
AdaControl User Guide

1

Last edited: 4 October 2005

AdaControl is Copyright c
 2005 Eurocontrol/Adalog. AdaControl is free software; you can
redistribute it and/or modify it under terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option) any later version. This unit
is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details. You should have received a copy
of the GNU General Public License distributed with this program; see �le COPYING. If not,
write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.

As a special exception, if other �les instantiate generics from this program, or if you link
units from this program with other �les to produce an executable, this does not by itself cause
the resulting executable to be covered by the GNU General Public License. This exception does
not however invalidate any other reasons why the executable �le might be covered by the GNU
Public License.

This document is Copyright c
 2005 Eurocontrol/Adalog. This document may be copied,
in whole or in part, in any form or by any means, as is or with alterations, provided that (1)
alterations are clearly marked as alterations and (2) this copyright notice is included unmodi�ed
in any copy.

i

Table of Contents

1 Introduction . 2

2 Installation . 3

2.1 Prerequisites . 3
2.2 Building AdaControl. 3
2.3 Testing AdaControl . 4
2.4 Customizing AdaControl . 4
2.5 Integrating AdaControl into GPS . 4

3 Program Usage . 5

3.1 Running AdaControl . 5
3.2 Rules syntax . 5

3.2.1 Types and report messages . 5
3.2.2 Parameters . 6
3.2.3 Specifying an Ada entity name . 6

3.2.3.1 Overloaded names . 7
3.2.3.2 Enumeration literals . 8
3.2.3.3 Operators . 8
3.2.3.4 Attributes . 8
3.2.3.5 Anonymous constructs . 8
3.2.3.6 Record and protected types components . 8
3.2.3.7 Formals of access to subprogram types . 9

3.2.4 Multiple rules . 9
3.3 Commands. 9

3.3.1 Go command . 9
3.3.2 Quit command . 10
3.3.3 Message command . 10
3.3.4 Help command . 10
3.3.5 Clear command . 10
3.3.6 Set command . 10
3.3.7 Source command . 11
3.3.8 Inhibit command . 11
3.3.9 Example of commands . 11

3.4 Command line options and parameters . 12
3.4.1 Getting help . 12
3.4.2 Input units . 12
3.4.3 Specifying rules . 13
3.4.4 Output �le . 14
3.4.5 Interactive mode . 14
3.4.6 Local deactivation ignoring . 14
3.4.7 Verbose and debug mode . 14
3.4.8 Treat warnings as errors . 15
3.4.9 Exit on error . 15
3.4.10 Project �les . 15

3.4.10.1 Emacs style project �les . 15
3.4.10.2 GPS project �les . 15

3.4.11 ASIS options . 15

ii

3.5 Return codes . 16
3.6 Disabling rules . 16

3.6.1 Block disabling . 16
3.6.2 Line disabling . 16

3.7 Helpful utilities . 17
3.7.1 pfni . 17
3.7.2 Adactl -D . 17

3.8 Optimizing AdaControl . 17
3.8.1 Tree �les and the ASIS context . 18
3.8.2 Choosing an appropriate combination of options . 18

3.9 In case of trouble . 19

4 Rules Usage . 20

4.1 Allocators . 20
4.1.1 Syntax . 20
4.1.2 Action . 20
4.1.3 Tips . 20

4.2 Declarations . 20
4.2.1 Syntax . 20
4.2.2 action . 20

4.3 Default Parameter . 20
4.3.1 Syntax . 20
4.3.2 Action . 21
4.3.3 Limitations . 21

4.4 Entities . 21
4.4.1 Syntax . 21
4.4.2 Action . 21
4.4.3 Tips . 21

4.5 Entity Inside Exception . 21
4.5.1 Syntax . 21
4.5.2 Action . 22

4.6 Exception Propagation . 22
4.6.1 Syntax . 22
4.6.2 Action . 22
4.6.3 Tips . 23
4.6.4 Limitations . 23

4.7 Instantiations . 23
4.7.1 Syntax . 23
4.7.2 Action . 23
4.7.3 Tips . 24

4.8 Local Hiding . 24
4.8.1 Syntax . 24
4.8.2 Action . 24

4.9 Local Instantiation . 24
4.9.1 Syntax . 24
4.9.2 Action . 24

4.10 Max Nesting . 24
4.10.1 Syntax . 24
4.10.2 Action . 24

4.11 Naming Convention . 25
4.11.1 Syntax . 25
4.11.2 Action . 26
4.11.3 Tips . 27
4.11.4 Limitations . 28

iii

4.12 No Closing Name . 28
4.12.1 Syntax . 28
4.12.2 Action . 28

4.13 Not Elaboration Calls . 28
4.13.1 Syntax . 28
4.13.2 Action . 28
4.13.3 Limitations . 28

4.14 Parameter Aliasing . 28
4.14.1 Syntax . 28
4.14.2 Action . 29
4.14.3 Limitation . 29

4.15 Pragmas . 30
4.15.1 Syntax . 30
4.15.2 Action . 30

4.16 Real Operators . 30
4.16.1 Syntax . 30
4.16.2 Action . 30

4.17 Representation Clauses . 30
4.17.1 Syntax . 30
4.17.2 Action . 30

4.18 Side E�ect Parameters . 30
4.18.1 Syntax . 30
4.18.2 Action . 31
4.18.3 Limitation . 31

4.19 Silent Exceptions. 31
4.19.1 Syntax . 31
4.19.2 Action . 31
4.19.3 Limitations . 32

4.20 Simpli�able Expressions . 32
4.20.1 Syntax . 32
4.20.2 Action . 32

4.21 Speci�cation Objects . 32
4.21.1 Syntax . 32
4.21.2 action . 32
4.21.3 Tips . 33
4.21.4 Limitation . 33

4.22 Statements . 33
4.22.1 Syntax . 33
4.22.2 action . 33

4.23 Unnecessary Use Clause . 34
4.23.1 Syntax . 34
4.23.2 Action . 34
4.23.3 Limitations . 34

4.24 Use Clauses. 35
4.24.1 Syntax . 35
4.24.2 Action . 35

4.25 When Others Null . 35
4.25.1 Syntax . 35
4.25.2 Action . 35

iv

5 Examples of using AdaControl for common programming
rules . 36

5.1 Automatically checkable rules . 36
5.2 Rules that need manual inspection . 37

Chapter 1: Introduction 2

1 Introduction

AdaControl is an Ada rules controller. It is used to control that Ada software meets the re-
quirements of a number of parameterizable rules. It is not intended to supplement checks made
by the compiler, but rather to search for particular violations of good-practice rules, or to check
that some rules are obeyed project-wide.

The development of AdaControl was funded by Eurocontrol
(http://www.eurocontrol.int), which needed a tool to help in verifying the mil-
lion+ lines of code that does Air Tra�c Flow Management over Europe. Because it was felt
that such a tool would bene�t the community at-large, and that further improvements made
by the community would bene�t Eurocontrol, it was decided to release AdaControl as free
software.

The requirements for AdaControl were written by Philippe Waroquiers (Eurocontrol-
Brussels), who also conducted extensive testing on the Eurocontrol software. The software was
developped by Arnaud Lecanu and Jean-Pierre Rosen (Adalog). Some rules were contributed
by Richard Toy (Eurocontrol-Maastricht).

Commercial support is available for AdaControl, see �le doc/support.txt. If you plan to
use AdaControl for industrial projects, or if you want it to be customized or extended to match
your own needs, please contact Adalog at info@adalog.fr.

See �le HISTORY for a description of the various versions of AdaControl, including enhance-
ments of the current version over the previous ones.

http://www.eurocontrol.int
mailto::info@adalog.fr

Chapter 2: Installation 3

2 Installation

AdaControl is distributed only as source. Like any ASIS application, AdaControl can be run
only if the compiler available on the system has exactly the same version as the one used to
compile AdaControl itself. Given the current proliferation of various versions of GNAT, it seems
better to let the user compile AdaControl himself, thus making sure that there is no mismatch.

Another reason for distributing AdaControl as source is that the user may not be interested
in all provided rules. It is very easy to remove some rules from AdaControl to increase its speed.
See Section 2.4 [Customizing AdaControl], page 4.

2.1 Prerequisites

The following software must be installed in order to install AdaControl:

� A GNAT compiler, any version. Note that the compiler is also required to use AdaControl
(all ASIS application need the compiler).

� ASIS for GNAT

Make sure to have the same version of GNAT and ASIS. The version used for running
AdaControl must be the same as the one used to compile AdaControl itself.

It should be possible to compile AdaControl with other compilers than GNAT, although we
didn't have an opportunity to try it. If you have another compiler that supports ASIS, note
that it may require some easy changes in the package Implementation_Options to give proper
parameters to the Associate procedure of ASIS. Rules that need string pattern matchings
need the package Gnat.Regpat. If you compile AdaControl with another compiler, you can
either port Gnat.Regpat to you system, or use a (limited) portable implementation of a simple
pattern matching (package String_Matching_Portable). Edit the �le string_matching.ads

and change it as indicated in the comments. No other change should be necessary.

2.2 Building AdaControl

The �le Makefile (in directory src) should be modi�ed to match the commands and paths of
the target system. The following variables are to be set:

� EXT

� SEP

� RM

� ASIS TOP

� ASIS INCLUDE

� ASIS OBJ

� ASIS LIB

How to set these variables properly is documented in Makefile.

Then, run the make command:

$ cd src

$ make build

It is also possible to delete object �les and do other actions with this \Make�le", run the
following command to get more information:

$ make help

NOTE: Building AdaControl needs the \make" command provide with GNAT; it works both
with WIN32 shell and UNIX shell.

Chapter 2: Installation 4

2.3 Testing AdaControl

Testing AdaControl needs a UNIX shell, so it works only with UNIX systems. However, it is
possible to run the tests on a WIN32 system by using an UNIX-like shell for WIN32, such as
those provided by CYGWIN or MSYS. To run the tests, enter the following commands:

$ cd test

$./run.sh

All tests must report PASSED. If they don't, here are some hints:

� Some UNIX shell emulators add CR's to the end of each line of a text �le. Since the
reference for the tests is in UNIX (LF only) text format, this may explain the di�erence.
Try running dos2unix on the content of the res/ directory, then do a diff on the content
of the res/ and ref/ directories.

� If you compiled with GNAT 3.15p, there are known bugs and unimplemented features that
will not allow AdaControl to run correctly in some cases. Upgrade to a more recent version
of Gnat.

