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CHAPTER
ONE

Introduction

PyMVPA is a Python module intended to ease pattern classification analysis of large datasets. It provides high-
level abstraction of typical processing steps and a number of implementations of some popular algorithms. While
it is not limited to neuroimaging data it is eminently suited for such datasets. PyMVPA is truly free software (in
every respect) and additionally requires nothing but free software to run. Theoretically PYMVPA should run on
anything that can run a Python interpreter, although the proof is yet to come.

PyMVPA stands for Multivariate Pattern Analysis in Python.

1.1 What this Manual is NOT

This manual does not make an attempt to be a comprehensive introduction into machine learning theory or pattern
recognition techniques. There is a wealth of high-quality text books about this field available. A very good
example is: Pattern Recognition and Machine Learning by Christopher M. Bishop.

A good starting point to learn about the application of machine learning algorithms to (f)MRI data are two recent
reviews by Norman et al. ! and Haynes and Rees 2.

This manual also does not describe every bit and piece of the PYMVPA package. For more information, please
have a look at the API documentation, which is a comprehensive and up-to-date description of the whole package.

More examples and usage patterns extending the ones described here can be taken from the examples shipped with
the PyMVPA source distribution (doc/examples/) or even the unit test battery, also part of the source distribution
(in the tests/ directory).

1.2 A bit of History

The roots of PYMVPA date back to early 2005. At that time it was a C++ library (no Python yet) developed
by Michael Hanke and Sebastian Kriiger, intended to make it easy to apply artificial neural networks to pattern
recognition problems.

During a visit to Princeton University in spring 2005, Michael Hanke was introduced to the MVPA toolbox for
Matlab, which had several advantages over a C++ library. Most importantly it was easier to use. While a user of
a C++ library is forced to write a significant amount of front-end code, users of the MVPA toolbox could simply
load their data and start analyzing it, providing a common interface to functions drawn from a variety of libraries.

However, there are some disadvantages to writing a toolbox in Matlab. While users in general benefit from the
powers of Matlab, they are at the same time bound to the goodwill of a commercial company. That this is indeed
a problem becomes obvious when one considers the time when the vendor of Matlab was not willing to support
the Mac platform. Therefore even if the MVPA toolbox is GPL-licensed it cannot fully benefit from the enormous
advantages of the free software development model environment (free as in free speech, not only free beer).

For these reasons, Michael thought that a successor to the C++ library should remain truly free software, remain

Norman, K.A., Polyn, S.M., Detre, G.J. & Haxby, J.V. (2006). Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends
in Cognitive Science 10, 424-430.
2Haynes, J.D. & Rees, G. (2007). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7, 523-534.
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fully object-oriented (in contrast to the MVPA toolbox), but should be at least as easy to use and extensible as the
MVPA toolbox.

After evaluating some possibilities Michael decided that Python is the most promising candidate that was fully
capable of fulfilling the intended development goal. Python is a very powerful language that magically combines
the possibility to write really fast code and a simplicity that allows one to learn the basic concepts within a few
days. One of the major advantages of Python is the availability of a huge amount of so called modules. Modules
can include extensions written in a hardcore language like C (or even FORTRAN) and therefore allow one to
incorporate high-performance code without having to leave the Python environment. Additionally some Python
modules even provide links to other toolkits. For example RPy allows to use the full functionality of R from inside
Python. Even Matlab can be used via some Python modules (see PyMatlab for an example).

After the decision for Python was made, Michael started development with a simple k-Nearest-Neighbour classi-
fier and a cross-validation class. Using the mighty NumPy package made it easy to support data of any dimension-
ality. Therefore PYMVPA can easily be used with 4d fMRI dataset, but equally well with EEG/MEG data (3d) or
even non-neuroimaging datasets. By September 2007 PyMVPA included support for reading and writing datasets
from and to the NIfTT format, kNN and Support Vector Machine classifiers, as well as several analysis algorithms
(e.g. searchlight and incremental feature search).

During another visit in Princeton in October 2007 Michael met with Yaroslav Halchenko and Per B. Sederberg.
That incident and the following discussions and hacking sessions of Michael and Yaroslav lead to a major refac-
toring of the PyMVPA codebase, making it much more flexible/extensible, faster and easier than it has ever been
before.

1.3 Prerequisites

Like every other Python module PyYMVPA requires at least a basic knowledge of the Python language. However,
if one has no prior experience with Python one can benefit from the simplicity of the Python language and acquire
this knowledge within a few days by studying some of the many tutorials available on the web.

As PyMVPA is about pattern recognition a basic understanding about machine learning principles is necessary to
correctly apply methods with PyYMVPA to ensure interpretability of the results.

1.3.1 Dependencies
The following software packages are required or PyMVPA will not work at all.

Python 2.4 (or later) With some modifications PyYMVPA could probably work with Python 2.3, but
as it is quite old already and Python 2.4 is widely available there should be no need to do this.

NumPy PyMVPA makes extensive use of NumPy to store and handle data. There is no way around
it.

1.3.2 Strong Recommendations

While most parts of PYMVPA will work without any additional software, some functionality makes use of addi-
tional software packages. It is strongly recommended to install these packages as well.

SciPy: linear algebra, standard distributions SciPy is mainly used by the statistical testing and the
logistic regression classifier code. However, in the long run SciPy might be used a lot more and
could become a required dependency of PYMVPA.

PyNIfTI: access to NIfTI files PyMVPA provides a convenient wrapper for datasets stored in the
NIfTI format. If you don’t need that, PyNIfTT is not necessary, but otherwise it makes it really
easy to read from and write to NIfTT images.

Shogun: various classifiers PyMVPA currently can make use of several SVM implementations of
the Shogun toolbox. It requires the modular python interface of Shogun to be installed. Any
version from 0.6 on should work.
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R and RPy: more classifiers Currently PYMVPA provides a wrapper around the LARS library.

1.3.3 Suggestions

The following list of software is not required by PyMVPA, but it might make life a lot easier and leads to more
efficiency when using PYMVPA.

IPython: frontend If you want to use PyMVPA interactively it is strongly recommend to use
IPython. If you think: “Oh no, not another one, I already have to learn about PyMVPA.” please
invest a tiny bit of time to watch the Five Minutes with [Python screencasts at showmedo.com,
so at least you know what you are missing.

