOUNT expressions will be read in.

19.3.6 read-line

19.3.7 write-line

[procedure] (read-line [PORT [LIMIT]])
[procedure] (write-line STRING [PORT])

Line-input and -output. PORT defaults to the value of (current-input-port) and
(current-output-port), respectively. If the optional argument LIMIT is given and not #f, then
read- line reads at most LIMIT characters per line. read - Line returns a string without the terminating
newline and write-line adds a terminating newline before outputting.

19.3.8 read-lines
[procedure] (read-lines [PORT [MAX]])

Read MAX or fewer lines from PORT. PORT defaults to the value of (current-input-port). PORT may
optionally be a string naming a file. Returns a list of strings, each string representing a line read, not including
any line separation character(s).

19.3.9 read-string

19.3.10 read-string!

19.3.11 write-string

[procedure] (read-string [NUM [PORT]])
[procedure] (read-string! NUM STRING [PORT [START]])
[procedure] (write-string STRING [NUM [PORT]]

Read or write NUM characters from/to PORT, which defaults to the value of (current-input-port) or
(current-output-port), respectively. If NUM is #f or not given, then all data up to the end-of-file is
read, or, in the case of write-string the whole string is written. If no more input is available,
read-string returns the empty string. read-string! reads destructively into the given STRING
argument, but never more characters that would fit into STRING. If START is given, then the read characters
are stored starting at that position. read-string! returns the actual number of characters read.

19.3.5 read-file 122

CHICKEN User's Manual - The User's Manual

19.3.12 read-token

[procedure] (read-token PREDICATE [PORT])

Reads characters from PORT (which defaults to the value of (current-input-port)) and calls the
procedure PREDICATE with each character until PREDICATE returns false. Returns a string with the
accumulated characters.

Previous: Unit files

Next: Unit srfi-1

19.3.12 read-token 123

20 Unit srfi-1

List library, see the documentation for SRFI-1
Previous: Unit extras

Next: Unit srfi-4

20 Unit srfi-1 124

http://srfi.schemers.org/srfi-1/srfi-1.html

21 Unit srfi-4

Homogeneous numeric vectors, see the documentation for SRFI-4 64-bit integer vectors (u64vector and
s64vector are not supported.

The basic constructor procedures for number vectors are extended to allow allocating the storage in non
garbage collected memory:

21.1 make-XXXvector
[procedure] (make-XXXvector SIZE [INIT NONGC FINALIZE])

Creates a SRFI-4 homogenous number vector of length SIZE. If INIT is given, it specifies the initial value
for each slot in the vector. The optional arguments NONGC and FINALIZE define whether the vector should
be allocated in a memory area not subject to garbage collection and whether the associated storage should be
automatically freed (using finalization) when there are no references from Scheme variables and data. NONGC
defaults to #T (the vector will be located in normal garbage collected memory) and FINALIZE defaults to
#t. Note that the FINALIZE argument is only used when NONGC is true.

Additionally, the following procedures are provided:

21.2 u8vectorblob

21.3 s8vectorblob

21.4 ui6vectorblob

21.5 s16vectorblob

21.6 u32vectorblob

21 Unit srfi-4 125

http://srfi.schemers.org/srfi-4/srfi-4.html

CHICKEN User's Manual - The User's Manual

21.7 s32vectorblob

21.8 f32vectorblob

21.9 f64vectorblob

21.10 u8vectorblob/shared

21.11 s8vectorblob/shared

21.12 ul16vectorblob/shared

21.13 s16vectorblob/shared

21.14 u32vectorblob/shared

21.15 s32vectorblob/shared

21.16 f32vectorblob/shared

21.17 f64vectorblob/shared

[procedure]
[procedure]
[procedure]
[procedure]

u8vector->blob UBVECTOR)
s8vector->blob S8VECTOR)
ulévector->blob U16VECTOR)
sl6vector->blob S16VECTOR)

Py

21.7 s32vectorblob

126

CHICKEN User's Manual - The User's Manual

[procedure] (u32vector->blob U32VECTOR)
[procedure] (s32vector->blob S32VECTOR)
[procedure] (f32vector->blob F32VECTOR)
[procedure] (f64vector->blob F64VECTOR)
[procedure] (u8vector->blob/shared U8SVECTOR)

(
(
(
(
(
[procedure] (s8vector->blob/shared S8VECTOR)
[procedure] (ul6vector->blob/shared U16VECTOR)
[procedure] (sl6vector->blob/shared S16VECTOR)
[procedure] (u32vector->blob/shared U32VECTOR)
[procedure] (s32vector->blob/shared S32VECTOR)
[procedure] (f32vector->blob/shared F32VECTOR)
()

[procedure] (f64vector->blob/shared F64VECTOR

Each of these procedures return the contents of the given vector as a 'packed’ blob. The byte order in that
vector is platform-dependent (for example little-endian on an Intel processor). The /shared variants return
a blob that shares memory with the contents of the vector.

21.18 blobu8vector
21.19 blobs8vector
21.20 blobui6vector
21.21 blobs16vector
21.22 blobu32vector
21.23 blobs32vector

21.24 blobf32vector

21.17 f64vectorblob/shared 127

CHICKEN User's Manual - The User's Manual

21.25 blobf64vector

21.26 blobu8vector/shared
21.27 blobs8vector/shared
21.28 blobui6vector/shared
21.29 blobs16vector/shared
21.30 blobu32vector/shared
21.31 blobs32vector/shared
21.32 blobf32vector/shared

21.33 blobf64vector/shared

blob->u8vector BLOB)
blob->s8vector BLOB)
blob->ul6vector BLOB)
blob->sl6vector BLOB)
blob->u32vector BLOB)

)

)

[procedure]
[procedure]
[procedure]
[procedure]
[procedure]
[procedure]
[procedure]
[procedure]
[procedure]
[procedure]
[procedure]
[procedure]
[procedure]
[procedure]

blob->s32vector BLOB
blob->f32vector BLOB
blob->f64vector BLOB)
blob->u8vector/shared BLOB)
blob->s8vector/shared BLOB)
blob->ul6bvector/shared BLOB)
blob->sl6vector/shared BLOB)
blob->u32vector/shared BLOB)
blob->s32vector/shared BLOB)

N

21.25 blobf64vector 128

CHICKEN User's Manual - The User's Manual

[procedure] (blob->f32vector/shared BLOB)
[procedure] (blob->f64vector/shared BLOB)

Each of these procedures return a vector where the argument BLOB is taken as a 'packed' representation of the
contents of the vector. The /shared variants return a vector that shares memory with the contents of the
blob.

21.34 subu8vector

21.35 subui6vector

21.36 subu32vector

21.37 subs8vector

21.38 subs16vector

21.39 subs32vector

21.40 subf32vector

21.41 subf64vector

[procedure] (subu8vector USVECTOR FROM TO)
[procedure] (subul6vector U16VECTOR FROM TO)
[procedure] (subu32vector U32VECTOR FROM TO)
[procedure] (subs8vector S8VECTOR FROM TO)
[procedure] (subsl6vector S16VECTOR FROM TO)
[procedure] (subs32vector S32VECTOR FROM TO)
[procedure] (subf32vector F32VECTOR FROM TO)
()

[procedure] (subf64vector F64VECTOR FROM TO

21.33 blobf64vector/shared 129

CHICKEN User's Manual - The User's Manual

Creates a number vector of the same type as the argument vector with the elements at the positions FROM up
to but not including TO.

SRFI-17 Setters for XXXvector-ref are defined.

21.42 read-u8vector
[procedure] (read-u8vector LENGTH [PORT])
Reads LENGTH bytes from the PORT and returns a fresh u8vector or less if end-of-file is encountered.

PORT defaults to the value of (current-input-port).If LENGTH is #f, the vector will be filled
completely until end-of-file is reached.

21.43 read-u8vector!
[procedure] (read-u8vector! LENGTH U8SVECTOR [PORT [START]])
Reads LENGTH bytes from the PORT writing the read input into UBVECTOR beginning at START (or 0 if not

given). PORT defaults to the value of (current-input-port).If LENGTH is #f, the vector will be
filled completely until end-of-file is reached. This procedure returns the number of bytes read.

21.44 write-u8vector
[procedure] (write-u8vector USVECTOR [PORT [START [END]]])

Writes the bytes UBVECTOR between the indices START (inclusive) and END (exclusive) to PORT. PORT
defaults to the value of (current-output-port).

Previous: Unit srfi-1

Next: Unit srfi-13

21.41 subf64vector 130

22 Unit srfi-13

String library, see the documentation for SRFI-13

On systems that support dynamic loading, the S rfi-13 unit can be made available in the interpreter (CS1)
by entering

(require-extension srfi-13)
Previous: Unit srfi-4

Next: Unit srfi-14

22 Unit srfi-13 131

http://srfi.schemers.org/srfi-13/srfi-13.html

23 Unit srfi-14

Character set library, see the documentation for SRFI-14

On systems that support dynamic loading, the S rfi-14 unit can be made available in the interpreter (CS1)
by entering

(require-extension srfi-14)
This library provides only the Latin-1 character set.
Previous: Unit srfi-13

Next: Unit srfi-69

23 Unit srfi-14 132

http://srfi.schemers.org/srfi-14/srfi-14.html

24 Unit srfi-69

CHICKEN implements SRFI 69 with SRFI 90 extensions. For more information, see SRFI-69 and SRFI-90.

24.1 Hash Table Procedures

24.1.1 make-hash-table
[procedure] (make-hash-table [TEST HASH SIZE] #:TEST #:HASH #:SIZE #:INITIAL #:
Returns a new HASH - TABLE with the supplied configuration.

TEST

The equivalence function.
HASH

The hash function.
SIZE

The expected number of table elements.
INITIAL

The default initial value.
MIN-LOAD

The minimum load factor. A flonumin (0.0 1.0).
MAX-LOAD

The maximum load factor. A flonumin (0.0 1.0).
WEAK-KEYS

Use weak references for keys. (Ignored)
WEAK-VALUES

Use weak references for values. (Ignored)

(No, the keyword parameters are not uppercase.)

24.1.2 hash-table?
[procedure] (hash-table? OBJECT)

Is the OBJECT a hash-table?

24.1.3 hash-table-size
[procedure] (hash-table-size HASH-TABLE)

The HASH-TABLE size.

24 Unit srfi-69 133

http://srfi.schemers.org/srfi-69/srfi-69.html
http://srfi.schemers.org/srfi-90/srfi-90.html

CHICKEN User's Manual - The User's Manual

24.1.4 hash-table-equivalence-function
[procedure] (hash-table-equivalence-function HASH-TABLE)

The HASH-TABLE equivalence-function.

24.1.5 hash-table-hash-function
[procedure] (hash-table-hash-function HASH-TABLE)

The HASH-TABLE hash-function.

24.1.6 hash-table-min-load
[procedure] (hash-table-min-load HASH-TABLE)

The HASH - TABLE minimum load factor.

24.1.7 hash-table-max-load
[procedure] (hash-table-max-load HASH-TABLE)

The HASH - TABLE maximum load factor.

24.1.8 hash-table-weak-keys
[procedure] (hash-table-weak-keys HASH-TABLE)

Does the HASH-TABLE weak references for keys?

24.1.9 hash-table-weak-values
[procedure] (hash-table-weak-values HASH-TABLE)

Does the HASH - TABLE weak references for values?

24.1.4 hash-table-equivalence-function 134

CHICKEN User's Manual - The User's Manual

24.1.10 hash-table-has-initial?
[procedure] (hash-table-has-initial? HASH-TABLE)

Does the HASH - TABLE have a default initial value?

24.1.11 hash-table-initial
[procedure] (hash-table-initial HASH-TABLE)

The HASH - TABLE default initial value.

24.1.12 hash-table-keys
[procedure] (hash-table-keys HASH-TABLE)

Returns a list of the keys in the HASH- TABLE population.

24.1.13 hash-table-values
[procedure] (hash-table-values HASH-TABLE)

Returns a list of the values in the HASH - TABLE population.

24.1.14 hash-tablealist
[procedure] (hash-table->alist HASH-TABLE)

Returns the population of the HASH-TABLE as an association-list.

24.1.15 alisthash-table

[procedure] (alist->hash-table ASSOCIATION-LIST [MAKE-HASH-TABLE-PARAMETER ...

Returns a new HASH-TABLE, configured using the optional MAKE -HASH-TABLE - PARAMETER The
HASH-TABLE is populated from the ASSOCIATION-LIST.

24.1.10 hash-table-has-initial? 135

CHICKEN User's Manual - The User's Manual

24.1.16 hash-table-ref

[procedure] (hash-table-ref HASH-TABLE KEY)
Returns the VALUE for the KEY in the HASH-TABLE.

Aborts with an exception when the KEY is missing.

24.1.17 hash-table-ref/default
[procedure] (hash-table-ref/default HASH-TABLE KEY DEFAULT)

Returns the VALUE for the KEY in the HASH-TABLE, or the DEFAULT when the KEY is missing.

24.1.18 hash-table-exists?
[procedure] (hash-table-exists? HASH-TABLE KEY)

Does the KEY exist in the HASH-TABLE?

24.1.19 hash-table-set!

[procedure] (hash-table-set! HASH-TABLE KEY VALUE)
Set the VALUE for the KEY in the HASH-TABLE.

A setter for hash-table-ref is defined, so

(set! (hash-table-ref HASH-TABLE KEY) VALUE)

is equivalent to

(hash-table-set! HASH-TABLE KEY VALUE)

24.1.20 hash-table-update!
[procedure] (hash-table-update! HASH-TABLE KEY [UPDATE-FUNCTION [DEFAULT-VALUE-
Sets or replaces the VALUE for KEY in the HASH- TABLE.

The UPDATE - FUNCTION takes the existing VALUE for KEY and returns the new VALUE. The default is
identity

24.1.16 hash-table-ref 136

CHICKEN User's Manual - The User's Manual

The DEFAULT - VALUE - FUNCTION is called when the entry for KEY is missing. The default uses the
(hash-table-initial-value), if provided. Otherwise aborts with an exception.

Returns the new VALUE.

24.1.21 hash-table-update!/default

[procedure] (hash-table-update! HASH-TABLE KEY UPDATE-FUNCTION DEFAULT-VALUE)
Sets or replaces the VALUE for KEY in the HASH- TABLE.

The UPDATE - FUNCTION takes the existing VALUE for KEY and returns the new VALUE.

The DEFAULT - VALUE is used when the entry for KEY is missing.

Returns the new VALUE.

24.1.22 hash-table-copy
[procededure] (hash-table-copy HASH-TABLE)

Returns a shallow copy of the HASH-TABLE.

24.1.23 hash-table-delete!
[procedure] (hash-table-delete! HASH-TABLE KEY)

Deletes the entry for KEY in the HASH-TABLE.

24.1.24 hash-table-remove!
[procedure] (hash-table-remove! HASH-TABLE PROC)

Calls PROC for all entries in HASH-TABLE with the key and value of each entry. If PROC returns true, then
that entry is removed.

24.1.25 hash-table-clear!
[procedure] (hash-table-clear! HASH-TABLE)

Deletes all entries in HASH-TABLE.

24.1.20 hash-table-update! 137

CHICKEN User's Manual - The User's Manual

24.1.26 hash-table-merge
[procedure] (hash-table-merge HASH-TABLE-1 HASH-TABLE-2)

Returns a new HASH- TABLE with the union of HASH-TABLE -1 and HASH-TABLE - 2.

24.1.27 hash-table-merge!
[procedure] (hash-table-merge! HASH-TABLE-1 HASH-TABLE-2)

Returns HASH-TABLE - 1 as the union of HASH-TABLE -1 and HASH-TABLE - 2.

24.1.28 hash-table-map
[procedure] (hash-table-map HASH-TABLE FUNC)
Calls FUNC for all entries in HASH-TABLE with the key and value of each entry.

Returns a list of the results of each call.

24.1.29 hash-table-fold
[procedure] (hash-table-fold HASH-TABLE FUNC INIT)

Calls FUNC for all entries in HASH-TABLE with the key and value of each entry, and the current folded
value. The initial folded value is INIT.

Returns the final folded value.

24.1.30 hash-table-for-each
[procedure] (hash-table-for-each HASH-TABLE PROC)

Calls PROC for all entries in HASH-TABLE with the key and value of each entry.

24.1.26 hash-table-merge 138

CHICKEN User's Manual - The User's Manual

24.1.31 hash-table-walk

[procedure] (hash-table-walk HASH-TABLE PROC)

Calls PROC for all entries in HASH-TABLE with the key and value of each entry.

24.2 Hashing Functions

All hash functions return a fixnum in the range [0 BOUND).

24.2.1 number-hash
[procedure] (number-hash NUMBER [BOUND])

For use with = as a hash-table-equivalence-function.

24.2.2 object-uid-hash
[procedure] (object-uid-hash OBJECT [BOUND])

Currently a synonym for equal?-hash.

24.2.3 symbol-hash

[procedure] (symbol-hash SYMBOL [BOUND])

For use with eq? as a hash-table-equivalence-function.

24.2.4 keyword-hash

[procedure] (keyword-hash KEYWORD [BOUND])

For use with eq? as a hash-table-equivalence-function.

24.1.31 hash-table-walk

139

CHICKEN User's Manual - The User's Manual

24.2.5 string-hash
[procedure] (string-hash STRING [BOUND])

For use with string=? as a hash-table-equivalence-function.

24.2.6 string-ci-hash

[procedure] (string-ci-hash STRING [BOUND])

For use with string-ci=? asa hash-table-equivalence-function.

24.2.7 eq?-hash
[procedure] (eq?-hash OBJECT [BOUND])

For use with eq? as a hash-table-equivalence-function.

24.2.8 eqv?-hash
[procedure] (eqv?-hash OBJECT [BOUND])

For use with eqv? as a hash-table-equivalence-function.

24.2.9 equal?-hash
[procedure] (equal?-hash OBJECT [BOUND])

For use with equal? as a hash-table-equivalence-function.

24.2.10 hash
[procedure] (hash OBJECT [BOUND])

Synonym for equal?-hash.

24.2.5 string-hash

140

CHICKEN User's Manual - The User's Manual

24.2.11 hash-by-identity

[procedure] (hash-by-identity OBJECT [BOUND])
Synonym for eq?-hash.

Previous: Unit srfi-14 Next: Unit match

24.2.11 hash-by-identity 141

25 Unit match

The runtime-support code for the Pattern Matching extensions. Note that to use the macros in normal
compiled code it is not required to declare this unit as used. It is only necessary to do so if forms containing
these macros are to be expanded at runtime.

Previous: Unit srfi-14

Next: Unit regex

25 Unit match 142

http://chicken.wiki.br/Pattern%20matching

26 Unit regex

This library unit provides support for regular expressions. The regular expression package used is PCRE (Perl
Compatible Regular Expressions) written by Philip Hazel. See http://www.pcre.org for information about the

particular regexp flavor and extensions provided by this library.

To test that PCRE support has been built into Chicken properly, try:

(require 'regex)
(feature? 'pcre) => #t

26.1 grep

[procedure] (grep REGEX LIST)

Returns all items of LIST that match the regular expression REGEX. This procedure could be defined as

follows:

(define (grep regex 1lst)

(filter (lambda (x) (string-search regex x)) 1lst))

26.2 globregexp
[procedure] (glob->regexp PATTERN)
Converts the file-pattern PATTERN into a regular expression.

(glob->regexp)

=>

PATTERN should follow "glob" syntax. Allowed wildcards are

*

[C...]
[C1-C2]
[-C...]
?

26.3 glob?
[procedure] (glob? STRING)

Does the STRING have any "glob" wildcards?

A string without any "glob" wildcards does not meet the criteria, even though it technically is a valid "glob"

file-pattern.

26 Unit regex

143

http://www.pcre.org

CHICKEN User's Manual - The User's Manual

26.4 regexp
[procedure] (regexp STRING [IGNORECASE [IGNORESPACE [UTF8]]1)

Returns a precompiled regular expression object for St ring. The optional arguments IGNORECASE,
IGNORESPACE and UTF8 specify whether the regular expression should be matched with case- or
whitespace-differences ignored, or whether the string should be treated as containing UTF-8 encoded
characters, respectively.

26.5 regexp*
[procedure] (regexp* STRING [OPTIONS [TABLES]])

Returns a precompiled regular expression object for String. The optional argument OPTIONS must be a list
of option symbols. The optional argument TABLES must be a character definitions table (not defined here).

Option Symbols:

caseless

Character case insensitive match
multiline

Equivalent to Perl's /m option
dotall

Equivalent to Perl's /s option
extended

Ignore whitespace
anchored

Anchor pattern match
dollar-endonly

*$' metacharacter in the pattern matches only at the end of the subject string
extra

Currently of very little use
notbol

First character of the string is not the beginning of a line
noteol

End of the string is not the end of a line
ungreedy

Inverts the "greediness" of the quantifiers so that they are not greedy by default
notempty

The empty string is not considered to be a valid match
utf8

UTF-8 encoded characters
no-auto-capture

Disables the use of numbered capturing parentheses
no-utf8-check

Skip valid UTF-8 sequence check
auto-callout

Automatically inserts callout items (not defined here)
partial

26.4 regexp 144

CHICKEN User's Manual - The User's Manual

Partial match ok
firstline

An unanchored pattern is required to match before or at the first newline
dupnames

Names used to identify capturing subpatterns need not be unique
newline-cr

Newline definition is “\r'
newline-1f

Newline definition is “\n'
newline-crlf

Newline definition is “\r\n'
newline-anycrlf

Newline definition is any of "\r', "\n', or “\r\n'
newline-any

Newline definition is any Unicode newline sequence
bsr-anycrlf

"\R' escape sequence matches only CR, LF, or CRLF
bsr-unicode

"\R' escape sequence matches only Unicode newline sequence
dfa-shortest

Currently unused
dfa-restart

Currently unused

26.6 regexp?
[procedure] (regexp? X)

Returns #t if X is a precompiled regular expression, or #f otherwise.

26.7 regexp-optimize
[procedure] (regexp-optimize RX)

Perform available optimizations for the precompiled regular expression RX. Returns #t when optimization
performed, and #f otherwise.

26.8 string-match

26.5 regexp*

145

CHICKEN User's Manual - The User's Manual
26.9 string-match-positions

[procedure] (string-match REGEXP STRING [START])
[procedure] (string-match-positions REGEXP STRING [START])

Matches the regular expression in REGEXP (a string or a precompiled regular expression) with STRING and
returns either #T if the match failed, or a list of matching groups, where the first element is the complete
match. If the optional argument START is supplied, it specifies the starting position in STRING. For each
matching group the result-list contains either: #f for a non-matching but optional group; a list of start- and
end-position of the match in STRING (in the case of string-match-positions); or the matching
substring (in the case of string-match). Note that the exact string is matched. For searching a pattern
inside a string, see below. Note also that String-match is implemented by calling string-search
with the regular expression wrapped in © ... $. If invoked with a precompiled regular expression
argument (by using regexp), string-match is identical to string-search

26.10 string-search

26.11 string-search-positions

[procedure] (string-search REGEXP STRING [START [RANGE]])
[procedure] (string-search-positions REGEXP STRING [START [RANGE]])

Searches for the first match of the regular expression in REGEXP with STRING. The search can be limited to
RANGE characters.

26.12 string-split-fields
[procedure] (string-split-fields REGEXP STRING [MODE [START]])
Splits STRING into a list of fields according to MODE, where MODE can be the keyword #: infix (REGEXP

matches field separator), the keyword #: suf fix (REGEXP matches field terminator) or #t (REGEXP
matches field), which is the default.

(define s)
(string-split-fields s)

= ()
(string-split-fields s #:infix)

=> ()
(string-split-fields s #:suffix)

=>)

26.9 string-match-positions 146

CHICKEN User's Manual - The User's Manual

26.13 string-substitute
[procedure] (string-substitute REGEXP SUBST STRING [MODE])
Searches substrings in STRING that match REGEXP and substitutes them with the string SUBST. The
substitution can contain references to subexpressions in REGEXP with the \NUM notation, where NUM refers
to the NUMth parenthesized expression. The optional argument MODE defaults to 1 and specifies the number
of the match to be substituted. Any non-numeric index specifies that all matches are to be substituted.
(string-substitute

2)

=>

Note that a regular expression that matches an empty string will signal an error.

26.14 string-substitute*

[procedure] (string-substitute* STRING SMAP [MODE])

Substitutes elements of STRING with string-substitute according to SMAP. SMAP should be an
association-list where each element of the list is a pair of the form (MATCH . REPLACEMENT). Every
occurrence of the regular expression MATCH in STRING will be replaced by the string REPLACEMENT

(string-substitute*

(("))

26.15 regexp-escape
[procedure] (regexp-escape STRING)
Escapes all special characters in STRING with \, so that the string can be embedded into a regular expression.

(regexp-escape)
=>

26.16 make-anchored-pattern
[procedure] (make-anchored-pattern REGEXP [WITHOUT-BOL [WITHOUT-EOL]])

Makes an anchored pattern from REGEXP (a string or a precompiled regular expression) and returns the
updated pattern. When WITHOUT - BOL is #t the beginning-of-line anchor is not added. When

26.13 string-substitute 147

CHICKEN User's Manual - The User's Manual
WITHOUT -EOL is #t the end-of-line anchor is not added.

The WITHOUT -BOL and {WITHOUT-EOL}} arguments are ignored for a precompiled regular expression.
Previous: Unit match

Next: Unit srfi-18

26.16 make-anchored-pattern 148

27 Unit srfi-18

A simple multithreading package. This threading package follows largely the specification of SRFI-18. For
more information see the documentation for SRFI-18.

Notes:

e thread-start! accepts a thunk (a zero argument procedure) as argument, which is equivalent to
(thread-start! (make-thread THUNK)).

e thread-sleep! accepts a seconds real number value in addition to a time object.

® When an uncaught exception (i.e. an error) is signalled in a thread other than the primordial thread
and warnings are enabled (see: enable-warnings, then a warning message is written to the port
that is the value of (current-error-port).

¢ Blocking I/O will block all threads, except for some socket operations (see the section about the tcp
unit). An exception is the read-eval-print loop on UNIX platforms: waiting for input will not block
other threads, provided the current input port reads input from a console.

e [t is generally not a good idea for one thread to call a continuation created by another thread, if
dynamic-wind is involved.

¢ When more than one thread compete for the current time-slice, the thread that was waiting first will
become the next runnable thread.

¢ The dynamic environment of a thread consists of the following state:

¢ The current input-, output- and error-port

¢ The current exception handler

¢ The values of all current parameters (created by make -parameter)
¢ Any pending dynamic-wind thunks.

The following procedures are provided, in addition to the procedures defined in SRFI-18:

27.1 thread-signal!
[procedure] (thread-signal! THREAD X)

This will cause THREAD to signal the condition X once it is scheduled for execution. After signalling the
condition, the thread continues with its normal execution.

27.2 thread-quantum
[procedure] (thread-quantum THREAD)

Returns the quantum of THREAD, which is an exact integer specifying the approximate time-slice of the
thread in milliseconds.

27 Unit srfi-18 149

http://srfi.schemers.org/srfi-18/srfi-18.html

CHICKEN User's Manual - The User's Manual
27.3 thread-quantum-set!
[procedure] (thread-quantum-set! THREAD QUANTUM)

Sets the quantum of THREAD to QUANTUM.

27.4 thread-suspend!
[procedure] (thread-suspend! THREAD)

Suspends the execution of THREAD until resumed.

27.5 thread-resume!
[procedure] (thread-resume! THREAD)

Readies the suspended thread THREAD.

27.6 thread-wait-for-i/o!
[procedure] (thread-wait-for-i/o! FD [MODE])

Suspends the current thread until input (MODE is #: input), output (MODE is #: output) or both (MODE is
#:all) is available. FD should be a file-descriptor (not a port!) open for input or output, respectively.

27.7 timemilliseconds
[procedure] (time->milliseconds TIME)

Converts a time object (as created via current-time) into an exact integer representing the number of
milliseconds since process startup.

27.8 millisecondstime
[procedure] (milliseconds->time ms)
Converts into a time object an exact integer representing the number of milliseconds since process startup.

This procedure may be useful in combination with thread-sleep! when your compilation unit is using
(declare fixnum-arithmetic). In that case you won't be able to pass an inexact value to

27.3 thread-quantum-set! 150

CHICKEN User's Manual - The User's Manual

thread-sleep!, but you can do the following:
(define (thread-sleep!/ms ms)
(thread-sleep!
(milliseconds->time (+ ms (current-milliseconds)))))

Previous: Unit regex

Next: Unit posix

27.8 millisecondstime 151

28 Unit posix

This unit provides services as used on many UNIX-like systems. Note that the following definitions are not all
available on non-UNIX systems like Windows. See below for Windows specific notes.

