
ASIS-for-GNAT Reference Manual

Configuration level: 120239
Date: 2007/12/19

GNAT version 2008

AdaCore

Copyright c© 2000-2008, AdaCore
Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

About This Manual
This Manual contains reference material for developers using ASIS-for-GNAT
— GNAT’s implementation of the Ada Semantic Interface Specification (ASIS).
It provides information about ASIS-for-GNAT’s implementation-specific1 char-
acteristics and current implementation limitations.

GNAT implements both Ada 95 and Ada 2005. As of January 2008, the
ASIS standard is specific to Ada 95 and has not yet been updated to Ada 2005.
Notwithstanding the status of the ASIS standard, ASIS-for-GNAT includes
extensions that account for the new Ada 2005 functionality. You can therefore
use ASIS-for-GNAT for Ada 2005 programs, keeping in mind that the Ada
2005-specific support may subsequently change as work on updating the ASIS
standard proceeds.

For further information on ASIS-for-GNAT and Ada 2005, please refer to the
auxiliary documents ‘asis-2005-transition.txt ’ and ‘features-asis2005 ’ in
the ASIS source directory.

ASIS has been designed as a portable basis for many kinds of Ada code
analysis tools. However, for situations where a developer may need to exploit
the characteristics of a particular Ada compiler, ASIS also contains a number of
implementation-specific features. These allow interfacing with the underlying
Ada implementation, as well as exploiting the implementation permissions for
particular queries.

Of course, any ASIS application that uses implementation-specific features
may be nonportable. You should follow good programming practice and isolate
and clearly document any sections of your program that make use of such
features in a nonportable manner.

What This Manual Contains
This manual contains the following chapters:
• Chapter 1 [ASIS-for-GNAT and the ASIS Standard], page 3, describes the

relationship between ASIS-for-GNAT and the existing ASIS International
Standard.

• Chapter 2 [ASIS Extensions], page 5, describes the contents of
the packages Asis.Extensions , Asis.Extensions.Flat_Kinds and
Asis.Extensions.Iterator .

• Chapter 3 [Implementation-Specific Features and Implementation Permis-
sions], page 7, presents the aspects of the ASIS definition that are imple-
mentation specific and describes their treatment in ASIS-for-GNAT.

1 The term “implementation-specific” in ASIS means what is called “implementation-defined”
in the Ada Reference Manual.

1

ASIS-for-GNAT Reference Manual

• Chapter 4 [Debugging Information], page 19, describes the kinds of debug-
ging information that you can generate with ASIS-for-GNAT.

What You Should Know Before Reading This Manual
This Reference Manual assumes that you are familiar with Ada 95 language as
defined by the International Standard ISO/IEC-8652:1995, and with ASIS 95
as defined by the ASIS 95 International Standard ISO/IEC 15291:1999.

This Manual supplements the information presented in the ASIS-for-GNAT
User’s Guide and uses the terminology introduced there.

Related Information
For more information, please refer to the following documents:
• GNAT User’s Guide
• ASIS-for-GNAT User’s Guide
• Ada 95 Reference Manual
• ASIS 95 Standard

2

Chapter 1: ASIS-for-GNAT and the ASIS Standard

1 ASIS-for-GNAT and the ASIS Standard
ASIS-for-GNAT implements ASIS 951 and contains several extensions (see
Chapter 2 [ASIS Extensions], page 5) as allowed by the ASIS Standard, Section
1.1.3.1.

ASIS-for-GNAT declares all of the required2 ASIS interface packages defined
in the ASIS Standard. The only differences between the GNAT and the standard
ASIS versions of the packages are that GNAT-for-ASIS:
• includes GNAT-specific comment headers at the beginning of each source

file;
• supplies additional context clauses;
• defines the packages’ private parts;
• is formatted to comply with GNAT coding style;
• declares the Is_Dispatching_Operation query in Asis.Declarations .

rather than in Asis.Expressions . This query has A_Declaration Element
as its argument and, according to the general principles of the ASIS package
hierarchy, it should be in the Asis.Declarations spec;

• includes extensions that support features introduced in Ada 2005.

1 If a query raises the ASIS_Failed exception with Not_Implemented_Error error status, this
means that some part of the functionality of the query is not implemented yet. If you encounter
such a situation, report it as an ordinary ASIS-for-GNAT bug. Our goal is to have the full
implementation of ASIS 95 conforming to the ASIS Standard.

2 The optional Data Decomposition Annex is not provided

3

ASIS-for-GNAT Reference Manual

4

Chapter 2: ASIS Extensions

2 ASIS Extensions
ASIS-for-GNAT provides some additional types and queries as ASIS exten-
sions. All these queries are defined and documented in the hierarchy headed
by package Asis.Extensions . They are referred as “ASIS extensions” or “ASIS
extension queries” below.