2.4 Customizing AdaControl

If there are some rules that you are not interested in, it is very easy to remove them from
AdaControl:

1. In the src directory, edit the �le framework-plugs.adb. There is a with clause for each
rule (children of package Rules). Comment out the ones you don't want.

2. Recompile framework-plugs.adb. There will be error messages about unknown procedure
calls. Comment out the corresponding lines.

3. Compile AdaControl normally. That's all!

It is also possible to add new rules to AdaControl. If your favorite rules are not currently
supported, you have several options:

1. If you have some funding available, please contact info@adalog.fr. We'll be happy to make
an o�er to customize AdaControl to your needs.

2. If you don't have funding, but have some knowledge of ASIS programming, you can add the
rule yourself. We have made every e�ort to make this as simple as possible. Please refer to
the AdaControl programmer's manual for details. If you do so, please send your rules to
rosen@adalog.fr, and we'll be happy to integrate them in the general release of AdaControl
to make them available to everybody.

3. If you have good ideas, but don't feel like implementing them yourself (nor �nancing them),
please send a note to rosen@adalog.fr. We will eventually incorporate all good suggestions,
but we can't of course commit to any dead-line in that case.

2.5 Integrating AdaControl into GPS

It is possible to integrate AdaControl into GPS and make it directly available from GPS' menus.
Simply copy the �le src/adacontrol.xml into the <GPS_dir>/share/gps/customize directory.

GPS now features an \AdaControl" entry in the \Tools" menu, which can be used to run Ada-
Control on the currently edited �le. All parameters (including the rule or rule �le to use) can be
set from the \Project/Edit Project Properties" menu. If you check \AdaControl rules �les" in the
\Languages" tab, GPS will recognize �les with extension .aru as AdaControl rules �les, and pro-
vide appropriate colorization. AdaControl options can be set from the \Switches/AdaControl"
tab.

mailto::info@adalog.fr
mailto::rosen@adalog.fr
mailto::rosen@adalog.fr

Chapter 3: Program Usage 5

3 Program Usage

3.1 Running AdaControl

AdaControl is a command-line program, i.e. it's callable directly by a system shell, and can be
integrated in GUIs such as GPS (see Section 2.5 [Integrating AdaControl into GPS], page 4)
or emacs (see Section 3.2.1 [Types and report messages], page 5). It is very simple to use. It
takes, as parameters, a list of units to process and a set of rules to apply. AdaControl produces
error and/or found messages to the standard output. The type of message (i.e. error or found)
depends on the type of the rule (i.e. check or search). It is also possible to locally disable rules
for a part of the source code, and various options can be passed to the program.

Ex:

Given the following package:

package Pack is
pragma Pure (Pack);

...

end Pack;

The following command:

adactl -l "search pragmas (pure)" pack

produces the following result (displayed to standard output):

pack.ads:2:4: Found: PRAGMAS: use of pragma Pure

3.2 Rules syntax

AdaControl is about checking rules. Each rule has a name, and may require parameters. Which
rules are to be checked is speci�ed either on the command line or in a rules �le; in either case,
the syntax for specifying rules is as follows:

[<label> ":"] "check"|"search"|"count" <Name>

["(" [<modifiers>] <parameter> {"," [<modifiers>] <parameter>}")"] ";"

If present, the label gives a name to the rule; it will be printed whenever the rule is activated,
and can be used to disable the rule. See Section 3.6 [Disabling rules], page 16. If no label is
present, the rule name is printed instead. Note that there is no problem in specifying the same
label for several rules.

Each rule consists of a rule type followed by a rule name, and (optionally) parameters. Some
parameters may be preceded by modi�ers (such as \not" or \case sensitive"). The meaning of
the rule parameters and modi�ers depends on the rule. The case of the rule type, rule name,
and parameters is not signi�cant. A syntax error in a rule causes the execution to stop.

Since wide characters are allowed in Ada programs, AdaControl accepts wide characters in
rules as well. With GNAT, the encoding scheme is Hex ESC encoding (see the GNAT User-
Guide/Reference-Manual). This is the prefered method, since few people require wide characters
in programs anyway, and that keeping the defaul bracket encoding would not conveniently allow
brackets for regular expressions, like those required for the rule \Naming Convention" (see
Section 4.11 [Naming Convention], page 25).

3.2.1 Types and report messages

There are three rule types:

� check

� search

� count

Chapter 3: Program Usage 6

\Check" is intended to search for rules that must be obeyed in your programs. Normally, if a
\Check" rule fails, you should �x the program. \Search" is intended to report some situations,
but you should consider what to do on a case-by-case basis. Roughly, use \check" when you
consider that the failure of the rule is an error, and \search" when you consider it as a warning.
AdaControl will exit with a status of 1 if any \Check" rule is triggered, and a status of 0 if only
\Search" rule were triggered (or no rule was triggered at all).

\Count" works like \search", but instead of printing a message for each rule which is triggered,
it simply counts occurrences and prints a summary at the end of the run. There is a separate
count for each rule label (or if no label is given, the rule name is taken instead); if you give the
same label to di�erent rules, this allows you to accumulate the counts.

A report message (except for the �nal report of \count") is made of (separated by ':'):

� the �le name (where the rule matches)

� the line number (where the rule matches)

� the column number (where the rule matches)

� the rule id (the rule that matches) or the rule label if there is one.

� a message (why the rule matches)

A rule whose type is \check" will produce an error report message (i.e. containing the
keyword ERROR) and a rule use whose type is \search" will produce a found report message
(i.e. containing the keyword FOUND).

Note that the format used for report messages is the same as the one used by GNAT error
messages. Editors (like Emacs or GPS) that recognize this format allow you to go directly to
the place of the message by clicking on it.

3.2.2 Parameters

Some rules work with parameters. Parameters can be:

� an Ada entity name

� an Ada keyword

� a keyword for the rule

� a numerical value

A numerical value is given with the syntax of an Ada integer litteral (underscores are allowed
as in Ada). Based litterals are not currently supported; if somebody can justify a need for them,
we'll be happy to add this feature later...

An Ada entity name can be followed by overloading information (see below), in order to
uniquely identify the Ada entity. If an Ada entity is overloaded and no overloading information
is provided, the rule is applied to all (overloaded) Ada entities that match the name.

3.2.3 Specifying an Ada entity name

The syntax of the <Ada Entity Name> is as follows:

<Ada_Entity_Name> ::= <Full_Name> | "all" <Simple_Name> | "all" <Attribute>

<Full_Name> is the full name of the Ada entity, using normal Ada dot notation (with some
extensions, see below)). Full name means that you give the full expanded name, starting from
a compilation unit. This name must be the actual full name, i.e. it must not include any
renaming (otherwise the name will not be recognized). For example, the usual Put_Line must
be given as Ada.Text_IO.Put_Line, not as Text_IO.Put_Line. Prede�ned elements (Integer,
Constraint_Error) must be given in the form Standard.Integer or Standard.Constraint_
Error, since they are logically declared in the package Standard.

<Simple_Name> is a single identi�er, possibly followed by overloading information. No qual-
i�cation is allowed.

Chapter 3: Program Usage 7

<Attribute> is an attribute name, including the quote. No overloading information is al-
lowed.

<Full_Name> designates a single entity or several overloaded entities declared in the same
place (as identi�ed by the pre�x), while all <simple_name> designates all identi�ers with the
given name in the program, irrespectively of where they appear. all <Attribute> designates
all occurrences of the given attribute, irrespectively of what the attribute applies to.

A utility is provided with AdaControl to help you �nd the full name of an entity. See
Section 3.7.1 [pfni], page 17.

3.2.3.1 Overloaded names

In Ada, names can be overloaded. This means that you can have several procedures P in
package Pack, if they di�er by the types of the parameters. If you just give the name Pack.P as
the <Ada Entity Name>, the corresponding rule will be applied to all elements named P from
package Pack. If you want to distinguish between overloaded names, you can specify a pro�le
after the element's name. A pro�le has the syntax:

"{" [["access"] <type-name>

{ ";" ["access"] <type-name> }]

["return" <type-name>] "}"

You must specify the type name, even if the <Ada Entity Name> declaration uses a subtype
of the type; this is because Ada uses types for overloading resolution, not subtypes. Anonymous
access parameters are speci�ed by putting access in front of the type name. An overloaded
name for a procedure without parameters uses just a pair of empty brackets. If the subprogram
is a function, you must provide the return <type-name> part for the return type of the function.
The types must also be given as a unique name, i.e. including the full path: if the type is T

declared in package Pack, you must specify it as Pack.T. As a convenience, the Standard. is
optional for prede�ned types, so you can write Standard.Integer as Integer. There is no
ambiguity, since a type is always declared within some construct. Note that omitting Standard

works only for types that are part of the pro�le used to distinguish between overloaded Ada
entities but that the Ada entity name must always contain Standard if it is a prede�ned element.

Overloaded names can be also be used with the all <Simple_Name> form of the
<Ada Entity Name>. In this case, the rule will be applied to all names that are subprograms
with the given identi�er and matching the given pro�le, irrespectively of where they appear.

Note that if you use an overloaded name, all overloadable names that are part of the
<Ada Entity Name>, including those of the pro�le, must use the overloaded syntax. For exam-
ple, given the following program

procedure P is
procedure Q (I : Integer) is

...

end Q;

procedure Q (F : Float) is
...

end Q;

begin
...

end P;

If you want to distinguish between the two procedures Q, you must specify them as
P{}.Q{Integer} and P{}.Q{Float} (note the P{} which speci�es an overloaded name for a
procedure P without parameters).

The names of entities which can not be overloaded (like package, exception, . . .) must not
be su�xed by braces (e.g. Ada.Text_IO.Put_Line{Standard.String}).

Chapter 3: Program Usage 8

3.2.3.2 Enumeration literals

Following normal Ada rules, an enumeration literal is considered a parameterless function. If
you want to distinguish between overloaded enumeration literals, you can use overloaded names
for them. For example, given:

package Pack is
type T1 is (A, B);

type T2 is (B, C);

end Pack;

Ada entities names are:

� Pack.B{return Pack.T1}

� Pack.B{return Pack.T2}

3.2.3.3 Operators

AdaControl handles operators (i.e. functions like "+") correctly. Of course, you must specify
such operations using normal Ada syntax: if you de�ne the integer type T in package Pack, an
overloaded name for the addition would be Pack."+"{Pack.T; Pack.T return Pack.T}.