This unit uses the regex, scheduler, extras and utils units.

All errors related to failing file-operations will signal a condition of kind (exn i/0 file).

28.1 Constants

28.1.1 File-control Commands

28.1.1.1 fentl/dupfd

28.1.1.2 fentl/getfd

28.1.1.3 fcntl/setfd

28.1.1.4 fcntl/getfl

28.1.1.5 fcntl/setfl

28.1.2 Standard I/O file-descriptors

28.1.2.1 fileno/stdin

28 Unit posix 152

CHICKEN User's Manual - The User's Manual

28.1.2.2 fileno/stdout

28.1.2.3 fileno/stderr

28.1.3 Open flags

28.1.3.1 open/rdonly

28.1.3.2 open/wronly

28.1.3.3 open/rdwr

28.1.3.4 open/read

28.1.3.5 open/write

28.1.3.6 open/creat

28.1.3.7 open/append

28.1.3.8 open/excl

28.1.3.9 open/noctty

28.1.2 Standard 1/O file-descriptors

153

CHICKEN User's Manual - The User's Manual

28.1.3.10 open/nonblock

28.1.3.11 open/trunc

28.1.3.12 open/sync

28.1.3.13 open/fsync

28.1.3.14 open/binary

28.1.3.15 open/text

28.1.4 Permission bits

28.1.4.1 perm/irusr

28.1.4.2 perm/iwusr

28.1.4.3 perm/ixusr

28.1.4.4 perm/irgrp

28.1.4.5 perm/iwgrp

28.1.3 Open flags

154

CHICKEN User's Manual - The User's Manual

28.1.4.6 perm/ixgrp

28.1.4.7 perm/iroth

28.1.4.8 perm/iwoth

28.1.4.9 perm/ixoth

28.1.4.10 perm/irwxu

28.1.4.11 perm/irwxg

28.1.4.12 perm/irwxo

28.1.4.13 perm/isvtx

28.1.4.14 perm/isuid

28.1.4.15 perm/isgid

28.2 Directories

28.2.1 change-directory
[procedure] (change-directory NAME)

Changes the current working directory to NAME.

28.1.4 Permission bits 155

CHICKEN User's Manual - The User's Manual

28.2.2 current-directory
[procedure] (current-directory [DIR])

Returns the name of the current working directory. If the optional argument DIR is given, then
(current-directory DIR) isequivalentto (change-directory DIR).

28.2.3 create-directory
[procedure] (create-directory NAME #!optional PARENTS?)

Creates a directory with the pathname NAME. If the PARENTS? argument is given and not false, any
nonextant parent directories are also created.

28.2.4 delete-directory
[procedure] (delete-directory NAME)

Deletes the directory with the pathname NAME. The directory has to be empty.

28.2.5 directory
[procedure] (directory [PATHNAME [SHOW-DOTFILES?]])

Returns a list with all files that are contained in the directory with the name PATHNAME (which defaults to the
value of (current-directory)). Files beginning with . are included only if SHOW-DOTFILES? is
given and not #f.

28.2.6 directory?
[procedure] (directory? NAME)

Returns #t if there exists a file with the name NAME and if that file is a directory, or #f otherwise.

28.2.7 glob

[procedure] (glob PATTERN1 ...)

28.2.2 current-directory 156

CHICKEN User's Manual - The User's Manual

Returns a list of the pathnames of all existing files matching PATTERN1 . . ., which should be strings
containing the usual file-patterns (with * matching zero or more characters and ? matching zero or one
character). Bug: wildcard characters are only recognized in the rightmost portion of the pattern.

28.2.8 canonical-path

[procedure] (canonical-path NAME)

Returns a canonical path for NAME, which should be a string containing a path-or-filename. The string
returned by canonical-path is OS dependent; it may be quoted and used in a shell on the calling
machine. (Quoting is suggested as shell special characters, including space, are not escaped.) However, all
path separators and prefixes are handled in an OS independent fashion. Any appearance of / below imply \\
is also handled.

The prefix for NAME determines what path to prepend. If NAME begins with a "~/", this prefix is stripped
and the user's home directory is added. If beginning with / or a DRIVE-LETTER:\\ combination, no
additional path is added. Otherwise, the current directory and separator are added. All relative path elements
and duplicate separators are processed and removed. If NAME ends with a / or is empty, the appropriate slash

is appended to the tail.

No directories or files are actually tested for existence; this procedure only canonicalises path syntax.

28.2.9 set-root-directory!
[procedure] (set-root-directory! STRING)

Sets the root directory for the current process to the path given in STRING (using the chroot function). If
the current process has no root permissions, the operation will fail.

28.3 Pipes

28.3.1 call-with-input-pipe

28.3.2 call-with-output-pipe

[procedure] (call-with-input-pipe CMDLINE PROC [MODE])
[procedure] (call-with-output-pipe CMDLINE PROC [MODE])

Call PROC with a single argument: a input- or output port for a pipe connected to the subprocess named in
CMDLINE. If PROC returns normally, the pipe is closed and any result values are returned.

28.2.7 glob 157

CHICKEN User's Manual - The User's Manual

28.3.3 close-input-pipe

28.3.4 close-output-pipe

[procedure] (close-input-pipe PORT)
[procedure] (close-output-pipe PORT)

Closes the pipe given in PORT and waits until the connected subprocess finishes. The exit-status code of the
invoked process is returned.

28.3.5 create-pipe
[procedure] (create-pipe)

The fundamental pipe-creation operator. Calls the C function pipe () and returns 2 values: the
file-descriptors of the input- and output-ends of the pipe.

28.3.6 open-input-pipe
[procedure] (open-input-pipe CMDLINE [MODE])

Spawns a subprocess with the command-line string CMDLINE and returns a port, from which the output of the
process can be read. If MODE is specified, it should be the keyword #: text (the default) or #:binary.

28.3.7 open-output-pipe
[procedure] (open-output-pipe CMDLINE [MODE])

Spawns a subprocess with the command-line string CMDLINE and returns a port. Anything written to that port
is treated as the input for the process. If MODE is specified, it should be the keyword #: text (the default) or
#:binary.

28.3.8 pipe/buf

This variable contains the maximal number of bytes that can be written atomically into a pipe or FIFO.

28.3.3 close-input-pipe 158

CHICKEN User's Manual - The User's Manual

28.3.9 with-input-from-pipe

28.3.10 with-output-to-pipe

[procedure] (with-input-from-pipe CMDLINE THUNK [MODE])
[procedure] (with-output-to-pipe CMDLINE THUNK [MODE])

Temporarily set the value of current-input-port/current-output-port to a port for a pipe
connected to the subprocess named in CMDLINE and call the procedure THUNK with no arguments. After
THUNK returns normally the pipe is closed and the standard input-/output port is restored to its previous value
and any result values are returned.

(with-output-to-pipe

(Lambda ()
(print #<<EOF

%! I0OPSC-1993 %%Creator: HAYAKAWA Takashi<xXXXXXXXXE@XX .XXXXXX.XX.XX>
/C/neg/d/mul/R/rlineto/E/exp/H{{cvx def}repeat}def/T/dup/g/gt/r/roll/J/ifelse
H/A/copy (z&v4QX&93r9AxYQ0ZomQalxS2w! '0&vMYa43d6r93rMYvx2dca!D&cjSnjSnjjS3o0!v&6
X&55SAXM1ICD7AjYXTTd62rmxCnTdSSTOg&12wECST!&!JOg&D1!&XMO ! JOg! 1&544dC2Ac96ra! m&3
F&&VGOGSNCTOg&WDMLVGoS8wpnbwpS2wTCpS1Sd7ov7Uk704Qkdw ! &MvIXx1S70ZES3w!J 1] 1Q&7185
Z&1Xx1CS9dINE4 ' KEX&MYT7 &1 I ' x&jdnjdS30dS | N&Gmmx1C2wEC ! G&150Nx4 ! n&20! j&43r1U&O777
1&2AY2A776ddT40530SnMVCOOVVORRR45E42063rNz&v7UX&UOzF!IF!]! [&44ETCnVn!a&1CDN!Y&O
V1c&j2AYdjmMdjjd!o&lr!M){()T 0 4 3 r put T(/)g{T(9)g{cvn}{cvi}I}{($)gl13}]
cvx}forall/moveto/p/floor/w/div/S/add 29 H[{[{]setgray fill}for Y}for showpage
EOF
)))

28.4 Fifos

28.4.1 create-fifo
[procedure] (create-fifo FILENAME [MODE])
Creates a FIFO with the name FILENAME and the permission bits MODE, which defaults to

[procedure] (+ perm/irwxu perm/irwxg perm/irwxo)

28.4.2 fifo?
[procedure] (fifo? FILENAME)

Returns #t if the file with the name FILENAME names a FIFO.

28.3.9 with-input-from-pipe 159

CHICKEN User's Manual - The User's Manual

28.5 File descriptors and low-level I/0

28.5.1 duplicate-fileno
[procedure] (duplicate-fileno OLD [NEW])

If NEW is given, then the file-descriptor NEW is opened to access the file with the file-descriptor OLD.
Otherwise a fresh file-descriptor accessing the same file as OLD is returned.

28.5.2 file-close
[procedure] (file-close FILENO)

Closes the input/output file with the file-descriptor FILENO.

28.5.3 file-open
[procedure] (file-open FILENAME FLAGS [MODE])

Opens the file specified with the string FILENAME and open-flags FLAGS using the C function open (). On
success a file-descriptor for the opened file is returned. FLAGS should be a bitmask containing one or more of
the open/. . . values ored together using bitwise-ior (or simply added together). The optional MODE
should be a bitmask composed of one or more permission values like perm/irusr and is only relevant
when a new file is created. The default mode is perm/irwxu | perm/irgrp | perm/iroth.

28.5.4 file-mkstemp

[procedure] (file-mkstemp TEMPLATE-FILENAME)

Create a file based on the given TEMPLATE - FILENAME, in which the six last characters must be XXXXXX.
These will be replaced with a string that makes the filename unique. The file descriptor of the created file and
the generated filename is returned. See the mkstemp (3) manual page for details on how this function

works. The template string given is not modified.

Example usage:

(let-values (((fd temp-path) (file-mkstemp)))
(let ((temp-port (open-output-file* fd)))
(format temp-port temp-path)

(close-output-port temp-port)))

28.5 File descriptors and low-level I/O 160

CHICKEN User's Manual - The User's Manual

28.5.5 file-read
[procedure] (file-read FILENO SIZE [BUFFER])
Reads SIZE bytes from the file with the file-descriptor FILENO. If a string or bytevector is passed in the

optional argument BUFFER, then this string will be destructively modified to contain the read data. This
procedure returns a list with two values: the buffer containing the data and the number of bytes read.

28.5.6 file-select

[procedure] (file-select READFDLIST WRITEFDLIST [TIMEOUT])

Waits until any of the file-descriptors given in the lists READFDLIST and WRITEFDLIST is ready for input
or output, respectively. If the optional argument TIMEOUT is given and not false, then it should specify the
number of seconds after which the wait is to be aborted (the value may be a floating point number). This
procedure returns two values: the lists of file-descriptors ready for input and output, respectively.
READFDLIST and WRITEFDLIST may also by file-descriptors instead of lists. In this case the returned

values are booleans indicating whether input/output is ready by #t or #f otherwise. You can also pass #T as
READFDLIST or WRITEFDLIST argument, which is equivalent to ().

28.5.7 file-write
[procedure] (file-write FILENO BUFFER [SIZE])

Writes the contents of the string or bytevector BUFFER into the file with the file-descriptor FILENO. If the
optional argument SIZE is given, then only the specified number of bytes are written.

28.5.8 file-control
[procedure] (file-control FILENO COMMAND [ARGUMENT])

Performs the fentl operation COMMAND with the given FILENO and optional ARGUMENT. The return value is
meaningful depending on the COMMAND.

28.5.9 open-input-file*

28.5.5 file-read 161

CHICKEN User's Manual - The User's Manual
28.5.10 open-output-file*

[procedure] (open-input-file* FILENO [OPENMODE])
[procedure] (open-output-file* FILENO [OPENMODE])

Opens file for the file-descriptor FILENO for input or output and returns a port. FILENO should be a positive

exact integer. OPENMODE specifies an additional mode for opening the file (currently only the keyword
#:append is supported, which opens an output-file for appending).

28.5.11 portfileno
[procedure] (port->fileno PORT)

If PORT is a file- or tcp-port, then a file-descriptor is returned for this port. Otherwise an error is signaled.

28.6 Retrieving file attributes

28.6.1 file-access-time

28.6.2 file-change-time

28.6.3 file-modification-time

[procedure] (file-access-time FILE)
[procedure] (file-change-time FILE)
[procedure] (file-modification-time FILE)

Returns time (in seconds) of the last access, modification or change of FILE. FILE may be a filename or a
file-descriptor. If the file does not exist, an error is signaled.

28.6.4 file-stat

[procedure] (file-stat FILE [LINK])

Returns a 13-element vector with the following contents: inode-number, mode (as with
file-permissions), number of hard links, uid of owner (as with file-owner), gid of owner, size (as

with file-size) and access-, change- and modification-time (as with file-access-time,
file-change-time and file-modification-time, device id, device type (for special file inode,

28.5.10 open-output-file* 162

CHICKEN User's Manual - The User's Manual

blocksize and blocks allocated. On Windows systems the last 4 values are undefined. If the optional argument
LINK is given and not #T, then the file-statistics vector will be resolved for symbolic links (otherwise
symbolic links are not resolved). Note that for very large files, the file-size value may be an inexact
integer.

28.6.5 file-position
[procedure] (file-position FILE)

Returns the current file position of FILE, which should be a port or a file-descriptor.

28.6.6 file-size
[procedure] (file-size FILENAME)

Returns the size of the file designated by FILE. FILE may be a filename or a file-descriptor. If the file does
not exist, an error is signaled. Note that for very large files, file-size may return an inexact integer.

28.6.7 regular-file?
[procedure] (regular-file? FILENAME)

Returns true, if FILENAME names a regular file (not a directory or symbolic link).

28.6.8 file-owner
[procedure] (file-owner FILE)

Returns the user-id of FILE. FILE may be a filename or a file-descriptor.

28.6.9 file-permissions
[procedure] (file-permissions FILE)

Returns the permission bits for FILE. You can test this value by performing bitwise operations on the result
and the perm/ . . . values. FILE may be a filename or a file-descriptor.

28.6.4 file-stat 163

CHICKEN User's Manual - The User's Manual

28.6.10 file-read-access?

28.6.11 file-write-access?

28.6.12 file-execute-access?

[procedure] (file-read-access? FILENAME)
[procedure] (file-write-access? FILENAME)

[procedure] (file-execute-access? FILENAME)

These procedures return #t if the current user has read, write or execute permissions on the file named

FILENAME.

28.6.13 stat-regular?

28.6.14 stat-directory?

28.6.15 stat-char-device?

28.6.16 stat-block-device?

28.6.17 stat-fifo?

28.6.18 stat-symlink?

28.6.19 stat-socket?

[procedure] (stat-regular? FILENAME)
[procedure] (stat-directory? FILENAME)
[procedure] (stat-char-device? FILENAME)
[procedure] (stat-block-device? FILENAME)

28.6.10 file-read-access?

164

CHICKEN User's Manual - The User's Manual

[procedure] (stat-fifo? FILENAME)
[procedure] (stat-symlink? FILENAME)
[procedure] (stat-socket? FILENAME)

These procedures return #t if the FILENAME given is of the appropriate type.

28.7 Changing file attributes

28.7.1 file-truncate
[procedure] (file-truncate FILE OFFSET)

Truncates the file FILE to the length OFFSET, which should be an integer. If the file-size is smaller or equal
to OFFSET then nothing is done. FILE should be a filename or a file-descriptor.

28.7.2 set-file-position!

[procedure] (set-file-position! FILE POSITION [WHENCE])
[procedure] (set! (file-position FILE) POSITION)

Sets the current read/write position of FILE to POSITION, which should be an exact integer. FILE should
be a port or a file-descriptor. WHENCE specifies how the position is to interpreted and should be one of the

values seek/set, seek/cur and seek/end. It defaults to seek/set

Exceptions: (exn bounds), (exn i/o file)

28.7.3 change-file-mode
[procedure] (change-file-mode FILENAME MODE)

Changes the current file mode of the file named FILENAME to MODE using the chmod () system call. The
perm/. .. variables contain the various permission bits and can be combinded with the bitwise-ior
procedure.

28.7.4 change-file-owner
[procedure] (change-file-owner FILENAME UID GID)

Changes the owner information of the file named FILENAME to the user- and group-ids UID and GID (which
should be exact integers) using the chown () system call.

28.6.19 stat-socket? 165

CHICKEN User's Manual - The User's Manual

28.8 Processes

28.8.1 current-process-id
[procedure] (current-process-id)

Returns the process ID of the current process.

28.8.2 parent-process-id
[procedure] (parent-process-id)

Returns the process ID of the parent of the current process.

28.8.3 process-group-id
[procedure] (process-group-id PID)

Returns the process group ID of the process specified by PID.

28.8.4 process-execute
[procedure] (process-execute PATHNAME [ARGUMENT-LIST [ENVIRONMENT-LIST]])

Creates a new child process and replaces the running process with it using the C library function
execvp(3). If the optional argument ARGUMENT -LIST is given, then it should contain a list of strings
which are passed as arguments to the subprocess. If the optional argument ENVIRONMENT - LIST is
supplied, then the library function execve (2) is used, and the environment passed in

ENVIRONMENT -LIST (which should be of the form ("<NAME>=<VALUE>" ...) is given to the
invoked process. Note that execvp (3) respects the current setting of the PATH environment variable while
execve(3) does not.

28.8.5 process-fork
[procedure] (process-fork [THUNK])

Creates a new child process with the UNIX system call fork(). Returns either the PID of the child process
or 0. If THUNK is given, then the child process calls it as a procedure with no arguments and terminates.

28.8 Processes 166

CHICKEN User's Manual - The User's Manual

28.8.6 process-run

[procedure] (process-run COMMANDLINE])
[procedure] (process-run COMMAND ARGUMENT-LIST)

Creates a new child process. The PID of the new process is returned.
e The single parameter version passes the COMMANDLINE to the system shell, so usual argument

expansion can take place.
® The multiple parameter version directly invokes the COMMAND with the ARGUMENT - LIST.

28.8.7 process-signal
[procedure] (process-signal PID [SIGNAL])

Sends SIGNAL to the process with the id PID using the UNIX system call K111 (). SIGNAL defaults to the
value of the variable signal/term.

28.8.8 process-wait
[procedure] (process-wait [PID [NOHANG]])

Suspends the current process until the child process with the id PID has terminated using the UNIX system
callwaitpid (). If PID is not given, then this procedure waits for any child process. If NOHANG is given
and not #T then the current process is not suspended. This procedure returns three values:

e PID or 0, if NOHANG is true and the child process has not terminated yet.

e #t if the process exited normally or #T otherwise.

e either the exit status, if the process terminated normally or the signal number that terminated/stopped
the process.

28.8.9 process

[procedure] (process COMMANDLINE)
[procedure] (process COMMAND ARGUMENT-LIST [ENVIRONMENT-LIST])

Creates a subprocess and returns three values: an input port from which data written by the sub-process can be
read, an output port from which any data written to will be received as input in the sub-process and the
process-id of the started sub-process. Blocking reads and writes to or from the ports returned by process
only block the current thread, not other threads executing concurrently.

e The single parameter version passes the string COMMANDLINE to the host-system's shell that is
invoked as a subprocess.

28.8.6 process-run 167

CHICKEN User's Manual - The User's Manual

® The multiple parameter version directly invokes the COMMAND as a subprocess. The
ARGUMENT - LIST is directly passed, as is ENVIRONMENT - LIST.

Not using the shell may be preferrable for security reasons.

28.8.10 process*

[procedure] (process* COMMANDLINE)
[procedure] (process* COMMAND ARGUMENT-LIST [ENVIRONMENT-LIST])

Like process but returns 4 values: an input port from which data written by the sub-process can be read, an
output port from which any data written to will be received as input in the sub-process, the process-id of the
started sub-process, and an input port from which data written by the sub-process to stderr can be read.

28.8.11 sleep
[procedure] (sleep SECONDS)

Puts the process to sleep for SECONDS. Returns either 0 if the time has completely elapsed, or the number of
remaining seconds, if a signal occurred.

28.8.12 create-session
[procedure] (create-session)

Creates a new session if the calling process is not a process group leader and returns the session ID.

28.9 Hard and symbolic links

28.9.1 symbolic-link?
[procedure] (symbolic-1link? FILENAME)

Returns true, if FILENAME names a symbolic link.

28.8.9 process 168

CHICKEN User's Manual - The User's Manual

28.9.2 create-symbolic-link

[procedure] (create-symbolic-link OLDNAME NEWNAME)

Creates a symbolic link with the filename NEWNAME that points to the file named OLDNAME.

28.9.3 read-symbolic-link
[procedure] (read-symbolic-link FILENAME)

Returns the filename to which the symbolic link FILENAME points.

28.9.4 file-link
[procedure] (file-link OLDNAME NEWNAME)

Creates a hard link from OLDNAME to NEWNAME (both strings).

28.10 Retrieving user & group information

28.10.1 current-user-id

[procedure] (current-user-id)
[setter] (set! (current-user-id) UID)

Get or set the real user-id of the current process.

28.10.2 current-effective-user-id

[procedure] (current-effective-user-id)
[setter] (set! (current-effective-user-id) UID)

Get or set the effective user-id of the current process.

28.9.2 create-symbolic-link

169

CHICKEN User's Manual - The User's Manual

28.10.3 user-information

[procedure] (user-information USER [AS-VECTOR])

If USER specifes a valid username (as a string) or user ID, then the user database is consulted and a list of 7
values are returned: the user-name, the encrypted password, the user ID, the group ID, a user-specific string,

the home directory and the default shell. When AS -VECTOR is #t a vector of 7 elements is returned instead
of a list. If no user with this name or id then #T is returned.

28.10.4 current-group-id

[procedure] (current-group-id)
[setter] (set! (current-group-id) GID)

Get or set the real group-id of the current process.

28.10.5 current-effective-group-id

[procedure] (current-effective-group-id)
[setter] (set! (current-effective-group-id) GID)

Get or set the effective group-id of the current process. ID can be found, then #f is returned.

28.10.6 group-information
[procedure] (group-information GROUP)

If GROUP specifies a valid group-name or group-id, then this procedure returns a list of four values: the
group-name, the encrypted group password, the group ID and a list of the names of all group members. If no
group with the given name or ID exists, then #7 is returned.

28.10.7 get-groups
[procedure] (get-groups)

Returns a list with the supplementary group IDs of the current user.

28.10.3 user-information 170

CHICKEN User's Manual - The User's Manual

28.11 Changing user & group information

28.11.1 set-groups!
[procedure] (set-groups! GIDLIST)
Sets the supplementrary group IDs of the current user to the IDs given in the list GIDLIST.

Only the superuser may invoke this procedure.

28.11.2 initialize-groups
[procedure] (initialize-groups USERNAME BASEGID)

Sets the supplementrary group IDs of the current user to the IDs from the user with name USERNAME (a
string), including BASEGID.

Only the superuser may invoke this procedure.

28.11.3 set-process-group-id!

[procedure] (set-process-group-id! PID PGID)
[setter] (set! (process-group-id PID) PGID)

Sets the process group ID of the process specifed by PID to PGID.

28.12 Record locking

28.12.1 file-lock

[procedure] (file-lock PORT [START [LEN]])

Locks the file associated with PORT for reading or writing (according to whether PORT is an input- or
output-port). START specifies the starting position in the file to be locked and defaults to 0. LEN specifies the

length of the portion to be locked and defaults to #t, which means the complete file. file-1ocK returns a
lock-object.

28.11 Changing user & group information 171

CHICKEN User's Manual - The User's Manual

28.12.2 file-lock/blocking
[procedure] (file-lock/blocking PORT [START [LEN]])

Similar to file-lock, but if a lock is held on the file, the current process blocks (including all threads) until
the lock is released.

28.12.3 file-test-lock
[procedure] (file-test-lock PORT [START [LEN]])

Tests whether the file associated with PORT is locked for reading or writing (according to whether PORT is an
input- or output-port) and returns either #f or the process-id of the locking process.

28.12.4 file-unlock
[procedure] (file-unlock LOCK)

Unlocks the previously locked portion of a file given in LOCK.

28.13 Signal handling

28.13.1 set-alarm!
[procedure] (set-alarm! SECONDS)

Sets an internal timer to raise the signal/alrm after SECONDS are elapsed. You can use the
set-signal-handler! procedure to write a handler for this signal.

28.13.2 set-signal-handler!

[procedure] (set-signal-handler! SIGNUM PROC)

Establishes the procedure of one argument PROC as the handler for the signal with the code STGNUM. PROC
is called with the signal number as its sole argument. If the argument PROC is #T then any signal handler will

be removed, and the corresponding signal set to SIG_IGN.

Note that is is unspecified in which thread of execution the signal handler will be invoked.

28.12.2 file-lock/blocking 172

CHICKEN User's Manual - The User's Manual
28.13.3 signal-handler
[procedure] (signal-handler SIGNUM)

Returns the signal handler for the code SIGNUM or #f.

28.13.4 set-signal-mask!
[procedure] (set-signal-mask! SIGLIST)

Sets the signal mask of the current process to block all signals given in the list SIGLIST. Signals masked in
that way will not be delivered to the current process.

28.13.5 signal-mask
[procedure] (signal-mask)

Returns the signal mask of the current process.

28.13.6 signal-masked?
[procedure] (signal-masked? SIGNUM)

Returns whether the signal for the code STGNUM is currently masked.

28.13.7 signal-mask!
[procedure] (signal-mask! SIGNUM)

Masks (blocks) the signal for the code STGNUM.

28.13.8 signal-unmask!
[procedure] (signal-unmask! SIGNUM)

Unmasks (unblocks) the signal for the code STGNUM.

28.13.3 signal-handler 173

CHICKEN User's Manual - The User's Manual

28.13.9 signal/term

28.13.10 signal/kill

28.13.11 signal/int

28.13.12 signal/hup

28.13.13 signal/fpe

28.13.14 signaliill

28.13.15 signal/segv

28.13.16 signal/abrt

28.13.17 signal/trap

28.13.18 signal/quit

28.13.19 signal/alrm

28.13.9 signal/term

174

CHICKEN User's Manual - The User's Manual

28.13.20 signal/vtalrm

28.13.21 signal/prof

28.13.22 signal/io

28.13.23 signal/urg

28.13.24 signal/chld

28.13.25 signal/cont

28.13.26 signal/stop

28.13.27 signal/tstp

28.13.28 signal/pipe

28.13.29 signal/xcpu

28.13.30 signal/xfsz

28.13.20 signal/vtalrm

175

CHICKEN User's Manual - The User's Manual

28.13.31 signal/usri

28.13.32 signal/usr2

28.13.33 signal/winch

These variables contain signal codes for use with process-signal, set-signal-handler!,
signal-handler, signal-masked?, signal-mask!, or signal-unmask!.

28.14 Environment access

28.14.1 current-environment
[procedure] (current-environment)

Returns a association list of the environment variables and their current values.

28.14.2 setenv
[procedure] (setenv VARIABLE VALUE)

Sets the environment variable named VARIABLE to VALUE. Both arguments should be strings. If the variable
is not defined in the environment, a new definition is created.

28.14.3 unsetenv
[procedure] (unsetenv VARIABLE)

Removes the definition of the environment variable VARIABLE from the environment of the current process.
If the variable is not defined, nothing happens.

28.13.31 signal/usrl 176

CHICKEN User's Manual - The User's Manual

28.15 Memory mapped I/O

28.15.1 memory-mapped-file?
[pocedure] (memory-mapped-file? X)

Returns #t, if X is an object representing a memory mapped file, or #f otherwise.

28.15.2 map-file-to-memory

[procedure] (map-file-to-memory ADDRESS LEN PROTECTION FLAG FILENO [OFFSET])
Maps a section of a file to memory using the C function mmap (). ADDRESS should be a foreign pointer

object or #T; LEN specifies the size of the section to be mapped; PROTECTION should be one or more of the
flags prot/read, prot/write, prot/exec or prot/none bitwise-iored together; FLAG should

be one or more of the flags map/fixed, map/shared, map/private, map/anonymous or
map/file; FILENO should be the file-descriptor of the mapped file. The optional argument OFFSET gives

the offset of the section of the file to be mapped and defaults to 0. This procedure returns an object

representing the mapped file section. The procedure move-memory! can be used to access the mapped
memory.

