Francesc Altet « Scott Prater lvan Vilata e
Tom Hedley

PyTables User's Guide

Hierarchical datasets in Python
Release 0.9.1

Altet, Francesc:

PyTables User’'s Guide

Hierarchical datasets in Python
Release 0.9.1

All rights reserved.
© 2002, 2003, 2004 Francesc Altet

Typeset by Francesc Altet, Scott Prater, Ilvan Vilata and Tom Hedley
Day of print: 2004, December, 2nd

Copyright Notice and Statement forPyTables Software Library and Utilities

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Copyright Notice and Statement for NCSA Hierarchical Data Format (HDF) Software Library and
Utilities

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities Copyright 1998, 1999, 2000, 2001,
2002, 2003, 2004 by the Board of Trustees of the University of Illinois. All rights reserved.

See more information about the terms of this license at:
http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html

http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html

Contents

1 Tniroduction] 1
1.1 MainFeatures e 2
1.2 The ObjectTrge e 3

[2Z_TInstallafion 7
21 Tnstallationfromsourfe 7

211 Prerequisites 7
[2.1.2 PyTables packageinstallation 9
[2.2 Binaryinstallation (Windows) 10
[2.2.1 " Windows prerequisites e 10
[2.2.2 PyTables packageinstallaton 10

3 Tutorials] 11

[B.1 Geftingstarted e 11
[3.1.1 Importingables objects oo L oo 11
[3.1.2 Declaringa Column Descripfor, 12
3.1.3 Creating ®#yTables filefromscratch 12
3.1.4 Creatinganew grolp o o o i i e e 12
815 Creatinganewtable 13
[3.1.6 Reading (and selecting)datainatable 14
3.1.7 Creatingnew array objelcts 15
[3.1.8 Closing the file and looking atitscontent 16

[3:2 Browsing theobject freeand appendingtotables 17
[3.2.1 Traversingthe objecttijee o o 17
[3:2.2Setting and getting user attriblites 18
[3.2.3 Gettingobjectmetadata o oL 21
[3:24 Reading datafrodirray ODjeCtd i 23
[3.2.5 Appending datato an existingtgble, 24
[3.2.6 Andfinally... how to deleterows fromatdble 25

[3.3" Multidimensional table cells and automatic sanity checks 25
B3 Shapechecking v i i e 28
3.3.2 Fleldnamechecking 29
3.3.3 Datatypechecking 29

|4 Library Reference 31

4.1 tables variablesandfuncfiohs 31
[4.1.1 Globalvariablés 31
[41.2 Globalfunctions 31

4.2 Thekile clas$s e e e e e e e e e e 33
421 File instancevariablés 33
[A22 File methods e 33
4.2.3 File specialmethods 38

4.3 TheGroup Clas$s 39

Contents
4.3.1 Group Instancevariablés. 39
4.3.2 Group methodb o e e 40
4.3.3 Group specialmethodls Al
4 Theleaf class e e 42
[441 Teaf instancevariablés42
A2 leal methodb e e e e e e e 43
45 TheTable class e e 44
2.2 Table methods e e e 44
A4.5.3 Table specialmethods A7
454 TheRowclass e e e 48
5. TheCols Clas$ o e e e e e 49
A6 TheColumn Clas$ i e e e 49
[4.6.1 Column instancevariablds 49
4.6.2 Column methods 49
4.6.3 Column specialmethods 50
A7 TheArray Clas$ e e e e e e e e e e e 51
4.7.1 Array Instancevariables. e 51
A.7.2 Array methods. e 51
4.7.3 Array specialmethodls o 52
4.8 TheEArray class. 53
8.1 EArray instancevariablés 53
4.8.2 EArray methods 53
4.9 TheVLArray Class o 0 o o e e e e e e e e e e e 54
4.9.1 VLArray Instancevariables o o L. 54
4.9.2 VLArray methodb 54
4.9.3 VLArray specialmethods0 55
4.10 TheUnimplemented clas$ 56
[4.11 TheAttributeSet clas$ e e 56
[411.1 AttributeSet —instance variablés oL 57
.11.2 Attri methodb e 57
[4.12 Declarative classés e e 57
4.12.1 ThdsDescription class 57
4.12.2 TheCol classanditsdescendants 58
4.12.3 TheAtom class and its descendants. 59
4.13 Helperclasses 61
4131 Therlters — classd e 61
4.13.2 ThdndexProps clasy e 62
133 Thdndex class 63
4.13.4 ThdndexArray clas$s 0 e 63
5 FileNode 65
.1 WhatisrileN e 65
5.2 Currentlimitations e e 65
[6.3 FindingaFileNode nodeé 66
2.4 UsingFileNode |. 66
5.4 1 Creatinganewfilenode, 66
b.4.2 Usingafilenode e 67
(b.4.3 Openinganexistingfilendde 67
b.4.4 Adding metadatatoafilengde 68
.5 Complementarynotes 69
5.6 FileNode modulereferengeo 69
£.6.1 Globalconstants e 69

B.6.2 Globalfunctions e 69

Contents 1

5.6.3 TheFileNode abstractclass 69

5.6.4 TheROFileNode clas$s 70

5.6.5 TheRWFileNode class, 70

16 Optimization tips| 71
[6.1 TnformingPyTables about expected number of rowsintables 71

0. Accelerating your searches 71
21 Tn-KernelSearCheS v v oo vt it e e e e 71

622 Tndexedsearches i e 73

6.3 CompPressionNISSUES o e e 74
[6.4 " Shuffling (or how to make the compression process more effgctive) 7.
6.5 TakingadvantageofPsyco e 78

. electing an User Entry Point (UEP) inyourtree 79
[B.7 Compacting yOUPYTabIES TIES| » « « o e oot e e e e e e 80
|A" Supported data types InPyTables | 81
[B_Uiilities] 83
B DIAUMID e e e e e 83
B.1.1 Usage e e 83

BIZ2 Asmalltuforialomidump |« « v v v e e 83

B DACK . . . e e e e e e e e e e e e 85

B § 2 85

[B.2.2 Asmalltutorial omptrepack | v v o e 86

B.3 _nctohb e 88

B Usage 89

|IC _PyTables File Format 91
[C.1 Mandatory attributesforfale |0 . 91
[C.2_Mandatory attributes TOor@IOUD| . « « « v v o e e e e e e e e e 91
[C.3" Mandatory attributes, storage Tayout and supported datatypesdess |. 92
3.1 Table format 92

IC.3.2 Array TOrmal ot e e e e e e e e e e 93

IC.3.3 EArray formatl o o o o e e 94

IC.3.4 VLArray format 95

La sabiduria no vale la pena si no es
posible servirse de ella para inventar una
nueva manera de preparar los garbanzos.
(Wisdom isn’t worth anything if you can’t

use it to come up with a new way to cook

Chapter 1 garbanzos).

—A wise Catalan
in "Cien afios de soledad"
Gabriel Garcia Marquez

Introduction

The goal ofPyTables is to enable the end user to manipulate easily ttdesandarray objects in a
hierarchical structure. The foundation of the underlying hierarchical data organization is the ex¢Bi&nt
library (see NCSA).

It should be noted that this package is not intended to serve as a complete wrapper for the entire HDF5
API, but only to provide a flexiblesery Pythonidool to deal with (arbitrarily) large amounts of data (typically
bigger than available memory) in tables and arrays organized in a hierarchical and persistent disk storage
structure.

A table is defined as a collection of records whose values are stoffecihilengthfields. All records
have the same structure and all values in each field have thedsetype The termdixed-lengthand strict
data typesmay seem to be a strange requirement for an interpreted language like Python, but they serve a
useful function if the goal is to save very large quantities of data (such as is generated by many data aquisition
systems, Internet services or scientific applications, for example) in an efficient manner that reduces demand
on CPU time and I/O.

In order to emulate in Python records mapped to HDF5 C stRicTables implements a speciaheta-
classobject so as to easily define all its fields and other propertigdables also provides a powerful
interface to mine data in tables. Records in tables are also known RBnaming scheme asompound
data types.

For example, you can define arbitrary tables in Python simply by declaring a class with hame field and
types information, such as in the following example:

class Particle(lsDescription):

name = StringCol(16) # 16-character String

idnumber = Int64Col() # Signed 64-bit integer

ADCcount = UlInt16Col() # Unsigned short integer

TDCcount = UInt8Col() # unsigned byte

grid_i = Int32Col() # integer

grid_j = IntCol() # integer (equivalent to Int32Col)

pressure = Float32Col(shape=(2,3)) # 2-D float array (single-precision)
energy = FloatCol(shape=(2,3,4)) # 3-D float array (double-precision)

You then pass this class to the table constructor, fill its rows with your values, and save (arbitrarily large)
collections of them to a file for persistent storage. After that, the data can be retrieved and post-processed
quite easily withPyTables or even with anotherdDF5application (in C, Fortran, Java or whatever language
that provides a library to interface with HDF5).

Other important entities iRyTables are thearray objects that are analogous to tables with the difference
that all of their components are homogeneous. They come in different flavorgelilaic(they provide a
quick and fast way to deal with for numerical arrayshlargeable(arrays can be extended in any single
dimension) andrariable length(each row in the array can have a different number of elements).

The next section describes the most interesting capabilitiegtdbles .

Chapter 1. Introduction

1.1 Main Features

PyTables takes advantage of the object orientation and introspection capabilities offefeghon , the
HDF5powerful data management features ancharray flexibility and high-performance manipulation of
large sets of objects organized in grid-like fashion to provide these features:

Support for table entitiesAllows the user to work with a large number of records (up to 2**63), i.e.
more than will fit into memory.

Appendable tablesSupports adding records to already created tables. This can be done even between
different Python sessions without copying the dataset or redefining its structure.

Multidimensional table cells:You can declare a column to consist of general array cells as well as
scalars, which is the only dimensionality allowed the majority of relational databases.

User defined metadatdBesides suporting system metadata (number of rows of a table, shape, flavor,
etc.) the user may specify its own metadata (as for example, room temperature, or protocol for IP traffic
that was collected) that complement the meaning of his actual data.

Support for numerical arraysNumeric (se€ Ascheet al) andnumarray (se€ Greenfielet al)
arrays can be used as a useful complement of tables to store homogeneous data.

Enlargeable arrays:You can add new elements to existing arrays on disk in any dimension you want
(but only one). Besides, you can access to only a slice of your datasets by using the powerful extended
slicing mechanism, without need to load all your complete dataset in-memory.

Variable length arraysThe number of elements in these arrays can be variable from row to row. This
provides a lot of flexibility when dealing with complex data.

Supports a hierarchical data modehllows the user to clearly structure all the da®yTables builds
up anobject treein memory that replicates the underlying file data structure. Access to the file objects
is achieved by walking through and manipulating this object tree.

Support of files bigger than 2 GByTables automatically inherits this capability from the underlying
HDFS5 library (assuming your platform supports the C long long integer, or, on Windows, __int64).

Ability to read/modify generic HDF5 filesPyTables can access a wide range of objects in generic
HDF5 files, like compound type datasets (that can be mapperthibte objects), homogeneous
datasets (that can be mappedAoay objects) or variable length record datasets (that can be
mapped toVLArray objects). Besides, if a dataset is not supported, it will be mapped into a spe-
cialUnimplemented class (seg 4.10), that will let the user see that the data is there, although it would
be unreachable (still, you will be able to access the attributes and some metadata in the dataset). With
that,PyTables probably can access antbdifymost of the HDF5 files out there.

Data compressionSupports data compression (using tt&ib , LZOandUCLcompression libraries)
out of the box. This is important when you have repetitive data patterns and don’t want to spend time
searching for an optimized way to store them (saving you time spent analyzing your data organization).

High performance 1/0:On modern systems storing large amounts of data, tables and array objects
can be read and written at a speed only limited by the performance of the underlying I/O subsystem.
Moreover, if your data is compressible, even that limit is surmountable!

Architecture-independentPyTables has been carefully coded (as has HDF5 itself) with little-
endian/big-endian byte orderings issues in mind. In principle you can write a file on a big-endian
machine (like a Sparc or MIPS) and read it on other little-endian machine (like an Intel or Alpha) with-
out problems. In addition, it has been tested successfully with 64 bit platforms (Intel-64, AMD-64,
PowerPC-G5, MIPS, UltraSparc).

1.2. The Object Tree 3

1.2 The Object Tree

The hierarchical model of the underlying HDF5 library alloRgTables to manage tables and arrays in a
tree-like structure. In order to achieve this, @rject treeentity is dynamicallycreated imitating the HDF5
structure on disk. The HDF5 objects are read by walking through this object tree. You can get a good picture
of what kind of data is kept in the object by examining thetadatanodes.

The different nodes in the object tree are instanceBydfables classes. There are several types of
classes, but the most important ones areGheup and theLeaf classes.Group instances (referred to as
groupsfrom now on) are a grouping structure containing instances of zero or more groups or leaves, together
with supplementary metadatzeaf instances (referred to ésave$ are containers for actual data and cannot
contain further groups or leaves. Thable , Array , EArray , VLArray andUnimplemented classes are
descendents dfeaf , and inherit all its properties.

Working with groups and leaves is similar in many ways to working with directories and files on a Unix
filesystem. As is the case with Unix directories and files, objects in the object tree are often described by
giving their full (or absolute) path names. RyTables this full path can be specified either as string (such
as’/subgroup2/table3’) or as a complete object path written in a format known astiteral name
schema (such d#e.root.subgroup2.table3).

Support fornatural namingis a key aspect dPyTables . It means that the names of instance variables
of the node objects are the same as the names of the element’s (Eﬁiliirfmis veryPythonicand intuitive
in many cases. Check the tutofial section 3.1.6 for usage examples.

You should also be aware that not all the data present in a file is loaded into the object tree. Only the
metadata(i.e. special data that describes the structure of the actual data) is loaded. The actual data is not
read until you request it (by calling a method on a particular node). Using the object tree (the metadata) you
can retrieve information about the objects on disk such as table names, titles, name columns, data types in
columns, numbers of rows, or, in the case of arrays, the shapes, typecodes, etc. of the array. You can also
search through the tree for specific kinds of data then read it and process it. In a certain sense, you can think
of PyTables as a tool that applies the same introspection capabilities of Python objects to large amounts of
data in persistent storage.

To better understand the dynamic nature of this object tree entity, let's start with a Jayjleles
script (you can find it irexamples/objecttree.py) to create a HDF5 file:

from tables import *

class Particle(IsDescription):

identity = StringCol(length=22, dflt=" ", pos = 0) # character String
idnumber = Int16Col(1, pos = 1) # short integer
speed = Float32Col(1, pos = 2) # single-precision

Open a file in "w"rite mode

fileh = openFile("objecttree.h5", mode = "w")
Get the HDF5 root group

root = fileh.root

Create the groups:
groupl = fileh.createGroup(root, "groupl")
group2 = fileh.createGroup(root, "group2")

Now, create an array in the root group
arrayl = fileh.createArray(root, "arrayl",
['this is", "a string array"], "String array")
Create 2 new tables in groupl and group2
tablel = fileh.createTable(groupl, "tablel", Particle)
table2 = fileh.createTable("/group2”, "table2", Particle)

1| got this simple but powerful idea from the excell@tjectify module by David Mertz (see Meftz)

Chapter 1. Introduction

Create one more Array in groupl
array2 = fileh.createArray("/groupl”, "array2", [1,2,3,4])

Now, fill the tables:
for table in (tablel, table2):
Get the record object associated with the table:
row = table.row
Fill the table with 10 records
for i in xrange(10):
First, assign the values to the Particle record
row[identity’] = 'This is particle: %2d % (i)
row['idnumber] = i
row['speed] =i * 2.
This injects the Record values
row.append()

Flush the table buffers
table.flush()

Finally, close the file (this also will flush all the remaining buffers!)
fileh.close()

This small program creates a simple HDF5 file cabégbcttree.h5 with the structure that appears in
figure I.1. When the file is created, the metadata in the object tree is updated in memory while the actual data
is saved to disk. When you close the file the object tree is no longer available. However, when you reopen
this file the object tree will be reconstructed in memory from the metadata on disk, allowing you to work with
it in exactly the same way as when you originally created it.

Inffigure 1.2 you can see an example of the object tree created when theohijentaee.h5 file is
read (in fact, such an object is always created when reading any supported generic HDF5 file). It's worthwhile
to take your time to understan&]jtlt will help you to avoid programming mistakes.

2 Bear in mind, however, that this diagranmist a standard UML class diagram; it is rather meant to show the connections between
thePyTables objects and some of its most important attributes and methods.

1.2. The Object Tree 5

File Mode Leaf Windows Tools Help
10 1[4 p[@N]]

Object tree i table
(O objectiree h5|| @ |identity idnurmber spead
- array [1 | Thisis particle: 0 0 0.0
%--Egroum |2 |This is particle: 1 1 20 =TT
3 |Thisis particle: 2 2 4.0 -
I ([] mhis is particle: 3 3 6.0 & array?
S®Bgroup2 |5 _|Thisis particle: 4 4 8.0 1 /
L. Dtablez |[[6_|This is particle: 5 5 10.0 2| 2
[7 |Thisis particle: 6 6 12.0 El 3
[8 | This is particle: 7 7 140 4] 4
|2 |This is particle: § g 16.0
10| This is particle: 9 g 18.0
M array] String array [E =l
[[[«I+]
[Conames.: [arrayZ |
Dimensions: 1 I
Shape: 10
Colnames: ['identity', 'idnumber', 'speed'] %
A4

Figure 1.1: An HDF5 example with 2 subgroups, 2 tables and 1 array.

6

Chapter 1. Introduction

fileObject(File)

+name: string = "objecttree.h5"
+root: Group = groupRootObject

+open(filename:string)
+createGroup(where:Group,name:string): Group
+createTable(where:Group,name:string,description:IsDescription): Tabl}e

+createArray(where:Group,name:string,object:array): Array

+array2: Array = arrayObject2

tableObject1i(Table)

+name: string = "tablel"
+row: Row = rowObjectl

+read(): Table

rowObjecti(Row)

+identity: CharType
+idnumber: Intlé6
+speed: Float32

+append()
+nrow()

+close()
groupRootObject(Group)
+_v_name: string = "root"
+groupl: Group = groupObjectl
+group2: Group = groupObject2
+arrayl: Array = arrayObjectl
arrayObject1(Array)
+name: string = "arrayl"
+read(): Array
groupObjectl(Group) groupObject2(Group)
+_v_name: string = "groupl" +_v_name: string = "group2"
+tablel: Table = tableObjectl +table2: Table = tableObject2

arrayObject2(Array)

+name: string = "array2"

+read(): Array

tableObject2(Table)

+name: string = "table2"
+row: Row = rowObject2

+read(): Table

rowObject2(Row)

+identity: CharType
+idnumber: Intlé
+speed: Int32

+append()
+nrow()

Figure 1.2: A PyTables object tree example.

Chapter 2

Installation

The PythorDistutils are used to build and instalyTables , so it is fairly simple to get the application

up and running. If you want to install the package from sources go to the next section. But if you are running
Windows and want to install precompiled binaries jump to sectioh 2.2). In addition, packages are starting to
appear in different Linux distributions, for instariReckLinux | Debian |, [Fedora |or/Gentoo . There also
packages for other Unices lifgeeBSD|or[MacOSX

2.1 Installation from source

These instructions are for both Unix/Linux and Windows systems. If you are using Windows, it is assumed
that you have a recent versionMdf Visual C++ (>=6.0) compiler installed. ASCCcompiler is assumed
for Unix, but other compilers should work as well.

Extensions irPyTables have been developed in Pyrex (§ee Ewing) and C language. You can rebuild
everything from scratch if you have Pyrex installed, but this is not necessary, as the Pyrex compiled source is
included in the distribution.

To compilePyTables you will need a recent version of th€DF5(C flavor) library and theumarray
(see Greenfieldt al) package. Although you won’t neeétlmerical Python (se€ Ascheetal)) in order
to compile PyTables, it is supported; you only need a reasonably recent version of it (>= 21.x) if you plan on
using its methods in your applications. PyTables has been successfully tested with Numeric 21.3, 22.0 and
23.0. If you already havBlumeric installed, the test driver module will detect it and will run the tests for
Numeric automatically.

2.1.1 Prerequisites

First, make sure that you have at least HDF5 1.6.3-patch and numarray 1.1 or higher installed (I'm using
HDF5 1.6.3-patcﬁ and numarray 1.1 currently). If you don't, fetch and install them before proceeding.
Compile and install these packages (but[see section 2.2.1 for instructions on how to install precompiled
binaries if you are not willing to compile the prerequisites on Windows systems).
For compression (and possibly improved performance), you will need to installithe (se€ Gailly and
Adler), which is also required biMDF5as well. You may also optionally install the excellé@O andUCL
compression libraries (see Oberhumer and seftioh 6.3).

Unix setup.py will detectHDF5 LZOor UCLlibraries and include files undérsr or /usr/local ; this
will cover most manual installations as well as installations from packagestdp.py can't find
libhdf5 orlibz (orliblzo orlibucl that you may wish to use) or if you have several versions
of a library installed and want to use a particular one, then you can set the path to the resource in the
environment, setting the values of tHOF5_DIR, LZO_DIR or UCL_DIR environment variables to the

1 Unfortunately, HDF5 1.6.3 was released with a bug that causes a segmentation fault when an index is deleted. The 1.6.3-patch and
higher versions solve this.

http://www.rocklinux.org/
http://www.debian.org/
http://monkeyrpms.net/fedora/linux/monkeyrpms/1/i386/html/pytables.html
http://www.gentoo.org/
http://www.freshports.org/
http://www.opendarwin.org/

Chapter 2. Installation

path to the particular resource. You may also specify the locations of the resource root directories on
thesetup.py command line. For example:

--hdf5=/stuff/hdf5-1.6.3
--lzo=/stuff/lzo-1.08
--ucl=/stuff/ucl-1.03

If your HDF5library was built as a shared library not in the runtime load path, then you can specify the
additional linker flags needed to find the shared library on the command line as well. For example:

--Iflags="-Xlinker -rpath -Xlinker /stuff/hdf5-1.6.3/lib"
or perhaps just
--rpath="/stuff/hdf5-1.6.3/lib"

Check your compiler and linker documentation as well as the Pyfiismtils documentation for
the correct syntax.

It is also possible to link with specific libraries by setting thHBS environment variable:

LIBS="hdf5-1.6.5"
LIBS="hdf5-1.6.5 nsl"

Windows Once you have installed the prerequisitestup.py needs to know where the necessary library
stub(.lib) andheader(.h) files are installed. Set the following environment variables:

HDF5_DIR Points to the root HDF5 directory (where the include/ and dll/ directories can be found).
Mandatory

LZO_DIR Points to the root LZO directory (where the include/ and lib/ directories can be found).
Optional

UCL_DIR Points to the root UCL directory (where the include/ and lib/ directories can be found).
Optional

For example:

set HDF5_DIR=c:\stuff\5-162-win2k\c\release
set UCL_DIR=c:\stuff\ucl-1-02
set LZO_DIR=c:\stuff\lzo-1-08

Or, you can pass this information ¢etup.py by setting the appropriate arguments on the command
line. For example:

--hdf5=c:\stuff\5-162-win2k\c\release
--lzo=c:\stuff\lzo-1-08
--ucl=c:\stufflucl-1-02

2.1. Installation from source 9

2.1.2 PyTables package installation

Once you have installed the HDF5 library and numarray packages, you can proceed WAYT Hides
package itself:

1. Run this command from the makityTables distribution directory, including any extra command line
arguments as discussed above:

python setup.py build_ext --inplace

Depending on the compiler flags used when compiling your Python executable, there may appear many
warnings. Don’t worry, almost all of them are caused by variables declared but never used. That's
normal in Pyrex extensions.

2. To run the test suite, change into the test directory and execute this command:

Unix In the shellsh and its variants:

PYTHONPATH=..
export PYTHONPATH
python test_all.py

Windows Open a DOS terminal and type:

set PYTHONPATH=..
python test_all.py

If you would like to see verbose output from the tests simply add theflagnd/or the wordrerbose
to the command line. You can also run only the tests in a particular test module. For example, to execute
just thetypes test:

python test_types.py -v

If a test fails, please enable verbose output ¢theflag and verbose option), run the failing test
module again, and, very important, get y®yTables version information by running the command:

python test_all.py --show-versions-only

and send back the output to developers so that we may continue impRyiiaples .
If you run into problems because Python can'’t load the HDFS5 library or other shared libraries:

Unix Try setting the LD_LIBRARY_PATH environment variable to point to the directory where the
missing libraries can be found.

Windows Put the DLL libraries idf5dll.dll and, optionallyjzo.dll anducl.dll)inadirec-
tory listed in yourPATHenvironment variable. Theetup.py installation program will print out
a warning to that effect if the libraries can’t be found.

3. To install the entirePyTables Python package, change back to the root distribution directory and run
the following command (make sure you have sufficient permissions to write to the directories where
thePyTables files will be installed):

python setup.py install

Of course, you will need super-user privileges if you want to ingtgiiables on a system-protected
area. You can select, though, a different place to install the package usiaprtiix ~ flag:

10

Chapter 2. Installation

python setup.py install --prefix="/home/myuser/mystuff"

Have in mind, however, that if you use therefix ~ flag to install in a non-standard place, you should
properly setup youPYTHONPATInvironment variable, so that the Python interpreter would be able
to find your newPyTables installation.

You have more installation options available in the distutils package. Issue a:
python setup.py install --help

for more information on that subject.

That's it! Now you can skip to the next chapter to learn how toRgEables .

2.2 Binary installation (Windows)

This section is intended for installing precompiled binaries on Windows platforms. You may also find it
useful for instructions on how to instaddinary prerequisitegven if you want to compil®yTables itself on
Windows.

2.2.1 Windows prerequisites

First, make sure that you have HDF5 1.6.3-p@t0hhigher and numarray 1.1 or higher installed (I have built
thePyTables binaries using HDF5 1.6.3-patch and numarray 1.1).

For the HDF5 it should be enough to manually copy thef5dil.dll , zlibl.dll and
szipdll.dll files to a directory in youPATHenvironment variable (for examp&\WINDOWS\SYSTENL

To enable compression with optional LZO and UCL libraries (sef the sectipn 6.3 for hints about how they
may be used to improve performance), fetch and instalLi@andUCLbinaries from:
http://gnuwin32.sourceforge.net/ . Normally, you will only need to fetch and install the
<package>-<version>-bin.zip file and copy thdzo.dll or ucl.dll files in a directory in the
PATHenvironment variable, so that they can be found byRyi€ables extensions.