All the ASIS extensions obey the general ASIS rules:
• When using ASIS extensions, you have to follow the required sequencing

of calls
• Only ASIS-defined exceptions propagate outside ASIS extension queries

If the documentation of an ASIS extension query contains a list of “appropriate”
Element kinds, then the query can be applied only to Element s from this list, and
it raises ASIS_Inappropriate_Element with Value_Error status otherwise. If
the documentation of an ASIS extension query contains a list of “expected”
element kinds, then the query can be applied to an Element having any kind,
but it returns a meaningful result only for Element s from this list.

The current set of ASIS extensions originated from the ASIS implementation
needs and from the development of some ASIS tools inside the ASIS-for-GNAT
team. The Asis.Extensions hierarchy is not necessarily frozen: some fur-
ther extension queries may be added, and suggestions from ASIS application
developers are welcome.

Note that some of the ASIS extensions are implemented as ASIS secondary
queries — that is, the implementation of such a query is a sequence of pri-
mary ASIS queries. Some other extensions are pure extensions; that is, their
implementation is based on direct access to GNAT’s internal data structures.

2.1 Asis.Extensions

This package, whose spec is located in the file ‘asis-extensions.ads ’,
contains the declarations of various ASIS extensions, including dynamic
Element and Compilation_Unit list types, placeholder actual parameters
for Asis.Iterator.Traverse_Element , additional Element structural and
semantic queries, queries that return information about the status of the
source file for a Compilation_Unit , queries returning the (images of the)
values of static expressions, etc.

2.2 Asis.Extensions.Flat_Kinds

The ASIS Element classification hierarchy is based on a set of Ada
enumeration types, each corresponding to a “level” in the hierarchy. The
package Asis.Extensions.Flat_Kinds , whose spec is located in the
file ‘asis-extensions-flat_kinds.ads ’, defines the enumeration type

5

ASIS-for-GNAT Reference Manual

Flat_Element_Kinds ; this type combines the values of all these types and thus
provides a “flat” view onto the syntactic Element classification.

2.3 Asis.Extensions.Iterator

This package, whose spec is located in the file ‘asis-extensions-iterator.ads ’,
contains the declarations of Traverse_Unit generic procedure that is a
generalization of the standard ASIS Asis.Iterator.Traverse_Element
iterator. Traverse_Unit provides the depth-first traversal of the whole
syntactical structure of the ASIS Compilation Unit.

6

Chapter 3: Implementation-Specific Features and Implementation Permissions

3 Implementation-Specific Features and
Implementation Permissions

ASIS permits four kinds of implementation-specific behavior.
First, ASIS subprograms that define an interface between an

ASIS implementation and the underlying Ada implementation have
implementation-specific parameters. There are three such queries —
Asis.Implementation.Initialize , Asis.Implementation.Finalize and
Asis.Ada_Environments.Associate . Each has a string parameter named
Parameters with an implementation-specific meaning. The meaning of the
Parameters string in ASIS-for-GNAT is discussed in Section 3.1 [Interacting
with the Underlying Ada Implementation], page 7.

Second, in some areas the ASIS standard explicitly grants the implementa-
tion permission to provide restricted functionality; generally this allows omit-
ting features that could present considerable implementation difficulty. Such
permissions usually affect more than one ASIS query. The ASIS package
Asis.Implementation.Permissions contains boolean queries identifying the
choices made by a given ASIS implementation. The ASIS-for-GNAT approach
to these implementation permissions is discussed in Section 3.2 [Implementa-
tion Permissions], page 11.

Third, the ASIS standard defines specific implementation permissions for
some queries. Also, the result of a query may be implementation specific because
of the nature of the query. See Section 3.3 [ASIS Queries Having Specific
Implementation Permissions or Implementation-Specific Results], page 13.

Finally, ASIS-for-GNAT provides special Context manipulation mechanisms
that supplement those defined in the ASIS standard. These additional Context
modes may be useful for some ASIS applications.

3.1 Interacting with the Underlying Ada
Implementation

This section describes how to use the Parameters string to pass implementation-
specific information to several ASIS subprograms.

3.1.1 Format of the Parameters String
A Parameters string is passed to three ASIS subprograms:
Asis.Implementation.Initialize , Asis.Implementation.Finalize ,
and Asis.Ada_Environments.Associate .

The Parameters string comprises substrings delimited by separators. The
substrings are called parameters (with lower-case ’p’) below. A separator is a
non-empty string comprising characters from the set { <Space>,<LF>, <CR>} .

7

ASIS-for-GNAT Reference Manual

There may be 0 or more parameters in a Parameters string, and there may be
separators before the first and/or after the last parameter.

Each of the queries Asis.Implementation.Initialize ,
Asis.Implementation.Finalize , and Asis.Ada_Environments.Associate
has specific rules for the format of its parameters. If some parameter is
not well-formed, then either a warning message is generated or else the
ASIS_Failed exception is raised with the Parameter_Error status. The
descriptions below explain the situations where ASIS_Failed is raised.