28.15.3 memory-mapped-file-pointer
[procedure] (memory-mapped-file-pointer MMAP)

Returns a machine pointer to the start of the memory region to which the file is mapped.

28.15.4 unmap-file-from-memory
[procedure] (unmap-file-from-memory MMAP [LEN])

Unmaps the section of a file mapped to memory using the C function munmap () . MMAP should be a mapped
file as returned by the procedure map-file-to-memory. The optional argument LEN specifies the length
of the section to be unmapped and defaults to the complete length given when the file was mapped.

28.16 Date and time routines

28.15 Memory mapped I/O 177

CHICKEN User's Manual - The User's Manual

28.16.1 secondslocal-time
[procedure] (seconds->local-time SECONDS)

Breaks down the time value represented in SECONDS into a 10 element vector of the form # (seconds
minutes hours mday month year wday yday dstflag timezone), in the following
format:

seconds (0)
the number of seconds after the minute (0 - 59)
minutes (1)
the number of minutes after the hour (0 - 59)
hours (2)
the number of hours past midnight (0 - 23)
mday (3)
the day of the month (1 - 31)
month (4)
the number of months since january (0 - 11)
year (5)
the number of years since 1900
wday (6)
the number of days since Sunday (0 - 6)
yday (7)
the number of days since January 1 (0 - 365)
dstflag (8)
a flag that is true if Daylight Saving Time is in effect at the time described.
timezone (9)
the difference between UTC and the latest local standard time, in seconds west of UTC.

28.16.2 local-timeseconds
[procedure] (local-time->seconds VECTOR)

Converts the ten-element vector VECTOR representing the time value relative to the current timezone into the
number of seconds since the first of January, 1970 UTC.

28.16.3 local-timezone-abbreviation
[procedure] (local-timezone-abbreviation)

Returns the abbreviation for the local timezone as a string.

28.16.1 secondslocal-time 178

CHICKEN User's Manual - The User's Manual

28.16.4 secondsstring
[procedure] (seconds->string SECONDS)

Converts the local time represented in SECONDS into a string of the form "Tue May 21 13:46:22
1991".

28.16.5 secondsutc-time
[procedure] (seconds->utc-time SECONDS)

Similar to seconds->local-time, but interpretes SECONDS as UTC time.

28.16.6 utc-timeseconds
[procedure] (utc-time->seconds VECTOR)

Converts the ten-element vector VECTOR representing the UTC time value into the number of seconds since
the first of January, 1970 UTC.

28.16.7 timestring
[procedure] (time->string VECTOR)

Converts the broken down time represented in the 10 element vector VECTOR into a string of the form "Tue

May 21 13:46:22 1991".

28.17 Raw exit

28.17.1 _exit
[procedure] (_exit [CODE])

Exits the current process without flushing any buffered output (using the C function _exit). Note that the
exit-handler is not called when this procedure is invoked. The optional return-code CODE defaults to 0.

28.16.4 secondsstring 179

CHICKEN User's Manual - The User's Manual

28.18 ERRNO values

28.18.1 errno/perm

28.18.2 errno/noent

28.18.3 errno/srch

28.18.4 errno/intr

28.18.5 errnol/io

28.18.6 errno/noexec

28.18.7 errno/badf

28.18.8 errno/child

28.18.9 errno/nomem

28.18.10 errno/acces

28.18 ERRNO values

180

CHICKEN User's Manual - The User's Manual

28.18.11 errno/fault

28.18.12 errno/busy

28.18.13 errno/notdir

28.18.14 errno/isdir

28.18.15 errno/inval

28.18.16 errno/mfile

28.18.17 errno/nospc

28.18.18 errno/spipe

28.18.19 errno/pipe

28.18.20 errno/again

28.18.21 errno/rofs

28.18.11 errno/fault

181

CHICKEN User's Manual - The User's Manual

28.18.22 errno/exist

28.18.23 errno/wouldblock

These variables contain error codes as returned by errno.

28.19 Finding files

28.19.1 find-files

[procedure] (find-files DIRECTORY PREDICATE [ACTION [IDENTITY [LIMIT]]1])
Recursively traverses the contents of DIRECTORY (which should be a string) and invokes the procedure
ACTION for all files in which the procedure PREDICATE is true. PREDICATE may me a procedure of one
argument or a regular-expression string. ACTION should be a procedure of two arguments: the currently
encountered file and the result of the previous invocation of ACTION, or, if this is the first invocation, the
value of IDENTITY. ACTION defaults to cons, IDENTITY defaults to (). LIMIT should be a procedure
of one argument that is called for each nested directory and which should return true, if that directory is to be
traversed recursively. LIMIT may also be an exact integer that gives the maximum recursion depth. For
example, a depth of O means that only files in the top-level, specified directory are to be traversed. In this
case, all nested directories are ignored. LIMIT may also be #f (the default), which is equivalent to

(constantly #t).

Note that ACTION is called with the full pathname of each file, including the directory prefix.

28.20 Getting the hostname and system information

28.20.1 get-host-name
[procedure] (get-host-name)

Returns the hostname of the machine that this process is running on.

28.20.2 system-information

[procedure] (system-information)

28.18.22 errno/exist 182

CHICKEN User's Manual - The User's Manual

Invokes the UNIX system call uname () and returns a list of 5 values: system-name, node-name, OS release,
OS version and machine.

28.21 Setting the file buffering mode

28.21.1 set-buffering-mode!
[procedure] (set-buffering-mode! PORT MODE [BUFSIZE])
Sets the buffering-mode for the file associated with PORT to MODE, which should be one of the keywords

#:full,#:line or #:none. If BUFSIZE is specified it determines the size of the buffer to be used (if
any).

28.22 Terminal ports

28.22.1 terminal-name
[procedure] (terminal-name PORT)

Returns the name of the terminal that is connected to PORT.

28.22.2 terminal-port?
[procedure] (terminal-port? PORT)

Returns #t if PORT is connected to a terminal and #Tf otherwise.

28.23 How Scheme procedures relate to UNIX C functions

change-directory
chdir
change-file-mode
chmod
change-file-owner
chown
create-directory
mkdir
create-fifo

28.20.2 system-information 183

CHICKEN User's Manual - The User's Manual

mkfifo
Ccreate-pipe

pipe
Ccreate-session

setsid
create-symbolic-link

link
current-directory

curdir
current-effective-groupd-id

getegid
current-effective-user-id

geteuid
current-group-id

getgid
current-parent-id

getppid
current-process-id

getpid
current-user-id

getuid
delete-directory

rmdir
duplicate-fileno

dup/dup2
_exit

_exit
file-close

close
file-access-time

stat
file-change-time

stat
file-modification-time

stat
file-execute-access?

access
file-open

open
file-lock

fcntl
file-position

ftell/lseek
file-read

read
file-read-access?

access
file-select

select
file-control

fcntl
file-stat

stat
file-test-lock

28.23 How Scheme procedures relate to UNIX C functions

184

CHICKEN User's Manual - The User's Manual

fcntl
file-truncate
truncate/ftruncate
file-unlock
fcntl
file-write
write
file-write-access?
access
get-groups
getgroups
get-host-name
gethostname
initialize-groups
initgroups
local-time->seconds
mktime
local-timezone-abbreviation
localtime
map-file-to-memory
mmap
open-input-file*
fdopen
open-output-file*
fdopen
open-input-pipe
popen
open-output-pipe
popen
port->fileno
fileno
process-execute
execvp
process-fork
fork
process-group-id
getpgid
process-signal
kill
process-wait
waitpid
close-input-pipe
pclose
close-output-pipe
pclose
read-symbolic-link
readlink
seconds->local-time
localtime
seconds->string
ctime
seconds->utc-time
gmtime
set-alarm!

28.23 How Scheme procedures relate to UNIX C functions

185

CHICKEN User's Manual - The User's Manual

alarm
set-buffering-mode!
setvbuf
set-file-position!
fseek/seek
set-groups!
setgroups
set-signal-mask!
sigprocmask
set-group-id!
setgid
set-process-group-id!
setpgid
set-user-id!
setuid
set-root-directory!
chroot
setenv
setenv/putenv
sleep
sleep
system-information
uname
terminal-name
ttyname
terminal-port?
isatty
time->string
asctime
unsetenv
putenv
unmap-file-from-memory
munmap
user-information
getpwnam/getpwuid
utc-time->seconds
timegm

28.24 Windows specific notes

Use of UTF8 encoded strings is for pathnames is not supported. Windows uses a 16-bit UNICODE encoding
with special system calls for wide-character support. Only single-byte string encoding can be used.

28.24.1 Procedure Changes
Exceptions to the above procedure definitions.

[procedure] (create-pipe [MODE])

28.24 Windows specific notes 186

CHICKEN User's Manual - The User's Manual

The optional parameter MODE, default open/binary | open/noinherit. This can be
open/binary or open/text, optionally or'ed with open/noinherit

[procedure] (process-wait [PID [NOHANG]])

process-wait always returns #t for a terminated process and only the exit status is available. (Windows
does not provide signals as an interprocess communication method.)

[procedure] (process-execute PATHNAME [ARGUMENT-LIST [ENVIRONMENT-LIST [EXACT-F
[procedure] (process COMMAND ARGUMENT-LIST [ENVIRONMENT-LIST [EXACT-FLAG]])
[procedure] (process* COMMAND ARGUMENT-LIST [ENVIRONMENT-LIST [EXACT-FLAG]])

The optional parameter EXACT - FLAG, default #f. When #T any argument string with embedded whitespace
will be wrapped in quotes. When #t no such wrapping occurs.

28.24.2 Unsupported Definitions

The following definitions are not supported for native Windows builds (compiled with the Microsoft tools or
with MinGW):

open/noctty open/nonblock open/fsync open/sync

perm/isvtx perm/isuid perm/isgid

file-select file-control

signal/... (except signal/term, signal/int, signal/fpe, signal/ill, signal/segv
set-signal-mask! signal-mask signal-masked? signal-mask! signal-unmask!
user-information group-information get-groups set-groups! initialize-groups
errno/wouldblock

change-file-owner

current-user-id current-group-id current-effective-user-id current-effective
set-user-id! set-group-id!

create-session

process-group-id set-process-group-id!

create-symbolic-link read-symbolic-link

file-truncate

file-lock file-lock/blocking file-unlock file-test-lock

create-fifo fifo?

prot/...

map/...

map-file-to-memory unmap-file-from-memory memory-mapped-file-pointer memory-
set-alarm!

terminal-port? terminal-name

process-fork process-signal

parent-process-id

set-root-directory!

utc-time->seconds

28.24.1 Procedure Changes 187

CHICKEN User's Manual - The User's Manual
28.24.3 Additional Definitions
Only available for Windows
® open/noinherit
This variable is a mode value for create-pipe. Useful when spawning a child process.
¢ spawn/overlay
® spawn/wait
® spawn/nowait
® spawn/nowaito
¢ spawn/detach
These variables contains special flags that specify the exact semantics of process -spawn:
spawn/overlay replaces the current process with the new one. Spawn/wait suspends execution of the
current process until the spawned process returns. Spawn/nowait does the opposite (Spawn/nowaito is

identical, according to the Microsoft documentation) and runs the process asynchronously. spawn/detach
runs the new process in the background, without being attached to a console.

28.24.4 process-spawn

[procedure] (process-spawn MODE COMMAND [ARGUMENT-LIST [ENVIRONMENT-LIST [EXACT
Creates and runs a new process with the given COMMAND filename and the optional ARGUMENT -LIST and
ENVIRONMENT -LIST. MODE specifies how exactly the process should be executed and must be one or more

of the spawn/ . . . flags defined above.

The EXACT - FLAG, default #f, controls quote-wrapping of argument strings. When #t quote-wrapping is not
performed.

Returns:
¢ the exit status when synchronous
¢ the PID when asynchronous
¢ -1 when failure

Previous: Unit srfi-18

Next: Unit utils

28.24.3 Additional Definitions 188

29 Unit utils

This unit contains apropos and functions as a "grab bag" of procedures without a good home, and which don't
have to be available by default (as compared to the extras unit).

This unit uses the extras and regex units.

29.1 Environment Query

29.1.1 apropos
[procedure] (apropos SYMBOL-PATTERN [ENVIRONMENT] [#:MACROS?])

Displays symbols & type matching SYMBOL - PATTERN in the ENVIRONMENT on the
(current-output-port).

SYMBOL - PATTERN

A symbol, string, or regex. When symbol or string substring matching is performed.
ENVIRONMENT

An environment. When missing the (interaction-environment) is assumed.
#:MACROS?

Keyword argument. A boolean. Include macro symbols? When missing #7 is assumed.

29.1.2 apropos-list
[procedure] (apropos-list SYMBOL-PATTERN [ENVIRONMENT] [#:MACROS?])

Like apropos but returns a list of matching symbols.

29.2 Iterating over input lines and files

29.2.1 for-each-line

[procedure] (for-each-line PROCEDURE [PORT])

Calls PROCEDURE for each line read from PORT (which defaults to the value of
(current-input-port). The argument passed to PROCEDURE is a string with the contents of the line,

excluding any line-terminators. When all input has been read from the port, for-each-line returns some
unspecified value.

29 Unit utils 189

http://galinha.ucpel.tche.br/Unit extras

CHICKEN User's Manual - The User's Manual

29.2.2 for-each-argv-line

[procedure] (for-each-argv-line PROCEDURE)

Opens each file listed on the command line in order, passing one line at a time into PROCEDURE. The
filename - is interpreted as (current-input-port). If no arguments are given on the command line it
again uses the value of (current-input-port). During execution of PROCEDURE, the current input
port will be correctly bound to the current input source.

This code will act as a simple Unix cat(1) command:

(for-each-argv-line print)

29.3 Executing shell commands with formatstring and error
checking

29.3.1 system*
[procedure] (system* FORMATSTRING ARGUMENTL ...)

Similar to (system (sprintf FORMATSTRING ARGUMENT1 ...)), butsignals an error if the
invoked program should return a nonzero exit status.

29.4 Reading a file's contents

29.4.1 read-all

[procedure] (read-all [FILE-OR-PORT])

If FILE-OR-PORT is a string, then this procedure returns the contents of the file as a string. If
FILE-OR-PORT is a port, all remaining input is read and returned as a string. The port is not closed. If no
argument is provided, input will be read from the port that is the current value of
(current-input-port).

Previous: Unit posix

Next: Unit tcp

29.2.2 for-each-argv-line 190

30 Unit tcp

This unit provides basic facilities for communicating over TCP sockets. The socket interface should be mostly
compatible to the one found in PLT Scheme.

This unit uses the extras unit.

All errors related to failing network operations will raise a condition of kind (exn i/0 network).

30.1 tcp-listen
[procedure] (tcp-listen TCPPORT [BACKLOG [HOST]])
Creates and returns a TCP listener object that listens for connections on TCPPORT, which should be an exact

integer. BACKLOG specifies the number of maximally pending connections (and defaults to 4). If the optional
argument HOST is given and not #°, then only incoming connections for the given host (or IP) are accepted.

30.2 tcp-listener?
[procedure] (tcp-listener? X)

Returns #t if X is a TCP listener object, or #T otherwise.

30.3 tcp-close
[procedure] (tcp-close LISTENER)

Reclaims any resources associated with LISTENER.

30.4 tcp-accept
[procedure] (tcp-accept LISTENER)

Waits until a connection is established on the port on which LISTENER is listening and returns two values:

an input- and output-port that can be used to communicate with the remote process. The current value of
tcp-accept-timeout is used to determine the maximal number of milliseconds (if any) to wait until a
connection is established. When a client connects any read- and write-operations on the returned ports will use
the current values (at the time of the connection) of tcp-read-timeout and tcp-write-timeout,
respectively, to determine the maximal number of milliseconds to wait for input/output before a timeout error
is signalled.

Note: this operation and any I/O on the ports returned will not block other running threads.

30 Unit tcp 191

CHICKEN User's Manual - The User's Manual

30.5 tcp-accept-ready?
[procedure] (tcp-accept-ready? LISTENER)

Returns #t if there are any connections pending on LISTENER, or #f otherwise.

30.6 tcp-listener-port
[procedure] (tcp-listener-port LISTENER)

Returns the port number assigned to LISTENER (If you pass O to tcp-listen, then the system will choose
a port-number for you).

30.7 tcp-listener-fileno
[procedure] (tcp-listener-fileno LISTENER)

Returns the file-descriptor associated with LISTENER.

30.8 tcp-connect
[procedure] (tcp-connect HOSTNAME [TCPPORT])

Establishes a client-side TCP connection to the machine with the name HOSTNAME (a string) at TCPPORT
(an exact integer) and returns two values: an input- and output-port for communicating with the remote
process. The current value of tcp-connect-timeout is used to determine the maximal number of
milliseconds (if any) to wait until the connection is established. When the connection takes place any read-
and write-operations on the returned ports will use the current values (at the time of the call to
tcp-connect) of tcp-read-timeout and tcp-write-timeout, respectively, to determine the
maximal number of milliseconds to wait for input/output before a timeout error is signalled.

If the TCPPORT is omitted, the port is parsed from the HOSTNAME string. The format expected is
HOSTNAME : PORT. The PORT can either be a string representation of an integer or a service name which is
translated to an integer using the POSIX function getservbyname.

Note: any I/O on the ports returned will not block other running threads.

30.5 tcp-accept-ready? 192

http://www.opengroup.org/onlinepubs/009695399/functions/getservbyname.html

CHICKEN User's Manual - The User's Manual

30.9 tcp-addresses

[procedure] (tcp-addresses PORT)

Returns two values for the input- or output-port PORT (which should be a port returned by either

tcp-accept or tcp-connect): the IP address of the local and the remote machine that are connected
over the socket associated with PORT. The returned addresses are strings in XXX . XXX . XXX . XXX notation.

30.10 tcp-port-numbers
[procedure] (tcp-port-numbers PORT)
Returns two values for the input- or output-port PORT (which should be a port returned by either

tcp-accept or tcp-connect): the TCP port numbers of the local and the remote machine that are
connected over the socket associated with PORT.

30.11 tcp-abandon-port
[procedure] (tcp-abandon-port PORT)

Marks the socket port PORT as abandoned. This is mainly useful to close down a port without breaking the
connection.

30.12 tcp-buffer-size

[parameter] tcp-buffer-size

Sets the size of the output buffer. By default no output-buffering for TCP output is done, but to improve
performance by minimizing the number of TCP packets, buffering may be turned on by setting this parameter
to an exact integer greater zero. A buffer size of zero or #f turns buffering off. The setting of this parameter
takes effect at the time when the I/O ports for a particular socket are created, i.e. when tcp-connect or
tcp-accept is called.

Note that since output is not immediately written to the associated socket, you may need to call

flush-output, once you want the output to be transmitted. Closing the output port will flush
automatically.

30.13 tcp-read-timeout
[parameter] tcp-read-timeout

Determines the timeout for TCP read operations in milliseconds. A timeout of #T disables timeout checking.
The default read timeout is 60000, i.e. 1 minute.

30.9 tcp-addresses 193

CHICKEN User's Manual - The User's Manual

30.14 tcp-write-timeout
[parameter] tcp-write-timeout

Determines the timeout for TCP write operations in milliseconds. A timeout of #f disables timeout checking.
The default write timeout is 60000, i.e. 1 minute.

30.15 tcp-connect-timeout
[parameter] tcp-connect-timeout

Determines the timeout for tcp-connect operations in milliseconds. A timeout of #Tf disables timeout
checking and is the default.

30.16 tcp-accept-timeout
[parameter] tcp-accept-timeout

Determines the timeout for tcp-accept operations in milliseconds. A timeout of #T disables timeout
checking and is the default.

30.17 Example

A very simple example follows. Say we have the two files client.scmand server.scm:

; client.scm

(declare (uses tcp))

(define-values (i o) (tcp-connect 4242))
(write-line 0)

(print (read-line 1))

, server.scm
(declare (uses tcp))

(define 1 (tcp-listen 4242))
(define-values (i o) (tcp-accept 1))
(write-line 0)

(print (read-line 1))
(close-input-port i)
(close-output-port o)

SC server.scm
sc client.scm
./server &

C
C

[
“
[
“
[
“

30.14 tcp-write-timeout 194

CHICKEN User's Manual - The User's Manual

% ./client
Good Bye!
Hello!

Previous: Unit utils

Next: Unit lolevel

30.17 Example 195

31 Unit lolevel

This unit provides a number of handy low-level operations. Use at your own risk.

This unit uses the Srfi-4 and extras units.

31.1 Foreign pointers

31.1.1 addresspointer
[procedure] (address->pointer ADDRESS)

Creates a new foreign pointer object initialized to point to the address given in the integer ADDRESS.

31.1.2 allocate
[procedure] (allocate BYTES)

Returns a pointer to a freshly allocated region of static memory. This procedure could be defined as follows:

(define allocate (foreign-lambda c-pointer integer))

31.1.3 free
[procedure] (free POINTER)

Frees the memory pointed to by POINTER. This procedure could be defined as follows:

(define free (foreign-lambda c-pointer integer))

31.1.4 null-pointer
[procedure] (null-pointer)

Another way to say (address->pointer 0).

31 Unit lolevel 196

CHICKEN User's Manual - The User's Manual
31.1.5 null-pointer?
[procedure] (null-pointer? PTR)

Returns #t if PTR contains a NULL pointer, or #f otherwise.

31.1.6 objectpointer
[procedure] (object->pointer X)

Returns a pointer pointing to the Scheme object X, which should be a non-immediate object. Note that data in
the garbage collected heap moves during garbage collection.

31.1.7 pointer?
[procedure] (pointer? X)

Returns #1 if X is a foreign pointer object, and #f otherwise.

31.1.8 pointer="?
[procedure] (pointer=? PTR1 PTR2)

Returns #t if the pointer-like objects PTR1 and PTR2 point to the same address.

31.1.9 pointeraddress
[procedure] (pointer->address PTR)

Returns the address, to which the pointer PTR points.

31.1.10 pointerobject
[procedure] (pointer->object PTR)

Returns the Scheme object pointed to by the pointer PTR.

31.1.5 null-pointer? 197

CHICKEN User's Manual - The User's Manual
31.1.11 pointer-offset
[procedure] (pointer-offset PTR N)

Returns a new pointer representing the pointer PTR increased by N.

31.1.12 pointer-u8-ref
[procedure] (pointer-u8-ref PTR)

Returns the unsigned byte at the address designated by PTR.

31.1.13 pointer-s8-ref
[procedure] (pointer-s8-ref PTR)

Returns the signed byte at the address designated by PTR.

31.1.14 pointer-u16-ref

[procedure] (pointer-ul6-ref PTR)

Returns the unsigned 16-bit integer at the address designated by PTR.

31.1.15 pointer-s16-ref
[procedure] (pointer-sl6-ref PTR)

Returns the signed 16-bit integer at the address designated by PTR.

31.1.16 pointer-u32-ref

[procedure] (pointer-u32-ref PTR)

Returns the unsigned 32-bit integer at the address designated by PTR.

31.1.11 pointer-offset

198

CHICKEN User's Manual - The User's Manual

31.1.17 pointer-s32-ref
[procedure] (pointer-s32-ref PTR)

Returns the signed 32-bit integer at the address designated by PTR.

31.1.18 pointer-f32-ref
[procedure] (pointer-f32-ref PTR)

Returns the 32-bit float at the address designated by PTR.

31.1.19 pointer-f64-ref

[procedure] (pointer-f64-ref PTR)

Returns the 64-bit double at the address designated by PTR.

31.1.20 pointer-u8-set!

[procedure] (pointer-u8-set! PTR N)
[procedure] (set! (pointer-u8-ref PTR) N)

Stores the unsigned byte N at the address designated by PTR.

31.1.21 pointer-s8-set!

[procedure] (pointer-s8-set! PTR N)
[procedure] (set! (pointer-s8-ref PTR) N)

Stores the signed byte N at the address designated by PTR.

31.1.22 pointer-u16-set!

[procedure] (pointer-ul6-set! PTR N)
[procedure] (set! (pointer-ul6-ref PTR) N)

Stores the unsigned 16-bit integer N at the address designated by PTR.

31.1.17 pointer-s32-ref 199

CHICKEN User's Manual - The User's Manual

31.1.23 pointer-s16-set!

[procedure] (pointer-sl6-set! PTR N)
[procedure] (set! (pointer-sl6-ref PTR) N)

Stores the signed 16-bit integer N at the address designated by PTR.

31.1.24 pointer-u32-set!

[procedure] (pointer-u32-set! PTR N)
[procedure] (set! (pointer-u32-ref PTR) N)

Stores the unsigned 32-bit integer N at the address designated by PTR.

31.1.25 pointer-s32-set!

[procedure] (pointer-s32-set! PTR N)
[procedure] (set! (pointer-s32-ref PTR) N)

Stores the 32-bit integer N at the address designated by PTR.

31.1.26 pointer-f32-set!

[procedure] (pointer-f32-set! PTR N)
[procedure] (set! (pointer-f32-ref PTR) N)

Stores the 32-bit floating-point number N at the address designated by PTR.

31.1.27 pointer-f64-set!

[procedure] (pointer-f64-set! PTR N)
[procedure] (set! (pointer-f64-ref PTR) N)

Stores the 64-bit floating-point number N at the address designated by PTR.

31.1.28 align-to-word
[procedure] (align-to-word PTR-OR-INT)

Accepts either a machine pointer or an integer as argument and returns a new pointer or integer aligned to the
native word size of the host platform.

31.1.23 pointer-s16-set! 200

CHICKEN User's Manual - The User's Manual

31.2 Tagged pointers

Tagged pointers are foreign pointer objects with an extra tag object.

31.2.1 tag-pointer
[procedure] (tag-pointer PTR TAG)

Creates a new tagged pointer object from the foreign pointer PTR with the tag TAG, which may an arbitrary
Scheme object.

31.2.2 tagged-pointer?
[procedure] (tagged-pointer? X TAG)

Returns #t, if X is a tagged pointer object with the tag TAG (using an €q? comparison), or #f otherwise.

31.2.3 pointer-tag
[procedure] (pointer-tag PTR)

If PTR is a tagged pointer object, its tag is returned. If PTR is a normal, untagged foreign pointer object #T is
returned. Otherwise an error is signalled.

31.3 Extending procedures with data

31.3.1 extend-procedure
[procedure] (extend-procedure PROCEDURE X)
Returns a copy of the procedure PROCEDURE which contains an additional data slot initialized to X. If

PROCEDURE is already an extended procedure, then its data slot is changed to contain X and the same
procedure is returned.

31.2 Tagged pointers 201

CHICKEN User's Manual - The User's Manual
31.3.2 extended-procedure?
[procedure] (extended-procedure? PROCEDURE)

Returns #t if PROCEDURE is an extended procedure, or #f otherwise.

31.3.3 procedure-data
[procedure] (procedure-data PROCEDURE)

Returns the data object contained in the extended procedure PROCEDURE, or #f if it is not an extended
procedure.

31.3.4 set-procedure-data!
[procedure] (set-procedure-data! PROCEDURE X)
Changes the data object contained in the extended procedure PROCEDURE to X.

(define foo
(Letrec ((f (lambda () (procedure-data x)))
(x #f))
(set! x (extend-procedure f 123))
X))

(foo) ==> 123
(set-procedure-data! foo 'hello)
(foo) ==> hello

31.4 Data in unmanaged memory

31.4.1 object-evict
[procedure] (object-evict X [ALLOCATOR])

Copies the object X recursively into the memory pointed to by the foreign pointer object returned by
ALLOCATOR, which should be a procedure of a single argument (the number of bytes to allocate). The freshly
copied object is returned. This facility allows moving arbitrary objects into static memory, but care should be
taken when mutating evicted data: setting slots in evicted vector-like objects to non-evicted data is not
allowed. It is possible to set characters/bytes in evicted strings or byte-vectors, though. It is advisable not to
evict ports, because they might be mutated by certain file-operations. object-evict is able to handle
circular and shared structures, but evicted symbols are no longer unique: a fresh copy of the symbol is created,
o)

(define x 'foo)

31.3.2 extended-procedure? 202

CHICKEN User's Manual - The User's Manual

(define y (object-evict 'foo))

y ==> o0
(eq? x vy) ==> #f
(define z (object-evict '(bar bar)))
(eq? (car z) (cadr z)) ==> #t

The ALLOCATOR defaults to allocate.

31.4.2 object-evict-to-location

[procedure] (object-evict-to-location X PTR [LIMIT])

As object-evict but moves the object at the address pointed to by the machine pointer PTR. If the
number of copied bytes exceeds the optional LIMIT then an error is signalled (specifically a composite
condition of types exn and evict. The latter provides a Limit property which holds the exceeded limit.