Note: If you are reading this because you have been redirected frofn the seclidn2allgtion from
sourcg, some of the headers you will need are in fipackage>-<version>-lib.zip file.

2.2.2 PyTables package installation

Download thetables-<version>.win32-py<version>.exe
(tables-<version>-LU.win32-py<version>.exe if you want support for LZO and UCL libraries)
file and execute it.

You can gou should test your installation by unpacking the source tar-ball, changing taetté
subdirectory and executing thest_all.py script. If all the tests pass (possibly with a few warnings,
related to the potential unavailability of LZO and UCL libs) you already have a working, well-tested copy of
PyTables installed! If any test fails, please try to locate which test module is failing and execute:

python test_<module>.py -v verbose

and also:

python test_all.py --show-versions-only

and mail the output to the developers so that the problem can be fixed in future releases.

That's it! Now, proceed to the next chapter to see how toRydebles .

2 Unfortunately, HDF5 1.6.3 was released with a bug that causes a segmentation fault when an index
is deleted. The 1.6.3-patch and higher versions solve this. You can find a binary version of libraries in
ftp://hdf.ncsa.uiuc.edu/HDF5/hdf5-1.6.3/src/patches/bin/WinXP-patch.tar.gz

http://gnuwin32.sourceforge.net/

11

Seras la clau que obre tots els panys,
seras la llum, la llum il.limitada,
seras confi on I'aurora comenca,

seras forment, escala il.luminada!

—M’aclame a tu
Chapter 3 Lyrics: Vicent Andrés i Estellés
Music: Ovidi Montllor

Tutorials

This chapter consists of a series of simple yet comprehensive tutorials that will enable you to understand
PyTables 'main features. If you would like more information about some particular instance variable, global
function, or method, look at the doc strings or go to the library referer|ce in chapter 4. If you are reading this
in PDF or HTML formats, follow the corresponding hyperlink near each newly introduced entity.

Please note that throughout this document the teohsnnandfield will be used interchangeably, as will
the termsow andrecord

3.1 Getting started

In this section, we will see how to define our own records in Python and save collections of thentafdle) a
into a file. Then we will select some of the data in the table using Python cuts and muesegay arrays
to store this selection as separate objects in a tree.

In examples/tutoriall-1.pyou will find the working version of all the code in this section. Nonetheless,
this tutorial series has been written to allow you reproduce it in a Python interactive console. | encourage you
to do parallel testing and inspect the created objects (variables, docs, children objects, etc.) during the course
of the tutorial!

3.1.1 Importing tables objects

Before starting you need to import the public objects in tdigles package. You normally do that by
executing:

>>> import tables

This is the recommended way to imptables if you don’t want to pollute your namespace. However,
PyTables has a very reduced set of first-level primitives, so you may consider using the alternative:

>>> from tables import *

which will export in your caller application namespace the following objecisenFile , isHDF5,
isPyTablesFile and IsDescription . This is a rather reduced set of objects, and for convenience,
we will use this technique to access them.

If you are going to work witmumarray or Numeric arrays (and normally, you will) you will also need
to import objects from them. So maByTables programs begin with:

>>> import tables # but in this tutorial we use "from tables import *"
>>> from numarray import * # or "from Numeric import *"

12

Chapter 3. Tutorials

3.1.2 Declaring a Column Descriptor

Now, imagine that we have a particle detector and we want to create a table object in order to save data
retrieved from it. You need first to define the table, the number of columns it has, what kind of object is
contained in each column, and so on.
Our particle detector has a TDC (Time to Digital Converter) counter with a dynamic range of 8 bits and
an ADC (Analogical to Digital Converter) with a range of 16 bits. For these values, we will define 2 fields
in our record object calleDCcount andADCcount. We also want to save the grid position in which the
particle has been detected, so we will add two new fields cgliedi andgrid j . Our instrumentation
also can obtain the pressure and energy of the particle. The resolution of the pressure-gauge allows us to use
a simple-precision float to stopgessure readings, while thenergy value will need a double-precision
float. Finally, to track the particle we want to assign it a name to identify the kind of the particle it is and a
unigue numeric identifier. So we will add two more fieldeme will be a string of up to 16 characters, and
idnumber will be an integer of 64 bits (to allow us to store records for extremely large numbers of particles).
Having determined our columns and their types, we can now declare ®@atisle class that will
contain all this information:

>>> class Particle(IsDescription):

name = StringCol(16) # 16-character String

idnumber = Int64Col() # Signed 64-bit integer
ADCcount = UlInt16Col() # Unsigned short integer
TDCcount = UInt8Col() # unsigned byte

grid_i = Int32Col() # integer

grid_j = IntCol() # integer (equivalent to Int32Col)
pressure = Float32Col() # float (single-precision)

energy = FloatCol() # double (double-precision)

>>>

This definition class is self-explanatory. Basically, you declare a class variable for each field you need. As
its value you assign an instance of the appropiate subclass, according to the kind of column defined (the
data type, the length, the shape, etc). Se¢ the section}4.12.2 for a complete description of these subclasses.
See alsp appendix|A for a list of data types supported bytieconstructor.

From now on, we can udearticle instances as a descriptor for our detector data table. We will see
later on how to pass this object to construct the table. But first, we must create a file where all the actual data
pushed into our table will be saved.

3.1.3 Creating a PyTables file from scratch
Use the first-levebpenFile (sed 4.1) function to createPgTables file:

>>> hbfile = openFile("tutoriall.h5", mode = "w", title = "Test file")

openFile (see 4.1P) is one of the objects imported by ther tables import * " state-
ment. Here, we are saying that we want to create a new file in the current working directory called
"tutoriall.h5 " in "w'rite mode and with an descriptive title stringT@st file). This function at-

tempts to open the file, and if successful, returnsiilee (See 4.P) object instand¢®file . The root of the
object tree is specified in the instancedst attribute.

3.1.4 Creating a new group

Now, to better organize our data, we will create a group calktdctorthat branches from the root node. We
will save our particle data table in this group.

3.1. Getting started 13

>>> group = h5file.createGroup("/", 'detector’, 'Detector information’)

Here, we have taken théle instanceh5file and invoked itscreateGroup method [(see 4.2.2) to
create a new group callatbtectorbranching from "' (another way to refer to thie5file.root object we
mentioned above). This will create a n@wup (seg 4.B) object instance that will be assigned to the variable

group .

3.1.5 Creating a new table

Let's now create dable (seq 4.p) object as a branch off the newly-created group. We do that by calling the
createTable (seq 4.2.2) method of thesfile object:

>>> table = hb5file.createTable(group, 'readout’, Particle, "Readout example")

We create theTable instance undegroup . We assign this table the node nameddout. The
Particle class declared before is tdescriptionparameter (to define the columns of the table) and finally
we set Readout examplas theTable title. With all this information, a newable instance is created and
assigned to the variabtable

If you are curious about how the object tree looks right now, sinppiyt the File instance variable
h5file and examine the output:

>>> print h5file

Filename: ‘tutoriall.h5’ Title: 'Test file’ Last modif.: 'Sun Jul 27 14:00:13 2003’
/ (Group) 'Test file’

/detector (Group) ’'Detector information’

/detector/readout (Table(0,)) 'Readout example’

As you can see, a dump of the object tree is displayed. It's easy to s€edtye andTable objects we
have just created. If you want more information, just type the variable containirigl¢heinstance:

>>> hbfile
File(flename="tutoriall.h5’, title="Test file’, mode='w’, trMap={}, rootUEP="/")
/ (Group) 'Test file’
/detector (Group) ’'Detector information’
/detector/readout (Table(0,)) 'Readout example’
description := {
"ADCcount": Col('UInt1l6’, shape=1, itemsize=2, dflt=0),
"TDCcount™: Col('UInt8’, shape=1, itemsize= 1, dflt=0),
"energy": Col(Float64’, shape=1, itemsize=8, dflt=0.0),
"grid_i": Col('Int32’, shape=1, itemsize=4, dflit=0),
"grid_j": Col('Int32’, shape=1, itemsize=4, dfit=0),
"idnumber": Col(Int64’, shape=1, itemsize=8, dflt=0),
"name": Col('CharType’, shape=1, itemsize=16, dflt=None),
"pressure"; Col('Float32’, shape=1, itemsize=4, dflt=0.0) }
byteorder := little

More detailed information is displayed about each object in the tree. Notéhawle |, our table de-
scriptor class, is printed as part of tteadouttable description information. In general, you can obtain much
more information about the objects and their children by just printing them. That introspection capability is
very useful, and | recommend that you use it extensively.

The time has come to fill this table with some values. First we will get a pointer tRdgseq 4.5.14)
instance of thisable instance:

14

Chapter 3. Tutorials

>>> particle = table.row

Therow attribute oftable points to theRowinstance that will be used to write data rows into the table.
We write data simply by assigning tiRewinstance the values for each row as if it were a dictionary (although
it is actually anextension clagsusing the column names as keys.

Below is an example of how to write rows:

>>> for i in xrange(10):

particle['name’] = ’'Particle: %6d’ % (i)
particle[TDCcount’] = i % 256
particle[ADCcount] = (i * 256) % (1 << 16)

particle['grid_i'l] = i

particle['grid_j] = 10 - i

particle['pressure’] = float(i*i)

particle['energy’] = float(particle['pressure’] ** 4)
particle['idnumber] = i * (2 ** 34)
particle.append()

>>>

This code should be easy to understand. The lines inside the loop just assign values to the different
columns in the Row instangearticle (see 4.5}4). A call to itappend() method writes this information
to thetable 1/O buffer.

After we have processed all our data, we should flush the table’s 1/O buffer if we want to write all this
data to disk. We achieve that by calling tlaéle.flush() method.

>>> table.flush()

3.1.6 Reading (and selecting) data in a table

Ok. We have our data on disk, and now we need to access it and select from specific columns the values we
are interested in. See the example below:

>>> table = hb5file.root.detector.readout

>>> pressure = [X['pressure’] for x in table.iterrows()

if X[TDCcount’]>3 and 20<=x['pressure’]<50]
>>> pressure
[25.0, 36.0, 49.0]

The first line creates a "shortcut" to theadouttable deeper on the object tree. As you can see, we use
thenatural naming schema to access it. We also could have usetiifike.getNode() method, as we
will do later on.

You will recognize the last two lines as a Python list comprehension. It loops over the rdaldéras
they are provided by theble.iterrows() iterator (se¢ 4.5]2). The iterator returns values until all the
data in table is exhausted. These rows are filtered using the expression:

X[TDCcount’] > 3 and x[pressure’] <50

We select the value of thgressure column from filtered records to create the final list and assign it to
pressure variable.

We could have used a nornfal loop to accomplish the same purpose, but | find comprehension syntax
to be more compact and elegant.

Let’s select themame column for the same set of cuts:

3.1. Getting started 15

>>> pames=[x['name’] for x in table if x[TDCcount’]>3 and 20<=x['pressure’]<50]
>>> names
[Particle: 5’, 'Particle: 6’, 'Particle: 7]

Note how we have omitted theerrows() call in the list comprehension. Theable class has an
implementation of the special methoditer__ () that iterates over all the rows in the table. In fact,
iterrows() internally calls this special iter_ () method. Accessing all the rows in a table using this
method is very convenient, especially when working with the data interactively.

That's enough about selections. The next section will show you how to save these select results to a file.

3.1.7 Creating new array objects

In order to separate the selected data from the mass of detector data, we will create a nevolgronp
branching off the root group. Afterwards, under this group, we will create two arrays that will contain the
selected data. First, we create the group:

>>> gcolumns = h5file.createGroup(h5file.root, "columns”, "Pressure and Name")

Note that this time we have specified the first parameter usatigral naming(h5file.root) instead
of with an absolute path string ("/").
Now, create the first of the twarray objects we've just mentioned:

>>> hb5file.createArray(gcolumns, 'pressure’, array(pressure),
"Pressure column selection™)
/columns/pressure (Array(3,)) 'Pressure column selection’

type = Float64

itemsize = 8

flavor = 'NumArray’

byteorder = ’little’

We already know the first two parameters of theateArray (seq_4.2.R) methods (these are the same
as the first two ircreateTable): they are the parent grouphereArray will be created and tharray
instancename The third parameter is thabjectwe want to save to disk. In this case, it illameric array
that is built from the selection list we created before. The fourth parametertisi¢he

Now, we will save the second array. It contains the list of strings we selected before: we save this object
as-is, with no further conversion.

>>> hb5file.createArray(gcolumns, 'name’, names, "Name column selection")
/columns/name Array(4,) 'Name column selection’

type = 'CharType’

itemsize = 16

flavor = ’List’

byteorder = ’little’

As you can seereateArray() acceptsiamegwhich is a regular Python list) as afjectparameter.
Actually, it accepts a variety of different regular objects (see }4.2.2) as parametefftavbne attribute (see
the output above) saves the original kind of object that was saved. Based flavbisPyTables will be
able to retrieve exactly the same object from disk later on.

Note that in these examples, tbeateArray ~ method returns aArray instance that is not assigned
to any variable. Don’t worry, this is intentional to show the kind of object we have created by displaying its
representation. Th&rray objects have been attached to the object tree and saved to disk, as you can see if
you print the complete object tree:

16

Chapter 3. Tutorials

>>> print h5file

Filename: ‘tutoriall.h5’ Title:
/ (Group) 'Test file’
/columns (Group) 'Pressure and Name’

/columns/name (Array(3,)) 'Name column selection’
/columns/pressure (Array(3,)) 'Pressure column selection’
/detector (Group) ’'Detector information’

/detector/readout (Table(10,)) 'Readout example’

'Test file’ Last modif.: 'Sun Jul 27

3.1.8 Closing the file and looking at its content

To finish this first tutorial, we use thidose method of the h5fil€-ile object to close the file before exiting

Python:

>>> h5file.close()
>>> D

You have now created your firByTables file with a table and two arrays. You can examine it with any

generic HDF5 tool, such a&dump or h5ls . Here is what theutoriall.h5 looks like when read with
theh5ls program:
$ h5ls -rd tutoriall.h5
/columns Group
/columns/name Dataset {3}
Data:
(0) "Particle: 5", "Particle: 6", "Particle: 7"
/columns/pressure Dataset {3}
Data:
(0) 25, 36, 49
/detector Group
/detector/readout Dataset {10/Inf}
Data:
(0) {0, 0, 0, 0, 10, 0O, "Particle: 0", 0},
(1) {256, 1, 1, 1, 9, 17179869184, "Particle: 1", 1},
(2) {512, 2, 256, 2, 8, 34359738368, "Particle: 2", 4},
(3) {768, 3, 6561, 3, 7, 51539607552, "Particle: 3", 9},
(4) {1024, 4, 65536, 4, 6, 68719476736, "Particle: 4", 16},
(5) {1280, 5, 390625, 5, 5, 85899345920, "Particle: 5", 25},
(6) {1536, 6, 1679616, 6, 4, 103079215104, "Particle: 6", 36},
(7) {1792, 7, 5764801, 7, 3, 120259084288, "Particle: 7", 49},
(8) {2048, 8, 16777216, 8, 2, 137438953472, "Particle: 8", 64},
(9) {2304, 9, 43046721, 9, 1, 154618822656, "Particle: 9", 81}

Here’s the outputs as displayed by the "ptdurRgTables

$ ptdump tutoriall.h5
Filename: ’tutoriall.h5’ Title:
! (Group) 'Test file’
/columns (Group) 'Pressure and Name’

/columns/name (Array(3,)) 'Name column selection’
/columns/pressure (Array(3,)) 'Pressure column selection’
/detector (Group) ’'Detector information’

'Test file’ Last modif.: 'Sun Jul 27

utility (located inutils/

14:00:13 2003’

directory):

14:40:51 2003’

3.2. Browsing thebject treeand appending to tables 17

/detector/readout (Table(10,)) 'Readout example’

You can pass they or-d options toptdump if you want more verbosity. Try them out!

3.2 Browsing the objecttree and appending to tables

In this section, we will learn how to browse the tree and retrieve meta-information about the actual data, then
append some rows to an existing table to show how table objects can be enlarged.

In examples/tutorial1l-2.pyou will find the working version of all the code in this section. As before, you
are encouraged to use a python shell and inspect the object tree during the course of the tutorial.

3.2.1 Traversing the object tree
Let’s start by opening the file we created in last tutorial section.

>>> h5file = openFile("tutoriall.h5", "a")

This time, we have opened the file in "a"ppend mode. We use this mode to add more information to the
file.

PyTables , following the Python tradition, offers powerful introspection capabilities, i.e. you can easily
ask information about any component of the object tree as well as search the tree.

To start with, you can get a preliminary overview of the object tree by simply printing the exigteg
instance:

>>> print h5file

Filename: ‘'tutoriall.h5’ Title: 'Test file’ Last modif.: 'Sun Jul 27 14:40:51 2003’
/ (Group) 'Test file’

/columns (Group) 'Pressure and Name’

/columns/name (Array(3,)) 'Name column selection’

/columns/pressure (Array(3,)) 'Pressure column selection’

/detector (Group) ’'Detector information’

/detector/readout (Table(10,)) 'Readout example’

It looks like all of our objects are there. Now let's make use offife iterator to see to list all the nodes
in the object tree:

>>> for node in hb5file:
print node

/ (Group) 'Test file’

/columns (Group) 'Pressure and Name’

/detector (Group) ’'Detector information’

/columns/name (Array(3,)) 'Name column selection’
/columns/pressure (Array(3,)) 'Pressure column selection’
/detector/readout (Table(10,)) 'Readout example’

We can use thevalkGroups method (sep_4.2.2) of thigle class to list only thgroupson tree:

>>> for group in h5file.walkGroups("/"):
print group

18

Chapter 3. Tutorials

/ (Group) 'Test file’
/columns (Group) 'Pressure and Name’
/detector (Group) ’'Detector information’

Note thatwalkGroups() actually returns aiiterator, not a list of objects. Using this iterator with the
listNodes() method is a powerful combination. Let's see an example listing of all the arrays in the tree:

>>> for group in h5file.walkGroups("/"):
for array in h5file.listNodes(group, classname = ’Array’):
print array

/columns/name Array(3,) 'Name column selection’
/columns/pressure Array(3,) 'Pressure column selection’

listNodes() (seg 4.2P) returns a list containing all the nodes hanging off a sp&eifigp . If the
classnamé&eyword is specified, the method will filter out all instances which are not descendants of the class.
We have asked for onlxrray instances.

We can combine both calls by using tivalkNodes(where, classname) special method of the

File object[see 4.2]2). For example:

>>> for array in hb5file.walkNodes("/", "Array"):
print array

/columns/name (Array(3,)) 'Name column selection’
/columns/pressure (Array(3,)) 'Pressure column selection’

This is a nice shortcut when working interactively.

Finally, we will list all theLeaf , i.e. Table andArray instances (s€e 4.4 for detailed information on
Leaf class), in thédetector group. Note that only one instance of thable class (i.e.readout) will
be selected in this group (as should be the case):

>>> for leaf in h5file.root.detector._f walkNodes('Leaf’):
print leaf

/detector/readout (Table(10,)) 'Readout example’

We have used a call to ti@&oup._f walkNodes(classname, recursive) method[(4.3.R), using
thenatural namingpath specification.

Of course you can do more sophisticated node selections using these powerful methods. But first, let's
take a look at some importaRyTables object instance variables.

3.2.2 Setting and getting user attributes

PyTables provides an easy and concise way to complement the meaning of your node objects on the tree by
using theAttributeSet class (sef section 4]11). You can access this object through the standard attribute
attrs in Leaf nodes andv_attrs in Group nodes.

For example, let's imagine that we want to save the date indicating when the data in
/detector/readout table has been acquired, as well as the temperature during the gathering process:

>>> table = hb5file.root.detector.readout

>>> table.attrs.gath_date = "Wed, 06/12/2003 18:33"
>>> table.attrs.temperature = 18.4

>>> table.attrs.temp_scale = "Celsius"

3.2. Browsing thebject treeand appending to tables 19

Now, let’s set a somewhat more complex attribute in/tleeector group:

>>> detector = hb5file.root.detector
>>> detector._v_attrs.stuff = [5, (2.3, 4.5), "Integer and tuple"]

Note how the AttributeSet instance is accessed with thattrs attribute because detector iSaoup
node. In general, you can save any standard Python data structure as an attribute rjode. See section 4.11 for a
more detailed explanation of how they are serialized for export to disk.

Retrieving the attributes is equally simple:

>>> table.attrs.gath_date

'Wed, 06/12/2003 18:33'

>>> table.attrs.temperature

18.399999999999999

>>> table.attrs.temp_scale

‘Celsius’

>>> detector._v_attrs.stuff

[5, (2.2999999999999998, 4.5), 'Integer and tuple’]

You can probably guess how to delete attributes:

>>> del table.attrs.gath_date

If you want to examine the current complete attribute sédetector/table , You can print its repre-
sentation (try hitting th& AB key twice if you are on a Unix Python console with tth@mpleter module
active):

>>> table.attrs

/detector/readout (AttributeSet), 14 attributes:
[CLASS := 'TABLE’,
FIELD_O_NAME := 'ADCcount’,
FIELD_1 NAME := 'TDCcount’,
FIELD_2_NAME := ’energy’,
FIELD_3 NAME := ’'grid_’,
FIELD_4 NAME := ’'grid_j,
FIELD_5 NAME := ’idnumber’,
FIELD_6_NAME := ’'name’,
FIELD_7_NAME := ’'pressure’,
NROWS := 10,
TITLE := 'Readout example’,
VERSION := 2.0’
tempScale := 'Celsius’,
temperature := 18.399999999999999]

You can get a list of only the user or system attributes with thést() method.

>>> print table.attrs._f_list("user")

[temp_scale’, 'temperature’]

>>> print table.attrs._f_list("sys")

[CLASS’, 'FIELD_0_NAME’, 'FIELD_1_NAME’, 'FIELD_2_NAME’, 'FIELD_3_NAME’,
'FIELD_4 _NAME’, 'FIELD_5 NAME’, 'FIELD_6_NAME’, 'FIELD_7_NAME’, 'NROWS’,
'TITLE’, '"VERSION’]

You can also rename attributes:

Chapter 3. Tutorials

>>> table.attrs._f_rename("temp_scale","tempScale")
>>> print table.attrs._f_list()
[tempScale’, 'temperature’]

However, you can'’t set, delete or rename read-only attributes:

>>> table.attrs._f _rename("VERSION", "version")
Traceback (most recent call last):
File ">stdin>", line 1, in ?
File "/home/falted/PyTables/pytables-0.7/tables/AttributeSet.py",
line 249, in _f rename
raise RuntimeError, \
RuntimeError: Read-only attribute (VERSION’) cannot be renamed

If you would terminate your session now, you would be able to usenii®e command to read the
/detector/readout attributes from the file written to disk:

$ hb5Is -vr tutoriall.h5/detector/readout
Opened "tutoriall.h5" with sec2 driver.

/detector/readout Dataset {10/Inf}
Attribute: CLASS scalar
Type: 6-byte null-terminated ASCII string

Data: "TABLE"
Attribute: VERSION scalar

Type: 4-byte null-terminated ASCII string
Data: "2.0"

Attribute: TITLE scalar
Type: 16-byte null-terminated ASCII string

Data: "Readout example"

Attribute: FIELD_O_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "ADCcount"

Attribute: FIELD_1 _NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "TDCcount"

Attribute: FIELD_2_NAME scalar
Type: 7-byte null-terminated ASCII string
Data: "energy"

Attribute: FIELD_3 NAME scalar

Type: 7-byte null-terminated ASCII string
Data: "grid_i"

Attribute: FIELD_4 NAME scalar
Type: 7-byte null-terminated ASCII string
Data: “grid_j"

Attribute: FIELD_5_NAME scalar
Type: 9-byte null-terminated ASCII string

Data: "idnumber"

Attribute: FIELD_6_NAME scalar
Type: 5-byte null-terminated ASCII string
Data: "name"

Attribute: FIELD_7_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "pressure"

Attribute: tempScale scalar

3.2. Browsing thebject treeand appending to tables

Type: 8-byte null-terminated ASCII string
Data: "Celsius"
Attribute: temperature {1}

Type: native double
Data: 18.4

Attribute: NROWS {1}
Type: native int
Data: 10

Location: 0:1:0:1952

Links: 1

Modified: 2003-07-24 13:59:19 CEST
Chunks: {2048} 96256 bytes
Storage: 470 logical bytes, 96256 allocated bytes, 0.49% utilization

Type: struct {
"ADCcount" +0 native unsigned short
"TDCcount" +2 native unsigned char
"energy" +3 native double
"grid_i" +11 native int
"grid_j" +15 native int
"idnumber" +19 native long long
"name" +27 16-byte null-terminated ASCII string
"pressure" +43 native float
} 47 bytes

Attributes are a useful mechanism to add persistent (meta) information to your data.

3.2.3 Getting object metadata

Each object irPyTables hasmetadatanformation about the data in the file. Normally thigtainformation
is accessible through the node instance variables. Let's take a look at some examples:

>>> print "Object:", table
Object: /detector/readout Table(10,) 'Readout example’
>>> print "Table name:", table.name
Table name: readout
>>> print "Table title:", table.title
Table title: Readout example
>>> print "Number of rows in table:", table.nrows
Number of rows in table: 10
>>> print "Table variable names with their type and shape:"
Table variable names with their type and shape:
>>> for name in table.colnames:
print name, = %s, %s’ % (table.coltypes[name], table.colshapes[name])

ADCcount := UlIntl6, 1
TDCcount := UInt8, 1
energy := Float64, 1
grid_i = Int32, 1
grid_j = Int32, 1
idnumber = Int64, 1
name := CharType, 1
pressure := Float32, 1

21

22

Chapter 3. Tutorials

Here, thename, titlte , nrows , colnames , coltypes andcolshapes attributes (seg4.7.1 for a
complete attribute list) of th€able object gives us quite a bit of information about the table data.

You can interactively retrieve general information about the public objects in PyTables by printing their
internal doc strings:

>>> print table.__doc__

Represent a table in the object tree.
It provides methods to create new tables or open existing ones, as
well as to write/read data to/from table objects over the
file. A method is also provided to iterate over the rows without
loading the entire table or column in memory.

Data can be written or read both as Row instances or as numarray
(NumArray or RecArray) objects.