3.1.2 Parameters of Asis.Implementation.Initialize

The allowed parameters for Asis.Implementation.Initialize are as follows:

-d<flag> The specific ASIS-for-GNAT debug flag named <flag> is set ON

-dall All the ASIS-for-GNAT debug flags are set ON

-k Keep going even if an internal implementation error is detected.
When a non-ASIS exception is raised, it is replaced by raising ASIS_
Failed with Unhandled_Exception_Error status (this is the only
case when Unhandled_Exception_Error is set) and the Diagnosis
string containing the name and the message from the non-ASIS
exception originally raised

-nbb No bug box. Do not output to Standard_Error the bug box con-
taining the description of the internal implementation bug. Implies
-k

-vs Set the strong GNAT/ASIS version check when reading the tree files

-we All ASIS warnings are treated as errors. When execution reaches
the point where the warning would occur, the ASIS_Failed exception
is raised; the warning message is the ASIS Diagnosis string.

-ws All ASIS warning messages are suppressed.

The <flag> value for the ‘-d ’ parameter may be any lower case letter from a
through z or any digit from 0 through 9, although not all of the 36 possible
flags are implemented. For more information, refer to the documentation in
the source file ‘a4g-a_debug.adb ’. See also Section 4.2 [ASIS Debug Flags],
page 20.

If more then one parameter controlling the warning mode is set in the
Parameters string, all but the last one are ignored.

3.1.3 Parameters of Asis.Implementation.Finalize

No parameters are allowed for Asis.Implementation.Finalize .

8

Chapter 3: Implementation-Specific Features and Implementation Permissions

Asis.Implementation.Finalize resets all the general ASIS-for-GNAT pa-
rameters to their default values (that is, all the debug flags are set OFF, and
the warning mode is set to the default warning mode).

3.1.4 Parameters of Asis.Ada_Environments.Associate

The following parameters are allowed:

-C1 The Context comprises a single tree file, whose name is given as the
next parameter in the Parameters string.

-CN The Context comprises a set of one or more tree files, whose names
are given as the next set of parameters in the Parameters string.

-CA The Context comprises all the tree files in the tree search path.

-FS All the trees considered as making up a given Context are created
“on the fly”, whether or not the corresponding tree file already ex-
ists. Once created, a tree file then is reused as long as the Context
remains open.

-FT Only pre-created trees are used; no tree files are created by ASIS.

-FM Mixed approach: if a needed tree does not exist, an attempt is made
to create it “on the fly”.

-SA Source files for all the Compilation_Unit s belonging to the Context
(except the predefined Standard package) are considered in the con-
sistency check when opening the Context .

-SE Only existing source files for all the Compilation_Units belonging
to the Context are considered in the consistency check when opening
the Context .

-SN No source files from the underlying file system are taken into ac-
count when checking the consistency of the set of tree files making
up the Context .

-I<dir> Defines the directory in which to search for source files when com-
piling sources to create a tree “on the fly”.

--GCC=compiler_name
Defines the program to be called to create the tree on the fly

-gnatec<file>
Defines the additional configuration file to be used when calling
GNAT to create the tree on the fly for ‘-FS ’ or ‘-FM’ Context

-gnatA Avoid processing ‘gnat.adc ’ when calling GNAT to create the tree
on the fly for ‘-FS ’ or ‘-FM’ Context

9

ASIS-for-GNAT Reference Manual

-T<dir> Defines the directory in which to search for a tree file.

<file_name>
Defines the name of a tree file (used in conjunction with ‘-C1 ’ or
‘-CN’).

For the ‘-I ’ and ‘-T ’ parameters, <dir> should denote an existing directory in
the underlying file system. The “.” and “..” notations are allowed, as well
as relative or absolute directory names. If <dir> does not denote an existing
directory, ASIS_Failed with Parameter_Error status is raised.

For ASIS ‘-FS ’ or ‘-FM’ Context, Context parameters ‘-I ’, ‘-gnatec ’ and
‘-gnatA ’ are passed to the GNAT call to create the tree on the fly and these
parameters have exactly the same meaning as they have for GNAT.

A tree file name given by a <file_name> parameter may or may not contain
directory information.

Any relative directory name or file name containing relative directory infor-
mation should start from “.” or “..”.

If a directory or a file name used as a part of some Context parameter contains
space characters, this name should be quoted.

The search path associated with an ASIS Context consists of the directories
listed as parameters for the Asis.Ada_Environments.Associate query, in the
same order as they are included in the actual Parameters string. The ASIS
source search path consists only of the directories following ‘-I ’, and the ASIS
tree search path consists only of the directories following ‘-T ’. If no source (tree)
directories are present in the value of the Parameters string, then the ASIS
source (tree) search path consists of the current directory only. Otherwise the
current directory is included in the ASIS search path if and only if it is set
explicitly as ‘-I. ’ or ‘-T. ’ respectively.