FSL: preprocessing and analysis of (f)MRI data PyMVPA provides some simple bindings to FSL
output and filetypes (e.g. EV files and MELODIC output directories). This makes it fairly easy
to e.g. use FSL’s implementation of ICA for data reduction and proceed with analyzing the
estimated ICs in PyYMVPA.

AFNI: preprocessing and analysis of (f)MRI data Similar to FSL, AFNI is a free package for pro-
cessing (f)MRI data. Though its primary data file format is BRIK files, it has the ability to read
and write NIFTI files, which easily integrate with PyYMVPA.

LIBSVM: fast SVM classifier Only the C library is required and none of the Python bindings that
are available on the upstream website. PyMVPA provides its own Python wrapper for LIB-
SVM which is a fork based on the one included in the LIBSVM package. Additionally the
upstream LIBSVM distribution causes flooding of the console with a huge amount of debug-
ging messages. Please see the Building from Source section for information on how to build an
alternative version that does not have this problem.

matplotlib: Matlab-style plotting library for Python This is a very powerful plotting library that
allows you to export into a large variety of raster and vector formats, and thus, is ideal to produce
publication quality figures.

1.4 Installation

The easiest way to obtain PyYMVPA is to use pre-built binary packages. Currently we provide such packages or
installers for the Debian/Ubuntu family and 32-bit Windows (see below). Since version 0.2.2 there is also an
initial version of a RPM package for OpenSUSE 10.3. If there are no binary packages for your operating system
or platform yet, you can build PyYMVPA from source. Please refer to Building from Source for more information.

1.4.1 Debian

PyMVPA is available as an official Debian package (python-mvpa; since lenny). The documentation is provided
by the optional python-mvpa-doc package. To install PyMVPA simply do:

sudo aptitude install python-mvpa

1.4.2 Debian backports and inofficial Ubuntu packages

Backports for the current Debian stable release and binary packages for recent Ubuntu releases are available from
a repository at the University of Magdeburg. Please read the package repository instructions to learn about how to
obtain them. Otherwise install as you would do with any other Debian package.
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1.4.3 Windows

There are a few Python distributions for Windows. In theory all of them should work equally well. However, we
only tested the standard Python distribution from www.python.org (with version 2.5.2).

First you need to download and install Python. Use the Python installer for this job. Yo do not need to install the
Python test suite and utility scripts. From now on we will assume that Python was installed in C:\Python25 and
that this directory has been added to the PATH environment variable.

For a minimal installation of PyMVPA the only thing you need in addition is NumPy. Download a matching
NumPy windows installer for your Python version (in this case 2.5) from the SciPy download page and install it.

Now, you can use the PYMVPA windows installer to install PYMVPA on your system. If done, verify that every-
thing went fine by opening a command promt and start Python by typing python and hit enter. Now you should
see the Python prompt. Import the mvpa module, which should cause no error messages.

>>> import mvpa
>>>

Although you have a working installation already, most likely you want to install some additional software. First
and foremost install SciPy — download from the same page where you also got the NumPy installer.

If you want to use PyMVPA to analyze fMRI datasets, you probably also want to install PyNIfTI. Download
the corresponding installer from the website of the NIfTI libraries and install it. PyNIfTI does not come with
the required zlib library, so you also need to download and install it. A binary installer is available from the
GnuWin32 project. Install it in some arbitrary folder (just the binaries nothing else), find the zlib1.dll file in the
bin subdirectory and move it in the Windows system32 directory. Verify that it works by importing the nifti module
in Python.

>>> import nifti
>>>

Another piece of software you might want to install is matplotlib. The project website offers a binary installer for
Windows. If you are using the standard Python distribution and matplotlib complains about a missing msvep71.dll,
be sure to obey the installation instructions for Windows on the matplotlib website.

With this set of packages you should be able to run most of the PyYMVPA examples which are shipped with the
source code in the doc/examples directory.

1.4.4 OpenSUSE

To install the provided RPM package for OpenSUSE, simply download it, open a console and invoke (the example
command refers to PYMVPA 0.2.2 and OpenSUSE 10.3):

rpm —-i pymvpa-0.2.2-1susel0_3.1586.rpm

Please refer to the section about building on OpenSUSE for notes about the installation of the dependencies.

1.5 Building from Source

If a binary package for your platform and operating system is provided, you do not have to build the packages on
your own — use the corresponding pre-build packages instead. However, if there are no binary packages for your
system, or you want to try a new (unreleased) version of PYMVPA, you can easily build PyMVPA on your own.
Any recent linux distribution should be capable of doing it (e.g. RedHat). Additionally, building PyMVPA also
works on Mac OSX and Windows systems.
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1.5.1 Three Ways to Obtain the Sources

The first step is obtaining the sources. The source code tarballs of all PyYMVPA releases are available from the
PyMVPA project website. Alternatively, one can also download a tarball of the latest development snapshot (i.e.
the current state of the master branch of the PyMVPA source code repository). If you want to have access to
both, the full PyMVPA history and the latest development code, you can use the PyMVPA Git repository, which
is publicly available. To view the repository, please point your web browser to gitweb:

http://git.debian.org/?p=pkg-exppsy/pymvpa.git

The gitweb browser also allows to download arbitrary development snapshots of PyYMVPA. For a full clone (aka
checkout) of the PyMVPA repository simply do:

git clone git://git.debian.org/git/pkg-exppsy/pymvpa.git

After a short while you will have a pymvpa directory below your current working directory, that contains the
PyMVPA repository.

1.5.2 Build it (General instructions)

In general you can build PyYMVPA like any other Python module (using the Python distutils). This general method
will be outline first. However, in some situations or on some platforms alternative ways of building PyYMVPA
might be more covenient — alternative approaches are listed at the end of this section.

To build PyYMVPA from source simply enter the root of the source tree (obtained by either extracting the source
package or cloning the repository) and run:

python setup.py build_ext

If you are using a Python version older than 2.5, you need to have python-ctypes (>= 1.0.1) installed to be able to
do this.

Now, you are ready to install the package. Do this by invoking:
python setup.py install

Most likely you need superuser privileges for this step. If you want to install in a non-standard location, please
take a look at the —prefix option. You also might want to consider —optimize.

Now you should be ready to use PyYMVPA on your system.

1.5.3 Build with enabled LIBSVM bindings

From the 0.2 release of PyMVPA on, the LIBSVM classifier extension is not build by default anymore. How-
ever, it is still shipped with PyYMVPA and can be enabled at build time. To be able to do this you need to have
SWIG_installed on your system.