3.2.3.4 Attributes

It is also possible to designate attributes, using the normal notation (i.e.
Standard.Integer'First). If the name of an attribute which is a function appears
in a name that uses the overloaded syntax, it is not necessary (and actually not allowed) to
provide its pro�le, since there is no possible ambiguity in that case. For example, given:

procedure P (I : Integer) is
type T is range 1 .. 10;

begin
...

end P;

You can designate the 'Image attribute for type T as P{Standard.Integer}.T'Image (the
pro�le of the 'Image function is not given, as would be necessary for a normal function).

3.2.3.5 Anonymous constructs

There is a special case for elements that are de�ned (directly or indirectly) within unnamed loops
or block statements. Everything happens as if the unnamed construct was named _anonymous_.
So if you have the following program:

procedure P is
begin

for I in 1..10 loop
declare

J : Integer;

begin
...

end;
end loop;

end P;

You can refer to I as P._anonymous_.I, and to J as P._anonymous_._anonymous_.J.

3.2.3.6 Record and protected types components

You can designate the name of a record or protected type component (a \�eld" name), but
to identify it uniquely, you must precede its name by the name of the type. This is a small

Chapter 3: Program Usage 9

extension to Ada syntax, but it is the simplest and most natural way to deal with this case. For
example, given:

procedure P is
type T is

record
Name : Integer;

end record;
...

The Ada entity name is P.T.Name.

3.2.3.7 Formals of access to subprogram types

Similarly, you can designate the formal of an access to subprogram type by pre�xing it by the
access type. For example, given:

procedure P is
type T is access procedure (X : Integer);

...

The Ada entity name of the formal is P.T.X.

3.2.4 Multiple rules

Most rules can be given more than once (with di�erent parameters). There is no di�erence
between a single or a multiple con�guration rule use: ouputs, e�ciency, etc. are the same.

The following con�guration �les produce an identical con�guration:

Search Pragmas (Pure, Elaborate_All);

and

Search Pragmas (Pure);

Search Pragmas (Elaborate_All);

However, the second form can be used to give di�erent labels. Consider:

Search Pragmas (Pure);

No_Elaborate: Search Pragmas (Elaborate_All);

The messages for pragma Pure will contain \PRAGMAS", while those for Elaborate_All
will contain \No Elaborate". If a disabling comment mentions pragmas, it will disable both
rules, but a disabling comment that mentions No_Elaborate will disable only the second one.

3.3 Commands

In addition to rules speci�cation, AdaControl recognizes a number of commands. Although these
commands are especially useful when using the interactive mode (see Section 3.4.5 [Interactive
mode], page 14), they can be used in command �les as well.

3.3.1 Go command

Syntax:

go;

This command starts processing of the rules that have been speci�ed. Rules are not reset
after a \go" command; for example, the following program:

search entities (pack1);

go;

search entities (pack2);

go;

Chapter 3: Program Usage 10

will �rst output all usages of Pack1, then all usages of both Pack1 and Pack2. See Section 3.3.5
[Clear command], page 10 to reset rules.

If not in interactive mode, a \go" command is automatically added, therefore it is not required
in rules �les.

3.3.2 Quit command

Syntax:

quit;

This command terminates AdaControl. If given in a �le, all subsequent commands will be
ignored. This command is really useful only in interactive mode. See Section 3.4.5 [Interactive
mode], page 14.

3.3.3 Message command

Syntax:

message <any string>;

This command prints the given message on the output �le. The length of the message is
limited to 250 characters.

Note that the message is terminated by the �rst \;" encountered. If a message needs to
include a \;", the hole message must be quoted (double quotes).

3.3.4 Help command

Syntax:

Help [all | <rule name>{,<rule name>}];

Without any argument, this command prints a summary of all commands and rule names.
If given one or more rule names, it prints the detailed help for the given rules. If given the
keyword all, it prints the detailed help for all rules.

3.3.5 Clear command

Syntax:

Clear all | <rule name>{,<rule name>} ;

This command clears all \count", \search", and \check" commands given for the indicated
rules, of for all rules if the all keyword is given. For example, the following program:

search entities (pack1);

go;

clear all;

search entities (pack2);

go;

will �rst output all usages of Pack1, then all usages of Pack2. Without the \clear all"
command, the second \go" would output all usages of Pack1 together with all usages of Pack2.

3.3.6 Set command

Syntax:

set Output <output file>;

set Verbose | Debug | Ignore On | Off

In the �rst form, this command redirects the output of subsequent checks to the indicated
�le. If the string console (case irrelevant) is given as the <output �le>, output is redirected to
the console.

Chapter 3: Program Usage 11

As with the \-o" option, if the �le exists, output is appended to it, unless the \-w" option
is given, in which case it is overwritten. However, the �le is overwritten only the �rst time it is
mentionned in an \output" command. This means that you can switch forth and back between
two output �les, all results from the same run will be kept. Note however that for this to work,
you need to specify the output �le exactly the same way: if you specify it once as \result.txt",
and then as \./result.txt", the second one will overwrite the �rst one.

In the second form, this command allows to activate (\on") or deactivate (\o�") options.
\Verbose" corresponds to the \-v" option, \Debug" to the \-d" option, and \Ignore" to the
\-i" option. See Section 3.4.7 [Verbose and debug mode], page 14 and Section 3.4.6 [Local
deactivation ignoring], page 14 for details.

3.3.7 Source command

Syntax:

Source <input file>;

This command redirects the input of commands from the indicated �le. Commands and rules
are read and executed from the indicated �le, then control is returned to the place after the
\source" command. There is no restriction on the content of the sourced �le; especially, it may
itself include other \source" commands.

If the string console (case irrelevant) is given as the <input �le>, commands are read from
the console until a \quit" command is given. This command is of course useful only from �les,
and allows to pass temporarily control to the user in interactive mode.

3.3.8 Inhibit command

Syntax:

Inhibit <rule name> (<unit> {,<unit>});

This command will inhibit execution of the rule for the indicated unit(s). There are several
reasons why you might want to inhibit a rule for certain units:

� The unit is known not to obey the rule in many places, and you don't want the output to
be cluttered with too many messages (of course, you'll �x the unit in the near future!);

� The unit is known to obey the rule, and you want to save some processing time;

� The unit is known to raise an ASIS bug, and until you upgrade to the appropriate version
of GNAT, you don't want to be bothered by the error messages.

3.3.9 Example of commands

Below is an example of a �le with multiple commands:

message "Searching Unchecked_Conversion";

search entitities (ada.unchecked_conversion);

output uc_usage.txt;

go;

clear all;

message "Searching 'Address";

search attribute (address);

output address_usage.txt;

go;

This �le will output all usages of Ada.Unchecked_Conversion into the �le uc_usage.txt,
then output all usages of the 'Address attribute into the �le address_usage.txt. Messages
are output to tell the user about what's happenning.

Chapter 3: Program Usage 12

3.4 Command line options and parameters

Options are introduced by a \-" followed by a letter and can be grouped as usual. Some options
take the following word on the command line as a value; such options must appear last in a
group of options. Parameters are words on the command line that stand by themselves. Options
and parameters can be given in any order.

The complete syntax for invoking AdaControl is:

adactl [-deiIrsuvw] [-f <rules file>] [-l <rules list>] [-o <output file>]

[-p <project file>] {<unit>[+|-<unit>]|[@]<file>} [-- <ASIS options>]

or

adactl -h [<rule id>... | all]

or

adactl -D [-rsw] [-o <output file>] [-p <project file>]

{<unit>[+|-<unit>]|[@]<file>} [-- <ASIS options>]

Using AdaControl with the \-D" option is described later. See Section 3.7 [Helpful utilities],
page 17.

3.4.1 Getting help

The \-h" option alone displays a help message about usage of the AdaControl program, the
various options, and the rule names. If the \-h" is followed by one or several rule names (case
irrelevant), it displays the help message for the rule(s). If the \-h" option is followed by the
keyword \all", it displays the help message for all rules.

Ex:

adactl -h

adactl -h pragmas Unnecessary_Use_Clause

adactl -h all

Note that if the \-h" option is given, no other option is analyzed and no further processing
happens.

3.4.2 Input units

Units to be processed are simply given as parameters on the command line. Note that they
are Ada compilation unit names, not �le names: case is not signi�cant, and there should be no
extension! Of course, child units are allowed following normal Ada naming rules: Parent.Child.
Note that when a unit is processed, all its subunits are processed at the same time; therefore,
there is no need to specify subunits.

However, as a convenience to the user, units can be speci�ed as �le names, provided they
follow the default GNAT naming convention. More precisely, if a parameter ends in \.ads" or
\.adb", the unit name is extracted from it (and all \-" in the name are substituted with \."). File
names can include a path; in this case, the path is automatically added to the list of directories
searched (\-I" option). The �le notation is convenient to process all units in a directory, as in
the following example:

adactl -f my_rules.aru *.adb

In the unlikely case where you have a child unit called Ads or Adb, use the \-u" option to
force interpretation of all parameters as unit names.

By default, both the speci�cation and body of the unit are processed; however, it is possible
to specify processing of the speci�cation only by providing the \-s" option. If only �le names
are given, the \-s" option is assumed if all �les are speci�cations (\.ads" �les). It is not possible
to specify processing of bodies only, since rules dealing with visibility would not work.

Chapter 3: Program Usage 13

The \-r" option tells AdaControl to process (recursively) all user units that the speci�ed
units depend on (including parent units if the unit is a child unit or a subunit). Prede�ned Ada
units and units belonging to the compiler's run-time library are never processed.

Ex:

adactl -r -f my_rules.aru my_main

will process my_main and all units that my_main depends on. If my_main is the main proce-
dure, this means that the whole program will be processed.

It is possible to specify more than one unit (not �le) to process in a parameter by separating
the names with \+". Conversely, it is possible to specify units that are not to be processed,
separated by \-". When a unit is subtracted from the unit list, it is never processed even if
it is included via the recursive option, and all its child and separate units are also excluded.
This is convenient to avoid processing reusable components, that are not part of a project. For
example, if you want to run AdaControl on itself, you should use the following command:

adactl -f my_rules_file.aru -r adactl-asis-a4g

This applies the rules from the �le my_rules_files.aru to AdaControl itself, but not to
units that are part of ASIS (the \-r" (recursive) option would �nd them otherwise).

Alternatively, it is possible to give a parameter as an \@" followed by the name of a �le. This
�le must contain a list of unit names (not �les), one on each line. All units whose names are
given in the �le will be processed. If a name in the �le starts with \@", it will also be treated
as an indirect �le (i.e. the same process will be invoked recursively). If a line in the �le starts
with a \#" character, it is ignored. This can be useful to temporarily disable the processing of
some �les or to add comments.