Two values are returned: the evicted object and a new pointer pointing to the first free address after the
evicted object.

31.4.3 object-evicted?
[procedure] (object-evicted? X)

Returns #t if X is a non-immediate evicted data object, or #f otherwise.

31.4.4 object-size
[procedure] (object-size X)

Returns the number of bytes that would be needed to evict the data object X.

31.4.5 object-release
[procedure] (object-release X [RELEASER])

Frees memory occupied by the evicted object X recursively. RELEASER should be a procedure of a single
argument (a foreign pointer object to the static memory to be freed) and defaults to free.

31.4.6 object-unevict

[procedure] (object-unevict X [FULL])

31.4.1 object-evict 203

CHICKEN User's Manual - The User's Manual

Copies the object X and nested objects back into the normal Scheme heap. Symbols are re-interned into the
symbol table. Strings and byte-vectors are not copied, unless FULL is given and not #f.

31.5 Locatives

A locative is an object that points to an element of a containing object, much like a poinfer in low-level,
imperative programming languages like C. The element can be accessed and changed indirectly, by
performing access or change operations on the locative. The container object can be computed by calling the

location->object procedure.

Locatives may be passed to foreign procedures that expect pointer arguments. The effect of creating locatives
for evicted data (see object-evict) is undefined.

31.5.1 make-locative
[procedure] (make-locative EXP [INDEX])

Creates a locative that refers to the element of the non-immediate object EXP at position INDEX. EXP may be
a vector, pair, string, blob, SRFI-4 number-vector, or record. INDEX should be a fixnum. INDEX defaults to
0.

31.5.2 make-weak-locative
[procedure] (make-weak-locative EXP [INDEX])

Creates a weak locative. Even though the locative refers to an element of a container object, the container
object will still be reclaimed by garbage collection if no other references to it exist.

31.5.3 locative?
[procedure] (locative? X)

Returns #t if X is a locative, or #T otherwise.

31.5.4 locative-ref
[procedure] (locative-ref LOC)

Returns the element to which the locative LOC refers. If the containing object has been reclaimed by garbage
collection, an error is signalled.

31.4.6 object-unevict 204

CHICKEN User's Manual - The User's Manual

31.5.5 locative-set!

[procedure] (locative-set! LOC X)
[procedure] (set! (locative-ref LOC) X)

Changes the element to which the locative LOC refers to X. If the containing object has been reclaimed by
garbage collection, an error is signalled.

31.5.6 locativeobject
[procedure] (locative->object LOC)

Returns the object that contains the element referred to by LOC or #7 if the container has been reclaimed by
garbage collection.

31.6 Accessing toplevel variables

31.6.1 global-bound?
[procedure] (global-bound? SYMBOL)

Returns #t, if the global (foplevel) variable with the name SYMBOL is bound to a value, or #f otherwise.

31.6.2 global-ref
[procedure] (global-ref SYMBOL)

Returns the value of the global variable SYMBOL. If no variable under that name is bound, an error is
signalled.

Note that it is not possible to access a toplevel binding with global - ref or global-set! if it has been
hidden in compiled code via (declare (hide ...)), orif the code has been compiled in block mode.

31.6.3 global-set!

[procedure] (global-set! SYMBOL X)
[procedure] (set! (global-ref SYMBOL) X)

Sets the global variable named SYMBOL to the value X.

31.5.5 locative-set! 205

CHICKEN User's Manual - The User's Manual

31.7 Low-level data access

31.7.1 block-ref
[procedure] (block-ref BLOCK INDEX)

Returns the contents of the INDEXth slot of the object BLOCK. BLOCK may be a vector, record structure, pair
or symbol.

31.7.2 block-set!

[procedure] (block-set! BLOCK INDEX X)
[procedure] (set! (block-ref BLOCK INDEX) X)

Sets the contents of the INDEXth slot of the object BLOCK to the value of X. BLOCK may be a vector, record
structure, pair or symbol.

31.7.3 object-copy
[procedure] (object-copy X)

Copies X recursively and returns the fresh copy. Objects allocated in static memory are copied back into
garbage collected storage.

31.7.4 make-record-instance
[procedure] (make-record-instance SYMBOL ARGl ...)
Returns a new instance of the record type SYMBOL, with its slots initialized to ARG1 To illustrate:
(define-record point x y)
expands into something quite similar to:
(begin
(define (make-point x y)
(make-record-instance 'point x y))
(define (point? x)
(and (record-instance? x)

(eq? 'point (block-ref x 0))))
(define (point-x p) (block-ref p 1))

31.7 Low-level data access 206

CHICKEN User's Manual - The User's Manual

(define (point-x-set! p x) (block-set! p 1 x))
(define (point-y p) (block-ref p 2))
(define (point-y-set! p y) (block-set! p 1yvy)))

31.7.5 move-memory!

[procedure] (move-memory! FROM TO [BYTES [FROM-OFFSET [TO-OFFSET]])

Copies BYTES bytes of memory from FROM to TO. FROM and TO may be strings, primitive byte-vectors,
SRFI-4 byte-vectors (see: @ref{Unit srfi-4}), memory mapped files, foreign pointers (as obtained from a call
to foreign-lambda, for example) or locatives. if BYTES is not given and the size of the source or
destination operand is known then the maximal number of bytes will be copied. Moving memory to the
storage returned by locatives will cause havoc, if the locative refers to containers of non-immediate data, like

vectors or pairs.

The additional fourth and fifth argument specify starting offsets (in bytes) for the source and destination
arguments.

31.7.6 number-of-bytes
[procedure] (number-of-bytes BLOCK)

Returns the number of bytes that the object BLOCK contains. BLOCK may be any non-immediate value.

31.7.7 number-of-slots
[procedure] (number-of-slots BLOCK)

Returns the number of slots that the object BLOCK contains. BLOCK may be a vector, record structure, pair or
symbol.

31.7.8 record-instance?
[procedure] (record-instance? X)

Returns #t if X is an instance of a record type. See also: make-record-instance.

31.7.9 recordvector

[procedure] (record->vector BLOCK)

31.7.4 make-record-instance 207

CHICKEN User's Manual - The User's Manual

Returns a new vector with the type and the elements of the record BLOCK.

31.8 Procedure-call- and variable reference hooks

31.8.1 set-invalid-procedure-call-handler!
[procedure] (set-invalid-procedure-call-handler! PROC)
Sets an internal hook that is invoked when a call to an object other than a procedure is executed at runtime.
The procedure PROC will in that case be called with two arguments: the object being called and a list of the
passed arguments.
;. Access sequence-elements as in ARC:
(set-invalid-procedure-call-handler!
(Lambda (proc args)
(cond [(string? proc) (apply string-ref proc args)

]
[(vector? proc) (apply vector-ref proc args)]
[else (error proc)])))
(4) ==> #\o

This facility does not work in code compiled with the unsafe setting.

31.8.2 unbound-variable-value
[procedure] (unbound-variable-value [X])

Defines the value that is returned for unbound variables. Normally an error is signalled, use this procedure to
override the check and return X instead. To set the default behavior (of signalling an error), call
unbound-variable-value with no arguments.

This facility does not work in code compiled with the unsafe setting.

31.9 Magic

31.9.1 object-become!

[procedure] (object-become! ALIST)

31.7.9 recordvector 208

CHICKEN User's Manual - The User's Manual

Changes the identity of the value of the car of each pair in ALIST to the value of the cdr. Both values may not
be immediate (i.e. exact integers, characters, booleans or the empty list).

(define x)

(define y '#(and now i am a vector))

(object-become! (list (cons x y)))

X ==> #(and now i am a vector)
y ==> #(and now i am a vector)
(eq? x vy) ==> #t

Note: this operation invokes a major garbage collection.

The effect of using object-become! on evicted data (see object-evict) is undefined.

31.9.2 mutate-procedure
[procedure] (mutate-procedure OLD PROC)

Replaces the procedure OLD with the result of calling the one-argument procedure PROC. PROC will receive a
copy of OLD that will be identical in behaviour to the result of PROC:

;;, Replace arbitrary procedure with tracing one:
(mutate-procedure my-proc
(Lambda (new)
(Lambda args
(printf new args)
(apply new args))))
Previous: Unit tcp

Next: Interface to external functions and variables

31.9.1 object-become! 209

32 Interface to external functions and variables

e Accessing external objects

¢ Foreign type specifiers
¢ Embeddin

e Callbacks
e [ocations

¢ Other support procedures
e C interface

Previous: Supported language

Next: chicken-setup

32 Interface to external functions and variables 210

33 Accessing external objects

33.1 foreign-code
[syntax] (foreign-code STRING ...)

Executes the embedded C/C++ code STRING . . ., which should be a sequence of C statements, which are
executed and return an unspecified result.

(foreign-code) => #<unspecified>

Code wrapped inside foreign-code may not invoke callbacks into Scheme.

33.2 foreign-value
[syntax] (foreign-value STRING TYPE)

Evaluates the embedded C/C++ expression STRING, returning a value of type given in the foreign-type
specifier TYPE.

(print (foreign-value c-string))

33.3 foreign-declare
[syntax] (foreign-declare STRING ...)

Include given strings verbatim into header of generated file.

33.4 define-foreign-type
[syntax] (define-foreign-type NAME TYPE [ARGCONVERT [RETCONVERT]])

Defines an alias for TYPE with the name NAME (a symbol). TYPE may be a type-specifier or a string naming
a C type. The namespace of foreign type specifiers is separate from the normal Scheme namespace. The
optional arguments ARGCONVERT and RETCONVERT should evaluate to procedures that map argument- and
result-values to a value that can be transformed to TYPE:

(define-foreign-type char-vector
nonnull-c-string
(compose list->string vector->list)
(compose list->vector string->list))

(define strlen

33 Accessing external objects 211

CHICKEN User's Manual - The User's Manual

(foreign-lambda int char-vector))
(strlen '#(#\a #\b #\c)) ==> 3
(define memset

(foreign-lambda char-vector char-vector char int))
(memset '#(# # #) #\X 3) ==> #(#\X #\X #\X)

Foreign type-definitions are only visible in the compilation-unit in which they are defined, so use include
to use the same definitions in multiple files.

33.5 define-foreign-variable
[syntax] (define-foreign-variable NAME TYPE [STRING])

Defines a foreign variable of name NAME (a symbol). STRING should be the real name of a foreign variable
or parameterless macro. If STRING is not given, then the variable name NAME will be converted to a string
and used instead. All references and assignments (via Set !) are modified to correctly convert values between
Scheme and C representation. This foreign variable can only be accessed in the current compilation unit, but
the name can be lexically shadowed. Note that STRING can name an arbitrary C expression. If no
assignments are performed, then STRING doesn't even have to specify an lvalue.

#>
enum { abc=3, def, ghi };
<#

(define-macro (define-simple-foreign-enum . items)
" (begin
,@(map (match-lambda
[(name realname) " (define-foreign-variable ,name int ,realname)]
[name " (define-foreign-variable ,name int)])
items)))

(define-simple-foreign-enum abc def ghi)

ghi ==> 5

33.6 define-foreign-record
[syntax] (define-foreign-record NAME [DECL ...] SLOT ...)

Defines accessor procedures for a C structure definition. NAME should either be a symbol or a list of the form
(TYPENAME FOREIGNNAME). If NAME is a symbol, then a C declaration will be generated that defines a C
struct named struct NAME. If NAME is a list, then no struct declaration will be generated and
FOREIGNNAME should name an existing C record type. A foreign-type specifier named NAME (or
TYPENAME) will be defined as a pointer to the given C structure. A SLOT definition should be a list of one of
the following forms:

33.4 define-foreign-type 212

CHICKEN User's Manual - The User's Manual
(TYPE SLOTNAME)

or
(TYPE SLOTNAME SIZE)

The latter form defines an array of SIZE elements of the type TYPE embedded in the structure. For every
slot, the following accessor procedures will be generated:

33.6.1 TYPENAME-SLOTNAME
(TYPENAME -SLOTNAME FOREIGN-RECORD-POINTER [INDEX])
A procedure of one argument (a pointer to a C structure), that returns the slot value of the slot SLOTNAME. If

a SIZE has been given in the slot definition, then an additional argument INDEX is required that specifies the
index of an array-element.

33.6.2 TYPENAME-SLOTNAME-set!

(TYPENAME-SLOTNAME-set! FOREIGN-RECORD-POINTER [INDEX] VALUE)

A procedure of two arguments (a pointer to a C structure) and a value, that sets the slot value of the slot
SLOTNAME in the structure. If a SIZE has been given in the slot definition, then an additional argument
INDEX is required for the array index.

If a slot type is of the form (const ...), then no setter procedure will be generated. Slots of the types
(struct ...)or (union ...) are accessed as pointers to the embedded struct (or union) and no setter

will be generated.

Additionally, special record-declarations (DECL . . .) may be given, where each declaration consists of a list
of the form (KEYWORD ARGUMENT ...). The available declarations are:

33.6.3 constructor
(constructor: NAME)

Generate a constructor-procedure with no arguments that has the name NAME (a symbol) that returns a pointer
to a structure of this type. The storage will be allocated with malloc(3).

33.6.4 destructor

(destructor: NAME)

33.6 define-foreign-record 213

CHICKEN User's Manual - The User's Manual

Generate a destructor function with the name NAME that takes a pointer to a structure of this type as its single
argument and releases the storage with free (3). If the argument is #T, the destructor procedure does
nothing.

33.6.5 rename
(rename: EXPRESSION)

Evaluates EXPRESSION at compile-/macro-expansion-time and applies the result, which should be a
procedure, to the string-representation of the name of each accessor-procedure generated. Another (or the
same) string should be returned, which in turn is taken as the actual name of the accessor.

An example:
(require-for-syntax 'srfi-13)

(define-foreign-record Some Struct
(rename: (compose string-downcase (cut string-translate <>)))
(constructor: make-some-struct)
(destructor: free-some-struct)
(int xCoord)
(int yCoord))

will generate the following procedures:

(make-some-struct) --> C-POINTER
(free-some-struct C-POINTER)

(some-struct-xcoord C-POINTER) --> NUMBER
(some-struct-ycoord C-POINTER) --> NUMBER

(some-struct-xcoord-set! C-POINTER NUMBER)
(some-struct-ycoord-set! C-POINTER NUMBER)

33.7 define-foreign-enum
[syntax] (define-foreign-enum TYPESPEC [USE-ALIASES] ENUMSPEC ...)

Defines a foreign type (as with define-foreign-type) that maps the elements of a C/C++ enum (or a
enum-like list of constants) to and from a set of symbols.

TYPESPEC specifies a foreign type that converts a symbol argument from the set ENUMSPEC . . . into the
appropriate enum value when passed as an argument to a foreign function.

A list of symbols passed as an argument will be combined using bitwise-ior. An empty list will be

passed as O (zero). Results of the enum type are automatically converted into a scheme value (note that
combinations are not supported in this case).

33.6.4 destructor 214

CHICKEN User's Manual - The User's Manual

TYPESPEC maybe a TYPENAME symbol or a list of the form (SCHEMENAME REALTYPE

[DEFAULT - SCHEME - VALUE]), where REALTYPE designates the native type used. The default type
specification is (TYPENAME TYPENAME). The DEFAULT - SCHEME - VALUE overrides the default result of
mapping from the native type; i.e. when no such mapping exists. When supplied the form is used unquoted,
otherwise the resultis ' ().

ENUMSPEC is a TYPENAME symbol or a list of the form (SCHEMENAME REALTYPE
[SCHEME-VALUE]), where REALTYPE designates the native type used. The default enum specification is
(TYPENAME TYPENAME). The SCHEME - VALUE overrides the result of mapping from the native type.
When supplied the form is used unquoted, otherwise the SCHEMENAME symbol is returned.

USE-ALTIASES is an optional boolean flag that determines whether an alias or the SCHEMENAME is used as
the defined foreign variable name. The default is #t.

Additionally two procedures are defined named SCHEMENAME ->number and number->SCHEMENAME.
SCHEMENAME - >number takes one argument and converts a symbol (or a list of symbols) into its numeric
value. numbe r->SCHEMENAME takes one argument and converts a numeric value into its scheme value.

Note that the specification of a scheme value override (SCHEME - VALUE) means the mapping may not be
closed! (number->SCHEMENAME (SCHEMENAME->number SCHEMENAME)) may not equal
SCHEMENAME.

Here a heavily contrived example:

#>

enum foo { a foo = 4, b foo, c foo };

enum foo bar(enum foo x) { printf(, X), return b foo; }
<#

(define-foreign-enum (foo (enum)) a foo b foo (c c foo))

(define bar (foreign-lambda foo bar foo))

(pp (bar '()))

(pp (bar 'a foo0))

(pp (bar '(b foo c)))
33.8 foreign-lambda

[syntax] (foreign-lambda RETURNTYPE NAME ARGTYPE ...)

Represents a binding to an external routine. This form can be used in the position of an ordinary Lambda
expression. NAME specifies the name of the external procedure and should be a string or a symbol.

33.9 foreign-lambda*

[syntax] (foreign-lambda* RETURNTYPE ((ARGTYPE VARIABLE) ...) STRING ...)

33.7 define-foreign-enum 215

CHICKEN User's Manual - The User's Manual

Similar to foreign-lambda, but instead of generating code to call an external function, the body of the C
procedure is directly given in STRING

(define my-strlen
(foreign-lambda* int ((c-string str))
(my-strlen) ==> 13
For obscure technical reasons you should use the C_ return macro instead of the normal return statement

to return a result from the foreign lambda body as some cleanup code has to be run before execution
commences in the calling code.

33.10 foreign-safe-lambda
[syntax] (foreign-safe-lambda RETURNTYPE NAME ARGTYPE ...)

This is similar to foreign-lambda, but also allows the called function to call Scheme functions and
allocate Scheme data-objects. See Callbacks.

33.11 foreign-safe-lambda*
[syntax] (foreign-safe-lambda* RETURNTYPE ((ARGTYPE VARIABLE)...) STRING

This is similar to foreign-lambda*, but also allows the called function to call Scheme functions and
allocate Scheme data-objects. See Callbacks.

33.12 foreign-primitive

[syntax] (foreign-primitive [RETURNTYPE] ((ARGTYPE VARIABLE) ...) STRING
This is also similar to foreign-lambda* but the code will be executed in a primitive CPS context, which
means it will not actually return, but call it's continuation on exit. This means that code inside this form may
allocate Scheme data on the C stack (the nursery) with C_alloc (see below). If the RETURNTYPE is

omitted it defaults to void. You can return multiple values inside the body of the foreign-primitive
form by calling this C function:

C_values(N + 2, C SCHEME UNDEFINED, C k, X1, ...)

where N is the number of values to be returned, and X1, ... are the results, which should be Scheme data
objects. When returning multiple values, the return-type should be omitted.

Previous: Interface to external functions and variables

Next: Foreign type specifiers

33.9 foreign-lambda* 216

CHICKEN User's Manual - The User's Manual

33.12 foreign-primitive 217

34 Foreign type specifiers

Here is a list of valid foreign type specifiers:

34.1 scheme-object

An arbitrary Scheme data object (immediate or non-immediate).

34.2 bool

As argument: any value (#T is false, anything else is true).

As result: anything different from 0 and the NULL pointer is #t.

34.3 byte unsigned-byte

A byte.

34.4 char unsigned-char

A character.

34.5 short unsigned-short

A short integer number.

34.6 int unsigned-int int32 unsigned-int32

An small integer number in fixnum range (at least 30 bit).

34 Foreign type specifiers

218

CHICKEN User's Manual - The User's Manual

34.7 integer unsigned-integer integer32 unsigned-integer32
integer64

Either a fixnum or a flonum in the range of a (unsigned) machine int or with 32/64 bit width.

34.8 long unsigned-long

Either a fixnum or a flonum in the range of a (unsigned) machine long or with 32 bit width.

34.9 float double

A floating-point number. If an exact integer is passed as an argument, then it is automatically converted to a
float.

34.10 number

A floating-point number. Similar to double, but when used as a result type, then either an exact integer or a
floating-point number is returned, depending on whether the result fits into an exact integer or not.

34.11 symbol

A symbol, which will be passed to foreign code as a zero-terminated string.

When declared as the result of foreign code, the result should be a string and a symbol with the same name
will be interned in the symbol table (and returned to the caller).

34.12 scheme-pointer

An untyped pointer to the contents of a non-immediate Scheme object (not allowed as return type). The value
#T is also allowed and is passed as a NULL pointer.

Don't confuse this type with (C-pointer ...) which means something different (a machine-pointer
object).

34.7 integer unsigned-integer integer32 unsigned-integer32 integer64 219

CHICKEN User's Manual - The User's Manual
34.13 nonnull-scheme-pointer
As scheme-pointer, but guaranteed not to be #¥.

Don't confuse this type with (nonnull-c-pointer ...) which means something different (a
machine-pointer object).

34.14 c-pointer

An untyped operating-system pointer or a locative. The value #T is also allowed and is passed as a NULL
pointer. If uses as the type of a return value, a NULL pointer will be returned as #T.

34.15 nonnull-c-pointer

As c-pointer, but guaranteed not to be #f/NULL.

34.16 blob

A blob object, passed as a pointer to its contents. Arguments of type blob may optionally be #f, which is
passed as a NULL pointer.

This is not allowed as a return type.

34.17 nonnull-blob

As blob, but guaranteed not to be #f.

34.18 u8vector ui6vector u32vector s8vector s16vector s32vector
f32vector f64vector

A SRFI-4 number-vector object, passed as a pointer to its contents.

These type specifiers are not allowed as return types.

34.13 nonnull-scheme-pointer 220

CHICKEN User's Manual - The User's Manual

34.19 nonnull-u8vector nonnull-u16vector nonnull-u32vector
nonnull-s8vector nonnull-s16vector nonnull-s32vector
nonnull-f32vector nonnull-f64vector

As u8vector ..., but guaranteed not to be #f.

34.20 c-string

A C string (zero-terminated). The value #T is also allowed and is passed as a NULL pointer. If uses as the type
of a return value, a NULL pointer will be returned as #7f. Note that the string is copied (with a zero-byte
appended) when passed as an argument to a foreign function. Also a return value of this type is copied into
garbage collected memory.

34.21 nonnull-c-string

As c-string, but guaranteed not to be #f/NULL.

34.22 [nonnull-] c-string*

Similar to [nonnull-] c-string, butif used as a result-type, the pointer returned by the foreign code
will be freed (using the C-libraries free (1)) after copying. This type specifier is not valid as a result type
for callbacks defined with define-external.

34.23 [nonnull-] unsigned-c-string[*]

Same as C-string, but maps to the unsigned char * C type.

34.24 c-string-list

Expects a pointer to a list of C strings teminated by a NULL pointer and returns a list of strings.

Only valid as a result type of non-callback functions.

34.19 nonnull-u8vector nonnull-ul6vector nonnull-u32vector nonnull-s8vector nonnull-s16vector nonnull-232vector n

CHICKEN User's Manual - The User's Manual

34.25 c-string-list*

Similar to C-string-1ist but releases the storage of each string and the pointer array using free(1).

34.26 void

Specifies an undefined return value.

Not allowed as argument type.

34.27 (const TYPE)

The foreign type TYPE with an additional const specifier.

34.28 (enum NAME)

An enumeration type. Handled internally as an integer.

34.29 (c-pointer TYPE)

An operating-system pointer or a locative to an object of TYPE.

34.30 (nonnuli-c-pointer TYPE)

As (c-pointer TYPE), but guaranteed not to be #f/NULL.

34.31 (ref TYPE)

A C++ reference type. Reference types are handled the same way as pointers inside Scheme code.

34.25 c-string-list*

222

CHICKEN User's Manual - The User's Manual

34.32 (struct NAME)

A struct of the name NAME, which should be a string.

Structs cannot be directly passed as arguments to foreign function, neither can they be result values. Pointers
to structs are allowed, though.

34.33 (template TYPE ARGTYPE ...)

A C++ template type. For example vector<int> would be specified as (template "vector" int).

Template types cannot be directly passed as arguments or returned as results.

34.34 (union NAME)

A union of the name NAME, which should be a string.

Unions cannot be directly passed as arguments to foreign function, neither can they be result values. Pointers
to unions are allowed, though.

34.35 (instance CNAME SCHEMECLASS)

A pointer to a C++ class instance. CNAME should designate the name of the C++ class, and SCHEMECLASS
should be the class that wraps the instance pointer. Normally SCHEMECLASS should be a subclass of
<Cc++-object>.

34.36 (instance-ref CNAME SCHEMECLASS)

A reference to a C++ class instance.

34.37 (function RESULTTYPE (ARGUMENTTYPET1 ... [...])
[CALLCONV])

A function pointer. CALLCONV specifies an optional calling convention and should be a string. The meaning
of this string is entirely platform dependent. The value #T is also allowed and is passed as a NULL pointer.

34.32 (struct NAME) 223

CHICKEN User's Manual - The User's Manual

34.38 Mappings

Foreign types are mapped to C types in the following manner:

bool
[unsigned-]char
[unsigned-]short
[unsigned-]int
[unsigned-]Jinteger
[unsigned-]long

float

double

number

[nonnull-]c-pointer
[nonnull-]blob
[nonnull-]Ju8vector
[nonnull-]s8vector
[nonnull-Jul6vector
[nonnull-]s16vector
[nonnull-Ju32vector
[nonnull-]s32vector
[nonnull-]f32vector
[nonnull-]f64vector
[nonnull-]c-string
[nonnull-Junsigned-c-string
c-string-list

symbol

void

([nonnull-]c-pointer TYPE)
(enum NAME)

(struct NAME)

(ref TYPE)

(template T1 T2 ...)

(union NAME)

(function RTYPE (ATYPE ...) [CALLCONYV])

(instance CNAME SNAME)
(instance-ref CNAME SNAME)
Previous: Accessing external objects

Next: Embeddin

34.38 Mappings

int
[unsigned] char
[unsigned] short
[unsigned] int
[unsigned] int
[unsigned] long
float

double

double

void *

unsigned char *
unsigned char *
char *

unsigned short *
short *

uint32_t *
int32_t*

float *

double *

char *

unsigned char *
char **

char *

void

TYPE *

enum NAME
struct NAME
TYPE &
Ti1<T2, ..>
union NAME

[CALLCONV] RTYPE (*)(ATYPE, ...

CNAME *
CNAME &

224

35 Embedding

Compiled Scheme files can be linked with C code, provided the Scheme code was compiled in embedded
mode by passing -DC_EMBEDDED to the C compiler (this will disable generation of amain () function).
csc will do this, when given the - embedded option. Alternatively pass -embedded to csc.

The following C API is available:

35.1 CHICKEN_ parse_command_line
[C function] void CHICKEN parse command line (int argc, char *argv[], int *heap

Parse the programs command-line contained in argc and argv and return the heap-, stack- and symbol table
limits given by runtime options of the form - : . . ., or choose default limits. The library procedure argv can
access the command-line only if this function has been called by the containing application.

35.2 CHICKEN initialize
[C function] int CHICKEN initialize (int heap, int stack, int symbols, void *to

Initializes the Scheme execution context and memory. heap holds the number of bytes that are to be
allocated for the secondary heap. stack holds the number of bytes for the primary heap. Symbols contains
the size of the symbol table. Passing O to one or more of these parameters will select a default size.
toplevel should be a pointer to the toplevel entry point procedure. You should pass C_toplevel here. In
any subsequent call to CHICKEN_run you can simply pass NULL. Calling this function more than once has
no effect. If enough memory is available and initialization was successful, then 1 is returned, otherwise this
function returns 0.

35.3 CHICKEN_run
[C function] C word CHICKEN run (void *toplevel)

Starts the Scheme program. Call this function once to execute all toplevel expressions in your compiled
Scheme program. If the runtime system was not initialized before, then CHICKEN initialize is called
with default sizes. toplevel is the toplevel entry-point procedure, you usually pass C_toplevel here.
The result value is the continuation that can be used to re-invoke the Scheme code from the point after it
called return-to-host (see below).

If you just need a Scheme interpreter, you can also pass CHICKEN default toplevel as the toplevel
procedure, which just uses the default library units.

Once CHICKEN_run has been called, Scheme code is executing until all toplevel expressions have been
evaluated or until return-to-host is called inside the Scheme program.

35 Embedding 225

CHICKEN User's Manual - The User's Manual
35.4 return-to-host
[procedure] (return-to-host)

Exits the Scheme code and returns to the invoking context that called CHLCKEN run or
CHICKEN continue.

After return-to-host has been executed and once CHICKEN run returns, you can invoke callbacks

which have been defined with define-external. The eval library unit also provides boilerplate
callbacks, that simplify invoking Scheme code embedded in a C or C++ application a lot.