Methods:

__getitem__ (key)

_ iter_()
__setitem__ (key, value)
append(rows)

flushRowsTolndex()

iterrows(start, stop, step)
itersequence(sequence)

modifyRows(start, rows)

modifyColumns(start, columns, names)
read([start] [, stop] [, step] [, field [, flavor]])
relndex()

relndexDirty()

removeRows(start, stop)

removelndex(column)

where(condition [, start] [, stop] [, step])
wherelndexed(condition [, start] [, stop] [, step])
wherelnRange(condition [, start] [, stop] [, step])
getWhereList(condition [, flavor])

Instance variables:

description -- the metaobject describing this table
row -- a reference to the Row object associated with this table
nrows -- the number of rows in this table
rowsize -- the size, in bytes, of each row
cols -- accessor to the columns using a natural name schema
colnames -- the field names for the table (list)
coltypes -- the type class for the table fields (dictionary)
colshapes -- the shapes for the table fields (dictionary)
colindexed -- whether the table fields are indexed (dictionary)
indexed -- whether or not some field in Table is indexed
indexprops -- properties of an indexed Table. Exists only

if the Table is indexed

Thehelp function is also a handy way to sBgTables reference documentation online. Try it yourself
with other object docs:

3.2. Browsing thebject treeand appending to tables 23

>>> help(table.__class_)
>>> help(table.removeRows)

To examine metadata in thleolumns/pressurarray object:

>>> pressureObject = hb5file.getNode("/columns", "pressure")
>>> print "Info on the object:", repr(pressureObiject)
Info on the object: /columns/pressure (Array(3,)) 'Pressure column selection’
type = Float64
itemsize = 8
flavor = 'NumArray’
byteorder = ’little’
>>> print " shape: ==>", pressureObject.shape
shape: ==> (3,
>>> print " title: ==>", pressureObject.title
titte: ==> Pressure column selection
>>> print " type: ==>", pressureObject.type
type: ==> Float64

Observe that we have used tietNode() method of theFile class to access a node in the tree, instead
of the natural naming method. Both are useful, and depending on the context you will prefer one or the other.
getNode() has the advantages that it can get a node from the pathname string (as in this example) and can
also act as a filter to show only nodes in a particular location that are instances alatssmmeln general,
however, | consider natural naming to be more elegant and easier to use, especially if you are using the name
completion capability present in interactive console. Try this powerful combination of natural naming and
completion capabilities present in most Python consoles, and see how pleasant it is to browse the object tree
(at least, as pleasant as such an activity can be).

If you look at thetype attribute of thepressureObject object, you can verify that it is aFloat64"
array. By looking at itshape attribute, you can deduce that the array on disk is unidimensional and has 3
elements. Sge_4.7.1 or the internal string docs for the comptedg attribute list.

3.2.4 Reading data from Array objects

Once you have found the desiraday , use theead() method of theArray object to retrieve its data:

>>> pressureArray = pressureObject.read()
>>> pressureArray
array([25., 36., 49.])
>>> print "pressureArray is an object of type:", type(pressureArray)
pressureArray is an object of type: <class 'numarray.numarraycore.NumArray’>
>>> pameArray = hb5file.root.columns.name.read()
>>> nameArray
[Particle: 5, 'Particle: 6’, ’Particle: 7
>>> print "nameArray is an object of type:", type(nameArray)
nameArray is an object of type: <type ’list’>
>>>
>>> print "Data on arrays nameArray and pressureArray:"
Data on arrays nameArray and pressureArray:
>>> for i in range(pressureObject.shape[0]):
print nameArray[i], "-->", pressureArray]i]

Particle: 5 --> 250
Particle: 6 --> 36.0
Particle: 7 --> 49.0

24

Chapter 3. Tutorials

>>> pressureObject.name
'pressure’

You can see that theead() method (seg section 4.7.2) returns an authentioarray object for the
pressureObject instance by looking at the output of tiype() call. Aread() of the nameObject
object instance returns a native Python list (of strings). The type of the object saved is stored as an HDF5 at-
tribute (hamedrLAVOR for objects on disk. This attribute is then readdasay metainformation (accessible
through in theArray.attrs.FLAVOR variable), enabling the read array to be converted into the original
object. This provides a means to save a large variety of objects as arrays with the guarantee that you will be
able to later recover them in their original form. $ee section 4.2.2 for a complete list of supported objects for
theArray object class.

3.2.5 Appending data to an existing table

Now, let's have a look at how we can add records to an existing table on disk. Let's use our well-known
readoutTable object and append some new values to it:

>>> table = hb5file.root.detector.readout

>>> particle = table.row

>>> for i in xrange(10, 15):
particle['name’] = ’'Particle: %6d’ % (i)
particle[TDCcount’] = i % 256
particle[ADCcount’] = (i * 256) % (1 << 16)
particle['grid_i'l] = i
particle['grid_jT] = 10 - i
particle['pressure’] = float(i*i)
particle['energy’] = float(particle['pressure’] ** 4)
particle['idnumber] = i * (2 ** 34)
particle.append()

>>> table.flush()

It's the same method we used to fill a new talfRyTables knows that this table is on disk, and when
you add new records, they are appended to the end of thE}table

If you look carefully at the code you will see that we have useddhle.row attribute to create a table
row and fill it with the new values. Each time thatagspend() method is called, the actual row is committed
to the output buffer and the row pointer is incremented to point to the next table record. When the buffer is
full, the data is saved on disk, and the buffer is reused again for the next cycle.

Caveat emptor. Do not forget to always call thélush() method after a write operation, or else your
tables will not be updated!

Let’s have a look at some rows in the modified table and verify that our new data has been appended:

>>> for r in table.iterrows():
print "%-16s | %11.1f | %11.4g | %6d | %6d | %8d |" % \
(rfname’], r['pressure’], r'energy’], r['grid_i], r['grid_jT7,
rTDCcount’])

Particle: 0 | 0.0 | 0 | 0 | 10 | 0 |
Particle: 1] 1.0 | 1 1] 9 | 1]
Particle: 2 | 4.0 | 256 | 2| 8 | 2 |
Particle: 3| 9.0 | 6561 | 3| 7| 3

1 Note that you can append not only scalar values to tables, but also fully multidimensional array objects.

3.3. Multidimensional table cells and automatic sanity checks 25

Particle: 4 | 16.0 | 6.554e+04 | 4 | 6 | 4 |
Particle: 5 | 25.0 | 3.906e+05 | 5 | 5 | 5|
Particle: 6 | 36.0 | 1.68e+06 | 6 | 4 | 6 |
Particle: 71 49.0 | 5.765e+06 | 7| 3| 7|
Particle: 8 | 64.0 | 1.678e+07 | 8 | 2| 8 |
Particle: 9 | 81.0 | 4.305e+07 | 9 | 1] 9 |
Particle: 10 | 100.0 | 1le+08 | 10 | 0 | 10 |
Particle: 11 | 121.0 | 2.144e+08 | 11 | -1 11 |
Particle: 12 | 144.0 | 4.3e+08 | 12 | -2 | 12 |
Particle: 13 | 169.0 | 8.157e+08 | 13 | -3 13 |
Particle: 14 | 196.0 | 1.476e+09 | 14 | -4 | 14 |

3.2.6 And finally... how to delete rows from a table

We'll finish this tutorial by deleting some rows from the table we have. Suppose that we want to delete the
the 5th to 9th rows (inclusive):

>>> table.removeRows(5,10)
5

removeRows(start, stop) (see 4.52) deletes the rows in the range (start, stop). It returns the num-
ber of rows effectively removed.
We have reached the end of this first tutorial. Don’t forget to close the file when you finish:

>>> hbfile.close()
>>> D

$

Inffigure 3.7 you can see a graphical view of th&rables file with the datasets we have just created. In
are displayed the general properties of the tabtector/readout

3.3 Multidimensional table cells and automatic sanity checks

Now it's time for a more real-life example (i.e. with errors in the code). We will create two groups that
branch directly from theoot node,Particles andEvents . Then, we will put three tables in each group.
In Particles we will put tables based on ttearticle ~ descriptor and irEvents , the tables based the
Event descriptor.

Afterwards, we will provision the tables with a number of records. Finally, we will read the newly-created
table/Events/TEvent3 and select some values from it, using a comprehension list.

Look at the next script (you can find it Bxamples/tutorial2.py). It appears to do all of the above,
but it contains some small bugs. Note that theticle class is not directly related to the one defined
in last tutorial; this class is simpler (note, however, theltidimensionalcolumns calledoressure and
temperature).

We also introduce a new manner to describ€ale as a dictionary, as you can see in theent
description. See sectign_4.PR.2 about the different kinds of descriptor objects that can be passed to the
createTable() method.

from numarray import *
from tables import *

Describe a particle record
class Particle(IsDescription):
name = StringCol(length=16) # 16-character String

26

Chapter 3. Tutorials

File Mode Leaf Windows Tools Help

I® 1 [KWEP M@

Object tree

idnumber

pressure

1 | 0 0 0n 0 10 0 Particle: 0
o] 256 1 1.0 1 9 17179869184 Particle: 1
3 | 512 2 2560 2 S 34359738368 Particle: 2
4| 768 3 6561.0 3 T 51539607552 Particle: 3
Ul | S 1024 4 65526.0 4 6 68719476736 Particle: 4 1
5| 1280 5 3906250 5 5 85899345920 Particle: 5 2
[7 | 1536 G 1679616.0 5 40 103073215104 Particle: B 3
& | 1792 7 5764801.0 7 3 120259084288 Particle: 7 4
ER 2048 g 16772160 g 2 1374389523472 Particle: 8 52
10 2304 9 43046721.0 9 1 154618822656 Particle: 9 3
— Il I <[]

T §EV Y

> column selection

Dimensions. 1
Shape: 10

'pressure’']

Colnames: ['ADCcount', 'TDCcount', 'energy', 'grid_i', 'grid_j', 'idnumber', 'name',

Figure 3.1: The final version of the data file for tutorial 1, with a view of the data objects.

General I Attributes

~Database

MName Ireadout

Path Ifdetec:tonf

Type ITable

rDataspace

Dimensions |1
Shape I']O
Data Type IRecord

Narme | Type

[Array Size

ADCcount |LInt16
TDCcount | Untg
energy Floatg

1

Figure 3.2: General properties of thidetector/readout table.

3.3. Multidimensional table cells and automatic sanity checks

lati = IntCol() # integer
longi = IntCol() # integer
pressure = Float32Col(shape=(2,3)) # array of floats (single-precision)

temperature = FloatCol(shape=(2,3)) # array of doubles (double-precision)

Another way to describe the columns of a table

Event = {
"name” : Col(CharType’, 16), # 16-character String
"TDCcount": Col("UInt8", 1), # unsigned byte
"ADCcount": Col("UInt16", 1), # Unsigned short integer
"xcoord" : Col("Float32", 1), # integer
"ycoord" : Col("Float32", 1), # integer
}

Open a file in "w"rite mode
fileh = openFile("tutorial2.h5", mode = "w")
Get the HDF5 root group
root = fileh.root
Create the groups:
for groupname in ("Particles”, "Events"):
group = fileh.createGroup(root, groupname)
Now, create and fill the tables in the Particles group
gparticles = root.Particles
Create 3 new tables
for tablename in ("TParticlel", "TParticle2", "TParticle3"):
Create a table
table = fileh.createTable("/Particles", tablename, Particle,
"Particles: "+tablename)
Get the record object associated with the table:
particle = table.row
Fill the table with data for 257 particles
for i in xrange(257):
First, assign the values to the Particle record
particle[name’] = 'Particle: %6d’ % (i)
particle['lati'] = i
particle['longi’] = 10 - i
HHHHHHHHHA Detectable errors start here. Play with them!
particle['pressure’] = array(i*arange(2*3), shape=(2,4)) # Incorrect
#particle['pressure’] = array(i*arange(2*3), shape=(2,3)) # Correct
#HHHHHHA End of errors
particle['temperature’] = (i**2) # Broadcasting
This injects the Record values
particle.append()
Flush the table buffers
table.flush()

Now Events:
for tablename in ("TEventl", "TEvent2", "TEvent3"):
Create a table in the Events group
table = fileh.createTable(root.Events, tablename, Event,
"Events: "+tablename)
Get the record object associated with the table:
event = table.row
Fill the table with data on 257 events

27

28 Chapter 3. Tutorials

for i in xrange(257):
First, assign the values to the Event record
eventname’l] = 'Event: %6d % (i)
event[TDCcount’] = i % (1<<8) # Correct range
HHHHHHH#H Detectable errors start here. Play with them!
#event['xcoord’] = float(i**2) # Correct spelling

event['xcoor] = float(i**2) # Wrong spelling
eventADCcount] = i * 2 # Correct type
#event[ADCcount’] = "sss" # Wrong type

#HiHHH#HH#E End of errors
event['ycoord’] = float(i)**4

This injects the Record values
event.append()

Flush the buffers
table.flush()

Read the records from table "/Events/TEvent3" and select some
table = root.Events.TEvent3
e = [p[TDCcount’] for p in table
if p[ADCcount’] < 20 and 4 <= p[TDCcount] < 15]
print "Last record ==>", p
print "Selected values ==>", e
print "Total selected records ==> ", len(e)
Finally, close the file (this also will flush all the remaining buffers)
fileh.close()

3.3.1 Shape checking

If you look at the code carefully, you'll see that it won't work. You will get the following error:

$ python tutorial2.py
Traceback (most recent call last):
File "tutorial2.py”, line 53, in ?
particle['pressure’] = array(i*arange(2*3), shape=(2,4)) # Incorrect
File "/usr/local/lib/python2.2/site-packages/numarray/numarraycore.py",
line 281, in array
a.setshape(shape)
File "/usr/local/lib/python2.2/site-packages/numarray/generic.py",
line 530, in setshape
raise ValueError("New shape is not consistent with the old shape")
ValueError: New shape is not consistent with the old shape

This error indicates that you are trying to assign an array with an incompatible shape to a table cell.
Looking at the source, we see that we were trying to assign an array of @y pe to apressure element,
which was defined with the shaf®3)

In general, these kinds of operations are forbidden, with one valid exception: when you assaara
value to a multidimensional column cell, all the cell elements are populated with the value of the scalar. For
example:

particle['temperature’] = (i**2) # Broadcasting

The value**2 is assigned to all the elements of teenperature table cell. This capability is provided
by thenumarray package and is known &soadcasting

3.3. Multidimensional table cells and automatic sanity checks 29

3.3.2 Field name checking
After fixing the previous error and rerunning the program, we encounter another error:

$ python tutorial2.py
Traceback (most recent call last):
File "tutorial2.py", line 74, in ?
event['xcoor’] = float(i**2) # Wrong spelling
File "src/hdf5Extension.pyx”,
line 1812, in hdfS5Extension.Row.__setitem___
raise KeyError, "Error setting \"%s\" field.\n %s" % \
KeyError: Error setting "xcoor" field.
Error was: "exceptions.KeyError: xcoor"

This error indicates that we are attempting to assign a value to a non-existent fiel@vetttable object.
By looking carefully at theEvent class attributes, we see that we misspelledsteord field (we wrote
xcoor instead). This is unusual behavior for Python, as normally when you assign a value to a non-existent
instance variable, Python creates a new variable with that name. Such a feature can be dangerous when
dealing with an object that contains a fixed list of field names. PyTables checks that the field exists and raises
aKeyError if the check fails.

3.3.3 Data type checking

Finally, in order to test type checking, we will change the next line:

event.ADCcount = i * 2 # Correct type
to read:
event.ADCcount = "sss" # Wrong type

This modification will cause the followin@ypeError exception to be raised when the script is executed:

$ python tutorial2.py
Traceback (most recent call last):
File "tutorial2.py", line 76, in ?
eventADCcount’] = "sss" # Wrong type
File "src/hdf5Extension.pyx”,
line 1812, in hdf5Extension.Row.__setitem__
raise KeyError, "Error setting \"%s\" field.\n %s" % \
KeyError: Error setting "ADCcount" field.
Error was: "exceptions.TypeError: NA_setFromPythonScalar: bad value type."

You can see the structure created with this (corrected) scijipt in figdre 3.3. In particular, note the multidi-
mensional column cells in tablParticles/TParticle2 .

Feel free to examine the rest of examples in direcexgmples , and try to understand them. I've
written several practical sample scripts to give you an idea oP{fi@bles capabilities, its way of dealing
with HDF5 objects, and how it can be used in the real world.

30 Chapter 3. Tutorials

File Mode Leaf Windows Tools Help

I® 1 [KWEP M@

Object tree | Of ey =

(Jtutorial2 hs @ |ADCcount |TDCcount |[name ¥zoord ycoord =
5B Events 1 0 0 Ewent 0 0.0 0.0
-E TEvent 2 2 1Event 1 1.0 10
ETEvent2 3 4 2 Event. 2 4.0 16.0
EITEvent3 4 3] 3 Event: 3 a0 810
- Particles 5 8 4 Event. 4 16.0 256.0
L TParticle1 ||| 6 10 SEwent 5 250 6250
icle2]|| M 12 6 Event 6 360 1296.0
- TParticle 8 14 T Ewvent. 7 490 24010

9 16 8 Event 8§ 640 40960 [«]

10 18 9 Event @ 310 6561.0[7]

7] temperature

1 0 10Parice 0 [0.0.00,00][00,00.00] [00.00.00][00 00 00]
5 1 9Paricer 1 [[0.0 1.0 2.0].[3.0 40 50] 1.0 10.10.110 1.0 10]
3 2 8Paicle 2 [00.20.40][60.60.100] [40.40.40][4.0 4.0 40]
4 3 7Particle 3 [0030.60][90.120 150] |[90.9.0 9.0].[30 9.0.90]
5 4 6Patice 4 [0040 801120 160,200] [16.0.16.0,160].[16.0, 16
5 5 5Paricle 5 [[0.0.5.0 10.0] [150.20.0.250] [250.250. 250].[250. 25
7 6 4Particle 6 [[0.0 60.120] [180 240.300] [360. 360.360] [360. 36
8 7 3Partice. 7[00 7.0 140].[210 280.250] [49.0 49.0 490] [49.0. 49

T

Colnames: | ADccount, ' 1DCcount, name., xcoord, ycoord |
Dimensions: 1
Shape: 257

Colnames: ['lati', 'longi', 'name’, 'pressure’, 'temperature']

Figure 3.3: Table hierarchy for tutorial 2.

31

Chapter 4

Library Reference

PyTables implements several classes to represent the different nodes in the object tree. They are named
File , Group, Leaf , Table , Array , EArray , VLArray andUnlmplemented . Another one allows the

user to complement the information on these different objects; its naAttilsuteSet . Finally, another
important class calletsDescription allows to build aTable record description by declaring a subclass

of it. Many other classes are definedAgTables , but they can be regarded as helpers whose goal is mainly

to declare thalata type propertiesf the different first class objects and will be described at the end of this
chapter as well.

An important function, calle@penFile is responsible to create, open or append to files. In addition, a
few utility functions are defined to guess if the user supplied fileRgBablesor HDF5 file. These are called
isPyTablesFile andisHDF5 , respectively. Finally, there exists a function call@kichLibVersion
that informs about the versions of the underlying C libraries (for examplé{j@i&sor theZlib).

Let’s start discussing the first-level variables and functions available to the user, then the different classes
defined inPyTables .

4.1 tables variables and functions

4.1.1 Global variables
__version__ ThePyTables version number.
ExtVersion The version of the Pyrex extension module. This might be useful when reporting bugs.

HDF5Version The underlying HDF5 library version number.

4.1.2 Global functions

copyFile(srcFilename=None, dstFilename=None, titte=None, filters=None, copyuserattrs=1,
overwrite=0)

Copy a closedPyTables (or genericHDF5 file specified bysrcFilenameo dstFilename Returns a tuple in
the form(ngroups, nleaves, nbytes) specifiying the number of groups, leaves and bytes copied.

title The title for the new file. If not specified, the source file title will be copied.

filters A Filters instance (sge_4.13.1). If specified, it will override the original filter propertie#l source
nodes.

copyuserattrs You can prevent the user attributes from being copied by setting this parameter to 0. The
default is to copy them.

overwrite If dstFilename file already exists and overwrite is 1, it will be silently overwritten. The default
is not overwriting.

32

Chapter 4. Library Reference

isHDF5(filename)

Determines whether filename is in the HDF5 format or not. When successful, returns a positive value, for
TRUE, or 0 (zero), for FALSE. Otherwise returns a negative value. To this function to work, it needs a closed
file.

isPyTablesFile(flename)

Determines whether a file is in tiRyTables format. When successful, returns the format version string, for
TRUE, or 0 (zero), for FALSE. Otherwise returns a negative value. To this function to work, it needs a closed
file.

openFile(filename, mode="r’, title=", trMap={}, rootUEP="/", filters=None)

Open aPyTables (or genericHDFS file and returns &ile object.

filename The name of the file (supports environment variable expansion). It is suggested that it should have
any of".h5" ,".hdf* or".hdf5" extensions, although this is not mandatory.

mode The mode to open the file. It can be one of the following:

r' read-only; no data can be modified.
'w' write; a new file is created (an existing file with the same name would be deleted).
'a’ append; an existing file is opened for reading and writing, and if the file does not exist it is created.

r+' is similar to 'a’, but the file must already exist.

title If filename is new, this will set a title for the root group in this file. If filename is not new, the title will
be read from disk, and this will not have any effect.

trMap A dictionary to map names in the object tree Python namespace into different HDF5 names in file
namespace. The keys are the Python names, while the values are the HDF5 names. This is useful when
you need to use HDF5 node names with invalid or reserved words in Python.

rootUEP The root User Entry Point. This is a group in the HDF5 hierarchy which will be taken as the starting
point to create the object tree. The group has to be named after its HDF5 name and can be a path. If it
does not exist, &untimeError exception is issued. Use this if you do not want to build ¢énére
object tree, but rather onlysubtreeof it.

filters Aninstance of th&ilters class (see secti¢n 4.1B.1) that provides information about the desired I/O
filters applicable to the leaves that hangs directly froot (unless other filters properties are specified
for these leaves). Besides, if you do not specify filter properties for its child groups, they will inherit
these ones. So, if you open a new file with this parameter set, all the leaves that would be created in the
file will recursively inherit this filtering properties (again, if you don’t prevent that from happening by
specifying other filters on the child groups or leaves).

whichLibVersion(libname)

Returns info about versions of the underlying C librarldmame can be whethethdf5" |, "zlib" ,"lzo"

or"ucl" . It always returns a tuple of 3 elements. When successful, the first element of this tuple has a
positive value, and is 0 (zero) when library is not available (for example LZO or UCL). In case the library is
available, the second element of tuple contains the library version and the third element the date (if available)
of that version.

4.2. TheFile class 33

4.2 The File class

This class is returned wherPyTables file is opened with thepenFile function. It has methods to flush
and close files. Also, theile class offers methods to create, rename and delete nodes, as well as to traverse
the object tree. One of its attributae@tUEP) represents thaser entry pointo the object tree attached to
the file.
Next, we will discuss the attributes and methods for File f{ass

4.2.1 File instance variables
filename Filename opened.
format_version ThePyTables version humber of this file.
isopen It takes the value 1 if the underlying file is open. 0 otherwise.
mode Mode in which the filename was opened.
root Theroot of the object tree hierarchy. It is@roup instance.
rootUEP The UEP (User Entry Point) group in file (dee 4]1.2).
title The title of the root group in file.
trMap This is a dictionary that maps node names between python and HDF5 domain names. Its initial values
are set from thérMap parameter passed to tbhpenFile function. You can change its contemtiter

a file is opened and the new map will take effect over any new object added to the tree.

filters Container for filter properties associated to this file. [See section #.13.1 for more information on this
object.

objects Dictionary with all objects (groups or leaves) on tree.
groups Dictionary with all object groups on tree.

leaves Dictionary with all object leaves on tree.

4.2.2 File methods
createGroup(where, name, title=", filters=None)

Create a new Group instance with nanamein wherelocation.

where The parent group where the new group will hang frowhereparameter can be a path string (for
examplé'/levell/group5”), or another Group instance.

name The name of the new group.

title A description for this group.

filters Aninstance of théilters class (see sectipn 4.1B.1) that provides information about the desired I/O
filters applicable to the leaves that hangs directly from this new group (unless other filters properties

are specified for these leaves). Besides, if you do not specify filter properties for its child groups, they
will inherit these ones.

1 On the following, the ternheaf will refer to either aTable , Array , EArray , VLArray or Unimplemented node object.

34

Chapter 4. Library Reference

createTable(where, name, description, title=", filters=None, expectedrows=10000)

Create a neWable instance with namaamein wherelocation.

where The parent group where the new table will hang fromhereparameter can be a path string (for
examplée'/levell/leafs"), or Group instance.

name The name of the new table.

description An instance of a user-defined class (derived from¢B&scription class) where table fields
are defined. However, in certain situations, it is more handy to allow this description to be supplied as
a dictionary (for example, when you do not know beforehand which structure will have your table). In
such a cases, you can pass the description as a dictionary as well._See selction 3.3 for an example of
use. Finally, &RecArray object from thenumarray package is also accepted, and all the information
about columns and other metadata is used as a basis to credtablbe object. Moreover, if the
RecArray has actual data this is also injected on the newly creBaite object.

titte A description for this object.

filters Aninstance of théilters class (sef section 4.1B.1) that provides information about the desired 1/0
filters to be applied during the life of this object.

expectedrows An user estimate of the number of records that will be on table. If not provided, the default
value is appropriate for tables until 10 MB in size (more or less). If you plan to save bigger tables you
should provide a guess; this will optimize the HDF5 B-Tree creation and management process time and
memory used. S¢e section]6.1 for a discussion on that issue.

createArray(where, name, object, title=")

Create a nevArray instance with namaamein wherelocation.

object The regular array to be saved. Currently accepted values are: lists, tuples, scalars (int and float),
strings and (multidimensionaNumeric and NumArray arrays (includingCharArrays string ar-
rays). However, these objects must be regular (i.e. they cannot be like, for exdihgle2]).
Also, objects that have some of their dimensions equal to zero are not supported Ei4seagn object
if you want to create an array with one of its dimensions equal to 0).