Ex:

adactl -f my_rules.aru @unit_file.txt

3.4.3 Specifying rules

Rules list can be passed on the command line using the \-l" option. Rules list must be quoted
with \"".

Ex:

adactl pack.ads proc.adb -l "check instantiations (My_Generic);"

It is possible to pass several rules separated by \;" as usual, but as a convenience to the user,
the last \;" may be omitted.

Rules list can also be passed from a �le, whose name must be given after the \-f" option. As
a special case, if the �le name is \-", rules are read from the standard input. This is intended to
allow AdaControl to be pipelined behind something that generates commands; if you want to
type rules directly to AdaControl, the interactive mode is more appropriate. See Section 3.4.5
[Interactive mode], page 14.

Ex:

adactl -f my_rules.aru proc.adb

A rule �le must contain at least one rule. The layout of rules is free (i.e. a rule can extend
over several lines, and spaces are allowed between syntactic elements). A rule �le may also
contain comment lines. Comments begin with a \#" or a \--", and extend to the end of the
line. Comments can be placed anywhere in the �le.

Ex:

My rules file

generated by myself 2004.09.27.14.12.36

search rule1 (param1, param2, param3); -- This is Rule 1

My_Label: check rule2 (param1);

Chapter 3: Program Usage 14

search rule3 (param1,

-- Comment in the middle

param2,

param3, param4);

search rule4; -- A rule without parameters

Note that the \-l" and \-f" options are not exclusive: if both are speci�ed, the rules to be
checked include those in the �le and those given on the command line.

3.4.4 Output �le

By default, the standard output is used for output. The default output can be changed by
specifying an output �le with the \-o" option.

Ex:

adactl -f my_rules.aru -o my_output.txt proc.adb

Error and found rule messages are output to the output �le. Syntax error messages for rules
and possible internal errors from AdaControl itself are output to the standard error �le.

If the output �le exists, new messages are appended to it. This allows running AdaControl
under several directories that make up the project, and gathering the results in a single �le.
However, if the \-w" option is given, AdaContol overwrites the output �le if it exists.

Ex:

adactl -w -f my_rules.aru -o my_output.txt proc.adb

3.4.5 Interactive mode

The \-I" option tells AdaControl to operate interactively. In this mode, commands and rules
speci�ed with \-l" or \-f" options are �rst processed, then AdaControl prompts for commands
on the terminal. Note that the \quit" command (see Section 3.3.2 [Quit command], page 10) is
used to terminate AdaControl.

The syntax for rules and commands is exactly the same as the one used for �les; especially,
each rule or command must be terminated with a \;". Note that the prompt (\Command:")
becomes \.......:" when AdaControl requires more input because a command is not completely
given, and especially if you forget the �nal \;".

The interactive mode is useful when you want to do some analysis of your code, but don't
know beforehand what you want to check. Since the ASIS context is open only once when the
program is loaded, queries will be much faster than running AdaControl entirely with a new
query given in a \-l" option each time. It is also useful to experiment with AdaControl, and to
check interactively commands before putting them into a �le.

3.4.6 Local deactivation ignoring

The \-i" option tells AdaControl to ignore deactivation tags in Ada source code (see Section 3.6
[Disabling rules], page 16).

Ex:

adactl -i -f my_rules.aru proc.adb

3.4.7 Verbose and debug mode

In the default mode, AdaControl displays only rule messages. It is possible to get more infor-
mation with the verbose option (\-v"). In this mode, AdaControl displays unit names as they
are processed, and prints its global execution time when it �nishes.

Ex:

Chapter 3: Program Usage 15

adactl -v -f my_rules.aru proc.adb

It is also possible to get more information in case of a program error by using the debug
mode. Debug mode is enabled by using the \-d" option.

Ex:

adactl -d -f my_rules.aru proc.adb

3.4.8 Treat warnings as errors

The \-e" option tells AdaControl to treat warnings as errors, i.e. to report a return code of 1
even if only \search" rules were triggered. See Section 3.5 [Return codes], page 16. It does not
change the messages however.

3.4.9 Exit on error

If an error is encountered during processing a unit, AdaControl will continue to process other
units. However, if the \-x" option is given, AdaControl will stop on the �rst error encountered.
This option is mainly useful if you want to debug AdaControl itself (or your own rules). See
Section 3.9 [In case of trouble], page 19.

Ex:

adactl -x -f my_rules.aru proc.adb

3.4.10 Project �les

3.4.10.1 Emacs style project �les

An emacs project �le (the �le with a \.adp" extension used by the Ada mode of Emacs) can
be speci�ed with the \ -p" option. AdaControl will automatically consider all the directories
mentioned in \src dir" lines from the project �le.

Ex:

adactl -f my_rules.aru -p proj.adp proc.adb

3.4.10.2 GPS project �les

Currently, ASIS does not accept the \-P" option for GPS style project �les. Should this change
in the future, a \-P" option could be passed as described for the \-I" option. See Section 3.4.11
[ASIS options], page 15.

In the meantime, it is possible to use GPS project �les by �rst compiling the modules to be
checked with the \-gnatct" option (and of course the \-P" option for the project); this will save
the so-called \tree �les", which will appear with an \.adt" extension. AdaControl will use the
tree �les if they are available (and up to date), thus saving the recompilation and the need to
specify any \-I" or \-P" option.

After running the tool, the tree �les can be deleted.

3.4.11 ASIS options

Everything that appears on the command line after \--" will be treated as an ASIS option, as
described in the ASIS user manual.

Casual users don't need to care about ASIS options, except in one case: if the units that
you are processing reference other units whose source is not in the same directory, AdaControl
needs to know how to access these units (as GNAT would). This can be done either using
an Emacs project �le (the \-p" option), or by passing a \-I" option to ASIS, or by using
ADA INCLUDE PATH.

It is possible to include one or several \-I" options to reference other directories where sources
can be found. The syntax is the same as the \-I" option for GNAT.

Chapter 3: Program Usage 16

Other ASIS options, like the \-Cx" and/or \-Fx" options, can be speci�ed. Most users can
ignore this feature; however, specifying these options can improve the processing time of big
projects. See Section 3.8 [Optimizing AdaControl], page 17.

3.5 Return codes

In order to ease the automation of rules checking with shell scripts, AdaControl returns various
error codes depending on how successful it was. Values returned are:

� 0: At most \search" rules were triggered (no rule at all with \-e" option)

� 1: At least one \check" rule was triggered (or at least one \search" or \check" rule with
\-e" option)

� 2: AdaControl was not run due to a syntax error in the rules or in the speci�cation of units.

� 10: There was an internal failure of AdaControl.

3.6 Disabling rules

It is possible to disable rules on parts of the source code by placing a tag (special Ada comment)
in the source code. This can be done in two ways: block disabling or line disabling. The disabling
tag is \--##". Both ways take a list of rules to disable as parameters. A list of rules is a list of
rule names or rule labels, separated by spaces. Alternatively, the list of rules can be the word
\all" to disable all rules.

In a \{##" line, everything appearing after a second occurrence of \##" is ignored. This
allows the insertion of a comment explaining why the rule is disabled at that point.

3.6.1 Block disabling

A rule is disabled from the \rule o�" tag until the \rule on" tag. If there is no \rule on" tag,
the rule is disabled up to the end of �le.

Syntax:

--## rule off <rule_list>

Ada code block

--## rule on <rule_list>

Ex:

--## rule off rule1 rule2

I := I + 1;

Proc (I);

--## rule on rule2

3.6.2 Line disabling

The rule is disabled only for the line where the tag appears.

Syntax:

Ada code line --## rule line off <rule_list>

Ex:

I := I + 1; --## rule line off rule3 rule_label_1

Conversely, it is possible to re-enable a rule for just the current line in a block where rules
are disabled:

Syntax:

Ada code line --## rule line on <rule_list>

Ex:

I := I + 1; --## rule line on rule3

Chapter 3: Program Usage 17

3.7 Helpful utilities

This section describe utilities that are handy to use in conjunction with AdaControl.

3.7.1 pfni

The convention used to refer to entities (as described in Section 3.2.3 [Specifying an Ada entity
name], page 6) is very powerful, but it may be di�cult to spell out correctly the name of some
entities, especially when using the overloaded syntax.

pfni (which stands for Print Full Name Image) can be used to get the correct spelling for
any Ada entity. The syntax of pfni is:

pfni [-sofd] [-p <project-file>] <unit>[:<line_number>[:<column_number>]]

[-- <ASIS options>]

or

pfni -h

If called with the \-h" option, pfni prints a help message and exits.

Otherwise, pfni prints the full name image of all identi�ers declared in the given unit, unless
there is a \-f" (full) option, in which case it prints the full name image of all identi�ers (i.e.
including those that are used, but not declared, in the unit). If a <line number> is given, only
identi�ers on that line are printed. If both <line number> and <column number> are given, only
the identi�er (if any) at the given line and column is printed. The image is printed without
overloading information, unless the \-o" option is given.

If the \-s" option is given, the speci�cation of the unit is processed, otherwise the body is
processed. The \-p" option speci�es the name of an Emacs project �le, and the \-d" option is
the debug mode, as for AdaControl itself. ASIS options can be passed like for AdaControl.

As a side usage of pfni, if you are calling a subprogram that has several overloadings and
you are not sure which one is called, use pfni with the \-o" option on that line: the program
will tell you the full name and pro�le of the called subprogram.

3.7.2 Adactl -D

When run with the \-D" option, AdaControl simply outputs the list of units that would be
processed.

This list can be directed to a �le with the \-o" option (if the �le exists, it won't be overwritten
unless the \-w" option is speci�ed). This �le can then be used in an indirect list of units. See
Section 3.4.2 [Input units], page 12. Note that if you use the recursive (\-r") option, it is more
e�cient to create the list of units once and then use the indirect �le than to specify all applicable
units each time AdaControl is run.

3.8 Optimizing AdaControl

There are many factors that may in
uence dramatically the speed of AdaControl when processing
many units. For example, on our canonical test (same rules, same units), the extreme points
for execution time were 111s. vs 13s.! Unfortunately, this seems to depend on a number of
parameters that are beyond AdaControl's control, like the relative speed of the CPU to the
speed of the hard-disk, or the caching strategy of the �le system.

This section will give some hints that may help you increase the speed of AdaControl, but
it will not change the output of the program; you don't really need to read it if you just use
AdaControl occasionnally. This section is concerned only with the GNAT implementation of
ASIS; other implementations work di�erently.