PyMVPA needs a patched LIBSVM version, as the original distribution generates a huge amount of debugging
messages and therefore makes the console and PyMVPA output almost unusable. Debian (since lenny: 2.84.0-1)
and Ubuntu (since gutsy) already include the patched version. For all other systems a minimal copy of the patched
sources is included in the PyYMVPA source package (3rd/libsvm).

If you do not have a proper LIBSVM package, you can build the library from the copy of the code that is shipped
with PyMVPA. To do this, simply invoke:

make 3rd
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Now build PyMVPA as described above. The build script will automatically detect that LIBSVM is available and
builds the LIBSVM wrapper module for you.

If your system provides an appropriate LIBSVM version, you need to have the development files (headers and
library) installed. Depending on where you installed them, it might be necessary to specify the full path to that
location with the —include-dirs, —library-dirs and —swig options. Now add the ‘—with-libsvm’ flag when building
PyMVPA:

python setup.py build_ext —--with-libsvm \
[ —=I<LIBSVM_INCLUDEDIR> -L<LIBSVM_LIBDIR> ]

The installation procedure is equivalent to the build setup without LIBSVM, except that the ‘—with—libsvm’ flag
also has to be set when installing:

python setup.py install —--with-libsvm

1.5.4 Alternative build procedure

Alternatively, if you are doing development in PyMVPA or if you simply do not want (or do not have sufficient
permissions to do so) to install PyMVPA system wide, you can simply call make (same make build) in the top-level
directory of the source tree to build PyMVPA. Then extend or define your environment variable PYTHONPATH
to point to the root of PYMVPA sources (i.e. where you invoked all previous commands from):

export PYTHONPATH=$PWD

However, please note that this procedure also always builds the LIBSVM extension and therefore also requires the
patched LIBSVM version and SWIG to be available.

1.5.5 Building on Windows Systems

On Windows the whole situation is a little more tricky, as the system doesn’t come with a compiler by default.
Nevertheless, it is easily possible to build PyMVPA from source. Although, one could use the Microsoft compiler
that comes with Visual Studio to do it, but as this is commercial software and not everybody has access to it, we
will outline a way that exclusively involves free and open source software.

First one needs to install the packages required to run PyMVPA as explained above.

Next we need to obtain and install the MinGW compiler collection. Download the Automated MinGW Installer
from the MinGW project website. Now, run it and choose to install the current package. You will need the MinGW
base tools, g++ compiler and MinGW Make. For the remaining parts of the section, we will assume that MinGW
got installed in C:\MinGW and the directory C:\MinGW\bin has been added to the PATH environment variable, to
be able to easily access all MinGW tools. Note, that it is not necessary to install MSY'S to build PyYMVPA, but it
might handy to have it.

If you want to build the LIBSVM wrapper for PyYMVPA, you also need to download SWIG (actually swigwin, the
distribution for Windows). SWIG does not have to be installed, just unzip the file you downloaded and add the
root directory of the extracted sources to the PATH environment variable (make sure that this directory contains
swig.exe, if not, you haven’t downloaded swigwin).

PyMVPA comes with a specific build setup configuration for Windows — setup.cfg.win in the root of the source
tarball. Please rename this file to sefup.cfg (and overwrite the existing one). This is only necessary, if you have
not configured your Python distutils installation to always use MinGW instead of the Mircrosoft compilers.

Now, we are ready to build PyMVPA. The easiest way to do this, is to make use of the Makefile.win that is shipped
with PYMVPA to build a binary installer package (.exe). Make sure, that the settings at the top of Makefile.win
(the file is located in the root directory of the source distribution) correspond to your Python installation — if not,
first adjust them accordingly before your proceed. When everything is set, do:
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mingw32-make —-f Makefile.win installer

Upon success you can find the installer in the dist subdirectory. Install it as described above.

1.5.6 OpenSUSE
Building PYMVPA on OpenSUSE involves the following steps (tested with 10.3): First add the OpenSUSE science
repository, that contains most of the required packages (e.g. NumPy, SciPy, matplotlib), to the Yast configuration.

The URL for OpenSUSE 10.3 is:

http://download.opensuse.org/repositories/science/openSUSE_10.3/
Now, install the following required packages:

¢ arecent C and C++ compiler (e.g. GCC 4.1)
* python-devel (Python development package)

* python-numpy (NumPy)

swig (SWIG is only necessary, if you want to make use of LIBSVM)

Now you can simply compile and install PYMVPA, as outlined above, in the general build instructions (or alterna-
tively using the method with LIBSVM).

If you have problems compiling the NIfTT libraries and PyNIfTI on OpenSUSE, try the following: Download the
nifticlib source tarball, extract it and run make in the top-level source directory. Be sure to install the z/ib-devel
package before. Now, download the pynifti source tarball extract it, and edit sefup.py. Change the line:

libraries = [ 'niftiio’ 7,
to:
libraries = [ ’'niftiio’, ’znz’, 'z’ 1,

as mentioned in the PyNIfTI installation instructions. This is necessary, as the above approach does only generate
static NIfTI libraries which are not properly linked with all dependencies. Now, compile PyNIfTI with:

python setup.py build_ext -I <path_to_nifti>/include \
-L <path_to_nifti>/1lib —--swig-opts="-I<path_to_nifti>/include"

where <path_to_nifti> is the directory that contains the extracted nifticlibs sources. Finally, install PyNIfTI with:

sudo python setup.py install

If you want to run the PyYMVPA examples including the ones that make use of the plotting capabilities of matplotlib
you need to install of few more packages (mostly due to broken dependencies in the corresponding OpenSUSE
packages):

* python-scipy

* python-gobject2

* python-gtk
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1.6 How to cite PyMVPA

The PyMVPA toolbox was first presented with a poster at annual meeting of the German Society for Psychophys-
iology and its Application in Magdeburg, 2008. This is currently the prefered way to cite PyMVPA. However, we
submitted a paper introducing the toolbox, which should become replace the poster soon.