SedcreateTable description 4.2]2 for more information on thwere nameandtitle, parameters.

createEArray(where, name, atom, title=", filters=None, expectedrows=1000)

Create a neViArray instance with namaamein wherelocation.

atom An Atom instance representing tisbape typeandflavor of the atomic objects to be saved. One (and
only one) of the shape dimensiomaist be 0. The dimension being 0 means that the resuliitugay
object can be extended along it. Multiple enlargeable dimensions are not supported right now. See

[section 4.12]3 for the supported setabm class descendants.

expectedrows|n the case of enlargeable arrays this represents an user estimate about the number of row
elements that will be added to the growable dimension in the EArray object. If not provided, the default
value is 1000 rows. If you plan to create both much smaller or much bigger EArrays try providing a
guess; this will optimize the HDF5 B-Tree creation and management process time and the amount of
memory used.

SedcreateTable description 4.2]2 for more information on tidere name title, andfilters parame-
ters.

4.2. TheFile class 35

createVLArray(where, name, atom=None, title=", filters=None, expectedsizeinMB=1.0)

Create a newLArray instance with nameamein wherelocation. See the section #.9 for a description of
theVLArray class.

atom An Atom instance representing the shape, type and flavor of the atomic object to be savgd. |See sec-
for the supported setAfom class descendants.

expectedsizeinMB An user estimate about the size (in MB) in the fiNalArray object. If not provided,
the default value is 1 MB. If you plan to create both much smaller or much bigger VLA's try providing
a guess; this will optimize the HDF5 B-Tree creation and management process time and the amount of
memory used.

SeedcreateTable description 4.2]2 for more information on tiwdhere name title, andfilters parame-
ters.

getNode(where, name=", classname=")

Returns the object nodeameunderwherelocation.

where Can be a path string @roup instance. lfwheredoesn’t exist or has already a child callegime a
ValueError error is raised.

name The object name desired. iimeis a null string ("), or not supplied, this method assumes to find the
object inwhere

classnamelf supplied, returns only an instance of this class name. Possible valueGarnay’ |, ’'Leaf
‘Table’ ,’'Array’ ,’EArray’ ,’'VLArray’ and’Unimplemented’ . Note that these values are
strings.

getAttrNode(where, attrname, name="")

Returns the attributattrnameunderwhere.naméocation.

where Can be a path string deroup instance. Ifwheredoesn’t exist or has not a child calledme a
ValueError error is raised.

attrname The name of the attribute to get.

name The node name desired. iimeis a null string ("), or not supplied, this method assumes to find the
object inwhere

setAttrNode(where, attrname, attrvalue, name=")

Sets the attributattrnamewith valueattrvalueunderwhere.namdocation.

where Can be a path string deroup instance. Ifwheredoesn’t exist or has not a child calledme a
ValueError error is raised.

attrname The name of the attribute to set on disk.

attrvalue The value of the attribute to set. Any scalar (string, ints or floats) attribute is supported natively.
However,(c)Pickle is automatically used so as to serialize other kind of objects (like lists, tuples,
dicts, small Numeric/numarray objects, ...) that you might want to save.

name The node name desired. nmeis a null string (), or not supplied, this method assumes to find the
object inwhere

36

Chapter 4. Library Reference

delAttrNode(where, attrname, name ="")

Delete the attributattrnamein where.namédocation.

where Can be a path string déroup instance. Ifwheredoesn’t exist or has not a child calledhme a
ValueError error is raised.

attrname The name of the attribute to delete on disk.

name The node name desired. nmeis a null string ("), or not supplied, this method assumes to find the
object inwhere

copyAttrs(where, name="", dstNode=None)

Copy the attributes from nodehere.naméo dstNode

where Can be a path string dBroup instance. Ifwheredoesn'’t exist or has not a child calledme a
LookupError error is raised.

name If nameis a null string ("), or not supplied, this method assumes to find the objewhiere

dstNode This is the destination node where the attributes will be copied. It can be either a path string or a
Node object.

listNodes(where, classname=")

Returns a list with all the object nodes (Group or Leaf) hanging frdmare The list is alpha-numerically
sorted by node name.

where The parent group. Can be a path stringsooup instance.

classnamelf a classnamgarameter is supplied, the iterator will return only instances of this class (or sub-
classes of it). The only supported classeslassnamare’Group’ ,’'Leaf , 'Table’ ,’Array’
'EArray’ ,’'VLArray'’ and’Unimplemented’ . Note that these values are strings.

removeNode(where, name =", recursive=0)

Removes the object nodmmeunderwherelocation.

where Can be a path string déroup instance. Ifwheredoesn’t exist or has not a child calledhme a
LookupError error is raised.

name The name of the node to be removed. If not providedytherenode is changed.

recursive If not supplied, the object will be removed only if it has no children. If supplied with a true value,
the object and all its descendants will be completely removed.

renameNode(where, newname, name)

Rename the object nosemeunderwherelocation.

where Can be a path string dBroup instance. Ifwheredoesn'’t exist or has not a child calledme a
LookupError error is raised.

newname Is the new name to be assigned to the node.

name The name of the node to be changed. If not providedwtherenode is changed.

4.2. TheFile class 37

walkGroups(where="/")

Iterator that returns the list of Groups (not Leaves) hanging frehere If whereis not supplied, the root
object is taken as origin. The returned Group listis in a top-bottom order, and alpha-numerically sorted when
they are at the same level.

where The origin group. Can be a path string@roup instance.

walkNodes(where="/", classname="")

Recursively iterate over the nodes in #ile instance. It takes two parameters:

where If supplied, the iteration starts from this group.

classname(String) If supplied, only instances of this class are returned.
Example of use:

Recursively print all the nodes hanging from ’/detector’
print "Nodes hanging from group ’/detector’:"
for node in h5file.walkNodes("/detector"):

print node

copyChildren(whereSrc, whereDst, recursive=0, filters=None, copyuserattrs=1, start=0,
stop=None, step=1, overwrite = 0)

Copy (recursively) the children of a group into another location. Returns a tuple in the form
(ngroups, nleaves, nbytes) specifiying the number of groups, leaves and bytes copied.

whereSrc The parent group where the children to be copied are hanging on. This parameter can be a path
string (for examplé/levell/group5"), or anotheiGroup instance.

whereDst The parent group where the source children will be copied to. This group must ex-
ist or a LookupError will be issued. This parameter can be a path string (for example
"/levell/group6”), or anotheiGroup instance.

recursive Specifies whether the copy should recurse into subgroups or not. The default is not recurse.

filters Whether or not override the original filter properties present in source nodes. This parameter must be
an instance of theilters class (see sectipn 4.1B.1). The default is to copy the filter attributes from
source children.

copyuserattrs You can prevent the user attributes from being copied by setting this parameter to 0. The
default is to copy them.

start, stop, step Specifies the range of rows in child leaves to be copied; the default is to copy all the rows.
overwrite Whether the possible existing children hanging frwhereDst and having the same names than
whereSrc children should overwrite the destination nodes or not.
copyFile(dstFilename=None, title=None, filters=None, copyuserattrs=1, overwrite=0)

Copy the contents of this file tdstFilename If the filename already exists it won't be overwritten unless
overwriteis set to true (see later). Returns a tuple in the férgnoups, nleaves, nbytes) specifiying
the number of groups, leaves and bytes copied.

title The title for the new file. If not specified, the source file title will be copied.

38

Chapter 4. Library Reference

filters Whether or not override the original filter properties present in source nodes. This parameter must be
an instance of th€ilters class (see sectipn 4.1B.1). The default is to copy the filter attributes from
source children.

copyuserattrs You can prevent the user attributes from being copied by setting this parameter to 0. The
default is to copy them.

copyuserattrs You can prevent the user attributes from being copied by setting this parameter to 0. The
default is to copy them.

overwrite Whether overwrite or not the possibly existidgtFilenamdile. The default is not overwrite it.

flush()

Flush all the leaves in the object tree.

close()

Flush all the leaves in object tree and close the file.

4.2.3 File special methods

Following are described the methods that automatically trigger actions wikiém ainstance is accessed in a
special way.

iter ()

Iterate over the children on tHéle instance. However, this does not accept parameters. This itésator
recursive
Example of use:

Recursively list all the nodes in the object tree
h5file = tables.openFile("vlarrayl.h5")
print "All nodes in the object tree:"
for node in h5file:
print node

str ()

Prints a short description of thiéle object.
Example of use:

>>> f=tables.openFile("data/test.h5")

>>> print f

data/test.h5 (File) 'Table Benchmark’

Last modif.: 'Mon Sep 20 12:40:47 2004

Object Tree:

/ (Group) 'Table Benchmark’

ftuple0 (Table(100L,)) 'This is the table title’
/group0 (Group) "

/groupO/tuplel (Table(100L,)) 'This is the table title’
/groupO/groupl (Group) "

/groupO/groupl/tuple2 (Table(100L,)) 'This is the table title’
/groupO/groupl/group2 (Group) ”

4.3. TheGroup class 39

__repr__()

Prints a detailed description of tirile object.

4.3 The Group class

Instances of this class are a grouping structure containing instances of zero or more groups or leaves, together
with supporting metadata.

Working with groups and leaves is similar in many ways to working with directories and files, respec-
tively, in a Unix filesystem. As with Unix directories and files, objects in the object tree are often de-
scribed by giving their full (or absolute) path names. This full path can be specified either as a string (like in

‘Igroupl/group2’) or as a complete object path writtenriatural nameschema (like in
file.root.groupl.group2) as discussed in thie secfion]1.2.

A collateral effect of thenatural namingschema is that you must be aware when assigning a new attribute
variable to a Group object to not collide with existing children node names. For this reason and to not pollute
the children namespace, it is explicitly forbidden to assign "normal” attributes to Group instances, and the
only ones allowed must start with some reserved prefixes, like ™ (for methods) or "v_" (for instance
variables) prefixes. Any attempt to assign a new attribute that does not starts with these prefixes, will raise a
NameError exception.

Other effect is that you cannot use reserved Python names or other non-allowed python names (like for
example "$a" or "44") as node hames. You can, however, make usetdifqe (translation map dictionary)
parameter in thepenFile function (see section_4.1.2) in order to use non-valid Python names as node
names in the file.

4.3.1 Group instance variables

_v_title A description for this group.

_Vv_name The name of this group.

_v_hdf5name The name of this group in HDF5 file namespace.

_Vv_pathname A string representation of the group location in tree.

_Vv_parent The parent Group instance.

_Vv_rootgroup Pointer to the root group object.

_v_file Pointer to the associated File object.

_v_depth The depth level in tree for this group.

_v_nchildren The number of children (groups or leaves) hanging from this instance.
_v_children Dictionary with all nodes (groups or leaves) hanging from this instance.
_v_groups Dictionary with all node groups hanging from this instance.
_Vv_leavesDictionary with all node leaves hanging from this instance.

_v_attrs The associatedttributeSet instance (sefe_4.11).

_v_filters Container for filter properties. Spe section 4.13.1 for more information on this object.

40

Chapter 4. Library Reference

4.3.2 Group methods

This class define the setattr , _ getattr and __ delattr__ and they work as normally in-
tended. So, you can access, assign or delete children to a group by just using the next constructs:

Add a Table child instance under group with name "tablename"
group.tablename = Table(recordDict, "Record instance")

table = group.tablename # Get the table child instance

del group.tablename # Delete the table child instance

Caveat: The following methods are documented for completeness, and they can be used without any
problem. However, you should use the high-level counterpart methods Fil¢heclass, because these are
most used in documentation and examples, and are a bit more powerful than those exposed here.

_f_join(name)

Helper method to correctly concatenate a name child object with the pathname of this group.

_f rename(newname)

Change the name of this groupriewname

_f _remove(recursive=0)

Remove this object. Ifecursiveis true, force the removal even if this group has children.

_f_getAttr(attrname)

Gets the HDF5 attributattrnameof this group.

_f_setAttr(attrname, attrvalue)

Sets the attributattrnameof this group to the valuattrvalue Any scalar (string, ints or floats) attribute is
supported natively. Howeveg)Pickle is automatically used so as to serialize other kind of objects (like
lists, tuples, dicts, small Numeric/numarray objects, ...) that you might want to save.

_f_delAttr(attrname)

Delete the attributattrnameof this group.

_f_listNodes(classname=")

Returns dist with all the object nodes hanging from this instance. The list is alpha-numerically sorted by
node name. If a&lassnameparameter is supplied, it will only return instances of this class (or subclasses
of it). The supported classes atassnameare’'Group’ , 'Leaf’ , 'Table’ and’Array’ , 'EArray’
'VLArray’ and’Unimplemented’

_f_walkGroups()

Iterate over the list of Groups (not Leaves) hanging feati The returned Group list is in a top-bottom order,
and alpha-numerically sorted when they are at the same level.

4.3. TheGroup class 41

_f walkNodes(classname="", recursive=0)

Iterate over the nodes in tl&oup instance. It takes two parameters:
classname(String) If supplied, only instances of this class are returned.

recursive (Integer)If false, only children hanging immediately after the group are returned. If true, a recur-
sion over all the groups hanging from it is performed.

Example of use:

Recursively print all the arrays hanging from '/’

print "Arrays the object tree /"

for array in h5file.root._f walkNodes("Array”, recursive=1):
print array

_f close()

Close this group, making it and its children unaccessible in the object tree.

_f_copyChildren(where, recursive=0, filters=None, copyuserattrs=1, start=0, stop=None, step=1,
overwrite=0)

Copy (recursively) the children of this group into another location specifiedh®re(it can be a path string
or aGroup object). Returns a tuple in the forfngroups, nleaves, nbytes) specifiying the number
of groups, leaves and bytes copied.

recursive Specifies whether the copy should recurse into subgroups or not. The default is not recurse.

filters Whether or not override the original filter properties present in source nodes. This parameter must be
an instance of theilters class (see sectipn 4.1B.1). The default is to copy the filter attributes from
source children.

copyuserattrs You can prevent the user attributes from being copied by setting this parameter to 0. The
default is to copy them.

start, stop, step Specifies the range of rows in child leaves to be copied; the default is to copy all the rows.

overwrite Whether the possible existing children hanging from this group and having the same names than
where children should overwrite the destination nodes or not.

4.3.3 Group special methods

Following are described the methods that automatically trigger actions wBesua instance is accessed in
a special way.

__iter_()

Iterate over the children on the group instance. However, this does not accept parameters. This iterator is
recursive.
Example of use:

Non-recursively list all the nodes hanging from ’/detector’
print "Nodes in ’'/detector’ group:"
for node in h5file.root.detector:

print node

42

Chapter 4. Library Reference

str ()

Prints a short description of ti&roup object.
Example of use:

>>> f=tables.openFile("data/test.h5")
>>> print f.root.group0

/groupO (Group) 'First Group’

>>>

_Tepr__()

Prints a detailed description of ti&roup object.
Example of use:

>>> f=tables.openFile("data/test.h5")
>>> f.root.group0O
/group0 (Group) ’'First Group’
children := [tuplel’ (Table), 'groupl’ (Group)]
>>>

4.4 The Leaf class

The goal of this class is to provide a place to put common functionality of all its descendants as well as
provide a way to help classifying objects on the treeLeaf object is an end-node, that is, a node that can
hang directly from a group object, but that is not a group itself and, thus, it cannot have descendents. Right
now, the set of end-nodes is composedThaple , Array , EArray , VLArray andUnimplemented class
instances. In fact, all the previous classes inherit from_ted class.

4.4.1 Leaf instance variables
The public variables and methods that class descendants inheritsdadmare listed below.
name The Leaf node name in Python namespace.
hdf5name The Leaf node name in HDF5 namespace.
objectID The HDF5 object ID of the Leaf node.
title The Leaf title (actually a property rather than a plain attribute).
shape The shape of the associated data in the Leaf.
byteorder The byteorder of the associated data of the Leaf.
attrs The associatedttributeSet instance (sefe_4.11).
filters Container for filter properties. Spe section 4.1.3.1 for more information on this object.

Besides, the next instance variables are also defined and have similar meaning as its counterparts in the
Group class:

_v_hdf5name The name of this leaf in HDF5 file namespace.
_v_pathname A string representation of the leaf location in tree.

_V_parent The parenGroup instance.

4.4, TheLeaf class 43

_Vv_rootgroup Pointer to the rooGroup object.
_v_file Pointer to the associatédle object.

_v_depth The depth level in tree for this leaf.

4.42 Leaf methods

copy(where, name, titte=None, filters=None, copyuserattrs=1, start=0, stop=None, step=1,
overwrite=0)

Copy this leaf into another location. It returns a tudéject, nbytes) whereobject is the newly
created object ancbytes is the number of bytes copied. The meaning of the parameters is explained below:

where Can be a path string dBroup instance. Ifwheredoesn’t exist or has not a child calledme a
LookupError error is raised.

name The name of the destination node.
title The new title for destination. If None, the original title is copied.

filters Aninstance of théilters (sed section 4.13.1) class. A None value means that the source properties
are copieds is

copyuserattrs Whether copy the user attributes of the source leaf to the destination or not. The default is to
copy them.

start, stop, step Specifies the range of rows to be copied; the default is to copy all the rows.
overwrite If the destination nodeamealready exists this specifies whether it should be overwritten or not.

The default is not overwrite it.

remove()

Remove this leaf.

rename(newname)

Change the name of this leaft@wname

getAttr(attrname)

Gets the HDF5 attributattrnameof this leaf.

setAttr(attrname, attrvalue)

Sets the attributattrnameof this leaf to the valuattrvalue

delAttr(attrname)

Delete the HDF5 attributattrnameof this leaf.

flush()
Flush the leaf buffers (if any).

close()

Flush the leaf buffers (if any) and close the dataset.

Chapter 4. Library Reference

4.5 The Table class

Instances of this class represents table objects in the object tree. It provides methods to read/write data and
from/to table objects in the file.

Data can be read from or written to tables by accessing to an special object that hangalitem This
object is an instance of tiRowclass (se_4.5.4). See the tutorial sectjons chapter 3 on how to uBewthe
interface. The columns of the tables can also be easily accessed (and more specifically, they can be read but
not written) by making use of th@olumn class, through the use of artensiorof the natural naming schema
applied inside the tables. See 4.6 for some examples of use of this capability.

Note that this object inherits all the public attributes and methodd it already has.

4.5.1 Table instance variables
description The metaobject describing this table.
row TheRowinstance for this table (see 4.b.4).
nrows The number of rows in this table.
rowsize The size, in bytes, of each row.
cols A Cols (sed section 4.5.5) instance that serves as accesSohumn (seq section 4]6) objects.
colnames The field names for the table (list).
coltypes The data types for the table fields (dictionary).
colshapesThe shapes for the table fields (dictionary).
colindexed Whether the table fields are indexed (dictionary).
indexed Whether the table fields are indexed (dictionary).
indexprops Properties of an indexed Table ($ee 4.]13.2). This attribute (dictionary) exists only if the Table is
indexed.
4.5.2 Table methods

append(rows=None)

Append a series of rows to thigable instance.rowsis an object that can keep the rows to be append in
several formats, like RecArray , a list of tuples, list oNumeric /NumArray /CharArray objects, string,
Python buffer or None (no append will result). Of course, toiss object has to be compliant with the
underlying format of th@able instance or &alueError will be issued.

Example of use:

from tables import *
class Particle(IsDescription):

name = StringCol(16, pos=1) # 16-character String

lati = IntCol(pos=2) # integer

longi = IntCol(pos=3) # integer

pressure = Float32Col(pos=4) # float (single-precision)

temperature = FloatCol(pos=5) # double (double-precision)

fileh = openFile("test4.h5", mode = "w")

table = fileh.createTable(fileh.root, 'table’, Particle, "A table")

Append several rows in only one call

table.append([("Particle: 10", 10, O, 10*10, 10**2),
("Particle: 11", 11, -1, 11*11, 11**2),

4.5. TheTable class 45

("Particle: 12", 12, -2, 12*12, 12**2)])
fileh.close()

iterrows(start=None, stop=None, step=1)

Returns an iterator yieldinBow (seq section 4.5.4) instances built from rows in table. If a range is supplied
(i.e. some of thestart, stopor stepparameters are passed), only the appropriate rows are returned. Else, all
the rows are returned. See alsothéter_ () special method i section 4.5.3 for a shorter way to call this
iterator.

The meaning of thetart, stopandstepparameters is the same as inthege() python function, except
that negative values atep are not allowed. Moreover, if onlstart is specified, thestop will be set to
start+1 . If you do not specify neithestart nor stop thenall the rows in the object are selected.

Example of use:

result = [row['var2’] for row in table.iterrows(step=5)
if row['varl] <= 20]

itersequence(sequence=None, sort=1)

Iterate over aequencef row coordinates.

sequenceCan be any object that supports thegetitem__ special method, like lists, tuples, Nu-
meric/numarray objects, etc.

sort If true, means thasequencevill be sorted out so that the I/O process would get better performance. If
your sequence is already sorted or you don’t want to sort it, put this parameter to 0. The default is to
sort thesequence

read(start=None, stop=None, step=1, field=None, flavor="numarray")

Returns the actual datarable . If field is not supplied, it returns the data aRecArray object table.

The meaning of thetart, stopandstepparameters is the same as inthege() python function, except
that negative values astep are not allowed. Moreover, if onlstart is specified, thestop will be set to
start+1 . If you do not specify neithestart nor stop then all the rows in the object are selected.

The rest of the parameters are described next:

field If specified, only the columfieldis returned as AlumArray object. If this is not supplied, all the fields
are selected andRecArray is returned.

flavor When a field in table is selected, passinigaor parameter make an additional conversion to happen
in the default'numarray" returned objectflavor must have any of the next valuesiumarray"
(i.e. no conversion is madeéNumeric" , "Tuple" or"List"

modifyRows(start=None, stop=None, step=1, rows=None)

Modify a series of rows in thistart:stop:step] extended sliceange. If you pasblone to stop all the
rows existing irowswill be used.

rows can be either &ecArray object or a structure that is able to be converted ReaArray and
compliant with the table format.

Returns the number of modified rows.

It raises arValueError in case the rows parameter could not be converted to an object compliant with
table description.

It raises arindexError in case the modification will exceed the length of the table.

Chapter 4. Library Reference

modifyColumns(start=None, stop=None, step=1, columns=None, hames=None)

Modify a series of rows in théstart:stop:step] extended sliceow range. If you pasilone to stop
all the rows existing ircolumnswill be used.

columnscan be either a RecArray or a list of arrays (the columns) that is able to be converted to a
RecArray compliant with the specified colummamessubset of the table format.

namesspecifies the column names of the table to be modified.

Returns the number of modified rows.

It raises arValueError in case thecolumnsparameter could not be converted to an object compliant
with table description.

It raises arindexError in case the modification will exceed the length of the table.

removeRows(start=None, stop=None)

Removes a range of rows in the table. If oatgrtis supplied, this row is to be deleted. If a range is supplied,
i.e. both thestart andstopparameters are passed, all the rows in the range are remowstdpparameter is
not supported, and it is not foreseen to implement it anytime soon.

start Sets the starting row to be removed. It accepts negative values meaning that the count starts from the
end. A value of 0 means the first row.

stop Sets the last row to be removeddimp- 1, i.e. the end point is omitted (in the Pyth@mge tradition).
It accepts, likewisestart, negative values. A special value Wbne (the default) means removing just
the row supplied in start.

removelndex(index=None)

Remove the index associated with the specified column. Gwlgx instances (s€e 4.13.3) are accepted
as parameter. This index can be recreated again by callingrélageindex (se€ 4.6.2) method of the
appropriateColumn object.

flushRowsTolndex()

Add remaining rows in buffers to non-dirty indexes. This can be useful when you have chosen non-automatic
indexing for the table (s¢e section 4.13.2) and want to update the indexes on it.

relndex()

Recompute all the existing indexes in table. This can be useful when you suspect that, for any reason, the
index information for columns is no longer valid and want to rebuild the indexes on it.

relndexDirty()

Recompute the existing indexes in table, buaty if they are dirty. This can be useful when you have set
thereindex parameter to O inndexProps constructor (seg_4.13.2) for the table and want to update the
indexes after a invalidating index operatidraple.removeRows , for example).

where(condition, start=None, stop=None, step=None)

Returns an iterator yieldinBow (seq section 4.5.4) instances built from rows in table that satisgndition
over a column. If the column to which the condition is applied is indexed, this index will be used in order to
accelerate the search. Else, the&kerneliterator (with better performance than the regular iterator) will be
choosed instead.

Moreover, if a range is supplied (i.e. some of ttart, stopor stepparameters are passed), only the rows
in that rangeandfullfilling the conditionare returned. Else, all the rows that fullfill thenditionare returned.

4.5. TheTable class 47

The meaning of thetart, stopandstepparameters is the same as inthege() python function, except
that negative values atep are not allowed. Moreover, if onlstart is specified, thestop will be set to
start+1 . If you do not specify neithestart nor stop thenall the rows that fullfill the conditionare selected.

You can mix this method with regular selections in order to have complex queries. It is strongly recom-
mended that you pass the most restrictive condition as the parameter to this method if you want to achieve
maximum performance.

Example of use:

passvalues=[]
for row in table.iterrows(O>table.cols.col1<0.3, step=5):
if row['varl’] <= 20:
passvalues.append(row['var2’]
print "Values that passes the cuts:", passvalues

See also thevherelndexed andwherelnRange methods below for more specific ways to call this
iterator.

wherelndexed(condition, start=None, stop=None, step=None)

Iterator that selects values fulfilling tremnditionparameter. Thisnly works for conditions over indexed
column. If you try to use it over non-indexed column,AssertionError will be raised.

The meaning of theondition start, stopandstepparameters is the same as in thiegere method (see
[4.5.2) described above.

wherelnRange(condition, start=None, stop=None, step=None)

Iterator that selects values fulfilling theondition parameter. This method will use thie-kernel search
method, i.e. it won't take advantage of a possible indexed column.

The meaning of theondition start, stopandstepparameters is the same as in thigere method (see
[4.5.2) described above.

getWhereList(condition, flavor="List")

Get the row coordinates that fulfill theondition param. This method will take advantage of an indexed
column to speed-up the search.

flavor is the desired type of the returned list. It can take thet’ (the default), Tuple’ or
'NumArray' values.

4.5.3 Table special methods

Following are described the methods that automatically trigger actions whale instance is accessed in
a special way (e.gtable["var2"] will be equivalent to a call teable.__getitem__ ("var2")).