Bear in mind that the best strategy depends heavily on how your program is organized, and
on the particular OS and hardware you are using. Therefore, no general rule can be given, you'll

Chapter 3: Program Usage 18

have to experiment yourself. Hint: if you specify the \-v" option to AdaControl, it will print in
the end the elapsed time for running the tests; this is very helpful to make timing comparisons.

Note: all options described in this section are ASIS options, i.e. they must appear last on
the command line, after a \--".

3.8.1 Tree �les and the ASIS context

Since AdaControl is an ASIS application, it is useful to explain here how ASIS works. ASIS
(and therefore AdaControl) works on a set of units constituting a \context". Any reference to
an Ada entity which is not in the context (nor automatically added, see below) will be ignored;
especially, if you specify to AdaControl the name of a unit which is not included in the current
context, the unit will simply not be processed.

ASIS works by exploring tree �les (same name as the corresponding Ada unit, with a \.adt"
extension), which are \predigested" views of the corresponding Ada units. Such tree �les are
obtained by compiling the units with the \-gnatc -gnatt" options. Alternatively, the tree �les
can be generated automatically when needed.

A context in ASIS-for-Gnat is a set of tree �les. Which trees are part of the context is de�ned
by the \-C" option:

� -C1 Only one tree makes up the context. The name of the tree �le must follow the option.

� -CN Several explicit trees make up the context. The name of the tree �les must follow the
option.

� -CA All available trees make up the context. These are the tree �les found in the current
directory, and in any directory given with a \-T" option (which works like the \-I" option,
but for tree �les instead of source �les).

The \-F" option speci�es what to do if the program tries to access an Ada unit which is not
part of the context:

� -FT Only consider tree �les, do not attempt to compile units on-the-
y

� -FS Always compile units on-the-
y, ignore existing tree �les

� -FM Compile on-the-
y units for which there is no already existing tree �le

Note that \-FT" is the only allowed mode, and must be speci�ed, with the \-C1" and \-CN"
options.

The default combination used by AdaControl is \-CA -FM".

3.8.2 Choosing an appropriate combination of options

In order to optimize the use of AdaControl, it is important to remember that reading tree
�les is a time-consuming operation. On the other hand, a single tree �le contains not only
information for the corresponding unit, but also for all units that the given unit depends on.
Moreover, our measures showed that reading an existing tree �le may be slower than compiling
the corresponding unit on-the-
y (but once again, YMMV).

Note also that the \-r" option (recursive mode) of AdaControl implies an extra pass over the
whole program tree to determine the necessary units.

Here are some hints to help you �nd the most e�cient combination of options.

� If you want to run AdaControl on all units of your program, use the \-D" option to create
a �le containing the list of all required units, then use this �le as an indirect �le.

� When using an indirect �le, the order in which units are given may in
uence the speed of
the program. As a rule of thumb, units that are closely related should appear close to each
other in the �le. A good starting point is to sort the �le in alphabetical order: this way,
child units will appear immediately after their parent. You can then reorder units, and
measure if it has a signi�cant e�ect on speed.

Chapter 3: Program Usage 19

� If you want to check a unit individually, try using the \-C1" option (especially if the current
directory contains many tree �les from previous runs). Remember that you must specify
the unit to check to AdaControl, and the tree �le to ASIS. I.e., if you want to check the
unit \Example", the command line should look like:

adactl -f rules_file.aru example -- -FT -C1 example.adt

provided the tree �le already exists.

� For each strategy, �rst run AdaControl with the default options (which will create all
necessary tree �les). Compare execution time with the one you get with \-FT" and \-FS".
This will tell you if compiling on-the-
y is more e�cient than loading tree �les, or not.

3.9 In case of trouble

Like any sophisticated piece of software, AdaControl may fail when encountering some special
case of construct. ASIS may also fail occasionnally; actually, we discovered several ASIS bugs
during the development of AdaControl. These were reported to ACT, and have been corrected
in the wavefront version of GNAT - but you may be using an earlier version. In this case, try
to upgrade to a newer version of ASIS. If an AdaControl or ASIS problem is not yet solved,
AdaControl is designed in such a way that an occasionnal bug won't prevent you from using it.

If AdaControl detects an unexpected exception during the processing of a unit (an ASIS error
or an internal error), it will abandon the unit, clean up everything, and go on processing the
remaining units. This way, an error due to a special case in a unit will not a�ect the processing
of other units. AdaControl will return a Status of 10 in this case.

However, if it is run with the \-x" option (eXit on error), it will stop immediately, and no
further processing will happen.

If you don't want the garbage from a failing rule to pollute your report, you may chose to
disable the rule for the unit that has a problem. See Section 3.3.8 [Inhibit command], page 11.

If you encounter a problem while using AdaControl, you are very welcome to report it to
rosen@adalog.fr. Please include the exact rule and the unit that caused the problem, as well as
the captured output of the program (with \-d" option).

mailto::rosen@adalog.fr

Chapter 4: Rules Usage 20

4 Rules Usage

This chapter describes each rule currently provided by AdaControl. Note that the rules direc-
tory of the distribution contains a �le named verif.aru that contains an example of a set of
rules appropriate to check on almost any software.

A general limitation applies to all rules. AdaControl is a static checking tool, and therefore
cannot check usages that depend on run-time values. For example, it is not possible to check
rules applying to an entity when this entity is aliased and accessed through an access value, or
rules applying to subprogram calls when the call is a dispatching call.

4.1 Allocators

4.1.1 Syntax

<check|search|count> allocators [(<type name list>)];

4.1.2 Action

This rule controls usage of allocators. If type names are given, only allocators whose allocated
type is mentioned are controlled, otherwise all allocators are controlled. This rule is especially
useful for �nding memory leaks, since it tells all the places where dynamic allocation occurs.

Ex:

search allocators (standard.string);

4.1.3 Tips

If the allocated type is T'Base or T'Class, it will currently be found as T. This can be improved
in the future.

4.2 Declarations

4.2.1 Syntax

<check|search|count> declarations (Declaration_kw {, Declaration_kw};

Declaration_kw ::= access | access_subprogram | aliased |

exception | task | tagged

4.2.2 action

This rule controls usage of certain Ada declarations. Declaration keywords that are Ada key-
words match the corresponding Ada declarations. Note that task will match task type declara-
tions as well as single tasks declarations; access will match all access type declarations, while
access_subprogram will match only access to procedure or function declarations.

Ex:

search declarations (task, exception);

4.3 Default Parameter

4.3.1 Syntax

<check|search|count> default_parameter

(<entity>, <formal name>, ["not"] "used");

Chapter 4: Rules Usage 21

4.3.2 Action

This rule controls subprogram calls or generic instantiations that use (or conversely don't use)
the default value for the indicated parameter. If a subprogram is called, or a generic instantiated,
whose name matches <entity>, and it has a formal whose names is <formal name>, then:

� If the string used (case irrelevant) is given as the third parameter, the rule is �red if there
is no corresponding actual parameter (i.e. the default value is used for the parameter).

� If the string not used (case irrelevant) is given as the third parameter, the rule is �red
if there is an explicit corresponding actual parameter (i.e. the default is not used for the
parameter).

� If the string given as the third parameter is anything else, it is an error.

Ex:

search default_parameter (P, X, used);

search default_parameter (P, Y, not used);

4.3.3 Limitations

Due to an unimplemented feature under some versions of ASIS-for-Gnat, this rule may give an
ASIS error (ASIS FAILED, with a diagnosis of \Not Implemented Query" if used for subprogram
calls. It allways works OK with instantiations.

4.4 Entities

4.4.1 Syntax

<check|search|count> entities (<name list>);

4.4.2 Action

This rule controls all uses of the indicated entities. It is not intended to replace cross-references,
but can be quite handy to check, for example, that a program does not contain any more calls
to debugging procedures before �elding it.

Ex:

search entities (Debug.Trace);

4.4.3 Tips

This rule can also be used to check for all occurrences of certain attributes with the \all
<Attribute>" syntax. For example, the following will report on any usage of 'Unchecked_
Access:

check entities (all 'Unchecked_Access);

In certain contexts, only a limited set of the Ada prede�ned units is allowed. The rules

directory of Adacontrol contains a �le named no_standard_unit.aru. This �le contains an
Entity rule that forbids the use of any prede�ned Ada unit. Comment out the lines for the units
that you want to allow. You can then simply \source" this �les from your own rule �le (or copy
the content) if you want to disallow other units.

4.5 Entity Inside Exception

4.5.1 Syntax

<check|search|count> entity_inside_exception (<name list>);

Chapter 4: Rules Usage 22

4.5.2 Action

This rule controls exception handlers that contain references to one or several Ada entities
speci�ed as parameters.

Ex:

check entity_inside_exception (ada.text_io.put_line);

4.6 Exception Propagation

4.6.1 Syntax

<check|search|count> exception_propagation

(interface, <convention> {, <convention> });

<check|search|count> exception_propagation

(parameter, <parameter name> {, <parameter name>});

<check|search|count> exception_propagation

(task);

4.6.2 Action

This rule controls subprograms or tasks that can propagate exceptions, while being used in
contexts where it is desirable to ensure that no exception can be propagated. A subprogram or
task is considered as not propagating if:

1. it has an exception handlers with a \when others" choice

2. no exception handler contains a raise statement, nor any call to Ada.Exception.Raise_

Exception or Ada.Exception.Reraise_Occurrence.

It is dangerous to call an Ada subprogram that can propagate exceptions from a language that
has no exception (and especially C). Therefore any such subprogram should have a \catch-all"
exception handler. In its �rst form, the rule analyzes all subprograms to which an Interface or
Export pragma applies (with the given convention(s)), and reports on those that can propagate
exceptions.

Moreover, many systems (typically windowing systems) use call-back subprograms. Although
the native interface is generally hidden behind an Ada binding, the call-back subprograms will
eventually be called from another language. In its second form, the rule is given one or more
fully quali�ed formal parameter names (i.e. in the form of the parameter name pre�xed by the
full name of its subprogram, see Section 3.2.3 [Specifying an Ada entity name], page 6). The
rule will report on any subprogram that can propagate exceptions and is used as the pre�x of a
'Access or 'Address attribute that appears as part of an actual value for the indicated formal.
Similarly, the indicated formal can also be the name of a formal procedure or function of a
generic. In this case, the rule will report on any subprogram that can propagate exceptions and
is used as an actual in an instantiation for the given formal.

Finally, since tasks die silently if an exception is propagated out of their body, it is generally
desirable to ensure that every task has an exception handler that (at least) reports that the task
is being completed due to an exception.