If an ASIS Context is associated with an ‘-FS ’ or ‘-FM’ option, the Context
source search path is used to locate sources of the units for which tree files need
to be created, and to locate other source files needed during compilation. For
example, if we have:

Asis.Ada_Environments.Associate

(My_Context,

"My_Context_Name",

"-CA -FS -I./dir -I.");

then, when processing a call:
My_Unit := Asis.Compilation_Units.Library_Unit_Declaration

("Foo", My_Context);

ASIS first tries to locate the source file ‘foo.ads ’ in ‘./dir ’, and if this attempt
fails, it tries to locate it in the current directory. If there is no such file in
the current directory, ASIS continues the search by looking into the directories
listed in the value of ADA_INCLUDE_PATHenvironment variable. If the source

10

Chapter 3: Implementation-Specific Features and Implementation Permissions

file is found (say in the current directory), ASIS creates the tree file by calling
the compiler:

$ gcc -c -gnatc -gnatt -I./dir -I. -I- foo.ads

If an ASIS Context is associated with ‘-CA ’ option, then, when this Context
is opened, ASIS processes all the tree files located in the tree search path
associated with the Context .

The following further rules define the required combinations of parameters
in the actual Parameters string:
• ‘-C1 ’ and ‘-CN’ require ‘-FT ’
• ‘-FS ’ and ‘-FM’ require ‘-SA ’

In case an incompatible combination is set, ASIS_Failed with Parameter_Error
status is raised.

If the actual Parameters string passed to Associate contains no parameters,
the default parameters are ‘-CA ’, ‘-FT ’, and ‘-SA ’.

The ‘-FS ’ and ‘-FM’ options define dynamic Context modes; they allow the
content of a Context (that is, the set of ASIS Compilation_Unit s contained in
the Context) to be changed while the Context is open. See Section 3.4 [Dynamic
Context Modes], page 18 for more details.

For the Name parameter of the Asis.Ada_Environments.Associate query,
any string can be passed as an actual parameter. No verification is performed
on the contents, and no semantics are associated with this parameter.

3.2 Implementation Permissions
This section describes how ASIS-for-GNAT deals with implementation permis-
sions.

3.2.1 Asis.Implementation.Permissions Queries
The Boolean queries defined in the Asis.Implementation.Permissions pack-
age return the following results:
Query Value
Is_Formal_Parameter_Named_Notation_Supported True
Default_In_Mode_Supported True
Generic_Actual_Part_Normalized False
Record_Component_Associations_Normalized False
Is_Prefix_Call_Supported True
Function_Call_Parameters_Normalized False
Call_Statement_Parameters_Normalized False
Discriminant_Associations_Normalized False
Is_Line_Number_Supported True
Is_Span_Column_Position_Supported True

11

ASIS-for-GNAT Reference Manual

Is_Commentary_Supported True
Attributes_Are_Supported False
Implicit_Components_Supported False (*)
Object_Declarations_Normalized False
Predefined_Operations_Supported False (*)
Inherited_Declarations_Supported True (*)
Inherited_Subprograms_Supported True (*)
Generic_Macro_Expansion_Supported True

(*) See also Section 3.2.2 [Processing Implicit Elements], page 12.

3.2.2 Processing Implicit Element s
ASIS Element s represent both explicit and implicit1 components of Ada pro-
grams. Some ASIS queries can return implicit Element s (that is, Element s
representing implicit Ada constructs). Any syntactic or semantic query should
accept an implicit Element as an Element parameter, but the ASIS Standard
allows an implementation not to support implicit Element s at all, or to support
them only partially. If an implementation does not support the implicit Element
representing a particular kind of construct, then an ASIS query that is supposed
to process this implicit Element should return either a Nil_Element or a Nil_
Element_List depending on whether the query returns a single Element or an
Element_List .

Implicit Element s are partially supported by ASIS-for-GNAT.
ASIS-for-GNAT supports implicit Element s for the following constructs:
• Derived user-defined subprograms
• Derived enumeration literals
• Derived record components

ASIS-for-GNAT does not support implicit Element s representing implicit dec-
larations of predefined type operations (such as “=”, or the “+” operation for
numeric types).

3.2.3 Processing Several Contexts at a Time
According to the ASIS Standard, the number of ASIS Context s that can be
associated and opened at a time, as well as the number of ASIS Compilation_
Unit s that can be processed at a time, are implementation specific. ASIS-for-
GNAT does not impose any restriction on the number of Context s opened at the
same time, or on the number of Compilation_Unit s that can be obtained from
all the opened Context s, as long as the application does not go beyond general
system resource limitations.

1 An example of an implicit construct is a derived subprogram.

12

Chapter 3: Implementation-Specific Features and Implementation Permissions

However, for a Context associated with an ‘-FS ’ or ‘-FM’ option, all the trees
created “on the fly” while obtaining Compilation_Unit s from this Context are
placed in the current directory. If the current directory also contains some tree
files belonging to another Context , the latter may become corrupted. To process
more than one Context safely, an application should have at most one Context
associated with the ‘-FS ’ or ‘-FM’ option. Moreover, if among Context s processed
at the same time there is one that can create trees “on the fly”, then the other
Context s should not use tree files located in the current directory.