35.5 CHICKEN eval
[C macro] int CHICKEN eval (C word exp, C word *result)
Evaluates the Scheme object passed in €xp, writing the result value to result. The return value is 1 if the

operation succeeded, or 0 if an error occurred. Call CHICKEN get error message to obtain a
description of the error.

35.6 CHICKEN_eval_string
[C macro] int CHICKEN eval string (char *str, C word *result)

Evaluates the Scheme expression passed in the string Str, writing the result value to result.

35.7 CHICKEN_eval_to_string

[C macro] int CHICKEN eval to string (C word exp, char *result, int size)

Evaluates the Scheme expression passed in €Xp, writing a textual representation of the result into result.
size should specify the maximal size of the result string.

35.8 CHICKEN_eval_string_to_string
[C macro] int CHICKEN eval string to string (char *str, char *result, int size)

Evaluates the Scheme expression passed in the string St r, writing a textual representation of the result into
result. size should specify the maximal size of the result string.

35.4 return-to-host 226

CHICKEN User's Manual - The User's Manual

35.9 CHICKEN_apply

[C macro] int CHICKEN apply (C word func, C word args, C word *result)

Applies the procedure passed in func to the list of arguments args, writing the result value to result.

35.10 CHICKEN _apply_to_string

[C macro] int CHICKEN apply to string (C word func, C word args, char *result,

Applies the procedure passed in Tunc to the list of arguments args, writing a textual representation of the
result into result.

35.11 CHICKEN read
[C macro] int CHICKEN read (char *str, C word *result)

Reads a Scheme object from the string St r, writing the result value to result.

35.12 CHICKEN load
[C macro] int CHICKEN load (char *filename)

Loads the Scheme file filename (either in source form or compiled).

35.13 CHICKEN_get_error_message
[C macro] void CHICKEN get error message (char *result, int size)

Returns a textual description of the most recent error that occurred in executing embedded Scheme code.

35.14 CHICKEN yield

[C macro] int CHICKEN yield (int *status)

If threads have been spawned during earlier invocations of embedded Scheme code, then this function will run
the next scheduled thread for one complete time-slice. This is useful, for example, inside an idle handler in a

GUI application with background Scheme threads. Note that the Srfi-18 library unit has to be linked in for
this.

35.9 CHICKEN_apply 227

CHICKEN User's Manual - The User's Manual

An example:

% cat x.scm
5 X.scm

(define (bar x) (gc) (* x x))
(define-external (baz (int i)) double
(sgqrt 1))

(return-to-host)

% cat y.c
/* y.c*/

#include <chicken.h>
#include <assert.h>

extern double baz(int);

int main() {
char buffer[256 1];
int status;
C word val = C SCHEME UNDEFINED;
C word *datal[1 1;
datal[0] = &val;
CHICKEN run(C toplevel);

status = CHICKEN read("(bar 99)", &val);
assert(status);

C gc protect(data, 1);
printf("data: %08x\n", val);

status = CHICKEN eval string to string("(bar)", buffer, 255);
assert(!status);

CHICKEN get error message(buffer, 255);
printf("ouch: %s\n", buffer);

status = CHICKEN eval string to string("(bar 23)", buffer, 255);
assert(status);

printf("-> %s\n", buffer);
printf("data: %08x\n", val);

status = CHICKEN eval to string(val, buffer, 255);
assert(status);

printf("-> %s\n", buffer);

printf("->" %g\n", baz(22));

return 0;

35.14 CHICKEN_yield 228

CHICKEN User's Manual - The User's Manual
}

% CSC X.scm y.c -embedded

It is also possible to re-enter the computation following the call to return-to-host by calling

CHICKEN continue:

35.15 CHICKEN_continue

[C function] C word CHICKEN continue (C word k)

Re-enters Scheme execution. K is the continuation received from the previous invocation of CHICKEN run

or CHICKEN continue. When return-to-host is called again, this function returns another

continuation that can be used to restart again.

If you invoke callbacks prior to calling CHICKEN continue, make sure that the continuation is not
reclaimed by garbage collection. This can be avoided by using C gc_protect or gc-roots.

Another example:

% cat x.scm
(require-extension srfi-18)

(define m (make-mutex))

(define (t)
(mutex-Tlock! m)
thread-sleep! 1)

mutex-unlock! m)

t))

(thread-start! (make-thread t 'PING!))
(thread-start! (make-thread t 'PONG!))

(let loop ()
(return-to-host)
(thread-yield!)
(Lloop))

% cat y.c
#include <chicken.h>

int main()
{
C word k = CHICKEN run(C toplevel);

for(;;)
k = CHICKEN continue(k);

return 0;

}

35.15 CHICKEN _continue

(
(print (thread-name (current-thread)))
(
(

229

CHICKEN User's Manual - The User's Manual

% CSC X.scm y.c -embedded
It is advisable not to mix repeated uses of CHLCKEN continue/return-to-host (asin the example
above) with callbacks. Once return-to-host is invoked, the runtime system and any Scheme code

executed prior to the invocation is initialized and can be conveniently used via callbacks.

A simpler interface For handling GC-safe references to Scheme data are the so called gc-roots:

35.16 CHICKEN_new_gc_root
[C function] void* CHICKEN new gc root ()

Returns a pointer to a GC root, which is an object that holds a reference to a Scheme value that will always be
valid, even after a garbage collection. The content of the gc root is initialized to an unspecified value.

35.17 CHICKEN_delete_gc_root
[C function] void CHICKEN delete gc root (void *root)

Deletes the gc root.

35.18 CHICKEN_gc_root_ref
[C macro] C word CHICKEN gc root ref (void *root)

Returns the value stored in the gc root.

35.19 CHICKEN_gc_root_set

[C macro] void CHICKEN gc root set (void *root, C word value)
Sets the content of the GC root to a new value.

Sometimes it is handy to access global variables from C code:

35.16 CHICKEN_new_gc_root 230

CHICKEN User's Manual - The User's Manual
35.20 CHICKEN_global_lookup
[C function] void* CHICKEN global lookup (char *name)

Returns a GC root that holds the global variable with the name name. If no such variable exists, NULL is
returned.

35.21 CHICKEN_global_ref
[C function] C word CHICKEN global ref (void *global)

Returns the value of the global variable referenced by the GC root global.

35.22 CHICKEN_global_set
[C function] void CHICKEN global set (void *global, C word value)

Sets the value of the global variable referenced by the GC root global to value.

Previous: Foreign type specifiers

Next: Callbacks

35.20 CHICKEN_global_lookup

231

36 Callbacks

To enable an external C function to call back to Scheme, the form foreign-safe-lambda (or
foreign-safe-lambda*) has to be used. This generates special code to save and restore important state
information during execution of C code. There are two ways of calling Scheme procedures from C: the first is
to invoke the runtime function C_callback with the closure to be called and the number of arguments. The
second is to define an externally visible wrapper function around a Scheme procedure with the
define-external form.

Note: the names of all functions, variables and macros exported by the CHICKEN runtime system start with
C . Itis advisable to use a different naming scheme for your own code to avoid name clashes. Callbacks
(defined by define-external) do not capture the lexical environment.

Non-local exits leaving the scope of the invocation of a callback from Scheme into C will not remove the C
call-frame from the stack (and will result in a memory leak).

36.1 define-external

[syntax] (define-external [QUALIFIERS] (NAME (ARGUMENTTYPE1l VARIABLE1l) ...) RET
[syntax] (define-external NAME TYPE [INIT])

The first form defines an externally callable Scheme procedure. NAME should be a symbol, which, when
converted to a string, represents a legal C identifier. ARGUMENTTYPEL1 ... and RETURNTYPE are foreign
type specifiers for the argument variables VAR . .. and the result, respectively. QUALIFIERS is an
optional qualifier for the foreign procedure definition, like _ stdcall.

(define-external (foo (c-string x)) int (string-length x))

The second form of define-external can be used to define variables that are accessible from foreign
code. It declares a global variable named by the symbol NAME that has the type TYPE. INIT can be an
arbitrary expression that is used to initialize the variable. NAME is accessible from Scheme just like any other
foreign variable defined by define-foreign-variable.

(define-external foo int 42)
((foreign-lambda* int ()
)) ==> 42

Note: don't be tempted to assign strings or bytevectors to external variables. Garbage collection moves those
objects around, so it is very bad idea to assign pointers to heap-data. If you have to do so, then copy the data

object into statically allocated memory (for example by using object-evict).

Results of type scheme-object returned by define-external are always allocated in the secondary
heap, that is, not in the stack.

36 Callbacks 232

CHICKEN User's Manual - The User's Manual

36.2 C_callback

[C function] C word C callback (C word closure, int argc)

This function can be used to invoke the Scheme procedure closure. argc should contain the number of
arguments that are passed to the procedure on the temporary stack. Values are put onto the temporary stack
with the C_save macro.

36.3 C_callback_adjust_stack
[C function] void C callback adjust stack (C word *ptr, int size)

The runtime-system uses the stack as a special allocation area and internally holds pointers to estimated limits
to distinguish between Scheme data objects inside the stack from objects outside of it. If you invoke callbacks
at wildly differing stack-levels, these limits may shift from invocation to invocation. Callbacks defined with
define-external will perform appropriate adjustments automatically, but if you invoke C_callback
manually, you should performa C_callback adjust stack to make sure the internal limits are set
properly. ptr should point to some data object on the stack and Size is the number of words contained in
the data object (or some estimate). The call will make sure the limits are adjusted so that the value pointed to
by ptrislocated in the stack.

Previous: Embedding

Next: Locations

36.2 C_callback 233

37 Locations

It is also possible to define variables containing unboxed C data, so called locations. It should be noted that
locations may only contain simple data, that is: everything that fits into a machine word, and double-precision
floating point values.

37.1 define-location
[syntax] (define-location NAME TYPE [INIT])

Identical to (define-external NAME TYPE [INIT]), but the variable is not accessible from outside
of the current compilation unit (it is declared static).

37.2 let-location
[syntax] (let-location ((NAME TYPE [INIT]) ...) BODY ...)

Defines a lexically bound location.

37.3 location

[syntax] (location NAME)
[syntax] (location X)

This form returns a pointer object that contains the address of the variable NAME. If the argument to

location is not a location defined by define-location, define-external or let-location,

then

(location X)

is essentially equivalent to

(make-locative X)

(See the manual chapter or Locatives for more information about locatives.

Note that (Location X) may be abbreviated as #$X.

(define-external foo int)

((foreign-lambda* void (((c-pointer int) ip)))
(location foo))

foo

This facility is especially useful in situations, where a C function returns more than one result value:

#>

37 Locations 234

CHICKEN User's Manual - The User's Manual

#include <math.h>
<#

(define modf
(foreign-lambda double double (c-pointer double)))

(let-location ([i double])
(Let ([f (modf 1.99 (location i))])
(print i f)))
See location and c-string* for a tip on returning a C-string* type.

location returns a value of type C-pointer, when given the name of a callback-procedure defined with
define-external.

Previous: Callbacks

Next: Other support procedures

37.3 location 235

http://chicken.wiki.br/location-and-c-string-star

38 Other support procedures

38.1 argc+argv
[procedure] (argc+argv)

Returns two values: an integer and a foreign-pointer object representing the argc and argv arguments
passed to the current process.

Previous: Locations

Next: C interface

38 Other support procedures 236

39 C interface

The following functions and macros are available for C code that invokes Scheme or foreign procedures that

are called by Scheme:

39.1 C_save
[C macro] void C save (C word x)

Saves the Scheme data object X on the temporary stack.

39.2 C restore
[C macro] void C restore

Pops and returns the topmost value from the temporary stack.

39.3 C_fix

[C macro] C word C fix (int integer)

39.4 C_make_character

[C macro] C word C make character (int char code)

39.5 C_SCHEME_END_OF LIST

[C macro] C SCHEME END OF LIST

39.6 C_word C_SCHEME_END_OF FILE

[C macro] C SCHEME END OF FILE

39 C interface

237

CHICKEN User's Manual - The User's Manual
39.7 C_word C_ SCHEME_FALSE

[C macro] C SCHEME FALSE

39.8 C_word C_SCHEME_TRUE
[C macro] C SCHEME TRUE

These macros return immediate Scheme data objects.

39.9 C_string

[C function] C word C string (C word **ptr, int length, char *string)

39.10 C_string2

[C function] C word C string2 (C word **ptr, char *zero terminated string)

39.11 C_intern2

[C function] C word C intern2 (C word **ptr, char *zero terminated string)

39.12 C_intern3

[C function] C word C intern3 (C word **ptr, char *zero terminated string, C wo

39.13 C_pair

[C function] C word C pair (C word **ptr, C word car, C word cdr)

39.7 C_word C_SCHEME_FALSE 238

CHICKEN User's Manual - The User's Manual

39.14 C_flonum

[C function] C word C flonum (C word **ptr, double number)

39.15 C_int_to_num

[C function] C word C int to num (C word **ptr, int integer)

39.16 C_mpointer

[C function] C word C mpointer (C word **ptr, void *pointer)

39.17 C_vector

[C function] C word C vector (C word **ptr, int length, ...)

39.18 C_list
[C function] C word C list (C word **ptr, int length, ...)

These functions allocate memory from ptr and initialize a fresh data object. The new data object is returned.
ptr should be the address of an allocation pointer created with C_alloc.

39.19 C _alloc

[C macro] C word* C alloc (int words)

Allocates memory from the C stack (C_alloc) and returns a pointer to it. WO rds should be the number of
words needed for all data objects that are to be created in this function. Note that stack-allocated data objects
have to be passed to Scheme callback functions, or they will not be seen by the garbage collector. This is
really only usable for callback procedure invocations, make sure not to use it in normal code, because the
allocated memory will be re-used after the foreign procedure returns. When invoking Scheme callback
procedures a minor garbage collection is performed, so data allocated with C_alloc will already have
moved to a safe place.

Note that C_alloc is really just a wrapper around alloca, and can also be simulated by declaring a
stack-allocated array of C_words:

39.14 C_flonum 239

CHICKEN User's Manual - The User's Manual
39.20 C_SIZEOF_LIST

[C macro] int C SIZEOF LIST (int length)

39.21 C_SIZEOF_STRING

[C macro] int C SIZEOF STRING (int length)

39.22 C_SIZEOF_VECTOR

[C macro] int C SIZEOF VECTOR (int length)

39.23 C_SIZEOF_INTERNED_SYMBOL

[C macro] int C SIZEOF INTERNED SYMBOL (int length)

39.24 C_SIZEOF_PAIR

[C macro] int C SIZEOF PAIR

39.25 C_SIZEOF_FLONUM

[C macro] int C SIZEOF FLONUM

39.26 C_SIZEOF_POINTER

[C macro] int C SIZEOF POINTER

39.27 C_SIZEOF_LOCATIVE

[C macro] int C SIZEOF LOCATIVE

39.20 C_SIZEOF_LIST 240

CHICKEN User's Manual - The User's Manual
39.28 C_SIZEOF_TAGGED POINTER
[C macro] int C SIZEOF TAGGED POINTER

These are macros that return the size in words needed for a data object of a given type.

39.29 C_character_code

[C macro] int C character code (C word character)

39.30 C_unfix

[C macro] int C unfix (C word fixnum)

39.31 C_flonum_magnitude

[C macro] double C flonum magnitude (C word flonum)

39.32 C_c_string

[C function] char* C c string (C word string)

39.33 C_num_to _int

[C function] int C num to int (C word fixnum or flonum)

39.34 C_pointer_address
[C function] void* C pointer address (C word pointer)

These macros and functions can be used to convert Scheme data objects back to C data. Note that
C c_string() returns a pointer to the character buffer of the actual Scheme object and is not
zero-terminated.

39.28 C_SIZEOF_TAGGED_POINTER

241

CHICKEN User's Manual - The User's Manual
39.35 C_header_size

[C macro] int C header size (C word x)

39.36 C_header_bits

[C macro] int C header bits (C word x)

Return the number of elements and the type-bits of the non-immediate Scheme data object X.

39.37 C_block_item

[C macro] C word C block item (C word x, int index)

This macro can be used to access slots of the non-immediate Scheme data object X. 1ndexX specifies the
index of the slot to be fetched, starting at 0. Pairs have 2 slots, one for the car and one for the cdr. Vectors
have one slot for each element.

39.38C u_ i car

[C macro] C word C u i car (C word Xx)

39.39C u i cdr

[C macro] C word C u i cdr (C word x)

Aliases for C_ block item(x, 0) and C block item(x, 1), respectively.

39.40 C_data_pointer
[C macro] void* C data pointer (C word Xx)

Returns a pointer to the data-section of a non-immediate Scheme object.

39.35 C_header_size

242

CHICKEN User's Manual - The User's Manual
39.41 C_make_header
[C macro] C word C make header (C word bits, C word size)

A macro to build a Scheme object header from its bits and size parts.

39.42 C_mutate

[C function] C word C mutate (C word *slot, C word val)
Assign the Scheme value val to the location specified by S1ot. If the value points to data inside the nursery
(the first heap-generation), then the garbage collector will remember to handle the data appropriately.

Assigning nursery-pointers directly will otherwise result in lost data. Note that no copying takes place at the
moment when C_mutate is called, but later - at the next (minor) garbage collection.

39.43 C_symbol_value
[C macro] C word C symbol value (C word symbol)
Returns the global value of the variable with the name symbo'l. If the variable is unbound

C SCHEME UNBOUND is returned. You can set a variable's value with
C mutate(&C symbol value(SYMBOL), VALUE).

39.44 C_gc_protect

[C function] void C gc protect (C word *ptrs[], int n)

Registers n variables at address ptrs to be garbage collection roots. The locations should not contain
pointers to data allocated in the nursery, only immediate values or pointers to heap-data are valid. Any
assignment of potential nursery data into a root-array should be done via C_mutate (). The variables have
to be initialized to sensible values before the next garbage collection starts (when in doubt, set all locations in
ptrstoC SCHEME UNDEFINED)C gc protect may not called before the runtime system has been
initialized (either by CHICKEN initialize, CHICKEN runor CHICKEN invoke.

For a slightly simpler interface to creating and using GC roots see CHICKEN new gc root.

39.45 C_gc_unprotect
[C function] void C gc unprotect (int n)

Removes the last N registered variables from the set of root variables.

39.41 C_make_header 243

CHICKEN User's Manual - The User's Manual

39.46 C_pre_gc_hook

[C Variable] void (*C pre gc hook) (int mode)

If not NULL, the function pointed to by this variable will be called before each garbage collection with a flag
indicating what kind of collection was performed (either O for a minor collection or 2 for a resizing
collection). A "resizing" collection means a secondary collection that moves all live data into a enlarged (or
shrinked) heap-space. Minor collections happen very frequently, so the hook function should not consume too
much time. The hook function may not invoke Scheme callbacks.

Note that resizing collections may be nested in normal major collections.

39.47 C_post_gc_hook

[C Variable] void (*C post gc hook) (int mode, long ms)

If not NULL, the function pointed to by this variable will be called after each garbage collection with a flag
indicating what kind of collection was performed (either O for a minor collection, 1 for a major collection or
2 for a resizing collection). Minor collections happen very frequently, so the hook function should not
consume too much time. The hook function may not invoke Scheme callbacks. The mS argument records the
number of milliseconds required for the garbage collection, if the collection was a major one. For minor
collections the value of the mS argument is undefined.

39.48 An example for simple calls to foreign code involving
callbacks

% cat foo.scm

#>

extern int callout(int, int, int);
<#

(define callout (foreign-safe-lambda int "callout" int int int))
(define-external (callin (scheme-object xyz)) int
(print "This is 'callin': " xyz)
123)
(print (callout 1 2 3))
% cat bar.c
#include <stdio.h>

#include "chicken.h"

extern int callout(int, int, int);
extern int callin(C word x);

int callout(int x, int y, int 2z)

{

39.46 C_pre_gc_hook 244

CHICKEN User's Manual - The User's Manual

C word *ptr = C alloc(C SIZEOF LIST(3));
C word lst;

printf("This is 'callout': %d, %d, %d\n", x, y, z);

lst = C list(&ptr, 3, C fix(x), C fix(y), C fix(z));

return callin(lst); /* Note: "callin' will have GC'd the data in “ptr' */
}

% csc foo.scm bar.c -o foo
% foo

This is 'callout': 1, 2, 3
This is 'callin': (1 2 3)
123

39.49 Notes:

Scheme procedures can call C functions, and C functions can call Scheme procedures, but for every pending
C stack frame, the available size of the first heap generation (the nursery) will be decreased, because the C
stack is identical to the nursery. On systems with a small nursery this might result in thrashing, since the C
code between the invocation of C from Scheme and the actual calling back to Scheme might build up several
stack-frames or allocates large amounts of stack data. To prevent this it is advisable to increase the default
nursery size, either when compiling the file (using the -nursery option) or when running the executable
(using the - : S runtime option).

Calls to Scheme/C may be nested arbitrarily, and Scheme continuations can be invoked as usual, but keep in
mind that C stack frames will not be recovered, when a Scheme procedure call from C does not return
normally.

When multiple threads are running concurrently, and control switches from one thread to another, then the
continuation of the current thread is captured and saved. Any pending C stack frame still active from a
callback will remain on the stack until the threads is re-activated again. This means that in a multithreading
situation, when C callbacks are involved, the available nursery space can be smaller than expected. So doing
many nested SchemeCScheme calls can reduce the available memory up to the point of thrashing. It is
advisable to have only a single thread with pending C stack-frames at any given time.

Pointers to Scheme data objects should not be stored in local or global variables while calling back to Scheme.
Any Scheme object not passed back to Scheme will be reclaimed or moved by the garbage collector.

Calls from C to Scheme are never tail-recursive.

Continuations captured via call-with-current-continuation and passed to C code can be invoked
like any other Scheme procedure.

Previous: Other support procedures

Next: chicken-setup

39.48 An example for simple calls to foreign code involvingcallbacks 245

40 chicken-setup

40.1 Extension libraries

Extension libraries (eggs) are extensions to the core functionality provided by the basic CHICKEN system, to
be built and installed separately. The mechanism for loading compiled extensions is based on dynamically
loadable code and as such is only available on systems on which loading compiled code at runtime is
supported. Currently these are most UNIX-compatible platforms that provide the Libdl functionality like
Linux, Solaris, BSD, Mac OS X and Windows using Cygwin.

Note: Extension may also be normal applications or shell scripts, but are usually libraries.

chicken-setup will download the source code for extension automatically from the canonical server at
http://www.call-with-current-continuation.org/eggs if the requested egg does not exist in the current directory.
Various command-line options exist for customizing the process and/or retrieving the egg from other locations
or in other formats.

40.2 Installing extensions

To install an extension library, run the chicken-setup program with the extension name as argument. The
extension archive is downloaded, its contents extracted and the contained sefup script is executed. This setup
script is a normal Scheme source file, which will be interpreted by chicken-setup. The complete
language supported by CS1 is available, and the library units Srfi-1 regex utils posix tcp are
loaded. Additional libraries can be loaded at run-time.

The setup script should perform all necessary steps to build the new library (or application). After a successful
build, the extension can be installed by invoking one of the procedures install-extension,
install-programor install-script. These procedures will copy a number of given files into the
extension repository or in the path where the CHICKEN executables are located (in the case of executable
programs or scripts). Additionally the list of installed files, and user-defined metadata is stored in the
repository.

If no extension name is given on the command-line, and if none of the options - list, -version,

-repository (without argument), - program-path (without argument), - fetch, - fetch-treeor
-docindex is given, then all . setup scripts in the current directory are processed.

40.2.1 Installing extensions that use libraries

Sometimes an extension requires a C library to compile. Compilation can fail when your system has this
library in a nonstandard location. Luckily, normally Chicken searches in the default locations /usr and
/usr/local, and in the prefix where Chicken itself was installed. Sometimes this is not enough, so you'll
need to supply chicken-setup with some extra hints to the C compiler/linker. Here's an example:

chicken-setup -c '-I/usr/pkg/include/mysql’' -c '-L/usr/pkg/lib/mysql' -c '-L -

40 chicken-setup 246

http://www.call-with-current-continuation.org/eggs

CHICKEN User's Manual - The User's Manual

This installs the mysql egg with the extra compiler options -I and -L to set the include path and the library
search path. The second -L switch passes the -R option directly to the linker, which causes the library path to
get hardcoded into the resulting extension file (for systems that do not use 1d.so.conf).

40.3 Creating extensions

Extensions can be created by creating an (optionally gzipped) tar archive named EXTENSION. egg
containing all needed files plus a . Setup script in the root directory. After chicken-setup has extracted
the files, the setup script will be invoked. There are no additional constraints on the structure of the archive,
but the setup script has to be in the root path of the archive.

40.4 Procedures and macros available in setup scripts

40.4.1 install-extension

(install-extension ID FILELIST [INFOLIST])

Installs the extension library with the name ID. All files given in the list of strings FILELIST will be copied
to the extension repository. It should be noted here that the extension id has to be identical to the name of the
file implementing the extension. The extension may load or include other files, or may load other extensions
at runtime specified by the require-at- runtime property.

FILELIST may be a filename, a list of filenames, or a list of pairs of the form (SOURCE DEST) (if you
want to copy into a particular sub-directory - the destination directory will be created as needed). If DEST is a
relative pathname, < it will be copied into the extension repository.

The optional argument INFOLIST should be an association list that maps symbols to values, this list will be

stored as ID.setup-1info at the same location as the extension code. Currently the following properties are
used:

40.4.1.1 syntax
[extension property] (syntax)

Marks the extension as syntax-only. No code is compiled, the extension is intended as a file containing
macros to be loaded at compile/macro-expansion time.

40.4.1.2 require-at-runtime

[extension property] (require-at-runtime ID ...)

40.2.1 Installing extensions that use libraries 247

CHICKEN User's Manual - The User's Manual

Specifies extensions that should be loaded (via require) at runtime. This is mostly useful for syntax
extensions that need additional support code at runtime.

40.4.1.3 version
[extension property] (version STRING)

Specifies version string.

40.4.1.4 documentation
[extension property] (documentation FILENAME)
The filename of a HTML document containing extension-specific documentation. This file should be given in

the file-list passed to install-extension and a link to it will be automatically included in the index
page (accessible via chicken-setup -docindex).

40.4.1.5 examples

[extension property] (examples FILENAME ...)

Copies the given files into the examples directory, which is usually
$prefix/share/chicken/examples or (make-pathname (chicken-home)
"examples")).

Note that the files listed in this property should not be listed in the normal list of files to install passed to

install-extension. This is the only exception - other files that are installed in the repository must be
given in the file list.

40.4.1.6 exports
[extension property] (exports EXPORT ...)
Add export-information to the generated extension-information. EXPORT may be a symbol naming an

exported toplevel variable or a string designating a file with exported variables, as generated by the
-emit-exports option or the emit-exports declaration specifier.

40.4.1.7 static
[extension property] (static STRING)

If the extension also provides a static library, then STRING should contain the name of that library. Used by

40.4.1 install-extension 248

CHICKEN User's Manual - The User's Manual

CSsC when compiling with the -static-extensions option.

40.4.1.8 static-options
[extension property] (static-options STRING)

Additional options that should be passed to the linker when linking with the static version of an extension (see
static above). Used by CSC when compiling with the - static-extensions option.

All other properties are currently ignored. The FILELIST argument may also be a single string.

40.4.2 install-program
[procedure] (install-program ID FILELIST [INFOLIST])

Similar to install-extension, but installs an executable program in the executable path (usually
/usr/local/bin).

40.4.3 install-script
[procedure] (install-script ID FILELIST [INFOLIST])

Similar to install-program, but additionally changes the file permissions of all files in FILELIST to
executable (for installing shell-scripts).

40.4.4 run
[syntax] (run FORM ...)

Runs the shell command FORM, which is wrapped in an implicit quasiquote. (run (csc ...))is
treated specially and passes -V (if -verbose has been given to chicken-setup)and - feature
compiling-extension options to the compiler.

40.4.5 compile
[syntax] (compile FORM ...)

Equivalentto (run (csc FORM ...)).

40.4.1 install-extension 249

CHICKEN User's Manual - The User's Manual

40.4.6 make
[syntax] (make ((TARGET (DEPENDENT ...) COMMAND ...) ...) ARGUMENTS)
A make macro that executes the expressions COMMAND . . ., when any of the dependents DEPENDENT

. . . have changed, to build TARGET. This is the same as the make extension, which is available separately.
For more information, see make.

40.4.7 patch
[procedure] (patch WHICH REGEX SUBST)
Replaces all occurrences of the regular expression REGEX with the string SUBST, in the file given in WHICH.

If WHICH is a string, the file will be patched and overwritten. If WHICH is a list of the form OLD NEW, then a
different file named NEW will be generated.