Ex:

check exception_propagation (interface, C);

check exception_propagation (parameter, Pack.Register.CB);

check exception_propagation (task);

The �rst line will report on any subprogram to which a pragma Interface (C,...) applies
that can propagate exceptions.

If Proc is a procedure that can propagate exceptions, the second line will report on every
call like:

Chapter 4: Rules Usage 23

Pack.Register (CB => Proc'Access);

The third line will report on any task that can terminate silently due to an unhandled
exception.

4.6.3 Tips

Note that the registration procedure can be designated by an access type, but in this case, use
the name of the formal for the access type. For example, given:

package Pack is
type Acc_Proc is access procedure;
type Acc_Reg is access procedure (CB : Acc_Proc);

...

Ptr : Acc_Reg := ...;

You can give a rule such as:

check exception_propagation (parameter, Pack.Acc_Reg.CB);

All procedures registered by a call to Pack.Ptr.all will be considered.

4.6.4 Limitations

An exception may be raised in a subprogram considered as not propagating by this rule, if an
exception handler calls a subprogram that propagates an exception.

The rule will not consider subprograms that are not statically known (i.e. if a subprogram
is registered through a dereference of a pointer to subprogram), like in the following exampe:

Pack.Register (CB => Pointer.all'Access);

Due to a weakness of the ASIS standard, references to subprograms that appear in dispatching
calls are not considered. This limitation will be removed as soon as we �nd a way to work around
this problem, but the issue is quite di�cult!

4.7 Instantiations

4.7.1 Syntax

<check|search|count> instantiations (<generic name> {, <entity name> | <>});

4.7.2 Action

This rule controls all instantiations of a generic, or only instantiations that are made with speci�c
values of the parameters.

An instantiation matches if either:

1. No entity name is given in the rule

2. The entity names given are the same as the �rst parameters of the instantiation (i.e. there
can be more actual parameters in the instantiation than speci�ed in the rule). A box <>

can be given instead of an entity name, in which case it will match any actual parameter.

If an actual is an expression (which is possible only for a formal in object), it cannot be
matched.

Ex:

search instantiations (ada.unchecked_deallocation);

check instantiations (ada.unchecked_conversion, standard.string);

check instantiations (ada.unchecked_conversion, <>, standard.string);

The �rst example searches for all instantiations of Ada.Unchecked_Deallocation; the second
one checks instantiations of Ada.Unchecked_Conversion where the �rst parameter is String (ig-
noring the second parameter), while the third example checks instantiations of Ada.Unchecked_
Conversion where the second parameter is String (ignoring the �rst parameter).

Chapter 4: Rules Usage 24

4.7.3 Tips

It is often useful to check that a generic is instantiated only once (at least for a given type) in
a project. For example, a project may have a special service in charge of releasing pointers to
strings; it may be useful to check that Unchecked_Deallocation is not instantiated for String
anywhere else.

Note that the report message for this rule counts how many matches are found; a �rst solution
is to search for instantiations of Unchecked_Deallocation and verify manually that the count
is 1.

Another solution is to disable the check for the rule at the place where it is allowed, and then
do a check; if there are other instantiations, they will come out as errors.

4.8 Local Hiding

4.8.1 Syntax

<check|search|count> local_hiding;

4.8.2 Action

This rule controls declarations that hide an outer declaration with the same name (and parameter
and result type pro�le, if both are overloadable constructs). Since this rule has no parameters,
it can be given only once (otherwise, it is an error).

Ex:

search local_hiding;

4.9 Local Instantiation

4.9.1 Syntax

<check|search|count> local_instantiation (<generic name list>);

4.9.2 Action

This rule controls instantiations that are done in a local scope (i.e. not at library level in a
library package, or a subpackage of a library package). Instantiations that appear in a generic
package are not
agged (unless the generic package is itself in a local scope).

Ex:

search local_instantiation (ada.unchecked_deallocation);

4.10 Max Nesting

4.10.1 Syntax

<check|search|count> max_nesting (<max allowed depth>);

4.10.2 Action

This rule controls the nesting of declarative constructs (like subprograms, packages, generics,
block statements. . .) that exceed a given depth. Nesting of statements (loop, case) is not
considered. This rule can be given once for each of for check, search, and count. This way, it is
possible to have a level considered a warning (search), and one considered an error (check). Of
course, this makes sense only if the level for search is less than the one for check.

Ex:

search max_nesting (5);

check max_nesting (7);

Chapter 4: Rules Usage 25

4.11 Naming Convention

4.11.1 Syntax

<check|search|count> naming_convention

([root] <Filter_Kind>,

[case_sensitive | case_insensitive] [not] "<Pattern>" {, ...});

<Filter_Kind> ::= All |

Type |

Discrete_Type |

Enumeration_Type |

Integer_Type |

Signed_Integer_Type |

Modular_Integer_Type |

Floating_Point_Type |

Fixed_Point_Type |

Binary_Fixed_Point_Type |

Decimal_Fixed_Point_Type |

Array_Type |

Record_Type |

Regular_Record_Type |

Tagged_Type |

Class_Type |

Access_Type |

Access_To_Regular_Type |

Access_To_Tagged_Type |

Access_To_Class_Type |

Access_To_SP_Type |

Access_To_Task_Type |

Access_To_Protected_Type |

Private_Type |

Private_Extension |

Generic_Formal_Type |

Variable |

Regular_Variable |

Field |

Discriminant |

Record_Field |

Protected_Field |

Procedure_Formal_Out |

Procedure_Formal_In_Out |

Generic_Formal_In_Out |

Constant |

Regular_Constant |

Named_Number |

Integer_Number |

Real_Number |

Enumeration |

Sp_Formal_In |

Generic_Formal_In |

Loop_Control |

Occurrence_Name |

Chapter 4: Rules Usage 26

Entry_Index |

Label |

Stmt_Name |

Loop_Name |

Block_Name |

Subprogram |

Procedure |

Regular_Procedure |

Protected_Procedure |

Generic_Formal_Procedure |

Function |

Regular_Function |

Protected_Function |

Generic_Formal_Function |

Entry |

Task_Entry |

Protected_Entry |

Package |

Regular_Package |

Generic_Formal_Package |

Task |

Task_Type |

Task_Object |

Protected |

Protected_Type |

Protected_Object |

Exception |

Generic |

Generic_Package |

Generic_Sp |

Generic_Procedure |

Generic_Function

4.11.2 Action

This rule controls the declaration of identi�ers that do not follow the project's naming conven-
tions. The �rst parameter de�nes the kind of declaration to which the rule is applicable, and
other parameters de�ne patterns, using the full Regexp syntax. Please refer to the regexp ref-
erence manual, or to the comments in �le gnat-regpat.ads for details. If a pattern is preceded
by \not", then the pattern must not be matched (i.e. the rule is �red if there is a match).
Note that the pattern needs not include any wildcard, but if it does, it must be enclosed in
quotes. If \case sensitive" is speci�ed, pattern matching considers casing. Otherwise (default
or \case insensitive"), casing is irrelevant. Note that the rule checks the name only at the place
where it is declared; casing might be di�erent when the name is used later.

The rule will be activated if an identi�er is declared that does not match any of the \positive"
patterns (the ones without \not"), or if it matches any of the "negative" patterns (the ones with
a \not"). If only negative patterns are given, it is implicitely assumed that all other identi�ers
are OK. In other words, accepted identi�ers must have the form of (at least) one of the \positive"
patterns (if any), but not the form of one of the \negative" patterns.

The �lter kinds are organized hierarchically, as re
ected in the syntax above. To be valid,
the name must match the patterns speci�ed for its own �lter, and for all �lters above it in the
hierarchy. For example, a modular type declaration must follow the rules (if speci�ed) for \all",

Chapter 4: Rules Usage 27

\type","discrete type", \integer type" and \modular integer type". However, if a �lter kind is
preceded by \root", rules above it in the hierarchy are not considered (neither for itself not its
children). This is useful to make exceptions to a more general rule.

It is of course not necessary to specify all the �lter kinds, nor to specify �lters down to the
deepest level; if you specify a rule for \type", it will be applied to all type declarations, whether
there is a more speci�c rule or not.

For renamings, the applicable rule is the one for the renamed entity. Similarly, subtypes
and derived types must follow the rule for their respective original (full) type. Incomplete type
declarations are not checked, since their corresponding full declaration is (normally) checked.
Private types (including of course the full declaration of a private type) follow the rule for private
types, not the rules for their full type view (otherwise it would be privacy breaking).

Ex:

-- All identifiers must have at least 3 characters:

check naming_convention (all, "...");

-- Predefined name is forbidden:

check naming_convention (all, not Integer);

-- Types must either start or end with T

check naming_convention (type, case_sensitive "^T_",

case_sensitive "_T$");

-- Exception to the rule for "all":

-- No minimum length for "for loop" identifiers

check naming_convention (root loop_parameter, ".");

-- "Upper_Initials" naming convention:

check naming_convention

(all, case_sensitive "^[A-Z][a-z0-9]*(_[A-Z0-9][a-z0-9]*)*$");

4.11.3 Tips

Remember that a Regexp matches if the pattern matches any part of the identi�er. Use \^"
and \$" to match the beginning (resp. end) of the name, or both.

\class type" is applicable to subtypes that designate a class-wide type. Similarly, \ac-
cess to class type" is applicable to access types whose designated type is class-wide.

The rules directory of Adacontrol contains two �les named no_standard_entity.aru and
no_system_entity.aru. These are �les that contain a naming convention rule that forbids the
declaration of names declared in packages Standard and System, respectively. You can simply
\source" these �les from your own rule �le (or copy the content) if you want to disallow these
identi�ers.

Like usual, naming convention rule can be given multiple times, and can be disabled. How-
ever, consider the following:

Rule1 : check naming_convention (constant, "^c_");

Rule2 : check naming_convention (constant, "^const_");

The rule will trigger if a constant is declared that does not start with either \c " or \const ".
But here, we have two di�erent rule labels. The message will refer to the �rst label encountered
in the rule �le; this is the label that must be mentionned in a disabling comment, unless you
simply disable \naming convention".

Chapter 4: Rules Usage 28

4.11.4 Limitations

This rule does not support wide characters outside the basic Latin-1 set.

If you compiled with the Portable_String_Matching package, only basic (*" and \?")
wildcards are available.