3.2.4 Implementation-Defined Types and Values
All the implementation-defined types, subtypes and values depend on the sub-
type Implementation_Defined_Integer_Type and on the Implementation_
Defined_Integer_Constant defined in package Asis . ASIS-for-GNAT’s dec-
larations for these entities are the same as in the ASIS Standard:

subtype Implementation_Defined_Integer_Type is Integer;

Implementation_Defined_Integer_Constant : constant := 2**31-1;

All the ASIS (sub)types used as list indexes for ASIS array types have
Implementation_Defined_Integer_Constant as an upper bound.

3.3 ASIS Queries Having Specific Implementation
Permissions or Implementation-Specific Results

This section documents queries having implementation permissions (given un-
der --|IP sentinel in the ASIS definition) and queries whose behavior is other-
wise implementation specific. Such queries are presented below in their order
of appearance in the ASIS Standard. The clause and subclause numbers shown
are those from the ASIS Standard.

The results returned by the ASIS Debug_Image queries are discussed in
Section 4.1 [Interpreting Debug Images], page 19.

ASIS 8 package Asis.Ada_Environments

ASIS 8.1 function Default_Name

• Null string is returned.
ASIS 8.2 function Default_Parameters

• Null string is returned;.
ASIS 8.4 procedure Open

• For a Context associated with the ‘-CA ’ option:
• If ‘-FS ’ is also set, nothing is done.
• If the ‘-FT ’ or ‘-FM’ is set, all the tree files (that is, files having ‘.adt ’

suffix) in the tree search path associated with the Context are pro-
cessed. ASIS reads in each tree file and checks that it was created

13

ASIS-for-GNAT Reference Manual

with the ‘-gnatc ’ option. Tree files that cannot be read in or that were
not created with the ‘-gnatc ’ option are ignored. For each other tree
ASIS collects some “black-box” information about the Compilation_
Unit s that it represents, and performs a consistency check for every
unit it encounters in the tree (see ASIS-for-GNAT User’s Guide for a
discussion of the consistency problem). If any consistency check fails,
ASIS_Failed is raised and the Context remains closed.

• For a Context associated with a ‘-C1 ’ or ‘-CN’ option, ASIS processes all
the tree files associated with the Context , collecting “black-box” informa-
tion and performing consistency checks for all the encountered Compila-
tion Units. If for any reason a tree file cannot be successfully read in for
a Context associated with a ‘-C1 ’ option, ASIS_Failed is raised and the
Context remains closed. If a tree read fails for a Context associated with
a ‘-CN’ option, an ASIS warning is generated and the Context opening pro-
cess continues. If any consistency check fails, ASIS_Failed is raised and
the Context remains closed.

ASIS 9 package Asis.Ada_Environments.Containers

• ASIS-for-GNAT supports the trivial Container model. Every Context con-
tains exactly one Container , whose content and name are the same as its
enclosing Context

ASIS 10 package Asis.Compilation_Units

ASIS 10.3 function Unit_Origin

• A_Predefined_Unit origin is returned for those compilation units listed in
RM95, Annex A(2), and only for these units.

• An_Implementation_Unit origin is returned for compilation units that are
the components of the GNAT Run-Time Library, but that are not listed in
RM95, Annex A(2).

• An_Application_Unit origin is returned for all other compilation units.
ASIS 10.6 function Library_Unit_Declaration and ASIS 10.7 function
Compilation_Unit_Body

• When processing a Context associated with an ‘-FS ’ or ‘-FM’ option, if ASIS
cannot find a needed unit in the tree files that have been already pro-
cessed, it tries to create the needed tree by locating the source of the unit
and compiling it “on the fly”. If this attempt fails for any reason, Nil_
Compilation_Unit is returned.

ASIS 10.13 function Corresponding_Declaration

• ASIS-for-GNAT does not make use of ASIS Compilation_Unit s of An_
Unknown_Unit kind.

14

Chapter 3: Implementation-Specific Features and Implementation Permissions

• If an argument is of A_Public_Declaration_And_Body class, Nil_
Compilation_Unit is returned.

ASIS 10.14 function Corresponding_Body

• ASIS-for-GNAT does not make use of ASIS Compilation_Unit s of An_
Unknown_Unit kind.

ASIS 10.22 function Can_Be_Main_Program

• For GNAT, any parameterless library procedure and any parameterless
library function returning a result of an integer type is classified by this
query as a (possible) main subprogram for a partition.

• If for such a library subprogram both spec and body exist as ASIS
Compilation_Unit s retrievable from a given ASIS Context , both are con-
sidered as Can_Be_Main_Program .

ASIS 10.24 function Text_Name

• This function returns the name of the source file containing the source of
Compilation_Unit . This name may or may not contain a prefix denoting
the directory in the underlying file system. If present, the directory may be
given in absolute or relative form, depending on the command line options
that were used for the call to GNAT that created the corresponding tree
file.

• This function does not check the existence of the corresponding source file
in the underlying file system, it just reflects the situation which was in
effect when the corresponding tree file was created. Thus, if you delete or
move the corresponding source file after creating the tree, the full file name
returned by this function will be incorrect.