1.7 Credits

(needs some more words, for now just a list)

e NumPy, SciPy

¢ LIBSVM

* Shogun

 [Python

* Debian (for hosting, environment, ...)
* FOSS community

* Credits to individual labs if they officially donate time ;-)

10 Contents


http://pkg-exppsy.alioth.debian.org/pymvpa/files/PyMVPA_PuG2008.pdf

CHAPTER
TWO

Overview

The PyMVPA package consists of three major parts: Data handling, Classifiers and various algorithms and mea-
sures that operate on datasets and classifiers. In the following sections the basic concept of all three parts will be

described and examples using certain parts of the PyMVPA package will be given.
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CHAPTER
THREE

Datasets

The foundation of PyYMVPA’s data handling is the Dataset class. Basically, this class stores data samples, sample
attributes and dataset attributes. Sample attributes assign a value to each data sample and dataset attributes are
additional information or functionality that applies to the whole dataset.

Most likely the Dataset class will not be used directly, but through one of the derived classes. However, it is
perfectly possible to use it directly. In the simplest case a dataset can be constructed by specifying some data
samples and the corresponding class labels.

>>> import numpy as N

>>> from mvpa.datasets import Dataset

>>> data = Dataset (samples=N.random.normal (size=(10,5)), labels=1)
>>> data

<Dataset / floaté64 10 x 5 uniqg: 1 labels 10 chunks>

The above example creates a dataset with 10 samples and 5 features each. The values of all features stem from
normally distributed random noise. The class label ‘1’ is assigned to all samples. Instead of a single scalar value
labels can also be a sequence with individual labels for each data sample. In this case the length of this sequence
has to match the number of samples.

Interestingly, the dataset object tells us about 10 chunks. In PyYMVPA chunks are used to group subsets of data
samples. However, if no grouping information is provided all data samples are assumed to be in their own group,
hence no sample grouping is performed.

Both labels and chunks are so called sample attributes. All sample attributes are stored in sequence-type containers
consisting of one value per sample. These containers can be accessed by properties with the same as the attribute:

>>> data.labels
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 11)
>>> data.chunks
array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

The data samples themselves are stored as a two-dimensional matrix where each row vector is a sample and each
column vector contains the values of a feature across all samples. The Dataset class provides access to the samples
matrix via the samples property.

>>> data.samples.shape
(10, 5)

The Dataset class itself can only deal with 2d sample matrices. However, PYMVPA provides a very easy way to
deal with data where each data sample is more than a 1d vector: Data Mapping

3.1 Data Mapping

It was already mentioned that the Dataset class cannot deal with data samples that are more than simple vectors.
This could be a problem in cases where the data has a higher dimensionality, e.g. functional brain-imaging data
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where each data sample is typically a three-dimensional volume.

One approach to deal with this situation would be to concatenate the whole volume into a 1d vector. While this
would work in certain cases there is definitely information lost. Especially for brain-imaging data one would most
likely want keep information about neighbourhood and distances between data sample elements.

In PyMVPA this is done by mappers that transform data samples from their original dataspace into the so-called
features space. In the above neuro-imaging example the dataspace is three-dimensional and the feature space
always refers to the 2d samples x features representation that is required by the Dataset class. In the context of
mappers the dataspace is sometimes also referred to as in-space while the feature space is labeled as out-space.

The task of a mapper, besides transforming samples into 1d vectors, is to retain as much information of the
dataspace as possible. Some mappers provide information about dataspace metrics and feature neighbourhood,
but all mappers are able to do reverse mapping from feature space into the original dataspace.

Usually one does not have to deal with mappers directly. PyMVPA provides some convenience subclasses of
Dataset that automatically perform the necessary mapping operations internally. For an introduction into to con-
cept of a dataset with mapping capabilities we can take a look at the MaskedDataset class. This dataset class works
almost exactly like the basic Dataset class, except that it provides some additional methods and is more flexible
with respect to the format of the sample data. A masked dataset can be created just like a normal dataset.

>>> from mvpa.datasets.maskeddataset import MaskedDataset

>>> mdata = MaskedDataset (samples=N.random.normal (size=(5,3,4)),
Ce labels=[1,2,3,4,51)

>>> mdata
<Dataset / float64 5 x 12 uniqg: 5 labels 5 chunks>

However, unlike Dataset the MaskedDataset class can deal with sample data arrays with more than two dimensions.
More precisely it handles arrays of any dimensionality. The only assumption that is made is that the first axis of
a sample array separates the sample data points. In the above example we therefore have 5 samples, where each
sample is a 3x4 plane. If we look at the self-description of the created dataset we can see that it doesn’t tell us
about 3x4 plane, but simply 12 features. That is because internally the sample array is automatically reshaped
into the aforementioned 2d matrix representation of the Dataset class. However, the information about the original
dataspace is not lost, but kept inside the mapper used by MaskedDataset. Two useful methods of MaskedDataset
make use of the mapper: mapForward() and mapReverse(). The former can be used to transform additional data
from dataspace into the feature space and the latter performs the same in the opposite direction.

>>> mdata.mapForward (N.arange (12) .reshape (3,4)) .shape
(12,)

>>> mdata.mapReverse (N.array ([1l] mdata.nfeatures)) .shape
(3, 4)

Especially reverse mapping can be very useful when visualizing classification results and information maps on the
original dataspace.

Another feature of mapped datasets is that valid mapping information is maintained even when the feature space
changes. When running some feature selection algorithm (see Feature Selection) some features of the original
features set will be removed, but after feature selection one will most likely want to know where the selected (or
removed) features are in the original dataspace. To make use of the neuro-imaging example again: The most
convenient way to access this kind of information would be a map of the selected features that can be overlayed
over some anatomical image. This is trivial with PyYMVPA, because the mapping is automatically updated upon
feature selection.

>>> mdata.mapReverse (N.arange (1, mdata.nfeatures+1))
array ([[ 1, 2, 3, 41,

[ 5, 6, 7, 81,
[ 9, 10, 11, 1211])
>>> sdata = mdata.selectFeatures([2,7,9,10])
>>> gdata
<Dataset / float64 5 x 4 unig: 5 labels 5 chunks>
>>> sdata.mapReverse (N.arange (1, sdata.nfeatures+1))
array ([[O, O, 1, O],
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The above example selects four features from the set of the 12 original ones, by passing their ids to the select-
Features() method. The method returns a new dataset only containing the nine selected features. Both datasets
share the sample data (using a NumPy array view). Using selectFeatures() is therefore both memory efficient and
relatively fast. All other information like class labels and chunks are maintained. By calling mapReverse() on the
new dataset one can see that the remaining four features are precisely mapped back onto their original locations
in the data space.