4.12 No Closing Name

4.12.1 Syntax

<check|search|count> no_closing_name [(<acceptable length>)];

4.12.2 Action

This rule controls declarations, like package or subprograms, that allow (but do not require)
repeating the name at the end of the declaration, and where the closing name is omitted (which
is considered bad style in general). However, it can be acceptable to allow the omission of closing
names for very short constructs; therefore this rule has an optional parameter specifying the
maximum number of lines of a construct for which omitting the closing name is allowed. This
rule can be given only once for each of check, search and count. This way, it is possible to have
a length considered a warning (search), and one considered an error (check). Of course, this
makes sense only if the length for search is less than the one for check. If no length is speci�ed,
all occurrences of missing closing names are signaled.

Ex:

search no_closing_name;

check no_closing_name (5);

4.13 Not Elaboration Calls

4.13.1 Syntax

<check|search|count> not_elaboration_calls (<subprogram name list>);

4.13.2 Action

This rule controls subprogram calls (procedure, function or entry calls) that are performed at
any time except during the elaboration of library packages.

Ex:

search not_elaboration_calls (Data.Initialize);

4.13.3 Limitations

Due to an (allowed by ASIS standard) limitation of ASIS-for-Gnat, the rule will not detect calls
to subprograms that are implicitely de�ned, like calling a "+" on Integer. Fortunately, it is
very unlikely that the user would want to forbid that kind of calls in non-elaboration code.

Note also that calls that cannot be statically determined, like calls to dispatching operations
or calls through pointers to subprograms cannot be detected either.

4.14 Parameter Aliasing

4.14.1 Syntax

<check|search|count> parameter_aliasing [(Certain | Possible | Unlikely)];

Chapter 4: Rules Usage 29

4.14.2 Action

This rule controls aliased use of variables in subprogram calls. Speci�cally, this rule will identify
calls where the same variable is given as an actual to more than one out or in out parameter,
like in the following example:

procedure Proc (X, Y : out Integer);

...

Proc (X => V, Y => V);

There are many cases where aliasing cannot be determined statically. The optional parameter
speci�es how aggressively the rule will check for possible aliasings. Possible values are (case
irrelevant):

� Certain (default): Only cases where aliasing is statically certain are output.

� Possible: In addition, cases where aliasing may occur depending on the value of an indexed
component are output. These may or may not be true aliasing, depending on the algorithm.
For example, given:

Swap (Tab (I), Tab (J));

there is no aliasing, unless I equals J.

If all expressions used for indexing in both variables are integer or enumeration litterals,
the rule will be able to eliminate the diagnosis of aliasing (if the values are di�erent). This
does not cover all cases of static expressions, but will avoid unnecessary messages in cases
like:

Swap (Tab (1), Tab (2));

� Unlikely: In addition, cases where aliasing may occur due to access variables pointing to
the same variable are output. These may or may not be true aliasing, depending on the
algorithm, but should normally occur only as the result of very strange practices, like in
the following example:

type R is
record

X : aliased Integer;

end record;
X : R;

Y : Access_All_Integer := R.X'access;

...

P (X, Y.all);

There will be no false positive with \Certain". There will be no false negative with \Unlikely"
(but many false positives). \Possible" is somewhere in-between.

The rule may be speci�ed at most once for each value of the parameter. This allows for
example to \check" for \Certain" and \search" for \Possible".

Ex:

check parameter_aliasing;

search parameter_aliasing (Possible);

Note that the rule is quite clever: it will consider partial aliasing (like a record variable as
one parameter, and one of its components as another parameter), and will not be fooled by
renamings.

4.14.3 Limitation

Due to a weakness of the ASIS standard, dispatching calls are not considered. This limitation
will be removed as soon as we �nd a way to work around this problem, but the issue is quite
di�cult!

Chapter 4: Rules Usage 30

4.15 Pragmas

4.15.1 Syntax

<check|search|count> pragmas (nonstandard | <pragma name> {, ...});

4.15.2 Action

This rule controls usage of one or several speci�c pragmas. If the special name \nonstandard"
is given, then all implementation-de�ned and unrecognized pragmas will be controlled.

Ex:

check pragmas (elaborate_all, elaborate_body);

4.16 Real Operators

4.16.1 Syntax

<check|search|count> real_operators;

4.16.2 Action

This controls usage of exact equality or inequality (\=" or \/=") between real (
oating point
or �xed point) values.

Ex:

check real_operators;

4.17 Representation Clauses

4.17.1 Syntax

<check|search|count> representation_clauses

[(at | at_mod | enumeration | record | <attribute>, ...)];

4.17.2 Action

This rule controls usage of representation clause. Without parameter, it will control all repre-
sentation clauses, otherwise it will control the representation clauses given as parameter.

\at" checks for address clauses given in Ada 83 style (\for XXX use at"). \at mod" checks
for alignment clauses given in Ada 83 style (\for T use record at mod XX;"). \enumera-
tion" checks for enumeration representation clauses. \record" checks for record representation
clauses. In addition to these keyword, any speci�able attribute can be given (including the
initial \"'); the rule will check for a speci�cation of this attribute. Note that double attributes
(like \'CLASS'INPUT") can be given, and are considered di�erent from the simple attribute
(\'INPUT"). It is of course possible to specify both.

Ex:

All_Addresses: check representation_clauses (at, 'address);

All_Input: check representation_clauses ('input, 'class'input);

count representation_clauses ('SIZE);

4.18 Side E�ect Parameters

4.18.1 Syntax

<check|search|count> Side_Effect_Parameters (<function name list>);

Chapter 4: Rules Usage 31

4.18.2 Action

This controls subprogram calls or generic instantiations where di�erent actual parameters call
functions known to have side e�ects. This is dangerous practice, since correct behaviour may
depend on a certain evaluation order of parameters, which is not speci�ed by the language.

All functions mentionned as parameters in the rule are assumed to interfere, i.e. the rule will
signal if any of these functions is called more than once in the parameters of a call.

It is allowed to give the name of a generic function, or of a function declared in a generic
package; in this case, all functions resulting from instantiations of these generics will be consid-
ered.

In the case of renamings, you must give the name of the original function; the rule will work
correctly if the call is made through a renaming of this function.

Ex:

check side_effect_parameters (F1);

check side_effect_parameters (G1, G2);

Here, F1 has a side e�ect, and the rule will signal if it is called more than once. G1 and G2
are assumed to interfere, and therefore the rule will signal if either is called more than once, or
if both are called. However, having a call that mentions F1 and G2 is OK.

4.18.3 Limitation

Due to the size of internal structures, this rule may not be given more than 100 times.

Due to an unimplemented feature of ASIS-for-Gnat, this rule will not process defaulted
parameters, and hence not detect interferences due to calling a side-e�ect function through the
default value.

4.19 Silent Exceptions

4.19.1 Syntax

<check|search|count> Silent_Exceptions (<procedure name list>);

4.19.2 Action

This rule controls exception handlers that can cause exceptions to silently disappear, i.e. han-
dlers that do not call one of the given procedures (for example a reporting procedure) nor re-raise
an exception. Entry calls are accepted as well as procedure calls.

This rule can be given once for each of check, search and count. This way, it is possible to
have a level considered a warning (search), and one considered an error (check).

Ex:

check silent_exceptions (reports.trace);

If the raise statements or procedure calls appear only in if or case statements, but not in
all possible paths, or if they appear only in the body of loop statements, the rule will issue a
message asking for a manual veri�cation, since it cannot be statically determined whether the
proper treatment happens in every case.

The procedures Ada.Exceptions.Raise_Exception and Ada.Exceptions.Reraise_

Occurrence are automatically added to the list of procedures for both Check and Search,
unless they are explicitely speci�ed as a parameter in a rule. This way, it is possible to consider
them as reporting procedures for Check (for example) and not for Search.

Chapter 4: Rules Usage 32

4.19.3 Limitations

There are two cases that are not statically checkable, and thus may not be identi�ed by this rule:
if an exception is raised in an inner block statement and handled locally, and if the exception
handler aborts the current task.

4.20 Simpli�able Expressions

4.20.1 Syntax

<check|search|count> Simplifiable_Expressions [(keyword)];

keyword ::= range | logical | logical_true | logical_false | parentheses

4.20.2 Action

This rule controls expressions that can be simpli�ed. The \range" parameter controls expressions
of the form T'First .. T'Last that should be T'range (or even simply T). \logical true"
controls redundant boolean expressions of the form <expr> = True (or /=), and \logical false"
does the same for comparisons with false. \logical" is the same as specifying both \logical true"
and \logical false". \parentheses" controls unnecessary parentheses surrounding the expression
of an \if" or \case" statement.

Ex:

check simplifiable_expressions (range, logical);

4.21 Speci�cation Objects

4.21.1 Syntax

<check|search|count> specification_objects

[([not] constant|read|written|initialized {, ...})];

4.21.2 action

This rule controls usage of objects (variables and constants) declared in (generic) package spec-
i�cations. Variables are often discouraged in package speci�cations, or need at least some extra
control. Constants that are never used (not even in the package itself) are also suspicious.
Moreover, some useful compiler warnings (like those about variables that should be declared
constants) are not output for variables declared in library packages (at least with GNAT). This
rule can do the same thing, project wide.

By default (without any parameter), this rule will report about usage of each object declared
in a package speci�cation which is part of the processed units; usage of objects whose declaration
is not processed (like, typically, elements declared in standard packages like Ada.Text_IO, are
not reported). The report includes the kind of package that declares the object (normal package,
instantiation, or generic) and whether it is known to be initialized, read, and/or written. Vari-
ables of an access type and variables of an array type whose components are of an access type (or
arrays of an access type, etc.) are always considered initialized, since they are initialized to null
by the compiler. Some combinations give an extra useful message (for example, a variable which
is initialized and read but not written will produce a \could be declared constant" message).

In the case of objects declared in generic packages, the rule will report on usage of the objects
for each instantiation, as well as on global usage for the generic itself. Usage for an instantiation
will include usage in the generic itself (i.e. if the generic writes to a variable, the variable will
be marked as \written" for each instantiation). Usage for the generic itself is the union of all
usages in all instantiations (i.e., if a variable from any instantiation is written to, the variable
from the generic will be marked as written). Therefore, if the rule reports that a variable in a

Chapter 4: Rules Usage 33

generic package can be declared constant, it means that no instance of this variable from any
instantiation is being written to. But bear in mind that this can be trusted only if all units from
the program are analyzed. See [limitation], page 33.

It is possible to specify as parameter(s) one or several of the keywords (case irrelevant)
constant read, written, or initialized, possibly preceded by not. The rule will output the
information only for objects that match all the conditions given. The rule can be given once
and only once for each combination of the parameters.