40.4.8 copy-file
[procedure] (copy-file FROM TO)

Copies the file or directory (recursively) given in the string FROM to the destination file or directory TO.

40.4.9 move-file
[procedure] (move-file FROM TO)

Moves the file or directory (recursively) given in the string FROM to the destination file or directory TO.

40.4.10 remove-file*
[procedure] (remove-file* PATH)

Removes the file or directory given in the string PATH.

40.4.11 find-library
[procedure] (find-library NAME PROC)
Returns #1 if the library named L1bDNAME. [a| s0] (unix) or NAME. Lib (windows) could be found by

compiling and linking a test program. PROC should be the name of a C function that must be provided by the
library. If no such library was found or the function could not be resolved, #T is returned.

40.4.6 make 250

http://www.call-with-current-continuation.org/eggs/make.html

CHICKEN User's Manual - The User's Manual

40.4.12 find-header
[procedure] (find-header NAME)

Returns #t if a C include-file with the given name is available, or #T otherwise.

40.4.13 try-compile

[procedure] (try-compile CODE #!key cc cflags ldflags compile-only c++)
Returns #t if the C code in CODE compiles and links successfully, or #f otherwise. The keyword parameters
CC (compiler name, defaults to the C compiler used to build this system), cflags and Ldflags accept

additional compilation and linking options. If compile-only is true, then no linking step takes place. If the
keyword argument C++ is given and true, then the code will be compiled in C++ mode.

40.4.14 create-directory
[procedure] (create-directory PATH)

Creates the directory given in the string PATH, with all parent directories as needed.

40.4.15 chicken-prefix

[parameter] chicken-prefix

The installation prefix specified when CHICKEN was built.

40.4.16 installation-prefix
[parameter] installation-prefix

An alternative installation prefix that will be prepended to extension installation paths if specified. It is set by
the -install-prefix option or environment variable CHICKEN INSTALL PREFIX.

40.4.17 program-path

[parameter] (program-path [PATH])

40.4.12 find-header 251

CHICKEN User's Manual - The User's Manual

Holds the path where executables are installed and defaults to either $§CHICKEN PREFIX/bin, if the
environment variable CHICKEN PREFIX is set or the path where the CHICKEN binaries (Chicken, csi,
etc.) are installed.

40.4.18 setup-root-directory
[parameter] (setup-root-directory [PATH])

Contains the path of the directory where chicken-setup was invoked.

40.4.19 setup-build-directory
[parameter] (setup-build-directory [PATH])

Contains the path of the directory where the extension is built. This is not necessarily identical to
setup-root-directory.

40.4.20 setup-verbose-flag
[parameter] (setup-verbose-flag [BOOL])

Reflects the setting of the -verbose option, i.e. is #t, if -verbose was given.

40.4.21 setup-install-flag
[parameter] (setup-install-flag [BOOL])

Reflects the setting of the - -no-install option, i.e. is #f, if -no-install was given.

40.4.22 required-chicken-version
[procedure] (required-chicken-version VERSION)

Signals an error if the version of CHICKEN that this script runs under is lexicographically less than
VERSION (the argument will be converted to a string, first).

40.4.17 program-path 252

CHICKEN User's Manual - The User's Manual

40.4.23 required-extension-version

[procedure] (required-extension-version EXTENSION1 VERSION1 ...)
Checks whether the extensions EXTENSION1 ... are installed and at least of version VERSION1
The test is made by lexicographically comparing the string-representations of the given version with the

version of the installed extension. If one of the listed extensions is not installed, has no associated version
information or is of a version older than the one specified.

40.4.24 cross-chicken
[procedure] (cross-chicken)

Returns #1 if this system is configured for cross-compilation or #T otherwise.

40.4.25 host-extension
[parameter] host-extension

For a cross-compiling CHICKEN, when compiling an extension, then it should be built for the host
environment (as opposed to the target environment). This parameter is controlled by the

-host-extension command-line option. A setup script should perform the proper steps of compiling any

code by passing -host when invoking CSC or using the compile macro.

40.5 Examples for extensions
The simplest case is a single file that does not export any syntax. For example
;000 hello.scm

(define (hello name)
(print name))

We need a . setup script to build and install our nifty extension:

;.. hello.setup

;, compile the code into a dynamically loadable shared object
;; (will generate hello.so)

(compile -s hello.scm)

;; Install as extension library
(install-extension 'hello)

After entering

40.4.23 required-extension-version

253

CHICKEN User's Manual - The User's Manual

$ chicken-setup hello

at the shell prompt (and in the same directory where the two files exist), the file hello.scm will be
compiled into a dynamically loadable library. If the compilation succeeds, hel10. s0 will be stored in the
repository, together with a file named hello. setup-info containing an a-list with metadata. If no
extension name is given to chicken-setup, it will simply execute the first file with the . setup extension
it can find.

Use it like any other CHICKEN extension:

$ csi -q

#;1> (require-extension hello)

; loading /usr/local/lib/chicken/1/hello.so
#;2> (hello "me")

Hello, me!

#:3>

Here we create a simple application:

;.00 hello2.scm

(print)
(for-each (lambda (x) (printf x)) (command-line-arguments))
(print)

We also need a setup script:
;7 hello2.setup

(compile hello2.scm) ; compile “hello2'
(install-program 'hello2) ; name of the extension and files to be inst

To use it, just run chicken-setup in the same directory:

$ chicken-setup

(Here we omit the extension name)

Now the program hel102 will be installed in the same location as the other CHICKEN tools (like
chicken, csi, etc.), which will normally be /usr/local/bin. Note that you need write-permissions for
those locations and may have to run chicken-setup with administrative rights.

Uninstallation is just as easy:

$ chicken-setup -uninstall hello2

chicken-setup provides a make macro, so build operations can be of arbitrary complexity. When
running chicken-setup with an argument NAME, for which no associated file NAME . setup, NAME . egg
or NAME . scm exists will ask you to download the extension via HTTP from the default URL
http://www.call-with-current-continuation.org/eggs. You can use the -h0st option to specify an alternative
source location. Extensions that are required to compile and/or use the requested extension are downloaded

and installed automatically.

If the given extension name contains a path prefix and the - host option is given, then chicken-setup

40.5 Examples for extensions 254

http://www.call-with-current-continuation.org/eggs

CHICKEN User's Manual - The User's Manual

can also download and install eggs from an arbitrary HTTP server. Alternatively you can pass a full URL
(including the http: // prefix. Note that no dependency checks are done when downloading eggs directly
with the URL syntax.

Finally a somewhat more complex example: We want to package a syntax extension with additional support
code that is to be loaded at run-time of any Scheme code that uses that extension. We create a glass lambda, a
procedure with free variables that can be manipulated from outside:

;7. glass.scm

(define-macro (glass-lambda 1list vars . body)
;; Low-level macros are fun!
(Let ([lvar (gensym)]
[svar (gensym)]
[X (gensym)]
[y (gensym)]
[yn (gensym)])
“(let ,(map (lambda (v) (list v #f)) vars)
(define (,svar ,x . ,y)
let* ([(yn (pair? ,y)]
and ,yn (caf,yyl)])

case ,X(
lathndp (v)
if ,yn T ([,v] (
set! ,v ,y) (
V)))
vars)

else (efror /X)))))
(define ,lvar (lambda ,1list ,@body))
(extend-procedure ,lvar ,svar))))

Here some support code that needs to be loaded at runtime:

;7. glass-support.scm

(require-extension lolevel)

(define glass-lambda-accessor procedure-data)

(define (glass-lambda-ref gl v) ((procedure-data gl) v))
(define (glass-lambda-set! gl v x) ((procedure-data gl) v x))
The setup script looks like this:

(compile -s glass-support.scm)

(install-extension
'glass
")

"((syntax) (require-at-runtime glass-support)))

The invocation of install-extension provides the files that are to be copied into the extension
repository, and a metadata list that specifies that the extension glass is a syntax extension and that, if it is
declared to be used by other code (either with the require-extension or require-for-syntax
form), then client code should perform an implicit (require 'glass-support) at startup.

40.5 Examples for extensions 255

CHICKEN User's Manual - The User's Manual

This can be conveniently packaged as an egg:
$ tar cfz glass.egg glass.setup glass.scm glass-support.scm
And now we use it:

$ chicken-setup glass

$ csi -quiet

#;1> (require-extension glass)

; loading /usr/local/lib/chicken/1/glass.scm ..

; loading /usr/local/lib/chicken/1/glass-support.so
#;2> (define foo (glass-lambda (x) (y) (+ x y)))
#;3> (glass-lambda-set! foo 'y 99)

#;4> (foo 33)

132

40.6 chicken-setup reference
Available options:

-h -help
Show usage information and exit.

-V -version
Display version and exit.

-R -repository [PATHNAME]
When used without an argument, the path of the extension repository is displayed on standard output.
When given an argument, the repository pathname (and the repository-path parameter) will be
set to PATHNAME for all subsequent operations. The default repository path is the installation library
directory (usually /usr/local/1lib/chicken), or (if set) the directory given in the environment
variable CHICKEN REPOSITORY. PATHNAME should be an absolute pathname.

-P -program-path [PATHNAME]
When used without an argument, the path for executables is displayed on standard output. When
given an argument, the program path for installing executables and scripts will be set to PATHNAME
for all subsequent operations. PATHNAME should be an absolute pathname.

-h -host HOSTNAME[: PORT]
Specifies alternative host for downloading extensions, optionally with a TCP port number (which
defaults to 80).

-u -uninstall EXTENSION
Removes all files that were installed for EXTENSION from the file-system, together with any
metadata that has been stored.

-1 -list [NAME ...]
List all installed extensions or show extension information.

-r -run FILENAME
Load and execute given file.

-s -script FILENAME
Executes the given Scheme source file with all remaining arguments and exit. The she-bang shell
script header is recognized, so you can write Scheme scripts that use chicken-setup just as with
CS1.

-e -eval EXPRESSION
Evaluates the given expression(s)

-v -verbose
Display additional debug information

40.6 chicken-setup reference 256

CHICKEN User's Manual - The User's Manual

-k -keep
Keep temporary files and directories
-C -csc-option OPTION
Passes OPTION as an extra argument to invocations of the compiler-driver (CSC); this works only if
cscisinvokedas (run (csc ...))
-d -dont-ask
Do not ask the user before trying to download required extensions
-n -no-install
Do not install generated binaries and/or support files; any invocations of install-program,
install-extensionorinstall-script will be be no-ops
-1 -docindex
Displays the path to the index-page of any installed extension-documentation; if the index page does
not exist, it is created
-t -test EXTENSION
return success if all given extensions are installed
-1s EXTENSION
List installed files for extension
-fetch-tree
Download and print the repository catalog
-create-tree DIRECTORY
Create a fresh, minimal repository catalog and writes it to stdout
-t -test
If the extension sources contain a directory named tests and this directory includes a file named
run . scm then this file is executed (with tests being the current working directory)
-tree FILENAME
Download and show the repository catalog
-svn URL
Fetch extension from Subversion repository
-svn-trunk URL
Fetch extension from trunk in Subversion repository
-revision REV
Specifies SVN revision to check out
-local PATHNAME
Fetch extension from local file
-install-prefix PATHNAME
Specify alternative installation prefix (for packaging)
-host-extension
Compile extension in "host" mode (sets the parameter host-extension to #f)
-build-prefix PATHNAME
Location where chicken-setup will create egg build directories (default: the value of environment
variable CHICKEN_TMPDIR, or /tmp/chicken-{MAJOR-VERSION-build-{USER}})
-download-path PATHNAME
Location where chicken-setup will save downloaded files (default: build-prefix/downloads)

Ignore all following arguments

Note that the options are processed exactly in the order in which they appear in the command-line.

40.6 chicken-setup reference 257

http://subversion.tigris.org
http://subversion.tigris.org

CHICKEN User's Manual - The User's Manual

40.7 Windows notes

chicken-setup works on Windows, when compiled with Visual C++, but depends on the tar and
gunzip tools to extract the contents of an egg. The best way is to download an egg either manually (or with
chicken-setup -fetch)and extractits contents with a separate program (like winzip). the
CHICKEN REPOSITORY environment variable has to be set to a directory where your compiled extensions
should be located.

The . setup scripts will not always work under Windows, and the extensions may require libraries that are
not provided for Windows or work differently. Under these circumstances it is recommended to perform the
required steps to build an extension manually.

The required UNIX tools are also available as Windows binaries. Google or ask on the CHICKEN mailing list
if you need help locating them.

40.8 Security

When extensions are downloaded and installed one is executing code from potentially compromised systems.
This applies also when chicken-setup executes system tests for required extensions. As the code has
been retrieved over the network effectively untrusted code is going to be evaluated. When chicken-setup
is run as root the whole system is at the mercy of the build instructions (note that this is also the case every
time you install software via sudo make install, so this is not specific to the CHICKEN extension
mechanism).

Security-conscious users should never run chicken-setup as root. A simple remedy is to set the
environment variable CHLCKEN REPOSITORY, which will transparently place the repository at an arbitrary
user-selected location. Alternatively obtain write/execute access to the default location of the repository
(usually /usr/local/lib/chicken) to avoid running as root.

40.9 Other modes of installation

It is possible to install extensions directly from a Subversion repository or from a local checkout by using the
-svn or - Local options. By using either the sSvn client program (which must be installed) or file-system
operations, all necessary files will be copied into the current directory (creating a subdirectory named
EXTENSIONNAME.egg-dir), built and subsequently installed.

Dependency information, which is necessary to ensure required extensions are also installed, is downloaded
automatically. If you have no internet connection or don't want to connect, you can also use a local file
containing the necessary dependency information. The - fetch-tree option retrieves the canonical

repository file at http://www.call-with-current-continuation.org/eggs/repository, writing it to stdout.
Redirecting this output into a file and passing the file via the - tree option to chicken-setup allows you
now to use the local repository file:

Retrieve complete extension repository (big):

% cd /opt
% svn co https://galinha.ucpel.tche.br/svn/chicken-eggs/release/3 eggs

40.7 Windows notes 258

http://subversion.tigris.org
http://www.call-with-current-continuation.org/eggs/repository
https://galinha.ucpel.tche.br/svn/chicken-eggs/release/3

CHICKEN User's Manual - The User's Manual

Get your own copy of the repository file:
% chicken-setup -fetch-tree >~/my-repository-file

Now you can install eggs from your local checkout, with full dependency tracking and without being
connected to the internet:

% cd ~/tmp
% chicken-setup -local /opt/eggs -tree ~/my-repository-file opengl

40.10 Linking extensions statically

The compiler and chicken-setup support statically linked eggs. The general approach is to generate an object
file or static library (in addition to the usual shared library) in your . setup script and install it along with the
dynamically loadable extension. The setup properties Static should contain the name of the object file (or
static library) to be linked, when CSC gets passed the -static-extensions option:

(compile -s -02 -dl1 my-ext.scm) ; dynamically loadable "normal" version
(compile -c -02 -dl1 my-ext -unit my-ext) , statically linkable version
(install-extension

"my-ext

")

"((static)))

Note the use of the -unit option in the second compilation step: static linking must use static library units.
chicken-setup will perform platform-dependent file-extension translation for the file list, but does
currently not do that for the static extension property.

To actually link with the static version of my - ext, do:

% csC -static-extensions my-program.scm -uses my-ext

The compiler will try to do the right thing, but can not handle all extensions, since the ability to statically link
eggs is relatively new. Eggs that support static linking are designated as being able to do so. If you require a
statically linkable version of an egg that has not been converted yet, contact the extension author or the

CHICKEN mailing list.

Previous: Interface to external functions and variables

Next: Data representation

40.9 Other modes of installation 259

41 Data representation

Note: In all cases below, bits are numbered starting at 1 and beginning with the lowest-order bit.

There exist two different kinds of data objects in the CHICKEN system: immediate and non-immediate
objects.

41.1 Immediate objects

Immediate objects are represented by a single machine word, which is usually of 32 bits length, or 64 bits on
64-bit architectures. The immediate objects come in four different flavors:

fixnums, that is, small exact integers, where bit 1 is set to 1. This gives fixnums a range of 31 bits for the
actual numeric value (63 bits on 64-bit architectures).

characters, where bits 1-4 are equal to C_ CHARACTER BITS. The Unicode code point of the character is
encoded in bits 9 to 32.

booleans, where bits 1-4 are equal to C BOOLEAN_BITS. Bit 5 is one for #t and zero for #f.

other values: the empty list, the value of unbound identifiers, the undefined value (void), and end-of-file. Bits
1-4 are equal to C_ SPECTIAL_ BITS; bits 5 to 8 contain an identifying number for this type of object. The
following constants are defined: C SCHEME_END OF LIST C SCHEME UNDEFINED
C_SCHEME_UNBOUND C SCHEME END OF FILE

Collectively, bits 1 and 2 are known as the immediate mark bits. When bit 1 is set, the object is a fixnum, as

described above, and bit 2 is part of its value. When bit 1 is clear but bit 2 is set, it is an immediate object
other than a fixnum. If neither bit 1 nor bit 2 is set, the object is non-immediate, as described below.

41.2 Non-immediate objects

Non-immediate objects are blocks of data represented by a pointer into the heap. The pointer's immediate
mark bits (bits 1 and 2) must be zero to indicate the object is non-immediate; this guarantees the data block is
aligned on a 4-byte boundary, at minimum. Alignment of data words is required on modern architectures
anyway, so we get the ability to distinguish between immediate and non-immediate objects for free.

The first word of the data block contains a header, which gives information about the type of the object. The
header has the size of a machine word, usually 32 bits (64 bits on 64 bit architectures).

Bits 1 to 24 contain the length of the data object, which is either the number of bytes in a string (or
byte-vector) or the the number of elements for a vector or for a structure type.

Bits 25 to 28 contain the type code of the object.

Bits 29 to 32 contain miscellaneous flags used for garbage collection or internal data type dispatching. These
flags are:

C_GC_FORWARDING_BIT

41 Data representation 260

CHICKEN User's Manual - The User's Manual

Flag used for forwarding garbage collected object pointers.

C_BYTEBLOCK_BIT
Flag that specifies whether this data object contains raw bytes (a string or byte-vector) or pointers to
other data objects.

C_SPECIALBLOCK_BIT
Flag that specifies whether this object contains a special non-object pointer value in its first slot. An
example for this kind of objects are closures, which are a vector-type object with the code-pointer as
the first item.

C_8ALIGN_BIT
Flag that specifies whether the data area of this block should be aligned on an 8-byte boundary
(floating-point numbers, for example).

The actual data follows immediately after the header. Note that block-addresses are always aligned to the
native machine-word boundary. Scheme data objects map to blocks in the following manner:

pairs: vector-like object (type bits C_ PAIR TYPE), where the car and the cdr are contained in the first and
second slots, respectively.

vectors: vector object (type bits C VECTOR TYPE).
strings: byte-vector object (type bits C STRING TYPE).

procedures: special vector object (type bits C CLOSURE_TYPE). The first slot contains a pointer to a
compiled C function. Any extra slots contain the free variables (since a flat closure representation is used).

flonums: a byte-vector object (type bits C_ FLONUM BITS). Slots one and two (or a single slot on 64 bit
architectures) contain a 64-bit floating-point number, in the representation used by the host systems C

compiler.

symbols: a vector object (type bits C SYMBOL TYPE). Slots one and two contain the toplevel variable value
and the print-name (a string) of the symbol, respectively.

ports: a special vector object (type bits C_ PORT TYPE). The first slot contains a pointer to a file- stream, if
this is a file-pointer, or NULL if not. The other slots contain housekeeping data used for this port.

structures: a vector object (type bits C_ STRUCTURE TYPE). The first slot contains a symbol that specifies
the kind of structure this record is an instance of. The other slots contain the actual record items.

pointers: a special vector object (type bits C POINTER TYPE). The single slot contains a machine pointer.

tagged pointers: similar to a pointer (type bits C TAGGED POINTER TYPE), but the object contains an
additional slot with a tag (an arbitrary data object) that identifies the type of the pointer.

Data objects may be allocated outside of the garbage collected heap, as long as their layout follows the above
mentioned scheme. But care has to be taken not to mutate these objects with heap-data (i.e. non-immediate

objects), because this will confuse the garbage collector.

For more information see the header file chicken. h.

Previous: chicken-setup

Next: Bugs and limitations

41.2 Non-immediate objects 261

42 Bugs and limitations

¢ Compiling large files takes too much time.

¢ If a known procedure has unused arguments, but is always called without those parameters, then the
optimizer repairs the procedure in certain situations and removes the parameter from the lambda-list.

e port-position currently works only for input ports.

¢ [eaf routine optimization can theoretically result in code that thrashes, if tight loops perform
excessively many mutations.

Previous: Data representation

Next: FAQ

42 Bugs and limitations 262

43 FAQ

This is the list of Frequently Asked Questions about Chicken Scheme. If you have a question not answered
here, feel free to post to the chicken-users mailing list; if you consider your question general enough, feel free
to add it to this list.

43.1 General

43.1.1 Why yet another Scheme implementation?

Since Scheme is a relatively simple language, a large number of implementations exist and each has its
specific advantages and disadvantages. Some are fast, some provide a rich programming environment. Some
are free, others are tailored to specific domains, and so on. The reasons for the existence of CHICKEN are:

e CHICKEN is portable because it generates C code that runs on a large number of platforms.

¢ CHICKEN is extendable, since its code generation scheme and runtime system/garbage collector fits
neatly into a C environment.

¢ CHICKEN is free and can be freely distributed, including its source code.

¢ CHICKEN offers better performance than nearly all interpreter based implementations, but still
provides full Scheme semantics.

® As far as we know, CHICKEN is the first implementation of Scheme that uses Henry Baker's Cheney
on the M.T.A concept.

43.1.2 Why call it 'Chicken'?

According to felix:
Well, it's pretty boring, really: when I started the project and needed some name, the first
thing that met my eyes was the "chicken" (actually a disguised penguin) from the Wallace +

Gromit movie... And then there is of course the ever occurring chicken-and-egg problem with
bootstrapped compilers.

43.1.3 What should | do if | find a bug?

Send e-mail to felix @call-with-current-continuation.org with some hints about the problem, like version/build
of the compiler, platform, system configuration, code that causes the bug, etc.

43 FAQ 263

http://home.pipeline.com/~hbaker1/CheneyMTA.html
http://home.pipeline.com/~hbaker1/CheneyMTA.html
http://chicken.wiki.br/felix winkelmann
mailto:felix@call-with-current-continuation.org

CHICKEN User's Manual - The User's Manual

43.1.4 Why are values defined with define-foreign-variable Or
define-constant Or define-inline not seen outside of the containing
source file?

Accesses to foreign variables are translated directly into C constructs that access the variable, so the Scheme
name given to that variable does only exist during compile-time. The same goes for constant- and
inline-definitions: The name is only there to tell the compiler that this reference is to be replaced with the
actual value.

43.1.5 How does cond-expand know which features are registered in used
units?

Each unit used via (declare (uses ...)) isregistered as a feature and so a symbol with the unit-name
can be tested by cond-expand during macro-expansion-time. Features registered using the

register-feature! procedure are only available during run-time of the compiled file. You can use the
eval -when form to register features at compile time.

43.1.6 Why are constants defined by define-constant not honoured in
case constructs?

case expands into a cascaded 1T expression, where the first item in each arm is treated as a quoted list. So

the Case macro can not infer whether a symbol is to be treated as a constant-name (defined via
define-constant) or aliteral symbol.

43.1.7 How can | enable case sensitive reading/writing in user code?

To enable the read procedure to read symbols and identifiers case sensitive, you can set the parameter
case-sensitivity to #t.

43.1.8 How can | change match-error-control during compilation?
Use eval -when, like this:

(eval-when (compile)
(match-error-control #:unspecified))

43.1.4 Why are values defined with define-foreign-variable or define-constant or define-inline not seen outgfalé of the c

CHICKEN User's Manual - The User's Manual

43.1.9 Why doesn’'t CHICKEN support the full numeric tower by
default?

The short answer:
% chicken-setup numbers

% Csi -q
#,;,1> (use numbers)
The long answer:

There are a number of reasons for this:

- For most applications of Scheme fixnums (exact word-sized integers) and flonums (64-bit floating-point
numbers) are more than sufficient;

- Interfacing to C is simpler;
- Dispatching of arithmetic operations is more efficient.

There is an extension based on the GNU Multiprecision Package that implements most of the full numeric
tower, see numbers.

43.1.10 How can | specialize a generic function method to match
instances of every class?

Specializing a method on <0bject> doesn't work on primitive data objects like numbers, strings, etc. so for
example

(define-method (foo (x <my-class>)) ...)

(define-method (foo (x <object>)) ...)
(foo 123)

will signal an error, because to applicable method can be found. To specialize a method for primitive objects,
use <top>:

(define-method (foo (x <top>)) ...)

43.1.11 Does CHICKEN support native threads?

Native threads are not supported for two reasons. One, the runtime system is not reentrant. Two, concurrency
implemented properly would require mandatory locking of every object that could be potentially shared
between two threads. The garbage-collection algorithm would then become much more complex and
inefficient, since the location of every object has to be accessed via a thread synchronization protocol. Such a
design would make native threads in Chicken essentially equivalent to Unix processes and shared memory.

For a different approach to concurrency, please see the mpi egg.

43.1.9 Why doesn't CHICKEN support the full numeric tower by default? 265

http://chicken.wiki.br/numbers
http://www.call-with-current-continuation.org/eggs/3/mpi.html

CHICKEN User's Manual - The User's Manual

43.1.12 Does CHICKEN support Unicode strings?

Yes, as an extension.
By default all string and character functions operate bytewise, so that characters with an iteger value greater
than 255 don't make much sense and multibyte UTF-8 characters are seen and manipulated as separate bytes,

analogous to what a C program would see.

You can enable UTF-8 support by placing the following two lines at the beginning of your source file (or in
your ~/.csirc for interactive sessions) before any other code, including other use directives:

(use iset syntax-case utf8)
(import utf8)

This will replace all builtin string operators with UTF-8-aware versions, that will treat strings as sequences of
multibyte UTF-8 characters, thus enabling you to represent and manipulate Unicode characters while
remaining compatible with most C libraries and system interfaces.

Most eggs should work correctly in utf§ mode, including the regex extension, but you still have the option of
working around incompatibilities of specific eggs by loading them before the (import utf8) directive. Keep in

mind that some operations, such as string-length, are much more expensive in utf8 (multibyte) mode, and
should be used with care. See the utf8 egg documentation for details.

43.1.13 Why do | get an "Error: invalid syntax: ..." using 'match’' and
'syntax-case'?

The built-in 'match’ macro is incompatible with 'syntax-case'. Use the matchable egg instead.

43.2 Platform specific

43.2.1 How do | generate a DLL under MS Windows (tm) ?

Use €SC in combination with the -d 11 option:

C:\> csc foo.scm -dll

43.2.2 How do | generate a GUI application under Windows(tm)?

Invoke €Sc with the -windows option. Or pass the -DC_WINDOWS GUI option to the C compiler and link
with the GUI version of the runtime system (that's Libchicken-gui[-static].lib. The GUI runtime
displays error messages in a message box and does some rudimentary command-line parsing.

43.1.12 Does CHICKEN support Unicode strings? 266

http://www.call-with-current-continuation.org/eggs/utf8.html
http://www.call-with-current-continuation.org/eggs/matchable.html

CHICKEN User's Manual - The User's Manual

43.2.3 Compiling very large files under Windows with the Microsoft C
compiler fails with a message indicating insufficient heap space.

It seems that the Microsoft C compiler can only handle files up to a certain size, and it doesn't utilize virtual

memory as well as the GNU C compiler, for example. Try closing running applications. If that fails, try to
break up the Scheme code into several library units.

43.2.4 When | run csi inside an emacs buffer under Windows, nothing
happens.

Invoke €S1i with the - : C runtime option. Under Windows the interpreter thinks it is not running under
control of a terminal and doesn't print the prompt and does not flush the output stream properly.

43.2.5 | load compiled code dynamically in a Windows GUI application
and it crashes.

Code compiled into a DLL to be loaded dynamically must be linked with the same runtime system as the

loading application. That means that all dynamically loaded entities (including extensions built and installed
with chicken-setup) must be compiled with the -windows CSc option.

43.2.6 On Windows, csc.exe seems to be doing something wrong.

The Windows development tools include a C# compiler with the same name. Either invoke CSC . eXxe with a
full pathname, or put the directory where you installed CHICKEN in front of the MS development tool path in
the PATH environment variable.

43.2.7 On Windows source and/or output filenames with embedded
whitespace are not found.

There is no current workaround. Do not use filenames with embedded whitespace for code. However,
command names with embedded whitespace will work correctly.