3.2 Data Splitting

In many cases some algorithm should not run on a complete dataset, but just some parts of it. One well-known
example is leave-one-out cross-validation, where a dataset is typically split into a number of training and validation
datasets. A classifier is trained on the training set and its generalization performance is tested using the validation
set.

It is important to strictly separate training and validation datasets as otherwise no valid statement can be made
whether a classifier really generated an appropriate model of the training data. Violating this requirement spuri-
ously elevates the classification performance, often termed ‘peeking’ in the literature. However, they provide no
relevant information because they are based on cheating or peeking and do not describe signal similarities between
training and validation datasets.

With the splitter classes, PyYM VPA makes dataset splitting easy. All dataset splitters in PyMVPA are implemented
as Python generators, meaning that when called with a dataset once, they return one dataset split per iteration
and an appropriate Exception when they are done. This is exactly the same behavior as of e.g. the Python
xrange() function. To perform data splitting for the already mentioned cross-validation, PyYMVPA provides the
NFoldSplitter class. It implements a method to generate arbitrary N-M splits, where N is the number of different
chunks in a dataset and M is any non-negative integer smaller than N. Doing a leave-one-out split of our example
dataset looks like this:

>>> from mvpa.datasets.splitter import NFoldSplitter

>>> gplitter = NFoldSplitter (cvtype=1) # Do N-1
>>> for wdata, vdata in splitter (data):
pass

where wdata is the working dataset and vdata is the validation dataset. If we have a look a those datasets we can
see that the splitter did what we intended:

>>> split = [ 1 for i in splitter(data)][0]

>>> for s in split:

R print s

Dataset / float64 9 x 5 unig: 1 labels 9 chunks
Dataset / float64 1 x 5 unig: 1 labels 1 chunks
>>> split [0] .uniquechunks

array([1, 2, 3, 4, 5, 6, 7, 8, 91)

>>> gplit[1].uniquechunks

array ([0])

In the first split, the working dataset contains nine chunks of the original dataset and the validation set contains
the remaining chunk. The usage of the splitter, creating a splitter object and calling it with a dataset, is a very
common design pattern in the PyMVPA package. Like splitters there are many more so called processing objects.
These classes or objects are instantiated by passing all relevant parameters to the constructor. Processing objects
can then be called multiple times with different datasets to perform their algorithm on the respective dataset. This
design applies to the majority of the algorithms implemented in PyYMVPA.
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CHAPTER
FOUR

Classifiers

PyMVPA includes a number of ready-to-use classifiers, which are described in the following sections. All classi-
fiers implement the same, very simple interface. Each classifier object takes all relevant parameters as arguments
to its constructor. Once instantiated, the classifier object’s train() method can be called with some dataset. This
trains the classifier using all samples in the respective dataset.

The major task for a classifier is to make predictions. Predictions are made by calling the classifier’s predict()
method with one or multiple data samples. predict() operates on pure sample data and not datasets, as in some
cases the true label for a sample might be totally unknown.

This examples demonstrates the typical daily life of a classifier.

>>> import numpy as N
>>> from mvpa.clfs.knn import kNN
>>> from mvpa.datasets import Dataset
>>> training = Dataset (samples=N.array (
N.arange (100) ,ndmin=2, dtype=’"float’).T,
B labels=[0] % 50 + [1] % 50)
>>> randl00 = N.random.rand(10)*100
>>> validation = Dataset (samples=N.array (randl00, ndmin=2, dtype=’float’).T,

C.. labels=[ int (i>50) for i in randlO00 ])
>>> clf = kNN (k=10)

>>> clf.train(training)

>>> N.mean (clf.predict (training.samples) == training.labels)

1.0

>>> N.mean (clf.predict (validation.samples) == validation.labels)
1.0

Two datasets with 100 and 10 samples each are generated. Both datasets only have one feature and the associated
label is O if the feature value is below 50 or 1 otherwise. The larger dataset contains all integers in the interval
(0,100) and is used to train the classifier. The smaller is used as a validation dataset, to check whether the classifier
learned something that generalizes well across samples not included in the training dataset. In this case the
validation dataset consists of 10 random floating point values in the interval (0,100).

The classifier in this example is a k-Nearest-Neighbour classifier that makes use of the 10 nearest neighbours of a
data sample to make its predictions (k=10). One can see that after the training the classifier performs optimally on
the training dataset as well as on the validation data samples.

The choice of the classifier in the above example is more or less arbitrary. Any classifier in PYMVPA could be
used in place of kKNN. This demonstrates another useful feature of PyYMVPA’s classifiers. Due to the high-level
abstraction and the simple interface, almost all classifiers can be combined with most algorithms in PyMVPA.
This makes it very easy to test different classifiers on some dataset (see Fig. 1).
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A comparison of the behavior of different classifiers (k-Nearest-Neighbour, linear SVM, logistic regression, ridge
regression and SVM with radial basis function kernel) on a simple classification problem. The code to generate
these figure can be found in the pylab_2d.py example.

4.1 Stateful objects

Before looking at the different classifiers in more detail, it is important to mention another feature common to
all of them. While their interface is simple, classifiers are in no way limited to report only predictions. All
classifiers implement an additional interface: the so-called Stateful interface. Objects of any class that is derived
from Stateful have attributes (we refer to such attributes as state variables), which are conditionally computed and
stored by PyMVPA. Such conditional storage and access is handy if a variable of interest might consume a lot of
memory or needs intensive computation, and not needed in most (or in some) of the use cases.

For instance, the Classifier class defines the trained_labels state variable, which just stores the unique labels for
which the classifier was trained. Since trained_labels stores meaningful information only for a trained classifier,
attempt to access ‘clf.trained_labels’ before training would result in a raised UnknownStateError exception since
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the classifier has not seen the data yet and, thus, does not know the labels. In other words, ‘clf’ is not yet in the
state to know anything about the labels, hence the name Stareful. We will refer to instances of classes derived
from Stateful as ‘statefull’. Any state variable can be enabled or disabled on per instance basis at any time of the
execution.

To continue the last example, each classifier, or more precisely every statefull object, can be asked to report
existing state-related attributes:

>>> list_with_verbose_explanations = clf.states.listing

‘clf.states’ is an instance of StateCollection class which is a container for all state variables of the given class.
Although values can be queried or set (if state is enabled) operating directly on the statefull object

>>> clf.trained_labels
Set ([0, 17)

any other operation on the state (e.g. enabling, disabling) has to be carried out through the StateCollection ‘.states’.