• Use the query Asis.Extensions.Source_File_Status to get the informa-
tion about the current status of the source file for a Compilation_Unit .

ASIS 10.25 function Text_Form

• In the GNAT compilation model all source files are ordinary text files in
the underlying file system. Therefore this function always returns a Nil_
Asis_String to indicate that Text_IO.Open uses the default options for
manipulating Ada sources.

ASIS 10.26 function Object_Name

• Returns a null string. In the GNAT environment, creating an object file
has no connection with creating trees for ASIS.

ASIS 10.27 function Object_Form

• Returns a null string.

ASIS 10.29 function Has_Attribute

15

ASIS-for-GNAT Reference Manual

• Returns False . ASIS-for-GNAT does not provide any additional attributes
for Compilation Units.

ASIS 10.30 function Attribute_Value_Delimiter

• Returns a wide string of length one containing the LF wide character.

ASIS 10.31 function Attribute_Values

• A null string is returned.

ASIS 11 package Asis.Compilation_Units.Times

ASIS 11.2 function Time_Of_Last_Update

• This function returns the time stamp (the time of the latest change) of the
corresponding source file. The corresponding source file is the source file
whose name is returned by Asis.Compilation_Units.Text_Name .

ASIS 11.3 function Compilation_CPU_Duration

• This function always returns zero duration, because the CPU compilation
duration concept does not apply to ASIS-for-GNAT

ASIS 11.4 function Attribute_Time

• This function always returns Nil_ASIS_Time because ASIS-for-GNAT does
not provide any Compilation_Unit attributes

ASIS 13 package Asis.Elements

ASIS 13.3 function Context_Clause_Elements

• This function returns exactly those clauses and pragmas that are in the
source for the unit.

• Returns Nil_Element_List if the argument unit is of A_Nonexistent_
Declaration , A_Nonexistent_Body or An_Unknown_Unit kind

• Returns Nil_Element_List for the predefined package Standard . For all
other predefined Ada compilation units, returns their context clauses as
they appear in the sources held in the GNAT Run-Time Library.

ASIS 13.4 function Configuration_Pragmas

• This function always returns Nil_Element_List , because in the GNAT
compilation environment “a list of pragmas that apply to all future com-
pilation unit elements compiled into The_Context ” essentially depends on
the GNAT options set when compiling a unit (in particular the ‘-gnatA ’ and
‘-gnatec ’ options), and this cannot be determined from the content of the
given Context .

ASIS 13.5 function Compilation_Pragmas

16

Chapter 3: Implementation-Specific Features and Implementation Permissions

• If the argument unit has been compiled on its own to produce a correspond-
ing tree file, then the result contains the configuration pragmas from the
GNAT configuration file(s) involved in this compilation. Otherwise (that is,
if the argument unit has been compiled only as an effect of compiling some
other unit), the result contains only those pragmas that belong to the unit’s
source file.

• A pragma that appears in the unit’s context clause is included in the result
list only if it is a configuration pragma.

• Returns Nil_Element_List for the predefined package Standard .

ASIS 13.31 function Is_Equal

• Two elements representing configuration pragmas belonging to A_
Configuration_Compilation unit (or components thereof) are considered
as being equal only if they are created by the same compilation (belong to
the same tree).

ASIS 13.36 function Enclosing_Element

• ASIS-for-GNAT does not require the Element_Context parameter.
The Enclosing_Element function with two parameters just calls the
Enclosing_Element function with one parameter for its Element
parameter.

ASIS 15 package Asis.Declarations

ASIS 15.24 function Body_Block_Statement

• If the body passed as the actual parameter has no declarative items of its
own, Asis.Statements.Is_Declare_Block returns False .

ASIS 18 package Asis.Statements

ASIS 18.14 function Is_Declare_Block

• If the argument represents the dummy block statement created by
Asis.Declarations.Body_Block_Statement function, the result will be
True if and only if the corresponding body has declarative items.

ASIS 20 package Asis.Text

ASIS 20.1 type Line

• Lines in ASIS-for-GNAT do not contain any end-of-line characters (see
RM95, 2.2(2)).

ASIS 20.22 function Delimiter_Image

• Returns a wide string of length one, containing the LF wide character.

17

ASIS-for-GNAT Reference Manual

3.4 Dynamic Context Modes
If an ASIS Context is defined with an ‘-FS ’ or ‘-FM’ option, then ASIS may
compile sources “on the fly” to obtain Compilation_Unit s. Thus the content of
the Context will not necessarily remain frozen when the Context is open —
when ASIS gets a new Compilation_Unit , it “adds” it to the Context . The ‘-FS ’
and ‘-FM’ options are referred to as dynamic Context modes.

The difference between the two modes is as follows:

‘-FS ’ ASIS does not take into account any existing tree file when opening
a Context .

‘-FM’ ASIS first processes the tree files in the tree search path. If a given
Compilation_Unit is present in the existing set of tree files, these
tree files are used; otherwise ASIS tries to locate the source of the
unit and to compile it to produce a tree file.

