CLinearHMM Class Reference

Inheritance diagram for CLinearHMM:

Inheritance graph
[legend]

List of all members.


Detailed Description

class LinearHMM

Definition at line 20 of file LinearHMM.h.


Public Member Functions

 CLinearHMM (CStringFeatures< WORD > *f)
 CLinearHMM (INT p_num_features, INT p_num_symbols)
 ~CLinearHMM ()
bool train ()
bool train (const INT *indizes, INT num_indizes, DREAL pseudo_count)
DREAL get_log_likelihood_example (WORD *vector, INT len)
DREAL get_likelihood_example (WORD *vector, INT len)
virtual DREAL get_log_likelihood_example (INT num_example)
virtual DREAL get_log_derivative (INT num_param, INT num_example)
virtual DREAL get_log_derivative_obsolete (WORD obs, INT pos)
virtual DREAL get_derivative_obsolete (WORD *vector, INT len, INT pos)
virtual INT get_sequence_length ()
virtual INT get_num_symbols ()
virtual INT get_num_model_parameters ()
virtual DREAL get_positional_log_parameter (WORD obs, INT position)
virtual DREAL get_log_model_parameter (INT num_param)
virtual void get_log_transition_probs (DREAL **dst, INT *num)
virtual bool set_log_transition_probs (const DREAL *src, INT num)
virtual void get_transition_probs (DREAL **dst, INT *num)
virtual bool set_transition_probs (const DREAL *src, INT num)
virtual INT get_num_relevant_model_parameters ()
virtual DREAL get_log_likelihood_sample ()
virtual void get_log_likelihood (DREAL **dst, INT *num)
virtual DREAL get_model_parameter (INT num_param)
virtual DREAL get_derivative (INT num_param, INT num_example)
virtual DREAL get_likelihood_example (INT num_example)
virtual void set_features (CFeatures *f)
virtual CFeaturesget_features ()
virtual void set_pseudo_count (DREAL pseudo)
virtual DREAL get_pseudo_count ()

Static Public Attributes

static CParallel parallel
static CIO io
static CVersion version

Protected Attributes

INT sequence_length
INT num_symbols
INT num_params
DREALtransition_probs
DREALlog_transition_probs
CFeaturesfeatures
DREAL pseudo_count

Constructor & Destructor Documentation

CLinearHMM::CLinearHMM ( CStringFeatures< WORD > *  f  ) 

constructor

Parameters:
f features to use

Definition at line 17 of file LinearHMM.cpp.

CLinearHMM::CLinearHMM ( INT  p_num_features,
INT  p_num_symbols 
)

constructor

Parameters:
p_num_features number of features
p_num_symbols number of symbols in features

Definition at line 26 of file LinearHMM.cpp.

CLinearHMM::~CLinearHMM (  ) 

Definition at line 34 of file LinearHMM.cpp.


Member Function Documentation

bool CLinearHMM::train (  )  [virtual]

train distribution

Returns:
if training was successful

Implements CDistribution.

Definition at line 40 of file LinearHMM.cpp.

bool CLinearHMM::train ( const INT indizes,
INT  num_indizes,
DREAL  pseudo_count 
)

alternative train distribution

Parameters:
indizes indices
num_indizes number of indices
pseudo_count pseudo count
Returns:
if training was successful

Definition at line 87 of file LinearHMM.cpp.

DREAL CLinearHMM::get_log_likelihood_example ( WORD vector,
INT  len 
)

get logarithm of one example's likelihood

Parameters:
vector the example
len length of vector
Returns:
logarithm of likelihood

Definition at line 137 of file LinearHMM.cpp.

DREAL CLinearHMM::get_likelihood_example ( WORD vector,
INT  len 
)

get one example's likelihood

Parameters:
vector the example
len length of vector
Returns:
likelihood

Definition at line 159 of file LinearHMM.cpp.

DREAL CLinearHMM::get_log_likelihood_example ( INT  num_example  )  [virtual]

get logarithm of one example's likelihood

Parameters:
num_example which example
Returns:
logarithm of example's likelihood

Implements CDistribution.

Definition at line 147 of file LinearHMM.cpp.

DREAL CLinearHMM::get_log_derivative ( INT  num_param,
INT  num_example 
) [virtual]

get logarithm of one example's derivative's likelihood

Parameters:
num_param which example's param
num_example which example
Returns:
logarithm of example's derivative

Implements CDistribution.

Definition at line 169 of file LinearHMM.cpp.

virtual DREAL CLinearHMM::get_log_derivative_obsolete ( WORD  obs,
INT  pos 
) [virtual]

obsolete get logarithm of one example's derivative's likelihood

Parameters:
obs observation
pos position

Definition at line 89 of file LinearHMM.h.

virtual DREAL CLinearHMM::get_derivative_obsolete ( WORD vector,
INT  len,
INT  pos 
) [virtual]

obsolete get one example's derivative

Parameters:
vector vector
len length
pos position

Definition at line 100 of file LinearHMM.h.

virtual INT CLinearHMM::get_sequence_length (  )  [virtual]

get sequence length of each example

Returns:
sequence length of each example

Definition at line 110 of file LinearHMM.h.

virtual INT CLinearHMM::get_num_symbols (  )  [virtual]

get number of symbols in examples

Returns:
number of symbols in examples

Definition at line 116 of file LinearHMM.h.

virtual INT CLinearHMM::get_num_model_parameters (  )  [virtual]

get number of model parameters

Returns:
number of model parameters

Implements CDistribution.