>>> print clf.states

{trained_dataset predicting_timex+ training_confusion predictions*+...}
>>> clf.states.enable('values’)

>>> print clf.states

{trained_dataset predicting_timex+ training_confusion predictions*+...}
>>> clf.states.disable (’'values’)

A string representation of the state collection mentioned above lists all state variables present accompanied with
2 markers: ‘+ for an enabled state variable, and ‘*’ for a variable that stores some value (but might have been
disabled already and, therefore, would have no ‘+’ and attempts to reassign it would result in no action).

By default all classifiers provide state variables values, predictions. The latter is simply the set of predictions
that was returned by the last call to the objects predict() method. The former is heavily classifier-specific. By
convention the values key provides access to the raw values that a classifier prediction is based on. Depending
on the classifier, this information might required significant resources when stored. Therefore all states can be
disabled or enabled (states.disable(), states.enable()) and their current status can be queried like this:

>>> clf.states.isActive ('predictions’)
True

>>> clf.states.isActive ('values’)
False

States can be enabled or disabled during statefull object construction, if enable_states or disable_states (or both)
arguments, which store the list of desired state variables names, passed to the object constructor. Keyword ‘all’
can be used to select all known states for that statefull object.

4.2 Error Calculation

The TransferError class provides a convenient way to determine the transfer error of a trained classifier on some
validation dataset. A TransferError object is instanciated by passing a classifier object to the constructor. Option-
ally a custom error function can be specified (see errorfx argument).

To compute the transfer error simply call the object with a validation dataset. The computed error value is returned.
TransferError also supports a state variable confusion that contains the full confusion matrix of the predictions
made on the validation dataset. The confusion matrix is disabled by default.

If the TransferError object is called with an optional training dataset, the contained classifier is first training using
this dataset before predictions on the validation dataset are made.

>>> from mvpa.clfs.transerror import TransferError
>>> clf = kNN (k=10)
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>>> terr = TransferError(clf)
>>> terr(validation, training )
0.0

4.2.1 Cross-validated Transfer Error

Often one is not only interested in a single transfer error on one validation dataset, but on a cross-validated estimate
of the transfer error. A popular method is the so-called leave-one-out cross-validation.

The CrossValidatedTransferError class provides a simple way to compute such measure. It utilizes a TransferError
object and a Splitter. When called with a Dataset the splitter generates splits of the Dataset and the transfer error
for all splits is computed by training on one of the splitted datasets and making predictions on the other. By default
the mean of transfer errors is returned (but the actual combiner function is customizable).

The following example shows the minimal code for a leave-one-out cross-validation reusing the transfer error
object from the previous example and some Dataset data.

>>> # create some dataset
>>> from mvpa.misc.data_generators import normalFeatureDataset
>>> data = normalFeatureDataset (perlabel=50, nlabels=2,
nfeatures=20, nonbogus_features=[3, 7],
snr=3.0)
>>> # now cross-validation
>>> from mvpa.algorithms.cvtranserror import CrossValidatedTransferError
>>> from mvpa.datasets.splitter import NFoldSplitter
>>> cvterr = CrossValidatedTransferError (terr,
NFoldSplitter (cvtype=1))
>>> error = cvterr (data)

4.3 Boosted and Multi-class Classifiers

(to be written)

4.4 Gaussian Process Regression

(Wikipedia entry about gaussian process regression).

4.5 k-Nearest-Neighbour

The kNN classifier makes predictions based on the labels of nearby samples. It currently uses Euclidian distance
to determine the nearest neighbours, but future enhancements may include support for other kernels.

4.6 Least Angle Regression

lBradley Efron, Trevor Hastie, Tain Johnstone and Robert Tibshirani (2004). A new method for variable subset selection, with the lasso
and “epsilon” forward stagewise methods as special cases. Annals of Statistics, 32, 407-499.
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4.7 Penalized Logistic Regression

The penalized logistic regression (PLR) is similar to the ridge in that it has a penalty term, however, it is trained
to predict a binary outcome by means of the logistic function (Wikipedia entry about logistic regression).

4.8 Ridge Regression

Ridge regression (aka Tikhonov regularization) is a variant of a linear regression (Wikipedia entry about ridge
regression).

The ridge regression classifier (RidgeReg) performs a simple linear regression with a penalty parameter to help
avoid over-fitting. The regression inserts an intercept term so that you do not have to center your data.

4.9 Sparse Multinomial Logistic Regression

Sparse Multinomial Logistic Regression 2 is a fast multi-class classifier that can easily with high-dimensional

problems (research paper about SMLR). PyYMVPA include two implementations: one in pure Python and a faster
one that makes use of a C extension for the performance critical pieces of the code.

4.10 Support Vector Machines

Support vector machines 3 classifiers (and regressions) are popular since they can deal with very high dimensional
problems (Wikipedia entry about SVM), while maintaining reasonable generalization performance.

The support vector machine classes provide a family of classifiers by wrapping libsvm and Shogun libraries, with
corresponding base classes libsvm.SVM and sg.SVM accordingly. By default SVM class is bound to libsvm’s
implementation if such is available (shogun otherwise).

While any SVM class provides a complete interface, the others child classes make it easy to run some subset of
standard classifiers, such as linear SVM, with a default set of parameters (see LinearCSVMC, LinearNuSVMC,
RbfNuSVMC and RbfCSVMC).

4.11 Classifiers “Warehouse”

To facilitate easy trial of different classifiers for any specific task, Warehouse of classifiers clfs.warehouse.clfs
was defined to create a sample collection of some commonly used parameterizations of the classifiers present in
PyMVPA. Such collection can be queried by any set of known keywords/tags with tags prefixed with ! being
excluded:

>>> from mvpa.clfs.warehouse import clfs
>>> print len(clfs[’multiclass’, ’"!svm’])
8

to simply sweep through classifiers which are capable of multiclass classification and are not SVM based.

zKrishnapuram, B., Figueiredo, M., Carin, L., & Hartemink, A. (2005). Sparse Multinomial Logistic Regression: Fast Algorithms and
Generalization Bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 957-968.
3Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer, New York.
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CHAPTER
FIVE

Measures

PyMVPA provides a number of useful measures. The vast majority of them are dedicated to feature selection. To
increase analysis flexibility, PyYMVPA distinguishes two parts of a feature selection procedure.