For both ‘-FS ’ and ‘-FM’ Context s, once a tree file is created it is added to the set of
tree files making up the Context and then it is reused (without recreating it from
sources again) for the queries dealing with Compilation_Unit s represented by
this tree.

An advantage of these dynamic Context modes is that you do not have to
create the tree files explicitly; to users of an ASIS application based on such
Context modes the application appears to operate directly from source files.
But there is also a drawback, a consequence of the fact that the content of a
Context may change while the Context is open: some ASIS queries dealing
with Compilation_Unit s or returning lists of Compilation_Unit s raise the
ASIS_Failed exception (with Use_Error status). These queries are as follows:

Asis.Compilation_Units:

Library_Unit_Declarations

Compilation_Unit_Bodies

Compilation_Units

Corresponding_Children

Another limitation of the dynamic Context mode is that ASIS uses the standard
GNAT naming scheme to compute the name of the source to be compiled from
the name of the corresponding Ada compilation unit. That is, if the name of
the source containing the code of some unit does not follow the GNAT naming
scheme, then ASIS will not locate this source, and it will treat this unit as
Nil_Compilation_Unit .

18

Chapter 4: Debugging Information

4 Debugging Information

There are two kinds of the debugging information available in ASIS-for-
GNAT — debug images returned by the ASIS query Debug_Image (for
Context s, Compilation_Unit s and Element s); and debug output generated
by ASIS queries when the corresponding implementation debug flag
is set ON during ASIS initialization (see Section 3.1.2 [Parameters of
Asis.Implementation.Initialize], page 8).

4.1 Interpreting Debug Images
It is straightforward to interpret the debug images generated for the main
ASIS abstractions, because most of the information directly corresponds to ASIS
concepts. The following details of debug images are implementation specific.

Context

Context Id
This is the internal Context Id used in the implemen-
tation data structures. This Id is assigned to a Context
when it is associated for the first time, and it remains
unchanged and unique until ASIS is finalized.

All tree files
The number of tree files making up the given Context .

Compilation_Unit

Compilation_Unit Id
This is the internal Compilation_Unit Id used in the
implementation data structures. This Id remains un-
changed and unique until the unit’s enclosed Context is
closed.

Is consistent
True if the same version of the unit’s source was used for
all the tree files making up the enclosed unit’s context,
and False otherwise

Element

Node, R Node, Node Field 1
Tree nodes on which the internal representation of a
given Element is based. They are meaningful only in
the tree file indicated in the Enclosing_Tree field of the
debug image

19

ASIS-for-GNAT Reference Manual

Special Case
Implementation-specific indication of the cases when the
Element needs some special processing.

Obtained from the tree
The Id and the name of the tree file from which the
tree-specific fields of the internal representation of given
Element were obtained

Rel_Sloc

Indicates the (relative) position of the source text of the
Element , counting from the beginning of the source of its
enclosing compilation unit. Applies to implicit Element s
also.

4.2 ASIS Debug Flags
ASIS provides several internal debug flags, which are described in
‘a_debug.adb ’. When one or more of these flags is set, useful internal
debugging information is directed to Standard_Output . Although this
information is not always user-oriented, you may find the following debug flags
helpful when you are developing an ASIS application:

-dc Outputs the content of the internal data structures for a Context ,
when the Context is closed and dissociated. By analyzing this in-
formation, you may map other debug information onto unit and tree
Ids.

-di Turns off including the location of an Element into the result gen-
erated by Debug_Image . This may be useful if an ASIS program
crashes because of some problem with ASIS structural queries
(structural queries are used by Element ’s Debug_Image query to
compute the source location of the argument).

-do When the Context is opened, lists the tree files being processed, and
the ones selected to represent a given Context

-dt Outputs a message whenever a tree file is read in. This information
may be useful for analyzing and reducing the “tree swapping profile”
of your application.

20

Chapter 4: Index

Index

A
A_Predefined_Unit . 14
An_Application_Unit . 14
An_Implementation_Unit 14
An_Unknown_Unit . 14
ASIS Extensions . 5
Asis.Ada_Environments implementation

permissions . 13
Asis.Ada_Environments.Associate procedure

. 7, 9
Asis.Ada_Environments.Containers

implementation permissions 14
Asis.Compilation_Units implementation

permissions . 14
Asis.Compilation_Units.Times

implementation permissions 16
Asis.Declarations implementation

permissions . 17
Asis.Declarations package 3
Asis.Elements implementation permissions

. 16
Asis.Expressions package 3
Asis.Extensions package 5
Asis.Extensions.Flat_Kinds package 5
Asis.Extensions.Iterator package 6
Asis.Implementation.Finalize procedure