43.3 Customization

43.2.3 Compiling very large files under Windows with the Microsoft C compiler fails with a message indicAéhg insuff

CHICKEN User's Manual - The User's Manual

43.3.1 How do | run custom startup code before the runtime-system is
invoked?

When you invoke the C compiler for your translated Scheme source program, add the C compiler option
-DC_EMBEDDED, or pass -embedded to the €S C driver program, so no entry-point function will be
generated (main ()). When your are finished with your startup processing, invoke:

CHICKEN main(argc, argv, C toplevel);

where C_toplevel is the entry-point into the compiled Scheme code. You should add the following
declarations at the head of your code:

#include
extern void C_toplevel(C word,C word,C word) C noret;

43.3.2 How can | add compiled user passes?

To add a compiled user pass instead of an interpreted one, create a library unit and recompile the main unit of
the compiler (in the file chicken. scm) with an additional uses declaration. Then link all compiler
modules and your (compiled) extension to create a new version of the compiler, like this (assuming all sources
are in the current directory):

% cat userpass.scm
; ;.. userpass.scm - My very own compiler pass

(declare (unit userpass))

;, Perhaps more user passes/extensions are added:
(let ([old (user-pass)])
(user-pass
(Lambda (x)
(let ([x2 (do-something-with x)])
if old (
(old x2)
X2)))))

CSC -C -X userpass.scm

csc chicken.scm -c -0 chicken-extended.o -uses userpass

gcc chicken-extended.o support.o easyffi.o compiler.o optimizer.o batch-drive
c-backend.o userpass.o "csc -ldflags -libs’ -o chicken-extended

o® o° o°

On platforms that support it (Linux ELF, Solaris, Windows + VC++), compiled code can be loaded via
-extend just like source files (see Load in the User's Manual).

43.3.1 How do I run custom startup code before the runtime-system is invoked? 268

CHICKEN User's Manual - The User's Manual

43.4 Compiled macros

43.4.1 Why is define-macro complaining about unbound variables?

Macro bodies that are defined and used in a compiled source-file are evaluated during compilation and so
have no access to anything created with define. Use define-for-syntax instead.

43.4.2 Why isn't load properly loading my library of macros?

During compile-time, macros are only available in the source file in which they are defined. Files included via
include are considered part of the containing file.

43.4.3 Why is include unable to load my hygienic macros?

It is not sufficient for the included file to require the syntax-case extension. Call
(require-extension syntax-case) before calling include.

43.4.4 Why are macros not visible outside of the compilation unit in
which they are defined?

Macros are defined during compile time, so when a file has been compiled, the definitions are gone. An
exception to this rule are macros defined with define-macro, which are also visible at run-time, i.e. in
eval. To use macros defined in other files, use the include special form.

43.5 Warnings and errors

43.5.1 Why does my program crash when | use callback functions (from
Scheme to C and back to Scheme again)?

There are two reasons why code involving callbacks can crash out of no apparent reason:

1. It is important to use foreign-safe-lambda/foreign-safe-lambda* for the C code that
is to call back into Scheme. If this is not done than sooner or later the available stack space will be
exhausted.

2. If the C code uses a large amount of stack storage, or if Scheme-to-C-to-Scheme calls are nested
deeply, then the available nursery space on the stack will run low. To avoid this it might be advisable
to run the compiled code with a larger nursery setting, i.e. run the code with - :S. .. and a larger
value than the default (for example - : S300K), or use the -nursery compiler option. Note that this

43.4 Compiled macros 269

CHICKEN User's Manual - The User's Manual

can decrease runtime performance on some platforms.

43.5.2 Why does the linker complain about a missing function
C... _toplevel?

This message indicates that your program uses a library-unit, but that the object-file or library was not
supplied to the linker. If you have the unit T00, which is contained in T00. 0 than you have to supply it to the
linker like this (assuming a GCC environment):

% csc program.scm foo.o -o program

43.5.3 Why does the linker complain about a missing function
_C_toplevel?

This means you have compiled a library unit as an application. When a unit-declaration (as in (declare
(unit ...)))is given, then this file has a specially named toplevel entry procedure. Just remove the
declaration, or compile this file to an object-module and link it to your application code.

43.5.4 Why does my program crash when | compile a file with -unsafe or
unsafe declarations?

The compiler option -unsafe or the declaration (declare (unsafe)) disable certain safety-checks to
improve performance, so code that would normally trigger an error will work unexpectedly or even crash the
running application. It is advisable to develop and debug a program in safe mode (without unsafe
declarations) and use this feature only if the application works properly.

43.5.5 Why do | get a warning when | define a global variable named
match?

Even when the match unit is not used, the macros from that package are visible in the compiler. The reason
for this is that macros can not be accessed from library units (only when explicitly evaluated in running code).
To speed up macro-expansion time, the compiler and the interpreter both already provide the compiled
match- ... macro definitions. Macros shadowed lexically are no problem, but global definitions of
variables named identically to (global) macros are useless - the macro definition shadows the global variable.

This problem can be solved using a different name or undefining the macro, like this:

(eval-when (compile eval) (undefine-macro! 'match))

43.5.1 Why does my program crash when I use callback functions (fromScheme to C and back to Scheme &%0in)?

CHICKEN User's Manual - The User's Manual

43.5.6 Why don't toplevel-continuations captured in interpreted code
work?

Consider the following piece of code:

(define k (call-with-current-continuation (lambda (k) k)))
(k k)

When compiled, this will loop endlessly. But when interpreted, (K k) will return to the read-eval-print loop!
This happens because the continuation captured will eventually read the next toplevel expression from the
standard-input (or an input-file if loading from a file). At the moment K was defined, the next expression was
(k K).But when K is invoked, the next expression will be whatever follows after (K k). In other words,
invoking a captured continuation will not rewind the file-position of the input source. A solution is to wrap the
whole code into a (begin ...) expression, so all toplevel expressions will be loaded together.

43.5.7 Why does define-reader-ctor not work in my compiled program?
The following piece of code does not work as expected:

(eval-when (compile)
(define-reader-ctor 'integer->char integer->char))
(print #, (integer->char 33))

The problem is that the compiler reads the complete source-file before doing any processing on it, so the
sharp-comma form is encountered before the reader-ctor is defined. A possible solution is to include the file
containing the sharp-comma form, like this:

(eval-when (compile)
(define-reader-ctor 'integer->char integer->char))

(include)

;. other-file.scm:
(print #, (integer->char 33))

43.5.8 Why do built-in units, such as srfi-1, srfi-18, and posix fail to
load?

When you try to USe a built-in unit such as Srfi- 18, you may get the following error:

#;1> (use srfi-18)
;, loading library srfi-18 ...
Error: (load-library) unable to load library
srfi-18
;; on a Mac

43.5.6 Why don't toplevel-continuations captured in interpreted code work? 271

CHICKEN User's Manual - The User's Manual

Another symptom is that (require 'srfi-18) will silently fail.

This typically happens because the Chicken libraries have been installed in a non-standard location, such as
your home directory. The workaround is to explicitly tell the dynamic linker where to look for your libraries:

export DYLD LIBRARY PATH=~/scheme/chicken/1ib:$DYLD LIBRARY PATH ;; Mac
export LD LIBRARY PATH=~/scheme/chicken/lib:$LD LIBRARY PATH ;7 Linux

43.5.9 How can | increase the size of the trace shown when runtime
errors are detected?

When a runtime error is detected, Chicken will print the last entries from the trace of functions called (unless
your executable was compiled with the -no-trace option. By default, only 16 entries will be shown. To
increase this number pass the - : aN parameter to your executable.

43.6 Optimizations

43.6.1 How can | obtain smaller executables?
If you don't need eval or the stuff in the extras library unit, you can just use the Library unit:

(declare (uses library))
(dileplay)

(Don't forget to compile with the -explicit-use option) Compiled with Visual C++ this generates an
executable of around 240 kilobytes. It is theoretically possible to compile something without the library, but a
program would have to implement quite a lot of support code on its own.

43.6.2 How can | obtain faster executables?

There are a number of declaration specifiers that should be used to speed up compiled files: declaring
(standard-bindings) is mandatory, since this enables most optimizations. Even if some standard
procedures should be redefined, you can list untouched bindings in the declaration. Declaring
(extended-bindings) lets the compiler choose faster versions of certain internal library functions. This
might give another speedup. You can also use the the usual-integrations declaration, which is
identical to declaring standard-bindings and extended-bindings (note that
usual-integrations is set by default). Declaring (block) tells the compiler that global procedures
are not changed outside the current compilation unit, this gives the compiler some more opportunities for
optimization. If no floating point arithmetic is required, then declaring (number-type fixnum) can give
a big performance improvement, because the compiler can now inline most arithmetic operations. Declaring
(unsafe) will switch off most safety checks. If threads are not used, you can declare
(disable-interrupts). You should always use maximum optimizations settings for your C compiler.
Good GCC compiler options on Pentium (and compatible) hardware are: -0s -fomit-frame-pointer
-fno-strict-aliasing Some programs are very sensitive to the setting of the nursery (the first

43.5.8 Why do built-in units, such as srfi-1, srfi-18, and posix fail toload? 272

CHICKEN User's Manual - The User's Manual

heap-generation). You should experiment with different nursery settings (either by compiling with the
-nursery option or by using the - :S. . . runtime option).

43.6.3 Which non-standard procedures are treated specially when the
extended-bindings Or usual-integrations declaration or compiler option is
used?

The following standard bindings are handled specially, depending on optimization options and compiler
settings:

+ * - / quotient eq? eqv? equal? apply c...r values call-with-values
list-ref null? length not char? string? symbol? vector? pair? procedure?
boolean? number? complex? rational? real? exact? inexact? list? eof-object?
string-ref string-set! vector-ref vector-set! char=? char<? char>? char<=? char
char-numeric? char-alphabetic? char-whitespace? char-upper-case?
char-lower-case? char-upcae char-downcase list-tail assv memv memg assoc
member set-car! set-cdr! abs exp sin cos tan log asin acos atan sqrt

zero? positive? negative? vector-length string-length char->integer
integer->char inexact->exact = > < >= <= for-each map substring
string-append gcd lcm list exact->inexact string->number number->string
even? odd? remainder floor ceiling truncate round cons vector string
string=? string-ci=? make-vector call-with-current-continuation

write-char read-string

The following extended bindings are handled specially:

bitwise-and bitwise-ior bitwise-xor bitwise-not bit-set? addl subl fx+ fx- fx*
fx/ fxmod fx= fx> fx>= fixnum? fxneg fxmax fxmin fxand fxior fxxor fxnot fxshl
fxshr flonum? fp+ fp- fp* fp/ atom? fp= fp> fp>= fpneg fpmax fpmin
arithmetic-shift signum flush-output thread-specific thread-specific-set!
not-pair? null-1list? print print* u8vector->blob/shared
s8vector->blob/shared ulévector->blob/shared slévector->blob/shared
u32vector->blob/shared s32vector->blob/shared f32vector->blob/shared
f6dvector->blob/shared block-ref blob-size u8vector-length s8vector-length
ulévector-length slévector-length u32vector-length s32vector-length
f32vector-length fé4vector-length u8vector-ref s8vector-ref ulévector-ref
slévector-ref u32vector-ref s32vector-ref f32vector-ref f64vector-ref
u8vector-set! s8vector-set! ulbvector-set! slovector-set! u32vector-set!
s32vector-set! hash-table-ref block-set! number-of-slots first second third
fourthnull-pointer? pointer->object make-record-instance locative-ref
locative-set! locative? locative->object identity cpu-timeerror call/cc any?
substring=? substring-ci=? substring-index substring-index-ci

43.6.4 Can | load compiled code at runtime?

Yes. You can load compiled at code at runtime with Load just as well as you can load Scheme source code.
Compiled code will, of course, run faster.

43.6.2 How can I obtain faster executables? 273

CHICKEN User's Manual - The User's Manual

To do this, pass to Load a path for a shared object. Use a form such as (Load "f00.50") and run cSC
-shared foo.scmto produce f00.50 from f00.scm (at which point T00.scm will no longer be
required).

43.7 Garbage collection

43.7.1 Why does a loop that doesn't cons still trigger garbage
collections?

Under CHICKENSs implementation policy, tail recursion is achieved simply by avoiding to return from a
function call. Since the programs are CPS converted, a continuous sequence of nested procedure calls is
performed. At some stage the stack-space has to run out and the current procedure and its parameters
(including the current continuation) are stored somewhere in the runtime system. Now a minor garbage
collection occurs and rescues all live data from the stack (the first heap generation) and moves it into the the
second heap generation. Then the stack is cleared (using a Longjmp) and execution can continue from the
saved state. With this method arbitrary recursion (in tail- or non-tail position) can happen, provided the
application doesn't run out of heap-space. (The difference between a tail- and a non-tail call is that the tail-call
has no live data after it invokes its continuation - and so the amount of heap-space needed stays constant)

43.7.2 Why do finalizers not seem to work in simple cases in the
interpeter?

Consider the following interaction in CSI:

#;1> (define x '(1 2 3))

#;2> (define (yammer x) (print x " is dead"))
#;3> (set-finalizer! x yammer)

(1 2 3)

#;4> (gc #t)

157812

#;5> (define x #f)

#;6> (gc #t)

157812

#,7>

While you might expect objects to be reclaimed and "(1 2 3) is dead" printed, it won't happen: the literal list
gets held in the interpreter history, because it is the result value of the set-finalizer! call. Running this in a
normal program will work fine.

When testing finalizers from the interpreter, you might want to define a trivial macro such as

(define-macro (v x) " (begin (print ,x) (void)))

and wrap calls to set-finalizer! init.

43.6.4 Can I load compiled code at runtime? 274

CHICKEN User's Manual - The User's Manual

43.8 Interpreter

43.8.1 Does CSI support history and autocompletion?

CSI doesn't support it natively but it can be activated with the

http://www.call-with-current-continuation.org/eggs/readline.html egg. After installing the egg, add the
following to your ~/ . CS1rc or equivalent file:

(require-extension readline)
(current-input-port (make-gnu-readline-port))
(gnu-history-install-file-manager (string-append (or (getenv))

Users of *nix-like systems (including Cygwin), may also want to check out rlwrap. This program lets you
"wrap" another process (e.g. rlwrap csi) with the readline library, giving you history, autocompletion,

and the ability to set the keystroke set. Vi fans can get vi keystrokes by adding "set editing-mode vi" to their
.inputrc file.

43.8.2 Does code loaded with 1oad run compiled or interpreted?

If you compile a file with a call to Load, the code will be loaded at runtime and, if the file loaded is a Scheme
source code file (instead of a shared object), it will be interpreted (even if the caller program is compiled).

43.9 Extensions

43.9.1 How can | install Chicken eggs to a non-default location?

You can just set the CHICKEN REPOSITORY environment variable. It should contain the path where you
want eggs to be installed:

$ export CHICKEN REPOSITORY=~/chicken/
$ chicken-setup extensionname

In order to make programs (including csi) see these eggs, you should set this variable when you run them.
Alternatively, you can call the repository-path Scheme procedure before loading the eggs, as in:

(repository-path)
(use format-modular)

Note, however, that using repository-path as above hard-codes the location of your eggs in your source

files. While this might not be an issue in your case, it might be safe to keep this configuration outside of the
source code (that is, specifying it as an environment variable) to make it easier to maintain.

43.8 Interpreter 275

http://www.call-with-current-continuation.org/eggs/readline.html
http://utopia.knoware.nl/~hlub/rlwrap/

CHICKEN User's Manual - The User's Manual

43.9.2 Can |l install chicken eggs as a non-root user?

Yes, just install them in a directory you can write.

Previous: Bugs and limitations

Next: Acknowledgements

43.9.2 Can I install chicken eggs as a non-root user? 276

http://galinha.ucpel.tche.br/FAQ#Extensions#How can I install Chicken eggs to a non-default location?

44 Acknowledgements

Many thanks to Nico Amtsberg, Alonso Andres, William Annis, Marc Baily, Peter Barabas, Jonah Beckford,
Arto Bendiken, Peter Bex, Jean-Francois Bignolles, Alaric Blagrave-Snellpym, Dave Bodenstab, Fabian
Boehlke, T. Kurt Bond, Ashley Bone, Dominique Boucher, Terence Brannon, Roy Bryant, Adam Buchbinder,
Hans Bulfone, Category 5, Taylor Campbell, Naruto Canada, Esteban U. Caamano Castro, Franklin Chen,
Thomas Chust, Gian Paolo Ciceri, John Cowan, Grzegorz Chrupała, James Crippen, Tollef Fog Heen,
Alejandro Forero Cuervo, Linh Dang, Brian Denheyer, dgym, Don, Chris Double, Jarod Eells, Petter
Egesund, Steve Elkins, Daniel B. Faken, Will Farr, Graham Fawcett, Marc Feeley, Fizzie, Kimura Fuyuki,
Tony Garnock-Jones, Martin Gasbichler, Joey Gibson, Stephen C. Gilardi, Joshua Griffith, Johannes
Groedem, Damian Gryski, Mario Domenech Goulart, Andreas Gustafsson, Sven Hartrumpf, Jun-ichiro itojun
Hagino, Ahdi Hargo, Matthias Heiler, Karl M. Hegbloom, William P. Heinemann, Bill Hoffman, Bruce
Hoult, Hans Huebner, Markus Huelsmann, Goetz Isenmann, Paulo Jabardo, David Janssens, Christian Jaeger,
Dale Jordan, Valentin Kamyshenko, Daishi Kato, Peter Keller, Brad Kind, Ron Kneusel, Matthias Koeppe,
Krysztof Kowałczyk, Andre Kuehne, Todd R. Kueny Sr, Goran Krampe, David Krentzlin, Ben Kurtz,
Micky Latowicki, John Lenz, Kirill Lisovsky, Juergen Lorenz, Kon Lovett, Dennis Marti, Charles Martin,
Bob Mclsaac, Alain Mellan, Eric Merrit, Perry Metzger, Scott G. Miller, Mikael, Bruce Mitchener, Chris
Moline, Eric E. Moore, Julian Morrison, Dan Muresan, Lars Nilsson, Ian Oversby, o.t., Gene Pavlovsky, Levi
Pearson, Nicolas Pelletier, Carlos Pita, Robin Lee Powell, Pupeno, Davide Puricelli, Doug Quale, Eric Raible,
Ivan Raikov, Joel Reymont, Eric Rochester, Andreas Rottman, David Rush, Lars Rustemeier, Daniel Sadilek,
Oskar Schirmer, Burton Samograd, Reed Sheridan, Ronald Schroeder, Spencer Schumann, Alex Shinn, Ivan
Shmakov, Shmul, Tony Sidaway, Jeffrey B. Siegal, Andrey Sidorenko, Michele Simionato, Volker Stolz, Jon
Strait, Dorai Sitaram, Robert Skeels, Jason Songhurst, Clifford Stein, Sunnan, Zbigniew Szadkowski, Rick
Taube, Nathan Thern, Mike Thomas, Minh Thu, Christian Tismer, Andre van Tonder, John Tobey, Henrik
Tramberend, Vladimir Tsichevsky, Neil van Dyke, Sander Vesik, Jaques Vidrine, Panagiotis Vossos, Shawn
Wagner, Peter Wang, Ed Watkeys, Brad Watson, Thomas Weidner, Goeran Weinholt, Matthew Welland,
Joerg Wittenberger, Peter Wright, Mark Wutka, Richard Zidlicky and Houman Zolfaghari for bug-fixes, tips
and suggestions.

CHICKEN uses the PCRE regular expression package (http://www.pcre.org), which is written by Philip
Hazel.

Special thanks to Brandon van Every for contributing the (now defunct) CMake support and for helping with
Windows build issues.

Also special thanks to Benedikt Rosenau for his constant encouragement.
Thanks to Dunja Winkelmann for putting up with all of this.
CHICKEN contains code from several people:

Eli Barzilay
some performance tweaks used in TinyCLOS.
Mikael Djurfeldt
topological sort used by compiler.
Marc Feeley
pretty-printer.
Aubrey Jaffer
implementation of dynamic-wind.
Richard O'Keefe
sorting routines.
Olin Shivers
implementation of Llet-optionals[*] and reference implementations of SRFI-1, SRFI-13 and
SRFI-14.

44 Acknowledgements 277

http://www.pcre.org
http://www.cmake.org

CHICKEN User's Manual - The User's Manual

Andrew Wilcox
queues.
Andrew Wright
pattern matcher.
Alex Shinn
scheme-complete.el emacs tab-completion

Previous: FAQ

Next: Bibliography

44 Acknowledgements 278

http://chicken.wiki.br/Alex Shinn

45 Bibliography

Henry Baker: CONS Should Not CONS Its Arguments, Part II: Cheney on the M.T.A.
http://home.pipeline.com/~hbakerl/CheneyMTA.html

Revised™5 Report on the Algorithmic Language Scheme
http://www.schemers.org/Documents/Standards/RSRS

Previous: Acknowledgements

45 Bibliography 279

http://home.pipeline.com/~hbaker1/CheneyMTA.html
http://www.schemers.org/Documents/Standards/R5RS

	Chicken User's Manual
	1 The User's Manual
	2 Getting started
	2.1 Scheme
	2.2 Chicken
	2.3 Chicken repositories, websites, and community
	2.4 Installing Chicken
	2.5 Development environments
	2.6 The Read-Eval-Print loop
	2.6.1 Scripts

	2.7 The compiler
	2.8 Installing an egg
	2.9 Accessing C libraries

	3 Basic mode of operation
	4 Using the compiler
	4.1 Compiler command line format
	4.2 Runtime options
	4.3 Examples
	4.3.1 A simple example (with one source file)
	4.3.2 An example with multiple files

	4.4 Extending the compiler
	4.5 Distributing compiled C files

	5 Using the interpreter
	5.1 Interpreter command line format
	5.2 Writing Scheme scripts
	5.3 Toplevel commands
	5.4 toplevel-command
	5.5 History access
	5.6 set-describer!
	5.7 Auto-completion and edition
	5.8 Accessing documentation

	6 Supported language
	7 Deviations from the standard
	8 Extensions to the standard
	9 Non-standard read syntax
	9.1 Multiline Block Comment
	9.2 Expression Comment
	9.3 External Representation
	9.4 Syntax Expression
	9.5 Location Expression
	9.6 Keyword
	9.7 Multiline String Constant
	9.8 Multiline String Constant with Embedded Expressions
	9.9 Foreign Declare
	9.10 Sharp Prefixed Symbol
	9.11 Bang
	9.11.1 Line Comment
	9.11.2 Eof Object
	9.11.3 DSSSL Formal Parameter List Annotation
	9.11.4 Read Mark Invocation

	9.12 Case Sensitive Expression
	9.13 Case Insensitive Expression
	9.14 Conditional Expansion

	10 Non-standard macros and special forms
	10.1 Making extra libraries and extensions available
	10.1.1 require-extension
	10.1.2 define-extension

	10.2 Binding forms for optional arguments
	10.2.1 optional
	10.2.2 case-lambda
	10.2.3 let-optionals
	10.2.4 let-optionals*

	10.3 Other binding forms
	10.3.1 and-let*
	10.3.2 rec
	10.3.3 cut
	10.3.4 define-values
	10.3.5 fluid-let
	10.3.6 let-values
	10.3.7 let*-values
	10.3.8 letrec-values
	10.3.9 parameterize
	10.3.10 receive
	10.3.11 set!-values

	10.4 Substitution forms and macros
	10.4.1 define-constant
	10.4.2 define-inline
	10.4.3 define-macro
	10.4.4 define-for-syntax

	10.5 Conditional forms
	10.5.1 select
	10.5.2 unless
	10.5.3 when

	10.6 Record structures
	10.6.1 define-record
	10.6.2 define-record-printer
	10.6.3 define-record-type

	10.7 Other forms
	10.7.1 assert
	10.7.2 cond-expand
	10.7.3 ensure
	10.7.4 eval-when
	10.7.5 include
	10.7.6 nth-value
	10.7.7 time

	11 Pattern matching
	11.1 Pattern Matching Expressions
	11.2 Patterns
	11.3 Match Failure
	11.4 Record Structures Pattern
	11.5 Code Generation

	12 Declarations
	12.1 declare
	12.2 always-bound
	12.3 block
	12.4 block-global
	12.5 hide
	12.6 bound-to-procedure
	12.7 c-options
	12.8 check-c-syntax
	12.9 constant
	12.10 export
	12.11 emit-exports
	12.12 emit-external-prototypes-first
	12.13 disable-interrupts
	12.14 disable-warning
	12.15 import
	12.16 inline
	12.17 inline-limit
	12.18 interrupts-enabled
	12.19 keep-shadowed-macros
	12.20 lambda-lift
	12.21 link-options
	12.22 no-argc-checks
	12.23 no-bound-checks
	12.24 no-procedure-checks
	12.25 post-process
	12.26 profile
	12.27 number-type
	12.28 fixnum-arithmetic
	12.29 run-time-macros
	12.30 standard-bindings
	12.31 extended-bindings
	12.32 usual-integrations
	12.33 unit
	12.34 unsafe
	12.35 unused
	12.36 uses

	13 Parameters
	13.1 make-parameter
	13.2 case-sensitive
	13.3 dynamic-load-libraries
	13.4 command-line-arguments
	13.5 current-read-table
	13.6 exit-handler
	13.7 eval-handler
	13.8 force-finalizers
	13.9 implicit-exit-handler
	13.10 keyword-style
	13.11 load-verbose
	13.12 program-name
	13.13 repl-prompt
	13.14 reset-handler

	14 Unit library
	14.1 Arithmetic
	14.1.1 add1/sub1
	14.1.2 Binary integer operations
	14.1.3 bit-set?
	14.1.4 fixnum?
	14.1.5 Arithmetic fixnum operations
	14.1.6 Arithmetic floating-point operations
	14.1.7 signum
	14.1.8 finite?

	14.2 File Input/Output
	14.2.1 current-output-port
	14.2.2 current-error-port
	14.2.3 flush-output
	14.2.4 port-name
	14.2.5 port-position
	14.2.6 set-port-name!

	14.3 Files
	14.3.1 delete-file
	14.3.2 file-exists?
	14.3.3 rename-file

	14.4 String ports
	14.4.1 get-output-string
	14.4.2 open-input-string
	14.4.3 open-output-string

	14.5 Feature identifiers
	14.5.1 features
	14.5.2 feature?
	14.5.3 register-feature!
	14.5.4 unregister-feature!

	14.6 Keywords
	14.6.1 get-keyword
	14.6.2 keyword?
	14.6.3 keyword�string
	14.6.4 string�keyword

	14.7 Exceptions
	14.7.1 condition-case
	14.7.2 breakpoint

	14.8 Environment information and system interface
	14.8.1 argv
	14.8.2 exit
	14.8.3 build-platform
	14.8.4 chicken-version
	14.8.5 errno
	14.8.6 getenv
	14.8.7 machine-byte-order
	14.8.8 machine-type
	14.8.9 on-exit
	14.8.10 software-type
	14.8.11 software-version
	14.8.12 c-runtime
	14.8.13 system

	14.9 Execution time
	14.9.1 cpu-time
	14.9.2 current-milliseconds
	14.9.3 current-seconds
	14.9.4 current-gc-milliseconds

	14.10 Interrupts and error-handling
	14.10.1 enable-warnings
	14.10.2 error
	14.10.3 get-call-chain
	14.10.4 print-call-chain
	14.10.5 print-error-message
	14.10.6 procedure-information
	14.10.7 reset
	14.10.8 warning
	14.10.9 singlestep

	14.11 Garbage collection
	14.11.1 gc
	14.11.2 memory-statistics
	14.11.3 set-finalizer!
	14.11.4 set-gc-report!

	14.12 Other control structures
	14.12.1 promise?

	14.13 String utilities
	14.13.1 reverse-list�string

	14.14 Generating uninterned symbols
	14.14.1 gensym
	14.14.2 string�uninterned-symbol

	14.15 Standard Input/Output
	14.15.1 port?
	14.15.2 print
	14.15.3 print*

	14.16 User-defined named characters
	14.16.1 char-name

	14.17 Blobs
	14.17.1 make-blob
	14.17.2 blob?
	14.17.3 blob-size
	14.17.4 blob�string
	14.17.5 string�blob
	14.17.6 blob=?