First, the impact of each individual feature on a classification has to be determined. The resulting map reflects
the sensitivities of all features with respect to a certain decision and, therefore, algorithms generating these maps
are summarized as Sensitivity in PYMVPA. Second, once the feature sensitivities are known, they can be used as
criteria for feature selection. However, possible selection strategies range from very simple Go with the 10% best
features to more complicated algorithms like Recursive Feature Elimination. Because Sensitivity Measures and
selections strategies can be arbitrarily combined, PyMVPA offers a quite flexible framework for feature selection.
Similar to dataset splitters, all PyMVPA algorithms are implemented and behave like processing objects. To recap,
this means that they are instantiated by passing all relevant arguments to the constructor. Once created, they can
be used multiple times by calling them with different datasets.

5.1 Sensitivity Measures

It was already mentioned that a Sensitivity computes a featurewise score that indicates how much interesting signal
each feature contains — hoping that this score somehow correlates with the impact of the features on a classifier’s
decision for a certain problem.

Every sensitivity analyzer object computes a one-dimensional array with the respective score for every feature,
when called with a Dataset. Due to this common behaviour all Sensitivity types are interchangeable and can be
combined with any other algorithm requiring a sensitivity analyzer.

By convention higher sensitivity values indicate more interesting features.

There are two types of sensitivity analyzers in PYMVPA. Basic sensitivity analyzers directly compute a score
from a Dataset. Meta sensitivity analyzers on the other hand utilize another sensitivity analyzer to compute their
sensitivity maps.

5.1.1 Basic Sensitivity (and related Measures)

ANOVA

The OneWayAnova class provides a simple (and fast) univariate measure, that can be used for feature selection,
although it is not a proper sensitivity measure. For each feature an individual F-score is computed as the fraction
of between and within group variances. Groups are defined by samples with unique labels.

Higher F-scores indicate higher sensitivities, as with all other sensitivity analyzers.

Linear SVM Weights

The featurewise weights of a trained support vector machine are another possible sensitivity measure. The lib-
svm.LinearSVMWeights and sg.LinearSVMWeights class can internally train all types of linear support vector
machines and report those weights.
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In contrast to the F-scores computed by an ANOVA, the weights can be positive or negative, with both extremes
indicating higher sensitivities. To deal with this property all subclasses of DatasetMeasure support a transformer
arguments in the contructor. A transformer is a functor that is finally called with the computed sensitivity map.
PyMVPA already comes with some convenience functors which can be used for this purpose (see Transformers).

Please note, that this class cannot extract reasonable weights from non-linear SVMs (e.g. with RBF kernels).

Noise Perturbation

Noise perturbation is a generic approach to determine feature sensitivity. The sensitivity analyzer (NoisePerturba-
tionSensitivity) computes a scalar DatasetMeasure using the original dataset. Afterwards, for each single feature
a noise pattern is added to the respective feature and the dataset measure is recomputed. The sensitivity of each
feature is the difference between the dataset measure of the orginal dataset and the one with added noise. The
reasoning behind this algorithm is that adding to noise to important features will impair a dataset measure like
cross-validated classifier transfer error. However, adding noise the a feature that already only contains noise, will
not change such a measure.

Depending on the used scalar DatasetMeasure using the sensitivity analyzer might be really CPU-intensive! Also
depending on the measure, it might be necessary to use appropriate Transformers (see transformer constructor
arguments) to ensure that higher values represent higher sensitivities.

5.1.2 Meta Sensitivity Measures

Meta Sensitivity Measures are FeaturewiseDatasetMeasures that internally use one of the Basic Sensitivity Mea-
sures to compute their sensitivity scores.

Splitting Measures

The SplittingFeaturewiseMeasure uses a Splitter to generate dataset splits. A FeaturewiseDatasetMeasure is then
used to compute sensitivity maps for all these dataset splits. At the end a combiner function is called with all
sensitivity maps to produce the final sensitivity map. By default the mean sensitivity maps across all splits is
computed.
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CHAPTER
SIX

6.1 Recursive Feature Elimination
RFE

(to be written)

6.2 Incremental Feature Search

IFS

(to be written)

Feature Selection
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CHAPTER
SEVEN

Analysis Scenarios

7.1 Searchlight

The term Searchlight refers to an algorithm that runs a scalar DatasetMeasure on all possible spheres of a certain
size within a dataset. The measure typically computed is a cross-validated transfer error (see CrossValidated-
TransferError). The idea to use a searchlight as a sensitivity analyzer stems from a paper by Kriegeskorte and
colleagues !.

A searchlight analysis is can be easily performed. The following code snippet shows a draft of a complete analysis.

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>

>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>

from mvpa.datasets.maskeddataset import MaskedDataset
from mvpa.datasets.splitter import OddEvenSplitter
from mvpa.clfs.svm import LinearCSVMC

from mvpa.clfs.transerror import TransferError

from mvpa.algorithms.cvtranserror import CrossValidatedTransferError

from mvpa.measures.searchlight import Searchlight
from mvpa.misc.data_generators import normalFeatureDataset

# overcomplicated way to generate an example dataset

ds = normalFeatureDataset (perlabel=10, nlabels=2, nchunks=2,
nfeatures=10, nonbogus_features=[3, 7],
snr=5.0)

dataset = MaskedDataset (samples=ds.samples, labels=ds.labels,
chunks=ds.chunks)

# setup measure to be computed in each sphere (cross-validated
# generalization error on odd/even splits)
cv = CrossValidatedTransferError (

TransferError (LinearCSVMC () ),

OddEvenSplitter())

# setup searchlight with 5 mm radius and measure configured above
sl = Searchlight (cv, radius=5)

# run searchlight on dataset
sl_map = sl (dataset)

If this analysis is done on a fMRI dataset using NiftiDataset the resulting searchlight map (s/_map) can be mapped
back into the original dataspace and viewed as a brain overlay. The example section contains a typical application
of this algorithm.

IKriegeskorte, N., Goebel, R. & Bandettini, P. (2006). ‘Information-based functional brain mapping.’ Proceedings of the National
Academy of Sciences of the United States of America 103, 3863-3868.
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7.2 Statistical Testing of classifier-based Analyses

It is often desirable to be able to make statements like “Performance is significantly above chance-level”. How-
ever, as with other applications of statistics in classifier-based analyses there is the problem that we do not know
the distribution of a variable like error or performance under the HO hypothesis to assign the adored p-values, i.e.
the probability of a result given that there is no signal. Even worse, the chance-level or guess probability of a
classifier depends on the content of a validation dataset, e.g. balanced or unbalanced number of samples per label
and total number of labels).