__iter_()

It returns the same iterator th@able.iterrows(0,0,1) . However, this does not accept parameters.
Example of use:

result = [row['var2’] for row in table
if row['varl] <= 20]

Which is equivalent to:

result = [row['var2’] for row in table.iterrows()
if row['varl] <= 20]

48

Chapter 4. Library Reference

__getitem__(key)
It takes different actions depending on the type ofkég parameter:
key is aninteger The corresponding table row is returned @egArray.Record object.
key isaSlice The row slice determined sey is returned as RecArray object.

key isaString Thekey is interpreted as eolumnname of the table, and, if it exists, it is read and returned
as aNumArray or CharArray object (whatever is appropriate).

Example of use:

record = table[4]
recarray = table[4:1000:2]
narray = table["var2"]

Which is equivalent to:

record = table.read(start=4)[0]
recarray = table.read(start=4, stop=1000, step=2)
narray = table.read(field="var2")

__setitem__ (key, value)
It takes different actions depending on the type ofkbe parameter:

key is aninteger The corresponding table row is setalue valuemust be d.ist or Tuple capable of
being converted to the table field format.

key isaSlice The row slice determined by key is setialue valuemust be eRecArray object or a list
of rows capable of being converted to the table field format.

Example of use:

Modify just one existing row

table[2] = [456,'db2",1.2]

Modify two existing rows

rows = numarray.records.array([[457,'db1’,1.2],[6,'de2’,1.3]],
formats="i4,a3,f8")

table[1:3:2] = rows

Which is equivalent to:

table.modifyRows(start=2, [456,'db2’,1.2])

rows = numarray.records.array([[457,'db1",1.2],[6,’'de2’,1.3]],
formats="i4,a3,f8")

table.modifyRows(start=1, step=2, rows)

45.4 The Rowclass

This class is used to fetch and set values on the table fields. It works very much like a dictionary, where the
keys are the field names of the associated table and the values are the values of those fields in a specific row.

This object turns out to actually be an extension type, so you won'’t be able to access its documentation
interactively. Neither you won't be able to access its internal attributes (they are not directly accessible
from Python), althouglaccessorgi.e. methods that return an internal attribute) have been defined for some
important variables.

4.6. TheColumn class 49

Rowmethods

append() Once you have filled the proper fields for the current row, calling this method actually commits
these data to the disk (actually data are written to the output buffer).

nrow() Accessor that returns the current row number in the table. It is useful to know which row is being
dealt with in the middle of a loop.

getTable() Accessor that returns the associatatble object.

455 The Cols class

This class is used as aecessoto the table columns following the natural name convention, so that you can
access the different columns because there exist one attribute with the name of the columns for each associated
Column instances. Besides, and like tRewclass, it works similar to a dictionary, where the keys are the
column names of the associated table and the valueSalwenn instances. Sge section 4.6 for examples of

use.

4.6 The Column class

Each instance of this class is associated with one column of every table. These instances are mainly used to
fetch and set actual data from the table columns, but there are a few other associated methods to deal with
indexes.

4.6.1 Column instance variables
table The parenfTable instance.
name The name of the associated column.
type The data type of the column.
index The associatethdex object (se€¢ 4.13]3) to this columNdne if doesn'’t exist).

dirty Whether the index is dirty or not (property).

4.6.2 Column methods
createlndex()

Create anndex (seq_4.13]3) object for this column.

relndex()
Recompute the index associated with this column. This can be useful when you suspect that, for any reason,
the index information is no longer valid and want to rebuild it.

relndexDirty()

Recompute the existing index only if it is dirty. This can be useful when you have sefitdex parameter
to 0 inIndexProps constructor (seg_4.13.2) for the table and want to update the column’s index after a
invalidating index operationT@ble.removeRows , for example).

removelndex()

Delete the associated column’s index. After doing that, you will loose the indexation information on disk.
However, you can always re-create it using theatelndex() method (sep_4.6.2).

50

Chapter 4. Library Reference

closelndex()

Close the index of this column. After that, the column will look as if it has no index, although it will re-appear
when the file would be re-opened later on.

4.6.3 Column special methods
__getitem__ (key)

Returns a column element or slice. It takes different actions depending on the typ&eypaeameter:

key is aninteger The corresponding element in the column is returned as a scalar object or as a
NumArray /CharArray object, depending on its shape.

key isaSlice The row range determined by this slice is returned &smArray or CharArray object
(whichever is appropriate).

Example of use:

print "Column handlers:"
for name in table.colnames:
print table.cols[name]
print
print "Some selections:"
print "Select table.cols.name[1]-->", table.cols.name[1]
print "Select table.cols.name[1:2]-->", table.cols.name[1:2]
print "Select table.cols.lati[1:3]-->", table.cols.lati[1:3]
print "Select table.cols.pressure[:]-->", table.cols.pressure][:]
print "Select table.cols[temperature’][:]-->", table.cols['temperature’][:]

and the output of this for a certain arbitrary table is:

Column handlers:

/table.cols.name (Column(1,), CharType)
/table.cols.lati (Column(2,), Int32)
/table.cols.longi (Column(1,), Int32)
/table.cols.pressure (Column(l,), Float32)
/table.cols.temperature (Column(l1,), Float64)

Some selections:

Select table.cols.name[1]--> Particle: 11

Select table.cols.name[1:2]--> ['Particle: 117
Select table.cols.lati[1:3]--> [[11 12]

[12 13]]

Select table.cols.pressure[:]--> [90. 110. 132.]
Select table.cols[temperature’][:]--> [100. 121. 144.)]

See theexamples/table2.py for a more complete example.

__setitem__ (key, value)

It takes different actions depending on the type ofke parameter:

key is aninteger The corresponding element in the column is sevatue value must be a scalar or
NumArray /CharArray , depending on column’s shape.

4.7. TheArray class 51

key isaSlice The row slice determined bkeyis set tovalue value must be a list of elements or a
NumArray /CharArray

Example of use:

Modify row 1
table.cols.coll[1] = -1

Modify rows 1 and 3
table.cols.coll[1::2] = [2,3]

Which is equivalent to:

Modify row 1

table.modifyColumns(start=1, columns=[[-1]], names=["col1"])

Modify rows 1 and 3

columns = numarray.records.fromarrays([[2,3]], formats="i4")
table.modifyColumns(start=1, step=2, columns=columns, names=["coll1"])

4.7 The Array class

Represents an array on file. It provides methods to write/read data to/from array objects in the file. This class
does not allow you to enlarge the datasets on disk; se&Agy descendant if section 4.8 if you want
enlargeable dataset support and/or compression features.

The array data types supported are the same as the set provitiedneyic andnumarray . For details
of these data types sge appendjx A, orbmarray reference manugl (Greenfieddal).

Note that this object inherits all the public attributes and methodd #&it already provides.

4.7.1 Array instance variables

flavor The object representation for this array. It can be anNofmArray", "CharArray" "Numeric", "List",
"Tuple”, "String", "Int" or "Float" values.

nrows The length of the first dimension of Array.
nrow On iterators, this is the index of the current row.
type The type class of the represented array.

itemsize The size of the base items. Specially useful@barArray objects.

4.7.2 Array methods

Note that, as this object has no internal I/O buffers, it is not necessary to use the flush() method inherited from
Leaf in order to save its internal state to disk. When a writing method call returns, all the data is already on
disk.

iterrows(start=None, stop=None, step=1)

Returns an iterator yieldingumarray instances built from rows in array. The return rows are taken from the
first dimension in case of afwrray instance and the enlargeable dimension in case &#aray instance.

If a range is supplied (i.e. some of thtart, stopor stepparameters are passed), only the appropriate rows are
returned. Else, all the rows are returned. See also the dtet__ () special methods in section 4.]7.3 for

a shorter way to call this iterator.

The meaning of thetart, stopandstepparameters is the same as inthege() python function, except
that negative values step are not allowed. Moreover, if onlstart is specified, thestop will be set to
start+1 . If you do not specify neithestart nor stop then all the rows in the object are selected.

Example of use:

52

Chapter 4. Library Reference

result = [row for row in arraylnstance.iterrows(step=4)]

read(start=None, stop=None, step=1)

Read the array from disk and return it aswmarray (default) object, or an object with the same original
flavor that it was saved. It accepts start, stop and step parameters to select rows (the first dimension in the
case of arArray instance and thenlargeabledimension in case of aBArray) for reading.

The meaning of thetart, stopandstepparameters is the same as inthege() python function, except
that negative values atep are not allowed. Moreover, if onlstart is specified, thestop will be set to
start+1 . If you do not specify neithestart nor stop then all the rows in the object are selected.

4.7.3 Array special methods

Following are described the methods that automatically trigger actions wh&mran instance is accessed

in a special way (e.garray[2:3,...,::2] will be equivalent to a call to
array.__getitem__ (slice(2,3, None), Ellipsis, slice(None, None, 2))).
_iter__()
It returns the same iterator thamray.iterrows(0,0,1) . However, this does not accept parameters.

Example of use:

result = [row[2] for row in array]

Which is equivalent to:

result = [row[2] for row in array.iterrows(0, 0, 1)]

__getitem__(key)

It returns anumarray (default) object (or an object with the same origifialor that it was saved) containing
the slice of rows stated in they parameter. The set of allowed tokenkay is the same as extended slicing
in python (theEllipsis token included).

Example of use:

arrayl = array[4] # arrayl.shape == array.shape[l:]

array2 = array[4:1000:2] # len(array2.shape) == len(array.shape)
array3 = array[::2, 14,]

array4 = array[l, ..., 2, 1:4, 4] # General slice selection

__setitem__ (key, value)

Sets an Array element, row or extended slice. It takes different actions depending on the typ&eyf the
parameter:

key is an integer: The corresponding row is assigned to value. If neededyvtiige is broadcasted to fit
the specified row.

key is a slice: The row slice determined by it is assignedvidue . If needed, thizvalue is broadcasted
to fit in the desired range. If the slice to be updated exceeds the actual shape of the array, only the
values in the existing range are updated, i.e. the index error will be silently ignorediué is a
multidimensional object, then its shape must be compatible with the slice specikied iotherwhise,
aValueError will be issued.

4.8. TheEArray class 53

Example of use:

al[0] = 333 # Assign an integer to a Integer Array row
az[0] = "b" # Assign a string to a string Array row
a3[1l:4] = 5 # Broadcast 5 to slice 1:4

a4[l:4:2] = "xXx" # Broadcast "xXx" to slice 1:4:2
General slice update (a5.shape = (4,3,2,8,5,10)
a5[1, ..., 2, 14, 4] = arange(1728, shape=(4,3,2,4,3,6))

4.8 The EArray class

This is a child of theArray class (sep_4}7) and as suéi#yrray represents an array on the file. The differ-
ence is thaEArray allows to enlarge datasets along any single dimeﬁ}symm select. Another important
difference is that it also supports compression.

So, in addition to the attributes and methods thatray inherits fromArray , it supports a few more
that provide a way to enlarge the arrays on disk. Following are described the new variables and methods as
well as some that already existAmray but that differ somewhat on the meaning and/or functionality in the
EArray context.

4.8.1 EArray instance variables
atom The class instance chosen for the atom object[(See section|4.12.3).

extdim The enlargeable dimension.

nrows The length of the enlargeable dimension.

4.8.2 EArray methods
append(object)

Appends arobject to the underlying dataset. Obviously, this object has to have the same type as the
EArray instance; otherwise @ypeError is issued. In the same way, the dimensions ofdbiect have
to conform to those oEArray , that is, all the dimensions have to be the same except, of course, that of the
enlargeable dimension which can be of any length (even 0!).

Example of use (code availableémamples/earrayl.py):

import tables
from numarray import strings

fileh = tables.openFile("earrayl.h5", mode = "w")

a = tables.StringAtom(shape=(0,), length=8)

Use 'a’ as the object type for the enlargeable array
array_c = fileh.createEArray(fileh.root, 'array_c’, a, "Chars")
array_c.append(strings.array([a™2, 'b'*4], itemsize=8))
array_c.append(strings.array(['a*6, 'b*8, 'c*10], itemsize=8))

Read the string EArray we have created on disk
for s in array_c:

print "array_c[%s] => '%s™ % (array_c.nrow, S)
Close the file
fileh.close()

2 In the future, multiple enlargeable dimensions might be implemented as well.

54

Chapter 4. Library Reference

and the output is:

array_c[0] => ’'aa
array_c[1] => ’bbbb’
array_c[2] => 'aaaaaa’
array_c[3] => 'bbbbbbbb’
array_c[4] => ’cccceecc’

4.9 The VLArray class

Instances of this class represents array objects in the object tree with the property that their rows can have a
variable number of (homogeneous) elements (cabi¢oimic objects, or jusatomg. Variable length arrays
(or VLA's for short), similarly toTable instances, can have only one dimension, and likeedge , the
compound elements (tregomg of the rows ofVLArrays can be fully multidimensional objects.

VLArray provides methods to read/write data from/to variable length array objects residents on disk.
Also, note that this object inherits all the public attributes and method& tadt already has.

49.1 VLArray instance variables
atom The class instance chosen for the atom object[(see section|4.12.3).
nrow On iterators, this is the index of the current row.

nrows The total number of rows.

49.2 VLArray methods
append(objectl, object2, ...)

Append theobjects passed as parameters to a single row inth&rray instance. The type of the objects
has to be compliant with théLArray.atom instance type.
Example of use (code availableéramples/vlarrayl.py):

import tables
from Numeric import * # or, from numarray import *

Create a VLArray:
fileh = tables.openFile("vlarrayl.h5", mode = "w")
vlarray = fileh.createVLArray(fileh.root, 'vliarrayl’,
tables.Int32Atom(flavor="Numeric"),
"ragged array of ints", Filters(complevel=1))
Append some (variable length) rows
All these different parameter specification are accepted:
vlarray.append(array([5, 6]))
vlarray.append(array([5, 6, 7]))
vlarray.append([5, 6, 9, 8])
vlarray.append(5, 6, 9, 10, 12)

Now, read it through an iterator
for x in vlarray:
print vlarray.name+"["+str(vlarray.nrow)+"]-->", x

Close the file
fileh.close()

4.9. TheVLArray class 55

And the output for this looks like:

vlarray1[0]--> [5 6]
vliarrayl[1]--> [5 6 7]
vlarrayl[2]--> [5 6 9 8]
vliarrayl[3]--> [5 6 9 10 12]

iterrows(start=None, stop=None, step=1)

Returns an iterator yielding one row per iteration. If a range is supplied (i.e. some sthttyestopor step
parameters are passed), only the appropriate rows are returned. Else, all the rows are returned. See also the
__iter_ () special methods in section 4.p.3 for a shorter way to call this iterator.

The meaning of thetart, stopandstepparameters is the same as inthege() python function, except
that negative values atep are not allowed. Moreover, if onlstart is specified, thestop will be set to
start+1 . If you do not specify neithestart nor stog then all the rows in the object are selected.

Example of use:

for row in vlarray.iterrows(step=4):
print vlarray.name+"["+str(vlarray.nrow)+"]-->", row

read(start=None, stop=None, step=1)

Returns the actual datafLArray . As the lengths of the different rows are variable, the returned value is a
python list, with as many entries as specified rows in the range parameters.

The meaning of thetart, stopandstepparameters is the same as inthege() python function, except
that negative values afep are not allowed. Moreover, if onlstart is specified, thestop will be set to
start+1 . If you do not specify neithestart nor stop then all the rows in the object are selected.

4.9.3 VLArray special methods

Following are described the methods that automatically trigger actions wheviLAaray in-

stance is accessed in a special way (e.glarray[2:5] will be equivalent to a call to
vlarray.__getitem__ (slice(2,5,None)).

__iter_ ()
It returns the same iterator th&t Array.iterrows(0,0,1) . However, this does not accept parameters.

Example of use:

result = [row for row in vlarray]

Which is equivalent to:

result = [row for row in vlarray.iterrows()]

__getitem__(key)

It returns the slice of rows determined kgy , which can be an integer index or an extended slice. The
returned value is a list of objects of typeray.atom.type
Example of use:

listl
list2

vlarray[4]
vlarray[4:1000:2]

56

Chapter 4. Library Reference

__setitem__ (keys, value)

Updates a vlarray row described bgys by setting it tovalue . Depending on the value &gys , the action
taken is different:

keys is an integer: It refers to the number of row to be modified. TWedue object must be type and shape
compatible with the object that exists in the viarray row.

keys is atuple: The first element refers to the row to be modified, and the second element to the range (so,
it can be an integer or an slice) of the row that will be updated. As aboverathe object must be
type and shape compatible with the object specified in the vlarraypnavange.

Note: When updating/LStrings (codification UTF-8) orObjects atoms, there is a problem: one
can only update values witkxactlythe same bytes than in the original row. With UTF-8 encoding this is
problematic because, for instance’,takes 1 byte, but¢’ takes two. The same applies when usiigjects
atoms, because when cPickle applies to a class instance (for example), it does not guarantee to return the same
number of bytes than over other instance, even of the same class than the former. These facts effectively limit
the number of objects than can be updatedliArrays .

Example of use:

vlarray[0] = vlarray[0]*2+3

vlarray[99,3:] = arange(96)*2+3

Negative values for start and stop (but not step) are supported
vlarray[99,-99:-89:2] = vlarray[5]*2+3

4.10 The Unlmplemented class

Instances of this class represents an unimplemented dataset in a generic HDF5 file. When reading such a file
(i.e. one that has not been created witfTables , but with some other HDF5 library based tool), chances

are that the specific combination @étatypesand/ordataspacedn some dataset might not be supported by
PyTables yet. In such a case, this dataset will be mapped intdJthienplemented class and hence, the

user will still be able to build the complete object tree of this generic HDF5 file, as well as enabling the access
(both read andvrite) of the attributes of this dataset and some metadata. Of course, the user won’t be able to
read the actual data on it.

This is an elegant way to allow users to work with generic HDF5 files despite the fact that some of its
datasets would not be supported®yTables . However, if you are really interested in having access to an
unimplemented dataset, please, get in contact with the developer team.

This class does not have any public instance variables, except those inherited framathelass

(see 4.4).

4.11 The AttributeSet class

Represents the set of attributes of a node (Leaf or Group). It provides methods to create new attributes, open,
rename or delete existing ones.

Like in Group instancesAttributeSet instances make use of thatural namingconvention, i.e. you
can access the attributes on disk like if they weoemal AttributeSet attributes. This offers the user a
very convenient way to access (but also to set and delete) node attributes by simply specifying them like a
normalattribute class.

Caveat: All Python data types are supported. The scalar ones (i.e. String, Int and Float) are mapped
directly to the HDF5 counterparts, so you can correctly visualize them with any HDF5 tool. However, the
rest of the data types and more general objects are serializedo®sakte , so you will be able to correctly
retrieve them only from a Python-aware HDFS5 library. Hopefully, the list of supported native attributes will
be extended to fully multidimensional arrays sometime in the future.

4.12. Declarative classes 57

4.11.1 AttributeSet instance variables

_Vv_node The parent node instance.
_Vv_attrnames List with all attribute names.
_V_attrnamessysList with system attribute names.

_Vv_attrnamesuser List with user attribute names.

4.11.2 AttributeSet methods

Note that this class define thesetattr , __getattr and__ delattr__ and they work as nor-
mally intended. Any scalar (string, ints or floats) attribute is supported natively as an attribute. However,
(c)Pickle is automatically used so as to serialize other kind of objects (like lists, tuples, dicts, small Nu-
meric/numarray objects, ...) that you might want to save.

With these special methods, you can access, assign or delete attributes on disk by just using the next
constructs:

leaf.attrs.myattr = "str attr" # Set a string (native support)

leaf.attrs.myattr2 = 3 # Set an integer (native support)
leaf.attrs.myattr3 = [3,(1,2)] # A generic object (Pickled)

attrib = leaf.attrs.myattr # Get the attribute myattr

del leaf.attrs.myattr # Delete the attribute myattr

_f_copy(where) Copy the user attributes tehereobject.wherehas to be &roup or Leaf instance.

_f list(attrset = "user") Return the list of attributes of the parent nodstrsetselects the attribute set to
be returned. Arfuser" value returns only the user attributes and this is the defésys" returns
only the system (some of which are read-only) attributesadonly” returns the system read-only
attributes."all* returns both the system and user attributes.

_f _rename(oldattrname, newattrname) Rename an attribute.

4.12 Declarative classes

In this section a series of classes that are meatiettaredatatypes that are required for primdyTables
(like Table orVLArray) objects are described.

4.12.1 The IsDescription class

This class is in fact a so-calletietaclassobject. There is nothing special on this fact, except that their
subclasses attributes are transformed during its instantiation phase, and new methods for instances are defined
based on the values of the class attributes.

It is designed to be used as an easy, yet meaningful way to describe the propeftaseofobjects
through the use of classes that inherit properties from it. In order to define such a special class, you have to
declare it as descendantlgDescription with many attributes as columns you want in your table. The name
of these attributes will become the name of the columns, while its values are the properties of the columns
that are obtained through the use offthe Col 4]12.2 class constructor.

Then, you can pass an instance of this object toTthiele constructor, where all the information it
contains will be used to define the table structure. Sef the sectjon 3.3 for an example on how that works.

Moreover, you can change the properties of the index creation process by using an instanfe of the Index-
[Props 4.13]2 class and assign it to a special attribute calleddexprops

58

Chapter 4. Library Reference

4.12.2 The Col class and its descendants

TheCol class is used as a mean to declare the different properties of a table column. In addition, a series of
descendant classes are offered in order to make these column descriptions easier to the user. In general, it is
recommended to use these descendant classes, as they are more meaningful when found in the middle of the
code.

Note that the only public method accessible in these classes is the constructor itself.

Col(dtype="Float64", shape=1, dflt=None, pos=None, indexed=0Declare the properties of @able
column.

dtype The data type for the column. All types listedin_appendjx A are valid data types for columns.
The type description is accepted both in string format and as a numarray data type.

shape An integer or a tuple, that specifies the numbedtyfpeitems for each element (or shape, for
multidimensional elements) of this column. FoharType columns, the last dimension is used
as the length of the character strings. However, for this kind of objects, the &emgCol
subclass is strongly recommended.

dfit The default value for elements of this column. If the user does not supply a value for an element
while filling a table, this default value will be written to disk. If the user supplies an scalar value
for a multidimensional column, this value is automaticdlipadcastedo all the elements in the
column cell. Ifdflt is not supplied, an appropriate zero value ifatl string) will be chosen by
default.

pos By default, columns are arranged in memory following an alpha-numerical order of the column
names. In some situations, however, it is convenient to impose a user defined ordesing.
parameter allows the user to force the desired ordering.

indexed Whether this column should be indexed for better performance in table selections.

StringCol(length=None, dflt=None, shape=1, pos=None, indexed=0peclare a column to be of type
CharType . Thelength parameter sets the length of the strings. The meaning of the other parame-
ters are like in the€ol class.

BoolCol(dflt=0, shape=1, pos=None, indexed=0Pefine a column to be of typ@ool . The meaning of the
parameters are the same of those inGbé class.

IntCol(dflt=0, shape=1, itemsize=4, sign=1, pos=None, indexed=@)eclare a column to be of type
IntXX , depending on the value demsizeparameter, that sets the number of bytes of the integers
in the column. sign determines whether the integers are signed or not. The meaning of the other
parameters are the same of those inGbé class.

This class has several descendants:

Int8Col(dflt=0, shape=1, pos=None, indexed=0Define a column of typ&t8 .
UInt8Col(dflt=0, shape=1, pos=None, indexed=0Pefine a column of typ&JInt8 .
Int16Col(dflt=0, shape=1, pos=None, indexed=0Define a column of typént16 .
UInt16Col(dflt=0, shape=1, pos=None, indexed=0pefine a column of typ&Int16 .
Int32Col(dflt=0, shape=1, pos=None, indexed=0pefine a column of typént32 .
UInt32Col(dflt=0, shape=1, pos=None, indexed=0pefine a column of typ&Int32 .
Int64Col(dflt=0, shape=1, pos=None, indexed=0Define a column of typtnt64 .
UInt64Col(dflt=0, shape=1, pos=None, indexed=0pefine a column of typ&int64 .

FloatCol(dflt=0.0, shape=1, itemsize=8, pos=None, indexed=@)efine a column to be of typeloatxX ,
depending on the value @émsize . Theitemsize parameter sets the number of bytes of the floats
in the column and the default is 8 bytes (double precision). The meaning of the other parameters are
the same as those in tid®l class.

This class has two descendants:

4.12. Declarative classes 59

Float32Col(dflt=0.0, shape=1, pos=None, indexed=@)efine a column of typ€&loat32
Float64Col(dflt=0.0, shape=1, pos=None, indexed=@efine a column of typ€&loat64

ComplexCol(dflt=0.+0.j, shape=1, itemsize=16, pos=Nonepefine a column to be of typE€omplexXX,
depending on the value demsize . Theitemsize parameter sets the number of bytes of the
complex types in the column and the default is 16 bytes (double precision complex). The meaning of
the other parameters are the same as those i@dhelass.

This class has two descendants:

Complex32Col(dflt=0.+0.j, shape=1, pos=Nonelpefine a column of typ€omplex32 .
Float64Col(dflt=0+0.j, shape=1, pos=NonepPefine a column of typ€omplex64 .

ComplexCol columns and its descendants do not support indexation.

4.12.3 The Atom class and its descendants.

The Atom class is meant to declare the different properties ofttasge elementalso known asaton) of
EArray andVLArray objects. TheAtom instances have the property that their length is always the same.
However, you can grow objects along the extendable dimension in the c&&mafy or put a variable
number of them on &LArray row. Moreover, the atoms are not restricted to scalar values, and they can be
fully multidimensional objects.

A series of descendant classes are offered in order to make the use of these element descriptions easier.
In general, it is recommended to use these descendant classes, as they are more meaningful when found in
the middle of the code. Note that the only public methods accessible in these classesasomsire()
method and the constructor itself. Te®msize() = method returns the total length, in bytes, of the element
base atom.

A description of the different constructors with their parameters follows:

Atom(dtype="Float64", shape=1, flavor="NumArray") Define properties for the base elements of
EArray andVLArray objects.

dtype The data type for the base element. Sed the apperjdix A for a relation of data types supported.
The type description is accepted both in string format and as numarray data type.

shape In aEArray context, it is auple specifing the shape of the object, and one (and only one) of
its dimensionsnust be 0, meaning that tHeArray object will be enlarged along this axis. In the
case of av/LArray , it can be an integer with a value of 1 (one) or a tuple, that specifies whether
the atom is an scalar (in the case of a 1) or has multiple dimensions (in the case of a tuple). For
CharType elements, the last dimension is used as the length of the character strings. However,
for this kind of objects, the use &tringAtom subclass is strongly recommended.

flavor The object representation for this atom. It can be anyGifarArray" or "String" for the
CharType type and'NumArray", "Numeric", "List" or "Tuple" for the rest of the types. If the
specified values differs frof@harArray or NumArrayvalues, the read atoms will be converted to
that specific flavor. If not specified, the atoms will remain in their native formatGharArray
or NumArray).