	14.18 Vectors
	14.18.1 vector-copy!
	14.18.2 vector-resize

	14.19 The unspecified value
	14.19.1 void

	14.20 Continuations
	14.20.1 call/cc
	14.20.2 continuation-capture
	14.20.3 continuation?
	14.20.4 continuation-graft
	14.20.5 continuation-return

	14.21 Setters
	14.21.1 setter
	14.21.2 getter-with-setter

	14.22 Reader extensions
	14.22.1 define-reader-ctor
	14.22.2 set-read-syntax!
	14.22.3 set-sharp-read-syntax!
	14.22.4 set-parameterized-read-syntax!
	14.22.5 copy-read-table

	14.23 Property lists
	14.23.1 get
	14.23.2 put!
	14.23.3 remprop!
	14.23.4 symbol-plist
	14.23.5 get-properties

	15 Unit eval
	15.1 Loading code
	15.1.1 load
	15.1.2 load-relative
	15.1.3 load-noisily
	15.1.4 load-library
	15.1.5 set-dynamic-load-mode!

	15.2 Read-eval-print loop
	15.2.1 repl

	15.3 Macros
	15.3.1 get-line-number
	15.3.2 macro?
	15.3.3 macroexpand
	15.3.4 macroexpand-1
	15.3.5 undefine-macro!
	15.3.6 syntax-error

	15.4 Loading extension libraries
	15.4.1 repository-path
	15.4.2 extension-information
	15.4.3 provide
	15.4.4 provided?
	15.4.5 require
	15.4.6 set-extension-specifier!

	15.5 System information
	15.5.1 chicken-home

	15.6 Eval
	15.6.1 eval

	16 Unit data-structures
	16.1 Lists
	16.1.1 alist-ref
	16.1.2 alist-update!
	16.1.3 atom?
	16.1.4 rassoc
	16.1.5 butlast
	16.1.6 chop
	16.1.7 compress
	16.1.8 flatten
	16.1.9 intersperse
	16.1.10 join
	16.1.11 shuffle
	16.1.12 tail?

	16.2 Queues
	16.2.1 list�queue
	16.2.2 make-queue
	16.2.3 queue?
	16.2.4 queue�list
	16.2.5 queue-add!
	16.2.6 queue-empty?
	16.2.7 queue-first
	16.2.8 queue-last
	16.2.9 queue-remove!
	16.2.10 queue-push-back!
	16.2.11 queue-push-back-list!

	16.3 Sorting
	16.3.1 merge
	16.3.2 sort
	16.3.3 sorted?

	16.4 Random numbers
	16.4.1 random-seed

	16.5 Strings
	16.5.1 conc
	16.5.2 �string
	16.5.3 string-chop
	16.5.4 string-chomp
	16.5.5 string-compare3
	16.5.6 string-intersperse
	16.5.7 string-split
	16.5.8 string-translate
	16.5.9 string-translate*
	16.5.10 substring=?
	16.5.11 substring-index

	16.6 Combinators
	16.6.1 any?
	16.6.2 none?
	16.6.3 always?
	16.6.4 never?
	16.6.5 constantly
	16.6.6 complement
	16.6.7 compose
	16.6.8 conjoin
	16.6.9 disjoin
	16.6.10 each
	16.6.11 flip
	16.6.12 identity
	16.6.13 project
	16.6.14 list-of
	16.6.15 noop
	16.6.16 o
	16.6.17 left-section
	16.6.18 right-section

	16.7 Binary searching
	16.7.1 binary-search

	17 Unit ports
	17.1 Input/output port extensions
	17.1.1 with-output-to-port
	17.1.2 make-input-port
	17.1.3 make-output-port
	17.1.4 with-error-output-to-port
	17.1.5 with-input-from-port

	17.2 String-port extensions
	17.2.1 call-with-input-string
	17.2.2 call-with-output-string
	17.2.3 with-input-from-string
	17.2.4 with-output-to-string

	17.3 Port iterators
	17.3.1 port-for-each
	17.3.2 port-map
	17.3.3 port-fold

	17.4 Funky ports
	17.4.1 make-broadcast-port
	17.4.2 make-concatenated-port

	18 Unit files
	18.1 Pathname operations
	18.1.1 absolute-pathname?
	18.1.2 decompose-pathname
	18.1.3 make-pathname
	18.1.4 make-absolute-pathname
	18.1.5 pathname-directory
	18.1.6 pathname-file
	18.1.7 pathname-extension
	18.1.8 pathname-replace-directory
	18.1.9 pathname-replace-file
	18.1.10 pathname-replace-extension
	18.1.11 pathname-strip-directory
	18.1.12 pathname-strip-extension
	18.1.13 directory-null?

	18.2 Temporary files
	18.2.1 create-temporary-file

	18.3 Deleting a file without signalling an error
	18.3.1 delete-file*

	18.4 File move/copy
	18.4.1 file-copy
	18.4.2 file-move

	19 Unit extras
	19.1 Formatted output
	19.1.1 printf
	19.1.2 fprintf
	19.1.3 sprintf
	19.1.4 format

	19.2 Random numbers
	19.2.1 random-seed
	19.2.2 random
	19.2.3 randomize

	19.3 Input/Output extensions
	19.3.1 pretty-print
	19.3.2 pretty-print-width
	19.3.3 read-byte
	19.3.4 write-byte
	19.3.5 read-file
	19.3.6 read-line
	19.3.7 write-line
	19.3.8 read-lines
	19.3.9 read-string
	19.3.10 read-string!
	19.3.11 write-string
	19.3.12 read-token

	20 Unit srfi-1
	21 Unit srfi-4
	21.1 make-XXXvector
	21.2 u8vector�blob
	21.3 s8vector�blob
	21.4 u16vector�blob
	21.5 s16vector�blob
	21.6 u32vector�blob
	21.7 s32vector�blob
	21.8 f32vector�blob
	21.9 f64vector�blob
	21.10 u8vector�blob/shared
	21.11 s8vector�blob/shared
	21.12 u16vector�blob/shared
	21.13 s16vector�blob/shared
	21.14 u32vector�blob/shared
	21.15 s32vector�blob/shared
	21.16 f32vector�blob/shared
	21.17 f64vector�blob/shared
	21.18 blob�u8vector
	21.19 blob�s8vector
	21.20 blob�u16vector
	21.21 blob�s16vector
	21.22 blob�u32vector
	21.23 blob�s32vector
	21.24 blob�f32vector
	21.25 blob�f64vector
	21.26 blob�u8vector/shared
	21.27 blob�s8vector/shared
	21.28 blob�u16vector/shared
	21.29 blob�s16vector/shared
	21.30 blob�u32vector/shared
	21.31 blob�s32vector/shared
	21.32 blob�f32vector/shared
	21.33 blob�f64vector/shared
	21.34 subu8vector
	21.35 subu16vector
	21.36 subu32vector
	21.37 subs8vector
	21.38 subs16vector
	21.39 subs32vector
	21.40 subf32vector
	21.41 subf64vector
	21.42 read-u8vector
	21.43 read-u8vector!
	21.44 write-u8vector

	22 Unit srfi-13
	23 Unit srfi-14
	24 Unit srfi-69
	24.1 Hash Table Procedures
	24.1.1 make-hash-table
	24.1.2 hash-table?
	24.1.3 hash-table-size
	24.1.4 hash-table-equivalence-function
	24.1.5 hash-table-hash-function
	24.1.6 hash-table-min-load
	24.1.7 hash-table-max-load
	24.1.8 hash-table-weak-keys
	24.1.9 hash-table-weak-values
	24.1.10 hash-table-has-initial?
	24.1.11 hash-table-initial
	24.1.12 hash-table-keys
	24.1.13 hash-table-values
	24.1.14 hash-table�alist
	24.1.15 alist�hash-table
	24.1.16 hash-table-ref
	24.1.17 hash-table-ref/default
	24.1.18 hash-table-exists?
	24.1.19 hash-table-set!
	24.1.20 hash-table-update!
	24.1.21 hash-table-update!/default
	24.1.22 hash-table-copy
	24.1.23 hash-table-delete!
	24.1.24 hash-table-remove!
	24.1.25 hash-table-clear!
	24.1.26 hash-table-merge
	24.1.27 hash-table-merge!
	24.1.28 hash-table-map
	24.1.29 hash-table-fold
	24.1.30 hash-table-for-each
	24.1.31 hash-table-walk

	24.2 Hashing Functions
	24.2.1 number-hash
	24.2.2 object-uid-hash
	24.2.3 symbol-hash
	24.2.4 keyword-hash
	24.2.5 string-hash
	24.2.6 string-ci-hash
	24.2.7 eq?-hash
	24.2.8 eqv?-hash
	24.2.9 equal?-hash
	24.2.10 hash
	24.2.11 hash-by-identity

	25 Unit match
	26 Unit regex
	26.1 grep
	26.2 glob�regexp
	26.3 glob?
	26.4 regexp
	26.5 regexp*
	26.6 regexp?
	26.7 regexp-optimize
	26.8 string-match
	26.9 string-match-positions
	26.10 string-search
	26.11 string-search-positions
	26.12 string-split-fields
	26.13 string-substitute
	26.14 string-substitute*
	26.15 regexp-escape
	26.16 make-anchored-pattern

	27 Unit srfi-18
	27.1 thread-signal!
	27.2 thread-quantum
	27.3 thread-quantum-set!
	27.4 thread-suspend!
	27.5 thread-resume!
	27.6 thread-wait-for-i/o!
	27.7 time�milliseconds
	27.8 milliseconds�time

	28 Unit posix
	28.1 Constants
	28.1.1 File-control Commands
	28.1.2 Standard I/O file-descriptors
	28.1.3 Open flags
	28.1.4 Permission bits

	28.2 Directories
	28.2.1 change-directory
	28.2.2 current-directory
	28.2.3 create-directory
	28.2.4 delete-directory
	28.2.5 directory
	28.2.6 directory?
	28.2.7 glob
	28.2.8 canonical-path
	28.2.9 set-root-directory!

	28.3 Pipes
	28.3.1 call-with-input-pipe
	28.3.2 call-with-output-pipe
	28.3.3 close-input-pipe
	28.3.4 close-output-pipe
	28.3.5 create-pipe
	28.3.6 open-input-pipe
	28.3.7 open-output-pipe
	28.3.8 pipe/buf
	28.3.9 with-input-from-pipe
	28.3.10 with-output-to-pipe

	28.4 Fifos
	28.4.1 create-fifo
	28.4.2 fifo?

	28.5 File descriptors and low-level I/O
	28.5.1 duplicate-fileno
	28.5.2 file-close
	28.5.3 file-open
	28.5.4 file-mkstemp
	28.5.5 file-read
	28.5.6 file-select
	28.5.7 file-write
	28.5.8 file-control
	28.5.9 open-input-file*
	28.5.10 open-output-file*
	28.5.11 port�fileno

	28.6 Retrieving file attributes
	28.6.1 file-access-time
	28.6.2 file-change-time
	28.6.3 file-modification-time
	28.6.4 file-stat
	28.6.5 file-position
	28.6.6 file-size
	28.6.7 regular-file?
	28.6.8 file-owner
	28.6.9 file-permissions
	28.6.10 file-read-access?
	28.6.11 file-write-access?
	28.6.12 file-execute-access?
	28.6.13 stat-regular?
	28.6.14 stat-directory?
	28.6.15 stat-char-device?
	28.6.16 stat-block-device?
	28.6.17 stat-fifo?
	28.6.18 stat-symlink?
	28.6.19 stat-socket?

	28.7 Changing file attributes
	28.7.1 file-truncate
	28.7.2 set-file-position!
	28.7.3 change-file-mode
	28.7.4 change-file-owner

	28.8 Processes
	28.8.1 current-process-id
	28.8.2 parent-process-id
	28.8.3 process-group-id
	28.8.4 process-execute
	28.8.5 process-fork
	28.8.6 process-run
	28.8.7 process-signal
	28.8.8 process-wait
	28.8.9 process
	28.8.10 process*
	28.8.11 sleep
	28.8.12 create-session

	28.9 Hard and symbolic links
	28.9.1 symbolic-link?
	28.9.2 create-symbolic-link
	28.9.3 read-symbolic-link
	28.9.4 file-link

	28.10 Retrieving user & group information
	28.10.1 current-user-id
	28.10.2 current-effective-user-id
	28.10.3 user-information
	28.10.4 current-group-id
	28.10.5 current-effective-group-id
	28.10.6 group-information
	28.10.7 get-groups

	28.11 Changing user & group information
	28.11.1 set-groups!
	28.11.2 initialize-groups
	28.11.3 set-process-group-id!

	28.12 Record locking
	28.12.1 file-lock
	28.12.2 file-lock/blocking
	28.12.3 file-test-lock
	28.12.4 file-unlock

	28.13 Signal handling
	28.13.1 set-alarm!
	28.13.2 set-signal-handler!
	28.13.3 signal-handler
	28.13.4 set-signal-mask!
	28.13.5 signal-mask
	28.13.6 signal-masked?
	28.13.7 signal-mask!
	28.13.8 signal-unmask!
	28.13.9 signal/term
	28.13.10 signal/kill
	28.13.11 signal/int
	28.13.12 signal/hup
	28.13.13 signal/fpe
	28.13.14 signal/ill
	28.13.15 signal/segv
	28.13.16 signal/abrt
	28.13.17 signal/trap
	28.13.18 signal/quit
	28.13.19 signal/alrm
	28.13.20 signal/vtalrm
	28.13.21 signal/prof
	28.13.22 signal/io
	28.13.23 signal/urg
	28.13.24 signal/chld
	28.13.25 signal/cont
	28.13.26 signal/stop
	28.13.27 signal/tstp
	28.13.28 signal/pipe
	28.13.29 signal/xcpu
	28.13.30 signal/xfsz
	28.13.31 signal/usr1
	28.13.32 signal/usr2
	28.13.33 signal/winch

	28.14 Environment access
	28.14.1 current-environment
	28.14.2 setenv
	28.14.3 unsetenv

	28.15 Memory mapped I/O
	28.15.1 memory-mapped-file?
	28.15.2 map-file-to-memory
	28.15.3 memory-mapped-file-pointer
	28.15.4 unmap-file-from-memory

	28.16 Date and time routines
	28.16.1 seconds�local-time
	28.16.2 local-time�seconds
	28.16.3 local-timezone-abbreviation
	28.16.4 seconds�string
	28.16.5 seconds�utc-time
	28.16.6 utc-time�seconds
	28.16.7 time�string

	28.17 Raw exit
	28.17.1 _exit

	28.18 ERRNO values
	28.18.1 errno/perm
	28.18.2 errno/noent
	28.18.3 errno/srch
	28.18.4 errno/intr
	28.18.5 errno/io
	28.18.6 errno/noexec
	28.18.7 errno/badf
	28.18.8 errno/child
	28.18.9 errno/nomem
	28.18.10 errno/acces
	28.18.11 errno/fault
	28.18.12 errno/busy
	28.18.13 errno/notdir
	28.18.14 errno/isdir
	28.18.15 errno/inval
	28.18.16 errno/mfile
	28.18.17 errno/nospc
	28.18.18 errno/spipe
	28.18.19 errno/pipe
	28.18.20 errno/again
	28.18.21 errno/rofs
	28.18.22 errno/exist
	28.18.23 errno/wouldblock

	28.19 Finding files
	28.19.1 find-files

	28.20 Getting the hostname and system information
	28.20.1 get-host-name
	28.20.2 system-information

	28.21 Setting the file buffering mode
	28.21.1 set-buffering-mode!

	28.22 Terminal ports
	28.22.1 terminal-name
	28.22.2 terminal-port?

	28.23 How Scheme procedures relate to UNIX C functions
	28.24 Windows specific notes
	28.24.1 Procedure Changes
	28.24.2 Unsupported Definitions
	28.24.3 Additional Definitions
	28.24.4 process-spawn

	29 Unit utils
	29.1 Environment Query
	29.1.1 apropos
	29.1.2 apropos-list

	29.2 Iterating over input lines and files
	29.2.1 for-each-line
	29.2.2 for-each-argv-line

	29.3 Executing shell commands with formatstring and error checking
	29.3.1 system*

	29.4 Reading a file's contents
	29.4.1 read-all

	30 Unit tcp
	30.1 tcp-listen
	30.2 tcp-listener?
	30.3 tcp-close
	30.4 tcp-accept
	30.5 tcp-accept-ready?
	30.6 tcp-listener-port
	30.7 tcp-listener-fileno
	30.8 tcp-connect
	30.9 tcp-addresses
	30.10 tcp-port-numbers
	30.11 tcp-abandon-port
	30.12 tcp-buffer-size
	30.13 tcp-read-timeout
	30.14 tcp-write-timeout
	30.15 tcp-connect-timeout
	30.16 tcp-accept-timeout
	30.17 Example

	31 Unit lolevel
	31.1 Foreign pointers
	31.1.1 address�pointer
	31.1.2 allocate
	31.1.3 free
	31.1.4 null-pointer
	31.1.5 null-pointer?
	31.1.6 object�pointer
	31.1.7 pointer?
	31.1.8 pointer=?
	31.1.9 pointer�address
	31.1.10 pointer�object
	31.1.11 pointer-offset
	31.1.12 pointer-u8-ref
	31.1.13 pointer-s8-ref
	31.1.14 pointer-u16-ref
	31.1.15 pointer-s16-ref
	31.1.16 pointer-u32-ref
	31.1.17 pointer-s32-ref
	31.1.18 pointer-f32-ref
	31.1.19 pointer-f64-ref
	31.1.20 pointer-u8-set!
	31.1.21 pointer-s8-set!
	31.1.22 pointer-u16-set!
	31.1.23 pointer-s16-set!
	31.1.24 pointer-u32-set!
	31.1.25 pointer-s32-set!
	31.1.26 pointer-f32-set!
	31.1.27 pointer-f64-set!
	31.1.28 align-to-word

	31.2 Tagged pointers
	31.2.1 tag-pointer
	31.2.2 tagged-pointer?
	31.2.3 pointer-tag

	31.3 Extending procedures with data
	31.3.1 extend-procedure
	31.3.2 extended-procedure?
	31.3.3 procedure-data
	31.3.4 set-procedure-data!

	31.4 Data in unmanaged memory
	31.4.1 object-evict
	31.4.2 object-evict-to-location
	31.4.3 object-evicted?
	31.4.4 object-size
	31.4.5 object-release
	31.4.6 object-unevict

	31.5 Locatives
	31.5.1 make-locative
	31.5.2 make-weak-locative
	31.5.3 locative?
	31.5.4 locative-ref
	31.5.5 locative-set!
	31.5.6 locative�object

	31.6 Accessing toplevel variables
	31.6.1 global-bound?
	31.6.2 global-ref
	31.6.3 global-set!

	31.7 Low-level data access
	31.7.1 block-ref
	31.7.2 block-set!
	31.7.3 object-copy
	31.7.4 make-record-instance
	31.7.5 move-memory!
	31.7.6 number-of-bytes
	31.7.7 number-of-slots
	31.7.8 record-instance?
	31.7.9 record�vector

	31.8 Procedure-call- and variable reference hooks
	31.8.1 set-invalid-procedure-call-handler!
	31.8.2 unbound-variable-value

	31.9 Magic
	31.9.1 object-become!
	31.9.2 mutate-procedure

	32 Interface to external functions and variables
	33 Accessing external objects
	33.1 foreign-code
	33.2 foreign-value
	33.3 foreign-declare
	33.4 define-foreign-type
	33.5 define-foreign-variable
	33.6 define-foreign-record
	33.6.1 TYPENAME-SLOTNAME
	33.6.2 TYPENAME-SLOTNAME-set!
	33.6.3 constructor
	33.6.4 destructor
	33.6.5 rename

	33.7 define-foreign-enum
	33.8 foreign-lambda
	33.9 foreign-lambda*
	33.10 foreign-safe-lambda
	33.11 foreign-safe-lambda*
	33.12 foreign-primitive

	34 Foreign type specifiers
	34.1 scheme-object
	34.2 bool
	34.3 byte unsigned-byte
	34.4 char unsigned-char
	34.5 short unsigned-short
	34.6 int unsigned-int int32 unsigned-int32
	34.7 integer unsigned-integer integer32 unsigned-integer32 integer64
	34.8 long unsigned-long
	34.9 float double
	34.10 number
	34.11 symbol
	34.12 scheme-pointer
	34.13 nonnull-scheme-pointer
	34.14 c-pointer
	34.15 nonnull-c-pointer
	34.16 blob
	34.17 nonnull-blob
	34.18 u8vector u16vector u32vector s8vector s16vector s32vector f32vector f64vector
	34.19 nonnull-u8vector nonnull-u16vector nonnull-u32vector nonnull-s8vector nonnull-s16vector nonnull-s32vector nonnull-f32vector nonnull-f64vector
	34.20 c-string
	34.21 nonnull-c-string
	34.22 [nonnull-] c-string*
	34.23 [nonnull-] unsigned-c-string[*]
	34.24 c-string-list
	34.25 c-string-list*
	34.26 void
	34.27 (const TYPE)
	34.28 (enum NAME)
	34.29 (c-pointer TYPE)
	34.30 (nonnull-c-pointer TYPE)
	34.31 (ref TYPE)
	34.32 (struct NAME)
	34.33 (template TYPE ARGTYPE ...)
	34.34 (union NAME)
	34.35 (instance CNAME SCHEMECLASS)
	34.36 (instance-ref CNAME SCHEMECLASS)
	34.37 (function RESULTTYPE (ARGUMENTTYPE1 ... [...]) [CALLCONV])
	34.38 Mappings

	35 Embedding
	35.1 CHICKEN_parse_command_line
	35.2 CHICKEN_initialize
	35.3 CHICKEN_run
	35.4 return-to-host
	35.5 CHICKEN_eval
	35.6 CHICKEN_eval_string
	35.7 CHICKEN_eval_to_string
	35.8 CHICKEN_eval_string_to_string
	35.9 CHICKEN_apply
	35.10 CHICKEN_apply_to_string
	35.11 CHICKEN_read
	35.12 CHICKEN_load
	35.13 CHICKEN_get_error_message
	35.14 CHICKEN_yield
	35.15 CHICKEN_continue
	35.16 CHICKEN_new_gc_root
	35.17 CHICKEN_delete_gc_root
	35.18 CHICKEN_gc_root_ref
	35.19 CHICKEN_gc_root_set
	35.20 CHICKEN_global_lookup
	35.21 CHICKEN_global_ref
	35.22 CHICKEN_global_set

	36 Callbacks
	36.1 define-external
	36.2 C_callback
	36.3 C_callback_adjust_stack

	37 Locations
	37.1 define-location
	37.2 let-location
	37.3 location

	38 Other support procedures
	38.1 argc+argv

	39 C interface
	39.1 C_save
	39.2 C_restore
	39.3 C_fix
	39.4 C_make_character
	39.5 C_SCHEME_END_OF_LIST
	39.6 C_word C_SCHEME_END_OF_FILE
	39.7 C_word C_SCHEME_FALSE
	39.8 C_word C_SCHEME_TRUE
	39.9 C_string
	39.10 C_string2
	39.11 C_intern2
	39.12 C_intern3
	39.13 C_pair
	39.14 C_flonum
	39.15 C_int_to_num
	39.16 C_mpointer
	39.17 C_vector
	39.18 C_list
	39.19 C_alloc
	39.20 C_SIZEOF_LIST
	39.21 C_SIZEOF_STRING
	39.22 C_SIZEOF_VECTOR
	39.23 C_SIZEOF_INTERNED_SYMBOL
	39.24 C_SIZEOF_PAIR
	39.25 C_SIZEOF_FLONUM
	39.26 C_SIZEOF_POINTER
	39.27 C_SIZEOF_LOCATIVE
	39.28 C_SIZEOF_TAGGED_POINTER
	39.29 C_character_code
	39.30 C_unfix
	39.31 C_flonum_magnitude
	39.32 C_c_string
	39.33 C_num_to_int
	39.34 C_pointer_address
	39.35 C_header_size
	39.36 C_header_bits
	39.37 C_block_item
	39.38 C_u_i_car
	39.39 C_u_i_cdr
	39.40 C_data_pointer
	39.41 C_make_header
	39.42 C_mutate
	39.43 C_symbol_value
	39.44 C_gc_protect
	39.45 C_gc_unprotect
	39.46 C_pre_gc_hook
	39.47 C_post_gc_hook
	39.48 An example for simple calls to foreign code involving callbacks
	39.49 Notes:

	40 chicken-setup
	40.1 Extension libraries
	40.2 Installing extensions
	40.2.1 Installing extensions that use libraries

	40.3 Creating extensions
	40.4 Procedures and macros available in setup scripts
	40.4.1 install-extension
	40.4.2 install-program
	40.4.3 install-script
	40.4.4 run
	40.4.5 compile
	40.4.6 make
	40.4.7 patch
	40.4.8 copy-file
	40.4.9 move-file
	40.4.10 remove-file*
	40.4.11 find-library
	40.4.12 find-header
	40.4.13 try-compile
	40.4.14 create-directory
	40.4.15 chicken-prefix
	40.4.16 installation-prefix
	40.4.17 program-path
	40.4.18 setup-root-directory
	40.4.19 setup-build-directory
	40.4.20 setup-verbose-flag
	40.4.21 setup-install-flag
	40.4.22 required-chicken-version
	40.4.23 required-extension-version
	40.4.24 cross-chicken
	40.4.25 host-extension

	40.5 Examples for extensions
	40.6 chicken-setup reference
	40.7 Windows notes
	40.8 Security
	40.9 Other modes of installation
	40.10 Linking extensions statically

	41 Data representation
	41.1 Immediate objects
	41.2 Non-immediate objects

	42 Bugs and limitations
	43 FAQ
	43.1 General
	43.1.1 Why yet another Scheme implementation?
	43.1.2 Why call it 'Chicken'?
	43.1.3 What should I do if I find a bug?
	43.1.4 Why are values defined with define-foreign-variable or define-constant or define-inline not seen outside of the containing source file?
	43.1.5 How does cond-expand know which features are registered in used units?
	43.1.6 Why are constants defined by define-constant not honoured in case constructs?
	43.1.7 How can I enable case sensitive reading/writing in user code?
	43.1.8 How can I change match-error-control during compilation?
	43.1.9 Why doesn't CHICKEN support the full numeric tower by default?
	43.1.10 How can I specialize a generic function method to match instances of every class?
	43.1.11 Does CHICKEN support native threads?
	43.1.12 Does CHICKEN support Unicode strings?
	43.1.13 Why do I get an "Error: invalid syntax: ..." using 'match' and 'syntax-case'?

	43.2 Platform specific
	43.2.1 How do I generate a DLL under MS Windows (tm) ?
	43.2.2 How do I generate a GUI application under Windows(tm)?
	43.2.3 Compiling very large files under Windows with the Microsoft C compiler fails with a message indicating insufficient heap space.
	43.2.4 When I run csi inside an emacs buffer under Windows, nothing happens.
	43.2.5 I load compiled code dynamically in a Windows GUI application and it crashes.
	43.2.6 On Windows, csc.exe seems to be doing something wrong.
	43.2.7 On Windows source and/or output filenames with embedded whitespace are not found.

	43.3 Customization
	43.3.1 How do I run custom startup code before the runtime-system is invoked?
	43.3.2 How can I add compiled user passes?

	43.4 Compiled macros
	43.4.1 Why is define-macro complaining about unbound variables?
	43.4.2 Why isn't load properly loading my library of macros?
	43.4.3 Why is include unable to load my hygienic macros?
	43.4.4 Why are macros not visible outside of the compilation unit in which they are defined?

	43.5 Warnings and errors
	43.5.1 Why does my program crash when I use callback functions (from Scheme to C and back to Scheme again)?
	43.5.2 Why does the linker complain about a missing function _C_..._toplevel?
	43.5.3 Why does the linker complain about a missing function _C_toplevel?
	43.5.4 Why does my program crash when I compile a file with -unsafe or unsafe declarations?
	43.5.5 Why do I get a warning when I define a global variable named match?
	43.5.6 Why don't toplevel-continuations captured in interpreted code work?
	43.5.7 Why does define-reader-ctor not work in my compiled program?
	43.5.8 Why do built-in units, such as srfi-1, srfi-18, and posix fail to load?
	43.5.9 How can I increase the size of the trace shown when runtime errors are detected?

	43.6 Optimizations
	43.6.1 How can I obtain smaller executables?
	43.6.2 How can I obtain faster executables?
	43.6.3 Which non-standard procedures are treated specially when the extended-bindings or usual-integrations declaration or compiler option is used?
	43.6.4 Can I load compiled code at runtime?

	43.7 Garbage collection
	43.7.1 Why does a loop that doesn't cons still trigger garbage collections?
	43.7.2 Why do finalizers not seem to work in simple cases in the interpeter?

	43.8 Interpreter
	43.8.1 Does CSI support history and autocompletion?
	43.8.2 Does code loaded with load run compiled or interpreted?

	43.9 Extensions
	43.9.1 How can I install Chicken eggs to a non-default location?
	43.9.2 Can I install chicken eggs as a non-root user?

	44 Acknowledgements
	45 Bibliography