. 7, 8
Asis.Implementation.Initialize procedure

. 7, 8
Asis.Implementation.Permissions package

. 7
Asis.Implementation.Permissions queries

. 11
Asis.Statements implementation permissions

. 17
Asis.Text implementation permissions 17
ASIS_Failed exception 3, 8, 10, 11, 14, 18
ASIS_Inappropriate_Element exception 5
Attribute_Time function (implementation

permissions) . 16
Attribute_Value_Delimiter function

(implementation permissions) 16
Attribute_Values function (implementation

permissions) . 16

B
Body_Block_Statement function

(implementation permissions) 17

C
Can_Be_Main_Program function

(implementation permissions) 15
Compilation_CPU_Duration function

(implementation permissions) 16
Compilation_Pragmas function

(implementation permissions) 16
Compilation_Unit_Body function

(implementation permissions) 14
Configuration_Pragmas function

(implementation permissions) 16
Consistency checking 9, 14
Context_Clause_Elements function

(implementation permissions) 16
Corresponding_Body function

(implementation permissions) 15
Corresponding_Declaration function

(implementation permissions) 14

D
Debug flag parameter (to

Asis.Implementation.Initialize) 8
Debug flags . 20
Debug images . 19
Debug_Image query 13, 19
Debugging information 19
Default_Name function (implementation

permissions) . 13
Default_Parameters function

(implementation permissions) 13
Delimiter_Image function (implementation

permissions) . 17
Diagnosis string . 8
Dynamic Context modes 11, 18

E

21

ASIS-for-GNAT Reference Manual

Enclosing_Element function (implementation
permissions) . 17

F
Flat_Element_Kinds type 6

H
Has_Attribute function (implementation

permissions) . 15

I
Implementation limits . 12
Implementation permissions. 7, 11, 13
Implementation-specific features 7
Implementation_Defined_Integer_Constant

named number . 13
Implementation_Defined_Integer_Type

subtype . 13
Implicit Elements . 12
Is_Declare_Block function (implementation

permissions) . 17
Is_Dispatching_Operation query 3
Is_Equal function (implementation

permissions) . 17

L
Library_Unit_Declaration function

(implementation permissions) 14
Line type (implementation permissions) . . . 17

N
Name parameter (to

Asis.Ada_Environments.Associate) . . 11
Not_Implemented_Error error status 3

O
Object_Form function (implementation

permissions) . 15
Object_Name function (implementation

permissions) . 15
Open procedure (implementation permissions)

. 13

P
Parameter_Error error status 8, 11
Parameters string format 7

S
Search path . 10

T
Text_Form function (implementation

permissions) . 15
Text_Name function (implementation

permissions) . 15
Time_Of_Last_Update function

(implementation permissions) 16
Tree file . 9, 18
Tree swapping profile . 20

U
Unit_Origin function (implementation

permissions) . 14
Use_Error error status 18

V
Value_Error error status 5

W
Warning messages . 8, 14

22

Table of Contents

About This Manual . 1
What This Manual Contains . 1
What You Should Know Before Reading This Manual . 2
Related Information . 2

1 ASIS-for-GNAT and the ASIS Standard 3

2 ASIS Extensions . 5
2.1 Asis.Extensions . 5
2.2 Asis.Extensions.Flat_Kinds . 5
2.3 Asis.Extensions.Iterator . 6

3 Implementation-Specific Features and
Implementation Permissions . 7

3.1 Interacting with the Underlying Ada Implementation 7
3.1.1 Format of the Parameters String . 7
3.1.2 Parameters of Asis.Implementation.Initialize 8
3.1.3 Parameters of Asis.Implementation.Finalize 8
3.1.4 Parameters of Asis.Ada_Environments.Associate 9

3.2 Implementation Permissions . 11
3.2.1 Asis.Implementation.Permissions Queries 11
3.2.2 Processing Implicit Element s . 12
3.2.3 Processing Several Contexts at a Time . 12
3.2.4 Implementation-Defined Types and Values . 13

3.3 ASIS Queries Having Specific Implementation Permissions or
Implementation-Specific Results . 13

3.4 Dynamic Context Modes . 18

4 Debugging Information . 19
4.1 Interpreting Debug Images . 19
4.2 ASIS Debug Flags . 20

Index . 21

i

ASIS-for-GNAT Reference Manual

ii

	About This Manual
	What This Manual Contains
	What You Should Know Before Reading This Manual
	Related Information

	ASIS-for-GNAT and the ASIS Standard
	ASIS Extensions
	Asis.Extensions
	Asis.Extensions.Flat_Kinds
	Asis.Extensions.Iterator

	Implementation-Specific Features and Implementation Permissions
	Interacting with the Underlying Ada Implementation
	Format of the Parameters String
	Parameters of Asis.Implementation.Initialize
	Parameters of Asis.Implementation.Finalize
	Parameters of Asis.Ada_Environments.Associate

	Implementation Permissions
	Asis.Implementation.Permissions Queries
	Processing Implicit Elements
	Processing Several Contexts at a Time
	Implementation-Defined Types and Values

	ASIS Queries Having Specific Implementation Permissions or Implementation-Specific Results
	Dynamic Context Modes

	Debugging Information
	Interpreting Debug Images
	ASIS Debug Flags

	Index