StringAtom(shape=1, length=None, flavor="CharArray") Define an atom to be @tharType type. The
meaning of theshapeparameter is the same as in him class.lengthsets the length of the strings
atoms.flavor can be wheth€elCharArray" or"String" . Unicode strings are not supported by this
type; see th&LStringAtom class if you want Unicode support (only available ¥arAtom objects).

BoolAtom(shape=1, flavor="NumArray") Define an atom to be of typBool . The meaning of the pa-
rameters are the same of those in Atem class.

60 Chapter 4. Library Reference

IntAtom(shape=1, itemsize=4, sign=1, flavor="NumArray") Define an atom to be of typ@tXX , de-
pending on the value dfemsizeparameter, that sets the number of bytes of the integers that conform
the atom.signdetermines whether the integers are signed or not. The meaning of the other parameters
are the same of those in tidom class.

This class has several descendants:

Int8Atom(shape=1, flavor="NumArray") Define an atom of typet8 .
UInt8Atom(shape=1, flavor="NumArray") Define an atom of typ&Int8 .
Int16Atom(shape=1, flavor="NumArray") Define an atom of typ&nt16 .
Uintl6Atom(shape=1, flavor="NumArray") Define an atom of typ&int16 .
Int32Atom(shape=1, flavor="NumArray") Define an atom of typ&nt32
UiInt32Atom(shape=1, flavor="NumArray") Define an atom of typ&int32 .
Int64Atom(shape=1, flavor="NumArray") Define an atom of typent64 .
Uinté4Atom(shape=1, flavor="NumArray") Define an atom of typ&Int64 .

FloatAtom(shape=1, itemsize=8, flavor="NumArray") Define an atom to be dfloatXX type, depend-
ing on the value oftemsize . Theitemsize parameter sets the number of bytes of the floats in the
atom and the default is 8 bytes (double precision). The meaning of the other parameters are the same
as those in thétom class.

This class has two descendants:

Float32Atom(shape=1, flavor="NumArray") Define an atom of typEloat32
Float64Atom(shape=1, flavor="NumArray") Define an atom of typEloat64

ComplexAtom(shape=1, itemsize=16, flavor="NumArray") Define an atom to be afomplexXX type,
depending on the value @émsize . Theitemsize parameter sets the number of bytes of the floats
in the atom and the defaultis 16 bytes (double precision complex). The meaning of the other parameters
are the same as those in thm class.

This class has two descendants:

Complex32Atom(shape=1, flavor="NumArray") Define an atom of typ€omplex32 .

Complex64Atom(shape=1, flavor="NumArray") Define an atom of typ€omplex64 .

Now, there come two special class@hjectAtom andVLString , that actually do not descend from
Atom, but which goal is so similar that they should be described here. The difference between them and
the Atom and descendents classes is that these special classes does not allow multidimensional atoms, nor
multiple values per row. Alavor can’t be specified neither as it is immutable (see below).

Caveat emptor: You are only allowed to use these classes to crgaterray objects, notEArray
objects.

ObjectAtom() This class is meant to fiiny kind of object in a row of arVLArray instance by using
cPickle behind the scenes. Due to the fact that you cannot foresee how long will be the output of the
cPickle serialization (i.e. the atom already hasaiable length), you can only fit a representant of
it per row. However, you can still pass several parameters t@ltAeray.append() method as they
will be regarded as tupleof compound objects (the parameters), so that we still have only one object to
be saved in a single row. It does not accept parameters and its flavor is automaticalyOdgé ¢’ |
so the reads of rows always returns an arbitrary python object. You can @pgmctAtom types as
an easy way to save an arbitrary number of generic python objectélidAmay object.

4.13. Helper classes 61

VLStringAtom() This class describes raw of the VLArray class, rather than aatom It differs from
the StringAtom class in that you can only add one instance of it to one specific row, i.e. the
VLArray.append() method only accepts one object when the base atom is of this type. Besides,
it supports Unicode strings (contrarily &ringAtom) because it uses the UTF-8 codification (this
is why its atomsize() = method returns always 1) when serializing to disk. It does not accept any
parameter and becausefi®vor is automatically set tdVLString" , the reads of rows always returns
a python string. See tlie appendix C}3.4 if you are curious on how this is implemented at the low-level.
You can regard/LStringAtom types as an easy way to save generic variable length strings.

Seeexamples/vlarrayl.py and examples/vlarray2.py for further examples oWVLArray s,
including object serialization and Unicode string management.

4.13 Helper classes

In this section are listed classes that does not fit in any other section and that mainly serves for ancillary
purposes.

4.13.1 The Filters class

This class is meant to serve as a container that keeps information about the filter properties associated with
the enlargeable leaves, thaflisble , EArray andVLArray .
The public variables dfilters are listed below:

complevel The compression level (0 means no compression).
complib The compression filter used (in case of compressed dataset).
shuffle Whether the shuffle filter is active or not.

fletcher32 Whether the fletcher32 filter is active or not.

There are ndrilters public methods with the exception of the constructor itself that is described next.

Filters(complevel=0, complib="zlib", shuffle=1, fletcher32=0)

The parameters that can be passed td-thers class constructor are:

complevel Specifies a compress level for data. The allowed range is 0-9. A value of 0 disables compres-
sion. The default is that compression is disabled, that balances between compression effort and CPU
consumption.

complib Specifies the compression library to be used. Right falip" (default),"lzo" and"ucl"
values are supported. 6.3 for some advice on which library is better suited to your needs.

shuffle Whether or not to use th&hufflefilter present in thedDF5library. This is normally used to improve
the compression ratio (at the cost of consuming a little bit more CPU time). A value of O disables
shuffling and 1 makes it active. The default value depends on whether compression is enabled or not;
if compression is enabled, shuffling defaults to be active, else shuffling is disabled.

fletcher32 Whether or not to use thgetcher3ilter in the HDF5 library. This is used to add a checksum on
each data chunk. A value of 0 disables the checksum and it is the default.

Of course, you can also create an instance and then assign the ones you want to change. For example:

62 Chapter 4. Library Reference

import numarray as na
from tables import *

fileh = openFile("test5.h5", mode = "w")
atom = Float32Atom(shape=(0,2))
filters = Filters(complevel=1, complib = "lzo")
filters.fletcher32 = 1
arr = fileh.createEArray(fileh.root, 'earray’, atom, "A growable array",
filters = filters)
Append several rows in only one call
arr.append(na.array([[1., 2.],
[2., 3],
[3., 4.]], type=na.Float32))

Print information on that enlargeable array
print "Result Array:"
print repr(arr)

fileh.close()

This enforces the use of thezO library, a compression level of 1 and a fletcher32 checksum filter as well.
See the output of this example:

Result Array:
learray (EArray(3L, 2), fletcher32, shuffle, 1zo(1)) 'A growable array’
type = Float32
shape = (3L, 2)
itemsize = 4
nrows = 3
extdim = 0
flavor = 'NumArray’
byteorder = ’little’

4.13.2 The IndexProps class

You can use this class to set/unset the properties in the indexing procesgablfea column. To use it,
create an instance, and assign it to the special attributeadexprops in a tabldq description 4.13.1 class
or dictionary.

The public variables oihdexProps are listed below:

auto Whether an existing index should be updated or not after a table append operation.
reindex Whether the table columns are to be re-indexed after an invalidating index operation.

filters The filter settings for the differeftable indexes.

There are ndndexProps public methods with the exception of the constructor itself that is described
next.

IndexProps(auto=1, reindex=1, filters=None)

The parameters that can be passed tdrtdexProps class constructor are:

auto Specifies whether an existing index should be updated or not after a table append operation. The default
is enable automatic index updates.

4.13. Helper classes 63

reindex Specifies whether the table columns are to be re-indexed after an invalidating index operation (like
for example, after Jable.removeRows call). The default is to reindex after operations that invali-
date indexes.

filters Sets the filter properties fa€olumn indexes. It has to be an instance of trigers (se€| se¢-
fion 4.13.]) class. Aone value means that the default settings forfileers object are selected.

4.13.3 The Index class
This class is used to keep the indexing information for table columns. It is actually a descendar@rofihe
class, with some added functionality.
It has no methods intented for programmer’s use, but it has some attributes that maybe interesting for him.
Index instance variables
column The column object this index belongs to.
type The type class for the index.
itemsize The size of the atomic items. Specially useful for column€lodrType type.
nelements The total number of elements in index.
dirty Whether the index is dirty or not.
sorted ThelndexArray — object (se¢ 4.134) with the sorted values information.

indices ThelndexArray object (se@ 4.13]4) with the sorted indices information.
filters TheFilters (sed section 4.13.1) instance for this index.

4.13.4 The IndexArray class

This class is used to keep part of the indexing information for table columns. Itis actually a descendant of the
EArray class, with some added functionality.

It has no methods intented for programmer’s use, and although it has some attributes with potentially
useful information, all of it is accessible throutsiiex class (seg 4.13.3), so it will not be replicated here.

65

Chapter 5

FileNode

5.1 Whatis FileNode ?

FileNode is a module which enables you to createy@ables database of nodes which can be used like

regular opened files in Python. In other words, you can store a filePyiTables database, and read and

write it as you would do with any other file in Python. Used in conjunction WitfTables hierarchical

database organisation, you can have your database turned into an open, extensible, efficient, high capacity,

portable and metadata-rich filesystem for data exchange with other systems (including backup purposes).
Between the main features BileNode , one can list:

» Open:Since it relies orPyTables , which in turn, sits over HDF5 (s€ée NCSA), a standard hierarchical
data format from NCSA.

» Extensible: You can define new types of nodes, and their instances will be safely preserved (as are
normal groups, leafs and attributes) ByTables applications having no knowledge of their types.
Moreover, the set of possible attributes for a node is not fixed, so you can define your own node at-
tributes.

« Efficient: Thanks to PyTables’ proven extreme efficiency on handling huge amounts of data. FileNode
can make use of PyTables’ on-the-fly compression and decompression of data.

 High capacity: Since PyTables and HDF5 are designed for massive data storage (they use 64-bit ad-
dressing even where the platform does not support it natively).

« Portable: Since the HDF5 format has an architecture-neutral design, and the HDF5 libraries and PyTa-
bles are known to run under a variety of platforms. Besides that, a PyTables database fits into a single
file, which poses no trouble for transportation.

» Metadata-rich: Since PyTables can store arbitrary key-value pairs (even Python objects!) for every
database node. Metadata may include authorship, keywords, MIME types and encodings, ownership
information, access control lists (ACL), decoding functions and anything you can imagine!

5.2 Current limitations

FileNode is still a young piece of software, so it lacks some functionality. This is a list of known current
limitations:

1. Node file names are constrained?grlables node names (i.e. most valid Python identifiers). For the
moment, if you want arbitrary names you will have to use a translation map (se¢ 4.1.2) or the node
title. The same restriction applies to attribute names.

2. Node files can only be opened for read-only or read and append mode. This will be enhanced in the
future.

66

Chapter 5. FileNode

3. There is no universal newline support yet. This is likely to be implemented in a near future.

4. Sparse files (files with lots of zeros) are not treated specially; if you want them to take less space, you
should be better off using compression.

These limitations still mak&ileNode entirely adequate to work with most binary and text files. Of
course, suggestions and patches are welcome.

5.3 Finding a FileNode node

FileNode nodes can be recognised because they hauwgpe attribute with a'file’ value. ltis rec-
ommended that you use thgetAttrNode() method (sep_4.2.2) eébles.File class to get thetype
attribute independently of the nature (group or leaf) of the node, so you do not need to care about.

5.4 Using FileNode

TheFileNode module is part of th@odes sub-package dPyTables . The recommended way to import
the module is:

>>> from tables.nodes import FileNode

However,FileNode exports very few symbols, so you can impbrior interactive usage. In fact, you
will most probably only use thBlodeType constant and theewNode() andopenNode() calls.

TheNodeType constant contains the value that thgpe attribute of a node file is expected to contain
(‘file’ , as we have seen). Although this is not expected to change, you sholiedssle. NodeType
instead of the literafile’ when possible.

newNode() andopenNode() are the equivalent to the Pythéie() call (aliasopen()) for ordinary
files. Their arguments differ from that tile() , but this is the only point where you will note the difference
between working with a node file and working with an ordinary file.

For this little tutorial, we will assume that we havePgTables database opened for writing. Also,
if you are somewhat lazy at typing sentences, the code that we are going to explain is included in the
examples/filenodesl.py file.

You can create a brand new file with these sentences:

>>> import tables
>>> h5file = tables.openFile('fnode.h5’, 'w’)

5.4.1 Creating a new file node

Creation of a new file node is achieved with thewNode() call. You must tell it in whichPyTables

file you want to create it, where in theyTables hierarchy you want to create the node and which

will be its name. ThePyTables file is the first argument tmewNode() ; it will be also called the

'host PyTables file’ . The other two arguments must be given as keyword argumdmse and

name, respectively. As a result of the call, a brand new appendable and readable file node object is returned.
So let us create a new node file in the previously opdwaéite PyTables file, namedfnode_test’

and placed right under the root of the database hierarchy. This is that command:

>>> fnode = FileNode.newNode(h5file, where="/", name="fnode_test’)

That is basically all you need to create a file node. Simple, isn't it? From that point on, you can use
fnode as any opened Python file (i.e. you can write data, read data, lines of text and so on).

newNode() accepts some more keyword arguments. You can give a title to your file witlitithe
argument. You can udeyTables ' compression features with tHiters argument. If you know before-
hand the size that your file will have, you can give its final file size in bytes texpectedsize ~ argument
so that thePyTables library would be able to optimise the data access.

5.4. UsingFileNode 67

newNode() creates é@PyTables node where it is told to. To prove it, we will try to get théype
attribute from the newly created node.

>>> print h5file.getAttrNode('/fnode_test’, '_type’)
file

5.4.2 Using a file node

As stated above, you can use the new node file as any other opened file. Let us try to write some text in and

read it.

>>> print >> fnode, "This is a test text line."
>>> print >> fnode, "And this is another one."
>>> print >> fnode
>>> fnode.write("Of course, file methods can also be used.")
>>>
>>> fnode.seek(0) # Go back to the beginning of file.
>>>
>>> for line in fnode:
print repr(line)
'This is a test text line.\n’
'’And this is another one.\n’
\n'
'Of course, file methods can also be used.

This was run on a Unix system, so newlines are expresséd’'as. In fact, you can override the line
separator for a file by setting iimeSeparator property to any string you want.

While using a file node, you should take care of closinbdfore you close thePyTables host file.
Because of the wayTables works, your data it will not be at a risk, but every operation you execute after
closing the host file will fail with a/alueError . To close a file node, simply delete it or call d®se()
method.

>>> fnode.close()
>>> print fnode.closed
True

5.4.3 Opening an existing file node

If you have a file node that you created usimgyvNode() , you can open it later by callingpenNode() .
Its arguments are similar to that fite() oropen() : the first argument is thByTables node that you
want to open (i.e. a node with aype attribute having &ile’ value), and the second argument is a mode
string indicating how to open the file. Contraryfiie() , openNode() can not be used to create a new file
node.

File nodes can be opened in read-only mode () or in read-and-append moda{’). Reading from
a file node is allowed in both modes, but appending is only allowed in the second one. Just like Python files
do, writing data to an appendabile file places it after the file pointer if it is on or beyond the end of the file, or
otherwise after the existing data. Let us see an example:

>>> node = hb5file.root.fnode_test

>>> fnode = FileNode.openNode(node, 'at’)
>>> print repr(fnode.readline())

'This is a test text line\n’

>>> print fnode.tell()

68 Chapter 5. FileNode

26
>>> print >> fnode, "This is a new line."
>>> print repr(fnode.readline())

Of course, the data append process places the pointer at the end of the file, sortzelliast) call
hit EOF. Let us seek to the beginning of the file to see the whole contents of our file.

>>> fnode.seek(0)
>>> for line in fnode:
print repr(line)
'This is a test text line\n’
'And this is another one.\n’
\n’
'Of course, file methods can also be used.This is a new line\n’

As you can check, the last string we wrote was correctly appended at the end of the file, instead of
overwriting the second line, where the file pointer was positioned by the time of the appending.

5.4.4 Adding metadata to a file node

You can associate arbitrary metadata to any open node file, regardless of its mode, as long as the host
PyTables file is writable. Of course, you could use thetAttrNode() method oftables.File to
do it directly on the proper node, bbetleNode offers a much more comfortable way to do KileNode
objects have aattrs property which gives you direct access to their corresponditiiputeSet object.
For instance, let us see how to associate MIME type metadata to our file node:

>>> fnode.attrs.content_type = ’text/plain; charset=us-ascii’

As simple as A-B-C. You can put nearly anything in an attribute, which opens the way to authorship,
keywords, permissions and more. Moreover, there is not a fixed list of attributes. However, you should avoid
names in all caps or starting with , sincePyTables andFileNode may use them internally. Some valid
examples:

>>> fnode.attrs.author = "lvan Vilata i Balaguer"

>>> fnode.attrs.creation_date = '2004-10-20T13:25:25+0200’

>>> fnode.attrs.keywords_en = ['FileNode", "test", "metadata"]
>>> fnode.attrs.keywords_ca = ['FileNode", "prova", "metadades"]
>>> fnode.attrs.owner = ’ivan’

>>> fnode.attrs.acl = {livan: 'rw’, '@users’. r'’}

You can check that these attributes get stored by runningtthenp command on the hogtyTables
file:

$ ptdump -a fnode.h5:/fnode_test
/fnode_test (EArray(113, 1)) ”
/fnode_test.attrs (AttributeSet), 14 attributes:
[CLASS := 'EARRAY’,
EXTDIM := 0,
FLAVOR := 'NumArray’,
TITLE = 7,
VERSION := '1.0’,
_type = ‘file’,

5.5. Complementary notes 69

_type_version := 1,

acl := {ivan’: 'w’, '@users’: '},

author := ’lvan Vilata i Balaguer’,

content_type := ’text/plain; charset=us-ascii’,
creation_date := '2004-10-20T13:25:25+0200’,
keywords_ca := [FileNode’, 'prova’, 'metadades’],
keywords_en := ['FileNode’, 'test’, 'metadata’],
owner := 'ivan’]

Please note th@ileNode makes no assumptions about the meaning of your metadata, so its handling is
entirely left to your needs and imagination.

5.5 Complementary notes

You can usé-ileNodes andPyTables groups to mimic a filesystem with files and directories. Since you
can store nearly anything you want as file metadata, this enables you toPy3alzsles file as a portable
compressed backup, even between radically different platforms. Take this with a grain of salt, since node files
are restricted in their naming (only valid Python identifiers are valid); however, remember that you can use
node titles and metadata to overcome this limitation. Also, you may need to devise some strategy to represent
special files such as devices, sockets and such (not necessarilyishade).

We are eager to hear your opinion ab&iieNode and its potential uses. Suggestions to improve
FileNode and create other node types are also welcome. Do not hesitate to contact us!

5.6 FileNode module reference

5.6.1 Global constants

NodeType Value for_type node attribute.

NodeTypeVersions Supported values fortype_version node attribute.

5.6.2 Global functions
newNode(h5file, where, name, title="", filters=None, expectedsize=1000)

Creates a new file node object in the specifigdiables file object. Additional named argumentsere and
name must be passed to specify where the file node is to be created. Other named argumentsitiich as
andfilters may also be passed. The special named argusxpeictedsize |, indicating an estimate of
the file size in bytes, may also be passed. It returns the filenode object.

openNode(node, mode ='r")

Opens an existing file node. Returns a file node object from the existing specified PyTables node. If mode is
not specified oritisr’ , the file can only be read, and the pointer is positioned at the beginning of the file. If
mode isa+' |, the file can be read and appended, and the pointer is positioned at the end of the file.

5.6.3 The FileNode abstract class

This is the ancestor ®ROFileNode andRWFileNode (see below). Instances of these classes are returned
whennewNode() or openNode() are called. It represents a new file node associated withiTables
node, providing a standard Python file interface to it.

This abstract class provides only an implementation of the reading methods needed to implement a file-
like object over éPyTables node. The attribute set of the node becomes available viatttse property.

70

Chapter 5. FileNode

You can add attributes there, but try to avoid attribute names in all caps or starting 'witlsince they may
clash with internal attributes.
The node used as storage is also made available via the read-only attddate Please do not tamper
with this object unless unavoidably, since you may break the operation of the file node object.
ThelineSeparator property contains the string used as a line separator, and defaodtéinesep
It can be set to any reasonably-sized string you want.
The constructor sets thdosed , softspace and_lineSeparator attributes to their initial values,
as well as theode attribute toNone. Sub-classes should set thede , mode andoffset attributes.
Version 1 implements the file storage aslat8 uni-dimensionaEArray .

FileNode methods
getLineSeparator() Returns the line separator string.
setLineSeparator() Sets the line separator string.

getAttrs() Returns the attribute set of the file node.

close() Flushes the file and closes it. Thede attribute becomeNone and theattrs property becomes no
longer available.

next() Returns the next line of text. RaiseStoplteration when lines are exhausted. See
file.next.__doc__ for more information.

read(size=None)Reads at mosdtize bytes. Sedile.read.__doc___ for more information

readline(size=-1) Reads the next text line. Séke.readline.__doc___ for more information

readlines(sizehint=-1) Reads the text lines. Séi.readlines.__doc__ for more information.

seek(offset, whence=0Moves to a new file position. Sdiéke.seek.__doc__ for more information.

tell() Gets the current file position. Séke.tell._doc for more information.

xreadlines() For backward compatibility. Sd#ée.xreadlines.__doc___ for more information.

5.6.4 The ROFileNode class

Instances of this class are returned wieenNode() is called in read-only modeér{). This is a descen-
dant ofFileNode class, so it inherits all its methods. Moreover, it does not define any other useful method,
just some protections against users intents to write on file.

5.6.5 The RWFileNode class

Instances of this class are returned when eitt@vyNode() is called or wheropenNode() is called in
append mode'd+’). This is a descendant &ileNode class, so it inherits all its methods. It provides
additional methods that allow to write on file nodes.

flush() Flushes the file node. Sée.flush.__doc__ for more information.

truncate(size=None) Truncates the file node to at maste bytes. Currently, this method only makes sense
to grow the file node, since data can not be rewritten nor deletedil&eencate.__doc___ for
more information.

write(string) Writes the string to the file. Writing an empty string does nothing, but requires the file to be
open. Sedile.write.__doc__ for more information.

writelines(sequence)Writes the sequence of strings to the file. Sigewritelines.__doc__ for
more information.

71

... durch planmassiges Tattonieren.
[... through systematic, palpable
experimentation.]

—Johann Karl Friedrich Gauss

Chapter 6 [asked how he came upon his theorems]
Optimization tips

On this chapter, you will get deeper knowledgeRyfTables internals. PyTables has several places
where the user can improve the performance of his application. If you are planning to deal with really large
data, you should read carefully this section in order to learn how to get an important boost for your code. But
if your dataset is small or medium size (say, up to 10 MB), you should not worry about that as the default
parameters iPyTables are already tuned to handle that perfectly.

6.1 Informing PyTables about expected number of rows in tables

The underlying HDF5 library that is used IByTables takes the data in bunches of a certain length, so-
calledchunks to write them on disk as a whole, i.e. the HDF5 library treats chunks as atomic objects and
disk I/O is always made in terms of complete chunks. This allows data filters to be defined by the application
to perform tasks such as compression, encryption, checksumming, etc. on entire chunks.

An in-memory B-tree is used to map chunk structures on disk. The more chunks that are allocated for a
dataset the larger the B-tree. Large B-trees take memory and cause file storage overhead as well as more disk
I/O and higher contention for the metadata cache. Consequently, it's important to balance between memory
and I/O overhead (small B-trees) and time to access data (big B-trees).

PyTables can determine an optimum chunk size to make B-trees adequate to your dataset size if you
help it by providing an estimation of the number of rows for a table. This must be made in table creation time
by passing this value in thexpectedrows keyword ofcreateTable method (seg 4.2,.2).

When your table size is bigger than 10 MB (take this figure only as a reference, not strictly), by providing
this guess of the number of rows you will be optimizing the access to your data. When the table size is
larger than, say 100MB, you astrongly suggested to provide such a guess; failing to do that may cause
your application doing very slow 1/O operations and demandinge amounts of memory. You have been
warned!.

6.2 Accelerating your searches

If you are going to use a lot of searches like the next one:

row = table.row
result = [row['var2’] for row in table if row['varl] <= 20]

(for future reference, we will call this theandardselection mode) and want to improve the time taken by it,
keep reading.
6.2.1 In-kernel searches

PyTables provides a way to accelerate data selections when they are simple, i.e. only a column is implied
in the selection process, through the use ofithere iterator (se¢ 4.5]2). We will call this mode of selecting

72

Chapter 6. Optimization tips

Comparison between the different selection modes in PyTables
(condition applied over Int32 values)

100000 T T T

Standard ——
In-kernel

10000 Indexed ---%---]

1000

100

10

Time (seconds)

0.001 &= " " " " "
100 10000 100000 le+06 1le+07 1le+08 1le+09

Number of rows

Figure 6.1: Times for different selection modes ovat32 values. Benchmark made on a machine with Itanium (IA64)
@ 900 MHz processors with SCSI disk @ 10K RPM.

Comparison between the different selection modes in PyTables
(condition applied over Float64 values)

100000 T T T T

Standard ——
In-kernel
10000 Indexed ---%:--]

1000

100

10

Time (seconds)

0.1

0.01

0.001 k= " " " " "
100 10000 100000 1le+06 1le+07 1le+08 1le+09

Number of rows

Figure 6.2: Times for different selection modes ovEloat64 values. Benchmark made on a machine with Itanium
(IA64) @ 900 MHz processors with SCSI disk @ 10K RPM.

data asn-kernel Let's see an example af-kernelselection based on theandardselection mentioned
above:

row = table
result = [row['var2’] for row in table.where(table.cols.varl <= 20)]

This simple change of mode selection can account for an improvement in search times up to a factor of 10
(see th¢ figure 6]1).
So, where is the trick?. It's easy. In tlstandardselection mode the data for columarl has to be
carried up to Python space so as to evaluate the condition and decideaf2hevalue should be added to the
result list. On the contrary, in than-kernelmode, theconditionis passed to thByTables kernel, written
in C (hence the name), and evaluated there at C speed (with some helmofitheay package), so that the
only values that were brought to the Python space where the referencew$othat fulfilled the condition.