Definition at line 122 of file LinearHMM.h.

virtual DREAL CLinearHMM::get_positional_log_parameter ( WORD  obs,
INT  position 
) [virtual]

get positional log parameter

Parameters:
obs observation
position position
Returns:
positional log parameter

Definition at line 130 of file LinearHMM.h.

virtual DREAL CLinearHMM::get_log_model_parameter ( INT  num_param  )  [virtual]

get logarithm of given model parameter

Parameters:
num_param which param
Returns:
logarithm of given model parameter

Implements CDistribution.

Definition at line 140 of file LinearHMM.h.

void CLinearHMM::get_log_transition_probs ( DREAL **  dst,
INT num 
) [virtual]

get logarithm of all transition probs

Parameters:
dst where logarithm of transition probs will be stored
num where number of logarithm of transition probs will be stored

Definition at line 214 of file LinearHMM.cpp.

bool CLinearHMM::set_log_transition_probs ( const DREAL src,
INT  num 
) [virtual]

set logarithm of all transition probs

Parameters:
src new logarithms of transition probs
num number of logarithms of transition probs
Returns:
if setting was succesful

Definition at line 224 of file LinearHMM.cpp.

void CLinearHMM::get_transition_probs ( DREAL **  dst,
INT num 
) [virtual]

get all transition probs

Parameters:
dst where transition probs will be stored
num where number of transition probs will be stored

Definition at line 184 of file LinearHMM.cpp.

bool CLinearHMM::set_transition_probs ( const DREAL src,
INT  num 
) [virtual]

set all transition probs

Parameters:
src new transition probs
num number of transition probs
Returns:
if setting was succesful

Definition at line 194 of file LinearHMM.cpp.

INT CDistribution::get_num_relevant_model_parameters (  )  [virtual, inherited]

get number of parameters in model that are relevant, i.e. > ALMOST_NEG_INFTY

Returns:
number of relevant model parameters

Definition at line 48 of file Distribution.cpp.

DREAL CDistribution::get_log_likelihood_sample (  )  [virtual, inherited]

compute log likelihood for whole sample

Returns:
log likelihood for whole sample

Definition at line 24 of file Distribution.cpp.

void CDistribution::get_log_likelihood ( DREAL **  dst,
INT num 
) [virtual, inherited]

compute log likelihood for each example

Parameters:
dst where likelihood will be stored
num where number of likelihoods will be stored

Definition at line 35 of file Distribution.cpp.

virtual DREAL CDistribution::get_model_parameter ( INT  num_param  )  [virtual, inherited]

get model parameter

Parameters:
num_param which param
Returns:
model parameter

Definition at line 94 of file Distribution.h.

virtual DREAL CDistribution::get_derivative ( INT  num_param,
INT  num_example 
) [virtual, inherited]

get derivative of likelihood function

Parameters:
num_param which param
num_example which example
Returns:
derivative of likelihood function

Definition at line 105 of file Distribution.h.

virtual DREAL CDistribution::get_likelihood_example ( INT  num_example  )  [virtual, inherited]

compute likelihood for example

Parameters:
num_example which example
Returns:
likelihood for example

Definition at line 115 of file Distribution.h.

virtual void CDistribution::set_features ( CFeatures f  )  [virtual, inherited]

set feature vectors

Parameters:
f new feature vectors

Definition at line 124 of file Distribution.h.

virtual CFeatures* CDistribution::get_features (  )  [virtual, inherited]

get feature vectors

Returns:
feature vectors

Definition at line 130 of file Distribution.h.

virtual void CDistribution::set_pseudo_count ( DREAL  pseudo  )  [virtual, inherited]

set pseudo count

Parameters:
pseudo new pseudo count

Definition at line 136 of file Distribution.h.

virtual DREAL CDistribution::get_pseudo_count (  )  [virtual, inherited]

get pseudo count

Returns:
pseudo count

Definition at line 142 of file Distribution.h.


Member Data Documentation

examples' sequence length

Definition at line 182 of file LinearHMM.h.

number of symbols in examples

Definition at line 184 of file LinearHMM.h.

number of parameters

Definition at line 186 of file LinearHMM.h.

transition probs

Definition at line 188 of file LinearHMM.h.

logarithm of transition probs

Definition at line 190 of file LinearHMM.h.

CFeatures* CDistribution::features [protected, inherited]

feature vectors

Definition at line 146 of file Distribution.h.

DREAL CDistribution::pseudo_count [protected, inherited]

pseudo count

Definition at line 148 of file Distribution.h.

CParallel CSGObject::parallel [static, inherited]

Definition at line 105 of file SGObject.h.

CIO CSGObject::io [static, inherited]

Definition at line 106 of file SGObject.h.

CVersion CSGObject::version [static, inherited]

Definition at line 107 of file SGObject.h.


The documentation for this class was generated from the following files:

SHOGUN Machine Learning Toolbox - Documentation