Ex:

search specification_objects (not read);

check specification_objects (not initialized, not written, read);

4.21.3 Tips

An unspeci�ed parameter in a rule stands for two rules (positive and negative form of the missing
parameter). I.e.:

search specification_objects (read, written);

is the same as:

search specification_objects (read, written, initialized);

search specification_objects (read, written, not initialized);

Therefore, the following example will complain on the second line that the rule has already
been given for this combination of parameters:

search specification_objects (read, written);

search specification_objects (read, written, not initialized);

Constants will be reported only for rules that apply (implicitely or explicitely) to \initialized,
not written" since this is guaranteed by the language. The message tells it is a constant, but
does not report \initialized, not written". Use \not constant" if you don't want reports about
constants. Note that the notion of constants for this rule includes named numbers.

4.21.4 Limitation

The report of this rule is output at the end of the run, and is meaningful only for the units that
have been processed; i.e., if it reports \variable not read", it should be understood as \not read
by the units given".

In order to have meaningful results, it is therefore advisable to use this rule on the complete
closure of the program.

Due to a weakness of the ASIS standard, speci�cation variables that appear as [in] out
parameters in dispatching calls are not marked as \written". This limitation will be removed as
soon as we �nd a way to work around this problem, but the issue is quite di�cult!

4.22 Statements

4.22.1 Syntax

<check|search|count> statements (statement_kw {, statement_kw};

Statement_kw ::= abort | asynchronous_select | case_others | delay |

delay_until | exit | goto | raise | requeue

4.22.2 action

This rule controls usage of certain Ada statements. Statement keywords that are Ada keywords
match the corresponding Ada statements; note that delay will match only relative delay state-
ments (i.e. it will not match the delay until statement). asynchronous_select matches the

Chapter 4: Rules Usage 34

select ... then abort statement. case_others matches a when others path in a case state-
ment. unnamed_exit matches an exit statement without a loop name that exits from a named
loop.

Ex:

search statements (delay);

check statements (goto, abort);

4.23 Unnecessary Use Clause

4.23.1 Syntax

<check|search|count> unnecessary_use_clause;

4.23.2 Action

This rule controls use clauses that do not serve any purpose and can safely be removed. This
happens in two cases:

� A use clause is given, but no element from the corresponding package is mentionned in its
scope.

� A use clause is given within the scope of an enclosing use clause for the same package.

In the �rst case, just remove the use clause. In the second case, the rule will signal the
location of the enclosing use clause. If you also have a message that the outer use clause is
unnecessary, this means that all references to the package appear inside the inner use clauses,
and that the outer one can be removed. If not, you can either remove the inner use clauses, or
remove the outer one and add more local use clauses where necessary.

This rule will also signal use clauses given in a package speci�cation that can safely be moved
to the body. Since this rule has no parameters, it can be given only once (otherwise, it is an
error).

Ex:

search unnecessary_use_clause;

4.23.3 Limitations

There are some rare cases where the rule may signal that a use clause is not necessary, where it
actually is. There is no risk associated to this since if you remove the use clause, the program
will not compile.

The �rst one comes from a limitation of the ASIS standard: if the only use of the use clause
is for making the \root" de�nition of a dispatching call visible.

The second one comes from a limitation in ASIS-for-Gnat. This happens when the only use
of the use clause is for making an implicitely declared operation (an operation which is declared
by the compiler as part of a type derivation) visible, and when:

� the operation is the target of a renaming declaration;

� or the operation is passed as an actual to a generic instantiation;

� or all operands of the operation are universal (i.e. untyped).

Since these problems come from intrinsic limitations of ASIS, there is nothing we can do
about it. When this happens, you can disable the unnecessary use clause rule using the line
(or block) disabling feature. See Section 3.6 [Disabling rules], page 16. Note that for the third
alternative of the second case, you can also qualify one of the parameters, so it is not universal
any more.

Chapter 4: Rules Usage 35

4.24 Use Clauses

4.24.1 Syntax

<check|search|count> use_clauses (<package name list>);

4.24.2 Action

This rule controls usage of use clauses, except for the ones that name one of the mentioned
packages. It is therefore possible to allow use clauses just for certain packages.

This rule can be given at most once for each of check, search and count. This way, it is
possible to have a level considered a warning (search), and one considered an error (check).

Ex:

check use_clauses (Ada.Text_IO, Ada.Wide_Text_IO);

4.25 When Others Null

4.25.1 Syntax

<check|search|count> when_others_null [(exception | case, ...)]

4.25.2 Action

This rule controls \when others" case alternatives or exception handlers that contain only null
statements. If no parameter is speci�ed, both exception handlers and case statements are
searched. Otherwise, it is possible to specify \exception" to search only exception handlers,
or \case" to search only case statements.

This rule can be speci�ed at most twice, once for \case" and once for \exception".

Ex:

check when_others_null (exception);

search when_others_null (case);

Chapter 5: Examples of using AdaControl for common programming rules 36

5 Examples of using AdaControl for common
programming rules

In most projects, there are programming rules that de�ne the way a program should be written.
AdaControl performs checks, i.e. it �nds occurrences of certain kinds of constructs. In this
chapter, we give examples of commonly found programming rules, and how the corresponding
checks can be written.

5.1 Automatically checkable rules

Below are examples of rules that can be directly checked by AdaControl.

Goto statement shall not be used

check statements (goto);

All type names must start with \T "

check naming_convention (type, "^T_");

All program units must repeat their name after the \end"

check no_closing_name;

Pragma Suppress is not allowed

check pragmas (suppress);

Ada tasking must not be used

check declarations (task);

\=" and \/=" shall not be used between real types

check real_operators;

All tasks must provide an exception handler that calls \Failure" in the case of an unhandled
exception

check exception_propagation (task);

check silent_exceptions (failure);

Unchecked Conversion shall not be used

check entities (ada.unchecked_conversion);

No global variable shall be declared in the visible part of a package speci�cation

check specification_objects (not constant);

Prede�ned numeric types of the language shall not be used

check entities (standard.Integer,

standard.short_integer,

standard.long_integer,

standard.Float,

standard.short_float,

standard.long_float);

Access to subprograms shall not be used

Chapter 5: Examples of using AdaControl for common programming rules 37

check declarations (access_to_sp);

Abort statements shall not be used

check statements (abort);

There shall be only one instantiation of Ada.Numerics.Generic Elementary Functions for each

oating point type

-- Put a --##RULE LINE OFF GEF

-- for the one which is allowed

GEF: check Instantiations (Ada.Numerics.Generic_Elementary_Functions);

A local item shall not hide an outer one with the same name

check Local_Hiding;

There shall be no IOs in exception handlers

check entity_inside_exception (ada.Text_IO.put, ada.Text_IO.put_line,

ada.Text_IO.get, ada.Text_IO.get_line);

Note that this checks for all overloaded procedures, but only those dealing with characters
and strings (those de�ned directly within Ada.Text IO). If the names \get" and \put" are not
used for anything else than IOs, a more general form can be given as:

check entity_inside_exception (all get, all put,

all get_line, all put_line);

This will check that no entity with the corresponding names appear in exception handlers.

No procedure exported to C shall propagate exceptions

check exception_propagation (interface, C);

There shall be no Unchecked Conversion to or from Address

check instantiations (ada.unchecked_conversion, system.address);

check instantiations (ada.unchecked_conversion, <>, system.address);

There shall be no use clause except for Text IO

check use_clauses(ada.text_IO);

5.2 Rules that need manual inspection

Below are examples of rules that require manual inspection, but where AdaControl can be used
to identify suspicious areas.

All usages of the 'ADDRESS attribute shall be justi�ed and documented

search entities (all 'address);

Specifying an address for a variable shall be restricted to hardware interfacing

search representation_clauses(address);

There shall be no memory leakage

Chapter 5: Examples of using AdaControl for common programming rules 38

search Allocators;

This rule identi�es all allocations, and thus can be used to check that all allocated elements
are properly deallocated.

	Introduction
	Installation
	Prerequisites
	Building AdaControl
	Testing AdaControl
	Customizing AdaControl
	Integrating AdaControl into GPS

	Program Usage
	Running AdaControl
	Rules syntax
	Types and report messages
	Parameters
	Specifying an Ada entity name
	Overloaded names
	Enumeration literals
	Operators
	Attributes
	Anonymous constructs
	Record and protected types components
	Formals of access to subprogram types

	Multiple rules

	Commands
	Go command
	Quit command
	Message command
	Help command
	Clear command
	Set command
	Source command
	Inhibit command
	Example of commands

	Command line options and parameters
	Getting help
	Input units
	Specifying rules
	Output file
	Interactive mode
	Local deactivation ignoring
	Verbose and debug mode
	Treat warnings as errors
	Exit on error
	Project files
	Emacs style project files
	GPS project files

	ASIS options

	Return codes
	Disabling rules
	Block disabling
	Line disabling

	Helpful utilities
	pfni
	Adactl -D

	Optimizing AdaControl
	Tree files and the ASIS context
	Choosing an appropriate combination of options

	In case of trouble

	Rules Usage
	Allocators
	Syntax
	Action
	Tips

	Declarations
	Syntax
	action

	Default_Parameter
	Syntax
	Action
	Limitations

	Entities
	Syntax
	Action
	Tips

	Entity_Inside_Exception
	Syntax
	Action

	Exception_Propagation
	Syntax
	Action
	Tips
	Limitations

	Instantiations
	Syntax
	Action
	Tips

	Local_Hiding
	Syntax
	Action

	Local_Instantiation
	Syntax
	Action

	Max_Nesting
	Syntax
	Action

	Naming_Convention
	Syntax
	Action
	Tips
	Limitations

	No_Closing_Name
	Syntax
	Action

	Not_Elaboration_Calls
	Syntax
	Action
	Limitations

	Parameter_Aliasing
	Syntax
	Action
	Limitation

	Pragmas
	Syntax
	Action

	Real_Operators
	Syntax
	Action

	Representation_Clauses
	Syntax
	Action

	Side_Effect_Parameters
	Syntax
	Action
	Limitation

	Silent_Exceptions
	Syntax
	Action
	Limitations

	Simplifiable_Expressions
	Syntax
	Action

	Specification_Objects
	Syntax
	action
	Tips
	Limitation

	Statements
	Syntax
	action

	Unnecessary_Use_Clause
	Syntax
	Action
	Limitations

	Use_Clauses
	Syntax
	Action

	When_Others_Null
	Syntax
	Action

	Examples of using AdaControl for common programming rules
	Automatically checkable rules
	Rules that need manual inspection