6.2. Accelerating your searches 73

You should note, however, that currently tivkere method only accepts conditions along a single col-
umrﬂ Fortunately, you can mix tha-kernelandstandardselection modes for evaluating arbitrarily complex
conditions along several columns at once. Look at this example:

row = table
result = [row['var2’] for row in table.where(table.cols.var3 == "foo")]
if row['varl] <= 20]

here, we have usedia-kernelselection to filter the rows whosear3 field is equal to stringfoo" . Then,
we apply astandardselection to complete the query.

Of course, when you mix thie-kernelandstandardselection modes you should pass the most restrictive
condition to than-kernelpart, i.e. to thevhere iterator. In situations where it is not clear which is the most
restrictive condition, you might want to experiment a bit in order to find the best combination.

6.2.2 Indexed searches

When you need more speed thiarkernelselections can offer yo®yTables offer a third selection method,
so-calledindexedmode. On this mode, you have to decide which column(s) are you going to do your selec-
tions and index them. Indexing is just a kind of sort operation, so that next searches along a column will look
at the sorted information usingtenary searchwhich is much faster thansequential search

You can index your selected columns in several ways:

Declaratively In this mode, you can declare a column as being indexed by passimglthesdparameter to
the column descriptor. That is:

class Example(lsDescription):
varl = StringCol(length=4, dflt="", pos=1, indexed=1)

var2 = BoolCol(0, indexed=1, pos = 2)
var3 = IntCol(0, indexed=1, pos = 3)
var4 = FloatCol(0, indexed=0, pos = 4)

In this case, we are telling thaarl , var2 andvar3 columns will be indexed automatically when
you add rows to the table with this description.

Calling Column.createlndex() In this mode, you can create an index even on an already created table. For
example:

indexrows = table.cols.varl.createlndex()
indexrows = table.cols.var2.createlndex()
indexrows = table.cols.var3.createlndex()

will create indexes for alvarl , var2 andvar3 columns, and after doing that, they will behave as
regular indexes.

After you have indexed a column, you can proceed to use it through the Tsblefwhere method:

row = table
result = [row['var2’] for row in table.where(table.cols.varl == "foo")]

or, if you want to add more conditions, you can mix the indexed selection with a standard one:

1 Although this may change in the future

74

Chapter 6. Optimization tips

Index creation time
10000

1000 f

100 f

10

Time (seconds)
-

01F

0.01 f

0.001

1e-04 " " " " "
1000 10000 100000 1le+06 1le+07 1le+08 1le+09

Number of rows

Figure 6.3: Times for indexing a couple of columns of datatyp&82 andFloat64 . Benchmark made on a machine
with Itanium (1A64) @ 900 MHz processors with SCSI disk @ 10K RPM.

row = table
result = [row[var2’] for row in table.where(table.cols.var3 <= 20)]
if row[varl’] == "foo"]

rememeber to pass the most restictive condition tauhere iterator.

You can see in figurds 6.1 and 6.2 that indexing can accelerate quite a lots your data selections in tables.
For moderately large tables (> one million rows), you can see that you can achieve speed-ups in the order of
100x respect tin-kernelselections and in the order of 1000x respectstamdardselections.

One important aspect of indexationyTables is that it has been implemented with the goal of being
capable to manage effectively very large tableg. n figure 6.3, you can see that the times to index columns in
tables always growknearly. In particular, the time to index a couple of columns with 1 billion of rows each
is 40 min. (roughly 20 min. each), which is a quite reasonable figure. This is begliseles has choosed
an algorithm that do partial sorting of the columns in order to ensure that the indexing time gliowarly.

On the contrary, most of relational databases try to dorapletesorting of columns, and this makes the time
to index to growquadraticallywith the number of rows.

The fact that relational databases uses a complete sorting algorithm for indexes means that their index
would be more effective (but not by a large extent) for searching purposes theyTlables approach.
However, for relatively large tables (> 10 millions of rows) the time required for completing such a sort can
be so large, that indexing is not normally worth the effort. In other waPgSables indexing scales much
better than relational databases. So, don’t worry if you have extremely large columns toRg@ekles is
designed to handle with that perfectly.

6.3 Compression issues

One of the beauties &fyTables is that it supports compression on tables and aﬁaqdmough itis disabled
by default. Compression of big amounts of data might be a bit controversial feature, because compression
has a legend of being a very big CPU time resources consumer. However, if you are willing to check if
compression can help not only reducing your dataset file sizalbaimproving your 1/O efficiency, keep
reading.

There is an usual scenario where users need to save duplicated data in some record fields, while the others
have varying values. In a relational database approach such redundant data can normally be moved to other

2 More precisely, it is supported iBArray andVLArray objects, not imrray objects itself.

6.3. Compression issues 75

Table 6.1: Comparison between different compression libraries. The tests have been conducted on a Pentium 4 at 2 GHz
and a hard disk at 4200 RPM.

Compr. Lib File size (MB) Time writing (s) Time reading (s) Speed writing (Krow/s) Speed reading (Krow/s)

NO COMPR 244.0 24.4 16.0 18.0 27.8
Zlib (vl 1) 8.5 17.0 3.11 26.5 144.4
Zlib (V1 6) 7.1 20.1 3.10 22.4 144.9
Zlib (Iv 9) 7.2 425 3.10 10.6 145.1
LZO (vl 1) 9.7 14.6 1.95 30.6 230.5
UCL (vl 1) 6.9 38.3 2.58 11.7 185.4

tables and a relationship between the rows on the separate tables can be created. But that takes analysis and
implementation time, and makes the underlying libraries more complex and slower.

PyTables transparent compression allows the users to not worry about finding which is their optimum
data tables strategy, but rather use less, not directly related, tables with a larger number of columns while still
not cluttering the database too much with duplicated data (compression is responsible to avoid that). As a
side effect, data selections can be made more easily because you have more fields available in a single table,
and they can be referred in the same loop. This process may normally end in a simpler, yet powerful manner
to process your data (although you should still be careful about in which kind of scenarios compression use
is convenient or not).

The compression library used by default is Hib (se€ Gailly and Adler), and as HDF&quiresit, you
can safely use it and expect that your HDF5 files will be readable on any other platform that has HDF5 libraries
installed. Zlib provides good compression ratio, although somewhat slow, and reasonably fast decompression.
Because of that, it is a good candidate to be used for compressing you data.

However, in many situations (i.e. writence readmultiple), it is critical to havevery gooddecompression
speed (at expense of whether less compression or more CPU wasted on compression, as we will see soon).
This is why support for two additional compressors has been added to PyTables: LZO and UCL (sge Ober-
humer). Following his author (and checked by the author of this manual), LZO offers pretty fast compression
(although small compression ratio) and extremely fast decompression while UCL achieves an excellent com-
pression ratio (at the price of spending much more CPU time) while allowing very fast decompression (and
very closeto the LZO one). In fact, LZO and UCL are so fast when decompressing that, in general (that
depends on your data, of course), writing and reading a compressed table is actually faster (and sometimes
much faster) than if it is uncompressed. This fact is very important, specially if you have to deal with very
large amounts of data.

Be aware that the LZO and UCL support in PyTables is not standard on HDF5, so if you are going to
use your PyTables files in other contexts different from PyTables you will not be able to read them. Still, see
the[appendix B]2 where thmrepack utility is described to find a way to free your files from LZO or UCL
dependencies, so that you can use these compressors locally with the warranty that you can replace them with
ZLIB (or even remove compression completely) if you want to export the files to other HDF5 tools afterwards.

In order to give you a raw idea of what ratios would be achieved, and what resources would be consumed,
look at the table 6]1. This table has been obtained from synthetic data and with a somewhat outdated PyTables
version (0.5), so take this just as a guide because your mileage will probably vary. Have also a look at the
graphq 6.4 anfl_§.5 (these graphs have been obtained with tables with different row sizes and PyTables
version than the previous example, so do not try to directly compare the figures). They show how the speed of
writing/reading rows evolves as the size (the row number) of tables grows. Even though in these graphs the
size of one single row is 56 bytes, you can most probably extrapolate this figures to other row sizes. If you
are curious about how well compression can perform together with Psyco, look at the[grgphs[6.6 and 6.7. As
you can see, the results are pretty interesting.

By looking at graphs, you can expect that, generally speaking, LZO would be the fastest both compressing
and uncompressing, but the one that achieves the worse compression ratio (although that may be just ok for
many situations). UCL is the slowest when compressing, but is faster than Zlib when decompressing, and,
besides, it achieves very good compression ratios (generally better than Zlib). Zlib represents a balance

76 Chapter 6. Optimization tips

Writing with medium record size (56 bytes)

250 T T
NO Psyco & NO COMPression s
ZLIB ==stusn
LZO srr@een
UCL. ool
200 B
Q
&
<
o
[
[
Q.
[
0 | | |
1000 10000 100000 1e+06 1e+07
Number of rows
Figure 6.4: Writing tables with several compressors.
Selecting with medium record size (56 bytes)
1000 T T T N
NO COMPreSSion e
ZLIB ==sitns=
900 | LZO i@t
UCL
@
B
e
<
=
(9]
Q
Q.
0
I I I

0
1000 10000 100000 1e+06 1le+07
Number of rows

Figure 6.5: Reading tables with several compressors.

Writing with medium record size (56 bytes)

300 T T
Psyco & NO COMPression s
Psyco & ZLIB ===i===
Psyco & LZO '
Psyco & UCL
250 1
200

Speed (Krow/s)
=
o
o
T

100

50

0 I I I
1000 10000 100000 1e+06 1e+07
Number of rows

Figure 6.6: Writing tables with several compressors and Psyco.

6.4. Shuffling (or how to make the compression process more effective) 77

Selecting with medium record size (56 bytes)

T T T

Psyco & NO COMPression e
1400 1
PSyco & LZO 1@t
Psyco & UCL i

1200 1

1000

800

Speed (Krow/s)

600

400

200

0 L L L
1000 10000 100000 le+06 le+07

Number of rows

Figure 6.7: Reading tables with several compressors and Psyco.

between them: it's somewhat slow compressing, the slowest during decompression, but it normally achieves
fairly good compression ratios.

So, if your ultimate goal is reading as fast as possible, choose LZO. If you want to reduce as much as
possible your data, while retaining good read speed, choose UCL. If you don’t mind too much about the
above parameters and/or portability is important for you, Zlib is your best bet.

The compression level that | recommend to use for all compression libraries is 1. This is the lowest level
of compression, but if you take the approach suggested above, normally the redundant data is to be found in
the same row, so the redundant data locality is very high and such a small level of compression should be
enough to achieve a good compression ratio on your data tables, saving CPU cycles for doing other things.
Nonetheless, in some situations you may want to check how compression level affects your application.

You can select the compression library and level by settingdh®lib andcompress keywords in the
Filters class (sep_4.13.1). A compression level of 0 will completely disable compression (the default), 1
is the less CPU time demanding level, while 9 is the maximum level and most CPU intensive. Finally, have in
mind that LZO is not accepting a compression level right now, so, when using LZO, 0 means that compression
is not active, and any other value means that LZO is active.

6.4 Shuffling (or how to make the compression process more
effective)

The HDF5library provides an interesting filter that can leverage the results of your favorite compressor. Its
name isshuffle and because it can greatly benefit compression and it doesn’t take many CPU resources, it is
active bydefaultin PyTables whenever compression is activated (independently of the chosen compressor).
It is of course deactivated when compression is off (which is the default, as you already should know).

From the HDF5 reference manual:“Theufflefilter de-interlaces a block of data by reordering the bytes.
All the bytes from one consistent byte position of each data element are placed together in one block; all
bytes from a second consistent byte position of each data element are placed together a second block; etc. For
example, given three data elements of a 4-byte datatype stored as 012301230123, shuffling will re-order data
as 000111222333. This can be a valuable step in an effective compression algorithm because the bytes in each
byte position are often closely related to each other and putting them together can increase the compression
ratio. ”

In you can see a benchmark that shows howslheflefilter can help to the different li-
braries to compress data in three table datasets. Generally speskifftmakes the writing process (shuf-
fling+compressing) faster (between 7% and 22%), which is an interesting result in itself. However, the reading
process (unshuffling+decompressing) is slower, but by a lesser extent (between 3% and 18%).

78

Chapter 6. Optimization tips

Table 6.2: Comparison between different compression libraries, with and without shuffling. The tests have been conducted
on a Pentium 4 at 2 GHz and a hard disk at 4200 RPM.

Compr. Lib File size (MB) Time writing (s) Time reading (s) Speed writing (MB/s) Speed reading (MB/s)

NO COMPR 165.4 24.5 17.13 6.6 9.6
Zlib (vl 1) 26.4 22.2 5.77 7.3 28.4
Zlib+shuffle 4.0 19.0 5.94 8.6 27.6
LZO (vl 1) 44.9 17.8 4.13 9.2 39.7
LZO+shuffle 43 16.4 5.03 9.9 32.6
UCL (Il 1) 27.4 48.8 5.02 3.3 327
UCL+shuffle 3.5 38.1 5.31 4.3 30.9

But the most remarkable fact is the level of compression that compressor filters can achieskudfier
has passed over the data: the total file size can be up to 40 times smaller than the uncompressed file, and up
to 5 times smaller than the already compressed files (!). Of course, the data for doing this test is synthetic,
andshuffleseems to do a great work with it, so in general, the results will vary in your case. However, due
to the small drawbacks (reads are slowed down by a small extent) and its potential gains (faster writing, but
specially much better compression level), | do believe that it is a good thing to have such a filter enabled by
default in the battle for discovering redundancy in your data.

6.5 Taking advantage of Psyco

Psyco (seé Rigo) is a kind of specialized compiler for Python that typically accelerates Python applications
with no change in source code. You can think of Psyco as a kind of just-in-time (JIT) compiler, a little bit
like Java’s, that emits machine code on the fly instead of interpreting your Python program step by step. The
result is that your unmodified Python programs run faster.

Psyco is very easy to install and use, so in most scenarios it is worth to give it a try. However, it only runs
on Intel 386 architectures, so if you are using other architectures, you are out of luck (at least until Psyco will
support yours).

As an example, imagine that you have a small script that reads and selects data over a series of datasets,
like this:

def readFile(filename):
"Select data from all the tables in filename"

fileh = openFile(filename, mode = "r")
result = []
for table in fileh("/", 'Table’):
result = [p[var3] for p in table if p[var2’] <= 20]

fileh.close()
return e

if __name__=="_ main__":
print readFile("myfile.h5")

In order to accelerate this piece of code, you can rewrite your main program to look like:

if __name_ ==" main__ "
import pysco
psyco.bind(readFile)
print readFile("myfile.h5")

That's all'. From now on, each time that you execute your Python script, Psyco will deploy its sophisti-
cated algorithms so as to accelerate your calculations.

6.6. Selecting an User Entry Point (UEP) in your tree 79

Writing with medium record size (56 bytes)

250 ‘ |
" NoO Psyco st @
S e @PSYCO ol
s mp
ol
200 | o Tk |
" W,
n
®
n¥on, .I!-
T 150 - e, . al
g s B T .
c o SO &
: o o i _—
ke - tttt £) 0’.' ~"‘ -
] - vy
& 100 | Rl 4 i
? " %
0 . ‘ ‘
1000 10000 100000 16406 o7

Number of rows

Figure 6.8: Writing tables with/without Psyco.

Selecting with medium record size (56 bytes)
1200 T T T

NO PSyco s+ @

Psyco
Saany
1000 o " R
h
\l-
800 |- - i
- L)
z -
I~ o
< 600 - B
B K
2
2]
400
200 | E
““‘“
o ! ! !
1000 10000 100000 1e+06 1e+07

Number of rows

Figure 6.9: Reading tables with/without Psyco.

You can see in the graphs .8 6.9 how much 1/O speed improvement you can get by using Psyco. By
looking at this figures you can get an idea if these improvements are of your interest or not. In general, if you
are not going to use compression you will take advantage of Psyco if your tables are medium sized (from a
thousand to a million rows), and this advantage will disappear progressively when the number of rows grows
well over one million. However if you use compression, you will probably see improvements even beyond
this limit (seq section 6]3). As always, there is no substitute for experimentation with your own dataset.

6.6 Selecting an User Entry Point (UEP) in your tree

If you have ahugetree in your data file with many nodes on it, creating the object tree would take long time.
Many times, however, you are interested only in access to a part of the complete tree, so you won't strictly
need PyTables to build the entire object tree in-memory, but onlintkesstingpart.

This is where theootUEP parameter obpenFile function (se€ 4.T]2) can be helpful. Imagine that you
have a file calledtest.n5" with the associated tree that you can see in fifjure] 6.10, and you are interested

80 Chapter 6. Optimization tips

/ i \
7()”'01\ Group2
Tablel Table2 Group3 Arrayl

Y

Tabled Table5 Array2

Figure 6.10: Complete tree in fileest.h5 , and subtree of interest for the user.

Root

Y

Tabled Tableb Array2

Figure 6.11: Resulting object tree derived from the use of tbetUEP parameter.

only in the section marked in red. You can avoid the build of all the object tree by sayopgiile that
your root will be the/Group2/Group3 group. That is:

fileh = openFile("test.h5", rootUEP="/Group2/Group3")

As a result, the actual object tree built will be like the one that can be s¢en in figufe 6.11.
Of course this has been a simple example and the use addligEP parameter was not very necessary.
But when you havéhousand®f nodes on a tree, you will certainly appreciate thetUEP parameter.

6.7 Compacting your PyTables files

Let's suppose that you have a file on which you have made a lot of row deletions on one or more tables,
or deleted many leaves or even entire subtrees. These operations migthdéss.e. space that is not
used anymore) in your files, that may potentially affect not only the size of the files but, more importantly, the
performance of I/0. This is because when you delete a lot of rows on a table, the space is not automatically re-
covered on-the-flight. In addition, if you add many more rows to a table than specifiedexbetedrows
keyword in creation time this may affect performace as well, as explairjed in secfjon 6.1.

In order to cope with these issues, you should be aware that a Rgidples utility called ptrepack
can be very useful, not only to compact your already exiskirady files, but also to adjust some internal
parameters (both in memory and in file) in order to create adequate buffer sizes and chunk sizes for optimum
I/O speed. Please, check B.2 for a brief tutorial on its use.

Another thing that you might want to ugérepack for is changing the compression filters or compres-
sion levels on your existing data for different goals, like checking how this can affect both final size and 1/0
performance, or getting rid of the optional compressors Wik® or UCL in your existing files in case you
want to use them with generic HDF5 tools that do not have support for these filters.

Appendix A

Supported data types in

PyTables

81

The Table, Array, VLArray and EArray classes can all handle the complete set of data types supported by

thenumarray package (see Greenfiedd al) andNumeric (se€ Ascheet al) in Python. The data types

for table fields can be set via the constructor for @e class and its descendarits (see 4]12.2 while array
elements can be set through the use ofAtwen class and its descendarjts (see 4]12.3).
A quick reference to the complete set of data types supported by PyTables is diven in|table A.

Table A.1: Data types supported for array elements and tables columns in PyTables.

Type Code Description C Type Size (in bytes) Python Counterpart
Bool boolean unsigned char 1 Boolean
Int8 8-bit integer signed char 1 Integer
Uint8 8-bit unsigned integer unsigned char 1 Integer
Int16 16-bit integer short 2 Integer
Uintl6 16-bit unsigned integer unsigned short 2 Integer
Int32 integer int 4 Integer
UiInt32 unsigned integer unsigned int 4 Long
Int64 64-bit integer long long 8 Long
Uint64 unsigned 64-bit integer unsigned long long 8 Long
Float32 single-precision float float 4 Float
Float64 double-precision float double 8 Float
Complex32 single-precision complex struct {floatr, i;} 8 Complex
Complex64 double-precision complex struct {doubler, i;} 16 Complex
CharType arbitrary length string char(] * String

83

Appendix B
Utilities

PyTables comes with a couple of utilities that make the life easier to the user. One is ptdiesp and
lets you see the contents ofPgTables file (or genericHDF5file, if supported). The other one is named
ptrepack that allows to (recursively) copy sub-hierarchies of objects present in a file into another one,
changing, if desired, some of the filters applied to the leaves during the copy process.

Normally, these utilities will be installed somewhere in your PATH during the process of installation of
thePyTables package, so that you can invoke them from any place in your filesystem after the installation
has successfully finished.

B.1 ptdump

As has been said beforptdump utility allows you look into the contents of yolyTables files. It lets
you see not only the data but also the metadata (that istthetureand additional information in the form
of attributeg.

B.1.1 Usage

For instructions on how to use it, just pass theflag to the command:

$ ptdump -h

to see the message usage:

usage: ptdump [-R start,stop,step] [-a] [-h] [-d] [-Vv] file[:nodepath]
-R RANGE -- Select a RANGE of rows in the form "start,stop,step"
-a -- Show attributes in nodes (only useful when -v or -d are active)
-c -- Show info of columns in tables (only useful when -v or -d are active)
-i -- Show info of indexed columns (only useful when -v or -d are active)
-d -- Dump data information on leaves
-h -- Print help on usage
-v -- Dump more metainformation on nodes

B.1.2 A small tutorial on ptdump

Let's suppose that we want to know only tsieuctureof a file. In order to do that, just don’t pass any flag,
just the file as parameter:

$ ptdump vlarrayl.h5
Filename: 'vlarrayl.h5’ Title: ” , Last modif.: 'Fri Feb 6 19:33:28 2004’ ,
rootUEP=""", filters=Filters(), Format version: 1.2

84

Appendix B. Utilities

/ (Group) ”
Ivlarrayl (VLArray(4,), shuffle, zlib(1)) 'ragged array of ints’

we can see that the file contains a just a leaf object callecayl |, thatis an instance ofLArray , has 4
rows, and two filters has been used in order to creashitfile andzlib (with a compression level of 1).
Let's say we want more metainformation. Just add-thgverbose) flag:

$ ptdump -v vlarrayl.h5

/ (Group) "
children := ['vlarrayl’ (VLArray)]

Ivlarrayl (VLArray(4,), shuffle, zlib(1)) 'ragged array of ints’
atom = Atom(type=Int32, shape=1, flavor="Numeric’)
nrows = 4
flavor = 'Numeric’
byteorder = ’little’

so we can see more info about the atoms that are the componentswiditagl dataset, i.e. they are
scalars of typént32 and withNumeric flavor.
If we want information about the attributes on the nodes, we must add tfiag:

$ ptdump -va vlarrayl.h5
/ (Group) ”
children := [vlarrayl’ (VLArray)]
[._v_attrs (AttributeSet), 5 attributes:
[CLASS := 'GROUP’,
FILTERS := None,
PYTABLES_FORMAT_VERSION := 1.2
TITLE := 7,
VERSION := '1.07
Ivlarrayl (VLArray(4,), shuffle, zlib(1)) 'ragged array of ints’
atom = Atom(type=Int32, shape=1, flavor="Numeric’)
nrows = 4
flavor = 'Numeric’
byteorder = ’little’
Ivlarrayl.attrs (AttributeSet), 4 attributes:
[CLASS := 'VLARRAY’,
FLAVOR := 'Numeric’,
TITLE := 'ragged array of ints’,
VERSION := '1.07

Let's have a look at the real data:

$ ptdump -d vlarrayl.h5
/ (Group) "
Ivlarrayl (VLArray(4,), shuffle, zlib(1)) 'ragged array of ints’
Data dump:
[array([5, 6]), array([5, 6, 7]), array([5, 6, 9, 8]), array([5, 6, 9, 10, 12])]

we see here a data dump of the 4 rowslarrayl object, in the form of a list. Because the objectis a VLA,
we see a different number of integers on each row.
Say that we are interested only on a specidie rangeof the/vlarrayl object:

B.2. ptrepack 85

ptdump -R2,4 -d vlarrayl.h5:/vlarrayl

Ivlarrayl (VLArray(4,), shuffle, zlib(1)) 'ragged array of ints’
Data dump:

[array([5, 6, 9, 8]), array([5, 6, 9, 10, 12])]

Here, we have specified the range of rows between 2 and 4 (the upper limit excluded, as usual in Python). See
how we have selected only tihdarrayl object for doing the dumpviarrayl.h5:/viarrayl).
Finally, you can mix several information at once:

$ ptdump -R2,4 -vad vlarrayl.h5:/vlarrayl
Wvlarrayl (VLArray(4,), shuffle, zlib(1)) 'ragged array of ints’
atom = Atom(type=Int32, shape=1, flavor="Numeric’)
nrows = 4
flavor = 'Numeric’
byteorder = ’little’
Ivlarrayl.attrs (AttributeSet), 4 attributes:
[CLASS := 'VLARRAY’,
FLAVOR := 'Numeric’,
TITLE := 'ragged array of ints’,
VERSION := '1.07
Data dump:
[array([5, 6, 9, 8]), array([5, 6, 9, 10, 12])]

B.2 ptrepack

This utility is a very powerful one and let's you to copy any leaf, group or complete subtree into another
file. During the copy process you are allowed to change the filter properties if you want so. Also, in the case
of duplicated pathnames, you can decide if you want to overwrite already existing nodes on the destination
file. Generally speakingptrepack can be useful in may situations, like replicating a subtree in another
file, change the filters in objects and see how affect this to the compression degree or I/O performance,
consolidating specific data in repositoris or eveporting genericHDF5files and create truyTables
counterparts.

B.2.1 Usage
For instructions on how to use it, just pass theflag to the command:

$ ptrepack -h

to see the message usage:

usage: ptrepack [-h] [-v] [-0] [-R start,stop,step] [--non-recursive]
[--dest-title=title] [--dont-copyuser-attrs] [--overwrite-nodes]
[--complevel=(0-9)] [--complib=lib] [--shuffle=(0|1)]
[--fletcher32=(0|1)] [--keep-source-filters]
sourcefile:sourcegroup destfile:destgroup

-h -- Print usage message.

-v -- Show more information.

-0 -- Overwite destination file.

-R RANGE -- Select a RANGE of rows (in the form "start,stop,step")

during the copy of *all* the leaves.

--non-recursive -- Do not do a recursive copy. Default is to do it.

--dest-title=title -- Title for the new file (if not specified,

86 Appendix B. Utilities

the source is copied).

--dont-copy-userattrs -- Do not copy the user attrs (default is to do it)

--overwrite-nodes -- Overwrite destination nodes if they exist. Default is
to not overwrite them.

--complevel=(0-9) -- Set a compression level (0 for no compression, which
is the default).

--complib=lib -- Set the compression library to be used during the copy.
lib can be set to "zlib", "Izo" or "ucl". Defaults to "zlib".

--shuffle=(0|1) -- Activate or not the shuffling filter (default is active
if complevel>0).

--fletcher32=(0|1) -- Whether to activate or not the fletcher32 filter (not
active by default).

--keep-source-filters -- Use the original filters in source files. The
default is not doing that if any of --complevel, --complib, --shuffle
or --fletcher32 option is specified.

B.2.2 A small tutorial on ptrepack

Imagine that we have ended the tutorial 1 (see the outpexarhples/tutoriall-1.py), and we want
to copy our reduced data (i.e. those datasets that hangs froieotean group) to another file. First, let's
remember the content of tle@amples/tutoriall.h5

$ ptdump tutoriall.h5

Filename: ’tutoriall.h5’ Title: 'Test file’ , Last modif.: 'Fri Feb 6
19:33:28 2004’ , rootUEP="/, filters=Filters(), Format version: 1.2

/ (Group) 'Test file’

/columns (Group) 'Pressure and Name’

/columns/name (Array(3,)) 'Name column selection’

/columns/pressure (Array(3,)) 'Pressure column selection’

/detector (Group) ’'Detector information’

/detector/readout (Table(10L,)) 'Readout example’

Now, copy thecolumns to other non-existing file. That's easy:

$ ptrepack tutoriall.h5:/columns reduced.h5

That's all. Let’s see the contents of the newly creatstliced.h5 file:

$ ptdump reduced.h5

Filename: 'reduced.h5’ Title: ” , Last modif.: 'Fri Feb 20 15:26:47 2004’ ,
rootUEP="/", filters=Filters(), Format version: 1.2
/ (Group) "

/name (Array(3,)) 'Name column selection’
/pressure (Array(3,)) 'Pressure column selection’

s0, you have copied the childsfgblumns group into theoot of thereduced.h5 file.
Now, you suddenly realized that what you intended to do was to copy all the hierarchy, the group
Icolumns itself included. You can do that by just specificing the destination group:

$ ptrepack tutoriall.h5:/columns reduced.h5:/columns

ptdump reduced.h5

Filename: 'reduced.h5’ Title: ” , Last modif.: 'Fri Feb 20 15:39:15 2004’ ,
rootUEP="/", filters=Filters(), Format version: 1.2

B.2. ptrepack 87

! (Group) ”

/name (Array(3,)) 'Name column selection’

/pressure (Array(3,)) 'Pressure column selection’
/columns (Group) ”

/columns/name (Array(3,)) 'Name column selection’
/columns/pressure (Array(3,)) 'Pressure column selection’

Ok. Much better. But you want to get rid of the existing nodes on the new file. You can achieve this by adding
the -o flag:

$ ptrepack -o tutoriall.h5:/columns reduced.h5:/columns
$ ptdump reduced.h5

Filename: 'reduced.h5’ Title: ” , Last modif.: 'Fri Feb 20 15:41:57 2004’ ,
rootUEP=""", filters=Filters(), Format version: 1.2
! (Group) ”

/columns (Group) "
/columns/name (Array(3,)) 'Name column selection’
/columns/pressure (Array(3,)) 'Pressure column selection’

where you can see how the old contents ofrtriced.h5 file has been overwritten.
You can copy just one single node in the repacking operation and change its name in destination:

$ ptrepack tutoriall.h5:/detector/readout reduced.h5:/rawdata
$ ptdump reduced.h5

Filename: 'reduced.h5’ Title: ” , Last modif.: 'Fri Feb 20 15:52:22 2004,
rootUEP="/", filters=Filters(), Format version: 1.2
/ (Group) "

/rawdata (Table(10L,)) 'Readout example’

/columns (Group) ”

/columns/name (Array(3,)) 'Name column selection’
/columns/pressure (Array(3,)) 'Pressure column selection’

where the/detector/readout has been copied toawdata in destination.
We can change the filter properties as well:

$ ptrepack --complevel=1 tutoriall.h5:/detector/readout reduced.h5:/rawdata
Problems doing the copy from 'tutoriall.h5:/detector/readout’ to
‘reduced.h5:/rawdata’

The error was --> exceptions.ValueError: The destination

(/rawdata (Table(10L,)) 'Readout example’) already exists.

Assert the overwrite parameter if you really want to overwrite it.

The destination file looks like:

Filename: 'reduced.h5’ Title: ”; Last modif.: 'Fri Feb 20 15:52:22 2004’;
rootUEP="""; filters=Filters(), Format version: 1.2

/ (Group) "

/rawdata (Table(10L,)) 'Readout example’

/columns (Group) ”

/columns/name (Array(3,)) 'Name column selection’

/columns/pressure (Array(3,)) 'Pressure column selection’

Traceback (most recent call last):
File "../utils/ptrepack”, line 358, in ?
start=start, stop=stop, step=step)
File "../utils/ptrepack”, line 111, in copyLeaf

88

Appendix B. Utilities

raise RuntimeError, "Please, check that the node names are not
duplicated in destination, and if so, add the --overwrite-nodes flag
if desired."
RuntimeError: Please, check that the node names are not duplicated in
destination, and if so, add the --overwrite-nodes flag if desired.

ooops!. We ran into problems: we forgot thetwdata pathname already existed in destination file. Let's
add the--overwrite-nodes , as the verbose error suggested:

$ ptrepack --overwrite-nodes --complevel=1 tutoriall.h5:/detector/readout
reduced.h5:/rawdata

$ ptdump reduced.h5

Filename: ’'reduced.h5’ Title: ”; Last modif.: 'Fri Feb 20 16:02:20 2004’
rootUEP="""; filters=Filters(), Format version: 1.2

/ (Group)

/rawdata (Table(10L,), shuffle, zlib(1)) 'Readout example’

/columns (Group) ™

/columns/name (Array(3,)) 'Name column selection’

/columns/pressure (Array(3,)) 'Pressure column selection’

you can check how the filter properties has been changed férathdata table. Check as the other nodes
still exists.

Finally, let's copy aslice of the readout table in origin to destination, under a new group called
Islices and with the name, for examplaslice

$ ptrepack -R1,8,3 tutoriall.h5:/detector/readout reduced.h5:/slices/aslice
$ ptdump reduced.h5

Filename: 'reduced.h5’ Title: ; Last modif.: 'Fri Feb 20 16:17:13 2004’;
rootUEP="/"; filters=Filters(); Format version: 1.2

/ (Group) "

/rawdata (Table(10L,), shuffle, zlib(1)) 'Readout example’

/columns (Group) ”

/columns/name (Array(3,)) 'Name column selection’

/columns/pressure (Array(3,)) 'Pressure column selection’

/slices (Group) ”

/slices/aslice (Table(3L,)) 'Readout example’

note how only 3 rows of the originakadout table has been copied to the neglice destination. Note
as well how the previously inexisteslices group has been created in the same operation.

B.3 nctoh5

This tool is able to convert a file iNetCDF format to aPyTables file (and hence, to a HDF5 file).
However, for this to work, you will need the NetCDF interface for Python that comes with the excellent
Scientific Python (se€ Hinsen) package. This script was initially contributed by Jeff Whitaker. It has
been updated to support selectable filters from the command line and some other small improvements.

If you want other file formats to be convertedRgTables , have a look at th&ciPy (se€ Jonest all)
project (subpackage), and look for different methods to import them iMlmmeric/numarray ~ objects.
Following theSciPy documentation, you can read, among other formats, ASCII fiéesl(array), binary
files in C or Fortranfppen) andMATLAB(version 4 or 5) fileslpadmat). Once you have the content of
your files asNumeric/numarray objects, you can save them as regyEyArrays in PyTables files.
Remember, if you end with a nice conversor, do not forget to contribute it back to the community. Thanks!.

http://www.unidata.ucar.edu/packages/netcdf/

B.3. nctoh5

B.3.1 Usage

For instructions on how to use it, just pass theflag to the command:

$ nctoh5 -h

to see the message usage:

usage: nctoh5 [-h] [-v] [-0] [--complevel=(0-9)] [--complib=lib]

[--shuffle=(0|1)] [--fletcher32=(0|1)] [--unpackshort=(0|1)]

[--quantize=(0]1)] netcdfflename hdf5filename

-h -- Print usage message.

-v -- Show more information.

-0 -- Overwite destination file.

--complevel=(0-9) -- Set a compression level (0 for no compression, which
is the default).

--complib=lib -- Set the compression library to be used during the copy.
lib can be set to "zlib", "lzo" or "ucl". Defaults to "zlib".

--shuffle=(0|1) -- Activate or not the shuffling filter (default is active
if complevel>0).

--fletcher32=(0|1) -- Whether to activate or not the fletcher32 filter (not
active by default).

--unpackshort=(0]1) -- unpack short integer variables to float variables
using scale_factor and add_offset netCDF variable attributes
(not active by default).

--quantize=(0|1) -- quantize data to improve compression using
least_significant_digit netCDF variable attribute (not active by default).
See http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml
for further explanation of what this attribute means.

If you have followed the small tutorial on therepack utility (see[B.2), you should easily realize what

most of the different flags would mean.

89

91

Appendix C

PyTables File Format

PyTables has a powerful capability to deal with native HDF5 files created with another tools. However,
there are situations were you may want to create truly n&@yfeables files with those tools while retaining
fully compatibility with PyTables format. That is perfectly possible, and in this appendix is presented the
format that you should endow to your own-generated files in order to get aFfyillgbles compatible file.

We are going to describe tHe3 version of PyTables file format (introduced inPyTables version
0.9). At this stage, this file format is considered stable enough to do not introduce significant changes during
a reasonable amount of time. As time goes by, some changes will be introduced (and documented here) in
order to cope with new necessities. However, the changes will be carefully analyzed so as to ensure backward
compatibility whenever is possible.

A PyTables file is composed with arbitrarily large amounts of HDF5 groupso(ips in PyTables
naming scheme) and datasdtsdves in PyTables naming scheme). For groups, the only requirements
are that they must have soregstem attributeavailable. By convention, system attributedyiTables are
written in upper case, and user attributes in lower case but this is not enforced by the software. In the case of
datasets, besides the mandatory system attributes, some conditions are further needed in their storage layout,
as well as in the datatypes used in there, as we will see shortly.

As a final remark, you can use any filter as you want to creBtgrables file, provided that the filter is a
standard one in HDF?5, likelib, shuffleor szip(although the last one cannot be used from wityTables
to create a new file, datasets compressed with szip can be read, because it is the HDF5 library which do the
decompression transparently).

C.1 Mandatory attributes fora File

TheFile objectis, in fact, an special HDFR§roup structure that isoot for the rest of the objects on the
object tree. The next attributes are mandatory for the HBSgroupstructure inPyTables files:

CLASS This attribute should always be set@ROUP’ for group structures.

PYTABLES FORMAT_VERSION It represents the internal format version, and currently should be set to
the'1.2’ string.

TITLE A string where the user can put some description on what is this group used for.

VERSION Should contains the stririg.0’

C.2 Mandatory attributes fora Group
The next attributes are mandatory fpoupstructures:

CLASS This attribute should always be set@ROUP’ for group structures.

92

Appendix C.PyTables File Format

TITLE A string where the user can put some description on what is this group used for.

VERSION Should contains the stririg.0’

There exist a speci@roup , called theroot, that, in addition to the attributes listed above, it requires the
next one:

PYTABLES_FORMAT_VERSION It represents the internal format version, and currently should be set to
the’'l.3" string.

C.3 Mandatory attributes, storage layout and supported datatypes
for Leaves

This depends on the kind @gaf . The format for each type follows.

C.3.1 Table format
Mandatory attributes

The next attributes are mandatory fable structures:

CLASS Must be set t6TABLE' .
TITLE A string where the user can put some description on what is this dataset used for.
VERSION Should contain the string@.2’

FIELD_X_NAME It contains the names of the different fields. Theeans the number of the field (beware,
order do matter). You should add as many attributes of this kind as fields you have in your records.

NROWS This should contain the humber obmpounddatatype entries in the dataset. It must beirdgn
datatype.

Storage Layout

A Table has adataspacavith a1-dimensional chunkeldyout.

Datatypes supported

The datatype of the elements (rows)lable must be the H5ST _COMPOUNBPompoundiatatype, and each
of these compound components must be built with only the next HDF5 datatigsses

H5T_BITFIELD This class is used to represent tBeol type. Such a type must be build using a
H5T_NATIVE_B8 datatype, followed by a HDFB5Tset_precision call to set its precision to
be just 1 hit.

H5T_INTEGER This includes the next datatypes:

H5T_NATIVE_SCHAR This represents signed charC type, but it is effectively used to represent
anint8 type.

H5T_NATIVE_UCHAR This represents amnsigned chacC type, but it is effectively used to repre-
sent arJint8 type.

H5T_NATIVE_SHORT This represents ahort C type, and it is effectively used to represent an
Int16 type.

H5T_NATIVE_USHORT This represents amsigned shor€ type, and it is effectively used to rep-
resent arllintl6 type.

C.3. Mandatory attributes, storage layout and supported datatypesdoss 93

H5T_NATIVE_INT This represents aimt C type, and it is effectively used to representiai32
type.

H5T_NATIVE_UINT This represents annsigned intC type, and it is effectively used to represent
anUint32 type.

H5T_NATIVE_LONG This representsiang C type, and it is effectively used to represent@B2
or aninté4 , depending on whether you are running a 32-bit or 64-bit architecture.

H5T_NATIVE_ULONG This represents amnsigned longC type, and it is effectively used to repre-
sent anUInt32 or anUint64 , depending on whether you are running a 32-bit or 64-bit archi-
tecture.

H5T_NATIVE_LLONG This represents ong longC type (_int64 , if you are using a Windows
system) and it is effectively used to representraB4 type.

H5T_NATIVE_ULLONG This represents amnsigned long long type (beware: this type does not
have a correspondence on Windows systems) and it is effectively used to represitmicdn

type.
H5T_FLOAT This includes the next datatypes:

H5T_NATIVE_FLOAT This represents #oat C type and it is effectively used to represent an
Float32 type.

H5T_NATIVE_DOUBLE This represents doubleC type and it is effectively used to represent an
Float64 type.

H5T_STRING The datatype used to describe strings in PyTablesis H5T_C_S1¢trén@C type) followed
with a call to the HDFHH5Tset_size() function to set their length.

H5T_ARRAY This allows the construction of homogeneous, multi-dimensional arrays, so that you can in-
clude such objects in compound records. The types supported as elements of H5T_ARRAY datatypes
are the ones described above. CurretlyTables does not support nested H5T_ARRAY types.

H5T_COMPOUND This allows the support of complex numbers. Its format is described below:

The H5T_COMPOUND type class contains two members. Both members must have the H5T_FLOAT
atomic datatype class. The name of the first member should be "r* and represents the real part. The
name of the second member should be "i" and represents the imaginary papteTisenproperty of

both of the H5T_FLOAT members must be either 32 significant bits (e.g. H5T_NATIVE_FLOAT) or

64 significant bits (e.g. H5T_NATIVE_DOUBLE). They represent Complex32 and Complex64 types
respectively.

Currently,PyTables does not support nested HST_COMPOUND types, the only exception being sup-
porting complex numbers ifiable objects as described above.

C.3.2 Array format
Mandatory attributes

The next attributes are mandatory foray structures:

CLASS Must be set t6ARRAY’ .

FLAVOR This is meant to provide the information about the kind of object kept iitrey , i.e. when the
dataset is read, it will be converted to the indicated flavor. It can take one the next string values:

"NumArray" The dataset will be returned atNamArray object (from thenumarray package).
"CharArray" The dataset will be returned a<harArray object (from thenumarray package).
"Numeric" The dataset will be returned asamay object (from theNumeric package).

94

Appendix C.PyTables File Format

"List" The dataset will be returned as a Pythdst object.
"Tuple" The dataset will be returned as a Pythiauple object.

"Int" The dataset will be returned as a Pythain object. This is meant mainly for scalar (i.e. without
dimensions) integer values.

"Float" The dataset will be returned as a Pyttioat object. This is meant mainly for scalar (i.e.
without dimensions) floating point values.

"String" The dataset will be returned as a Pyti®iring object. This is meant mainly for scalar (i.e.
without dimensions) string values.

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the strin@.1’

Storage Layout

An Array has adataspacewith a N-dimensional contiguoukayout (if you prefer achunkedlayout see
EArray below).

Datatypes supported

The elements ofirray must have either HDF&tomicdatatypes or aompoundlatatype representing a com-
plex number. The atomic datatypes can currently be one of the next HDF5 datktypesH5T_BITFIELD,
H5T_INTEGER, H5T_FLOAT and H5T_STRING. See tiiable format description ifi section C.3.1 for
more info about these types.

In addition to the HDF5 atomic datatypes, the Array format supports complex numbers with the
H5T_COMPOUND datatype class. See frable format description ifi section C.3.1 for more info about
this special type.

You should note that HS5T_ARRAY class datatypes are not allowedray objects.

C.3.3 EArray format
Mandatory attributes
The next attributes are mandatory farraystructures:

CLASS Must be set toEARRAY’ .

EXTDIM (Integer) Must be set to the extensible dimension. Only one extensible dimension is supported
right now.

FLAVOR This is meant to provide the information about the kind of objects kept iEfeay , i.e. when
the dataset is read, it will be converted to the indicated flavor. It can take the same valueArasythe
object (se¢_C.3]2), excefint" and"Float"

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the string.1’

Storage Layout

An EArray has adataspacevith a N-dimensional chunkeldyout.

C.3. Mandatory attributes, storage layout and supported datatypesdoss 95

Datatypes supported

The elements oEArray are allowed to have the same datatypes as for the elements in the Array format.
They can be one of the HDFBomicdatatypeclasses H5T_BITFIELD, H5T_INTEGER, H5T_FLOAT or
H5T_STRING, see th@able format description if section C.3.1 for more info about these types. They can
also be a H5T_COMPOUND datatype representing a complex number, séabilke format description in

[section C.311.
You should note that HST_ARRAY class datatypes are not allowé&thimay objects.

C.3.4 VLArray format
Mandatory attributes

The next attributes are mandatory fdarray structures:

CLASS Must be set t6VLARRAY' .

FLAVOR This is meant to provide the information about the kind of objects kept iNtiAgray , i.e. when
the dataset is read, it will be converted to the indicated flavor. It can take one of the next values:

"NumArray" The elements in dataset will be returnedNasnArray objects (from thenumarray
package).

"CharArray" The elements in dataset will be returnedCimrArray objects (from thenumarray
package).

"String" The elements in the dataset will be returned as Py8tang objects offixedlength (and
not asCharArrays).

"Numeric" The elements in the dataset will be returneduaay objects (from theNumeric pack-
age).

"List" The elements in the dataset will be returned as Pytlisin objects.

"Tuple" The elements in the dataset will be returned as PyThgte objects.

"Object” The elements in the dataset will be interpreted as pickled (i.e. serialized objects through the
use of thePickle Python module) objects and returned as Pythenericobjects. Only one of
such objects will be supported per entry. AsBiekle module is not normally available in other
languages, this flavor won't be useful in general.

"VLString" The elements in the dataset will be returned as Py8tong objects ofanylength, with
the twist thatUnicode strings are supported as well (provided you useUhé&-8 codification,
see below). However, only one of such objects will be supported per entry.

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the string.1’

Storage Layout

An VLArray has adataspacewvith a1-dimensional chunkelayout.

Datatypes supported

The datatype of the elements (rows\ifArray objects must be the H5T_VLEMariable-length(or VL for
short) datatype, and the base datatype specified for the VL datatype can beatdmiyHDF5 datatype that
is listed in theTable format/description section C.3.1. That includes the classes:

* H5T_BITFIELD
* H5T_INTEGER

96

Appendix C.PyTables File Format

* H5T_FLOAT
*« H5T_STRING
* H5T_ARRAY

They can also be a H5T_COMPOUND datatype representing a complex number, Sablétheformat
description irj section C.3.1 for a detailed description.

You should note that this does not include another VL datatype, or a compound datatype that does not
fit the description of a complex number. Note as well that,dbject andVLString special flavors, the
base for the VL datatype is always a H5T_NATIVE_UCHAR. That means that the complete row entry in the
dataset has to be used in order to fully serialize the object or the variable length string.

In addition, if you plan to use &LString flavor for your text data and you are using ascii-7 (7 bits
ASCII) codification for your strings, but you don’t know (or just don’t want) to convert it to the required
UTF-8 codification, you should not worry too much about that because the ASCII characters with values in
the range [0x00, 0Ox7f] are directly mapped to Unicode characters in the range [U+0000, U+007F] and the
UTF-8 encoding has the useful property that an UTF-8 encoded ascii-7 string is indistinguishable from a
traditional ascii-7 string. So, you will not need any further conversion in order to save your ascii-7 strings and
have anvLString flavor.

97

Bibliography

AsCHER David, Paul F. yBolIs, Konrad HNSEN, Jim HUGUNIN, and Travis QIPHANT, : Numerical
Python Package to speed-up arithmetic operations on arrays of numbers.
URL http://www.pfdubois.com/numpy/ 2,731

EwWING, Greg, :Pyrex. A Language for Writing Python Extension Modules
URL |http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex [7

GAILLY , JeanLoup and Mark BLER, : zlib. A Massively Spiffy Yet Delicately Unobtrusive Compression
Library. A standard library for compression purposes.
URL |http://www.gzip.org/zlib/ [7,[73

GREENFIELD, Perry, Todd MLLER, Richard L. WHITE, et al, : Numarray Reimplementation of Numeric
which adds the ability to efficiently manipulate large numeric arrays in ways similar to Matlab and IDL.
Among others, Numarray provides the record array extension.

URL |http://stsdas.stsci.edu/numarray/ 2.[7,[5181

HINSEN, Konrad, :Scientific PythonCollection of Python modules useful for scientific computing.
URL http://starship.python.net/~hinsen/ScientificPython/

JONES, Eric, Travis Q.IPHANT, Pearu BTERSON et al, : SciPy. Scientific tools for PythonSciPy sup-
plements the popular Numeric module, gathering a variety of high level science and engineering modules
together as a single package.

URL |http://www.scipy.org

MERTZ, David, : Objectify. On the 'Pythonic’ treatment of XML documents as objectsifjcle describing
XML Objectify, a Python module that allows working with XML documents as Python objects. Some of
the ideas presented here are used in PyTables.

URL |http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.
html

NCSA, : What is HDF5? Concise description about HDF5 capabilities and its differences from earlier
versions (HDF4).
URL http://hdf.ncsa.uiuc.edu/whatishdf5.html [@,[63

OBERHUMER, Markus F.X.J., :LZO and UCL. A couple of portable lossless data compression libraries
They offer pretty fast compression and extremly fast decompression.
URL /http://'www.oberhumer.com/opensource/ [7.[73

RIGO, Armin, : Psyco. A Python specializing compil&un existing Python software faster, with no change
in your source.
URL |http://psyco.sourceforge.net [78

http://www.pfdubois.com/numpy/
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex
http://www.gzip.org/zlib/
http://stsdas.stsci.edu/numarray/
http://starship.python.net/~hinsen/ScientificPython/
http://www.scipy.org
http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.html
http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.html
http://hdf.ncsa.uiuc.edu/whatishdf5.html
http://www.oberhumer.com/opensource/
http://psyco.sourceforge.net

	Introduction
	Main Features
	The Object Tree

	Installation
	Installation from source
	Prerequisites
	PyTables package installation

	Binary installation (Windows)
	Windows prerequisites
	PyTables package installation

	Tutorials
	Getting started
	Importing tables objects
	Declaring a Column Descriptor
	Creating a PyTables file from scratch
	Creating a new group
	Creating a new table
	Reading (and selecting) data in a table
	Creating new array objects
	Closing the file and looking at its content

	Browsing the object tree and appending to tables
	Traversing the object tree
	Setting and getting user attributes
	Getting object metadata
	Reading data from Array objects
	Appending data to an existing table
	And finally... how to delete rows from a table

	Multidimensional table cells and automatic sanity checks
	Shape checking
	Field name checking
	Data type checking

	Library Reference
	tables variables and functions
	Global variables
	Global functions

	The File class
	File instance variables
	File methods
	File special methods

	The Group class
	Group instance variables
	Group methods
	Group special methods

	The Leaf class
	Leaf instance variables
	Leaf methods

	The Table class
	Table instance variables
	Table methods
	Table special methods
	The Row class
	The Cols class

	The Column class
	Column instance variables
	Column methods
	Column special methods

	The Array class
	Array instance variables
	Array methods
	Array special methods

	The EArray class
	EArray instance variables
	EArray methods

	The VLArray class
	VLArray instance variables
	VLArray methods
	VLArray special methods

	The UnImplemented class
	The AttributeSet class
	AttributeSet instance variables
	AttributeSet methods

	Declarative classes
	The IsDescription class
	The Col class and its descendants
	The Atom class and its descendants.

	Helper classes
	The Filters class
	The IndexProps class
	The Index class
	The IndexArray class

	FileNode
	What is FileNode?
	Current limitations
	Finding a FileNode node
	Using FileNode
	Creating a new file node
	Using a file node
	Opening an existing file node
	Adding metadata to a file node

	Complementary notes
	FileNode module reference
	Global constants
	Global functions
	The FileNode abstract class
	The ROFileNode class
	The RWFileNode class

	Optimization tips
	Informing PyTables about expected number of rows in tables
	Accelerating your searches
	In-kernel searches
	Indexed searches

	Compression issues
	Shuffling (or how to make the compression process more effective)
	Taking advantage of Psyco
	Selecting an User Entry Point (UEP) in your tree
	Compacting your PyTables files

	Supported data types in PyTables
	Utilities
	ptdump
	Usage
	A small tutorial on ptdump

	ptrepack
	Usage
	A small tutorial on ptrepack

	nctoh5
	Usage

	PyTables File Format
	Mandatory attributes for a File
	Mandatory attributes for a Group
	Mandatory attributes, storage layout and supported datatypes for Leaves
	Table format
	Array format
	EArray format
	VLArray format