One approach to deal with this situation is to estimate the NULL distribution. A generic way to do this are
permutation tests (aka Monte Carlo). The NULL distribution is estimated by computing some measure multiple
times using datasets with no relevant signal in them. These datasets are generated by permuting the labels of
all samples in the training dataset each time the measure is computed, and therefore randomizing/removing any
possible relevant information.

Given the measures computed using the permuted datasets one can now determine the probability of the empirical
measure (i.e. the one computed from the original training dataset) under the no signal condition. This is simply the
fraction of measures from the permutation runs that is larger or smaller than the emprical (depending on whether
on is looking at performances or errors).

PyMVPA supports such permutations test for transfer errors and all dataset measures. In both cases the ob-
ject computing the measure or transfer error takes an optional contructor argument null_dist. The value of this
argument is an instance of some Distribution estimator. If this is provided the respective TransferError or Dataset-
Measure instance will automatically use it to estimate the NULL distribution and store the associated p-values in
a state variable named null_prob.

>>> # lazy import

>>> from mvpa.suite import =«

>>>

>>> # some example data with signal

>>> train = normalFeatureDataset (perlabel=50, nlabels=2, nfeatures=3,
nonbogus_features=[0,1], snr=3, nchunks=1)

>>>

>>> # define class to estimate NULL distribution of errors

>>> # use left tail of the distribution since we use MeanMatchFx as error

>>> # function and lower 1is better

>>> # in a real analysis the number of permutations should be MUCH larger

>>> terr = TransferError (clf=SMLR(),

null_dist=MCNullDist (permutations=10,

R tail="left’))

>>>

>>> # compute classifier error on training dataset (should be low :)
>>> err = terr(train, train)

>>> err < 0.4

True

>>> # check that the result is highly significant since we know that the
>>> # data has signal

>>> terr.null_prob < 0.01

True
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CHAPTER
EIGHT

Miscellaneous

8.1 Progress Tracking

There are 3 types of messages PyMVPA can produce:

verbose regular informative messages about generic actions being performed
debug messages about the progress of computation, manipulation on data structures

warning messages which are reported by mvpa if something goes a little unexpected but not critical

8.1.1 Redirecting Output

By default, all types of messages are printed by PYMVPA to the standard output. It is possible to redirect them
to standard error, or a file, or a list of multiple such targets, by using environment variable MVPA_?_OUTPUT,
where X is either VERBOSE, DEBUG, or WARNING correspondingly. E.g.:

export MVPA_VERBOSE_OUTPUT=stdout, /tmp/1l MVPA_WARNING_OUTPUT=/tmp/3 MVPA_DEBUG_OUTPUT=stderr, /tmp

would direct verbose messages to standard output as well as to /tmp/1 file, warnings will be stored only in
/tmp/ 3, and debug output would appear on standard error output, as well as in the file /tmp/2.

PyMVPA output redirection though has no effect on external libraries debug output if corresponding debug target
is enabled

shogun debug output (if any of internal SG_ debug targets is enabled) appears on standard output
SMLR debug output (if SMLR__ debug target is enabled) appears on standard output
libsvm debug output (if LIBSVM debug target is enabled) appears on standard error

8.1.2 Verbose Messages

Primarily for a user of PyMVPA to provide information about the progress of their scripts. Such messages are
printed out if their level specified as the first parameter to verbose function call is less than specified. There are
two easy ways to specify verbosity level:

* command line: you can use optVerbose for precrafted command line option for to give facility to change it
from your script (see examples)

e environment variable MVPA_VERBOSE

* code: verbose.level property

The following verbosity levels are supported:
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0 nothing besides errors

1 high level stuff — top level operation or file operations
2 cmdline handling

3 na.

4 computation/algorithm relevant thing

8.1.3 Warning Messages

Reported by PyYMVPA if something goes a little unexpected but not critical. By default they are printed just once
per occasion, i.e. once per piece of code where it is called. Following environment variables control the behavior
of warnings:

* MVPA_WARNINGS_COUNT=<int> controls for how many invocations of specific warning it gets printed
(default behavior is 1 for once). Specification of negative count results in all invocations being printed, and
value of 0 obviously suppresses the warnings

* MVPA_NO_WARNINGS analogous to MVPA_WARNINGS_COUNT=0 it resultant behavior

e MVPA_WARNINGS_BT=<int> controls up to how many lines of traceback is printed for the warnings

In python code, invocation of warning with argument ‘bt = True’ enforces printout of traceback whenever
warning tracebacks are disabled by default.

8.1.4 Debug Messages

Debug messages are used to track progress of any computation inside PyMVPA while the code run by python with-
out optimization (i.e. without —O switch to python). They are specified not by the level but by some id usually spe-
cific for a particular PyMVPA routine. For example RFEC id causes debugging information about Recursive Fea-
ture Elimination call to be printed (See misc module sources for the list of all ids, or print debug.registered
property).

Analogous to verbosity level there are two easy ways to specify set of ids to be enabled (reported):

» command line: you can use optDebug for precrafted command line option to provide it from your script
(see examples). If in command line if optDebug is used, ‘~d 1ist’ is given, PyYMVPA will print out list
of known ids.

 environment: variable MVPA_DEBUG can contain comma-separated list of ids or python regular expressions
to match multiple ids. Thus specifying MVPA_DEBUG=CLF . » would enable all ids which start with CLF,
and MVPA_DEBUG=. = would enable all known ids.

* code: debug.active property (e.g. ‘debug.active = [ 'RFEC’, 'CLF’ 1°)

Besides printing debug messages, it is also possible to print some metric. You can define new metrics or select pre-
defined ones (vmem, asctime, pid). To enable list of metrics you can use MVPA_DEBUG_METRICS environment
variable to list desired metric names comma-separated.

As it was mentioned earlier, debug messages are printed only in non-optimized python invocation. That was done
to eliminate any slowdown introduced by such ‘debugging’ output, which might appear at some computational
bottleneck places in the code.

Some of the debug ids are defined to facilitate additional checking of the validity of the analysis. E.g. RETRAIN
id would cause additional checking of the data in retraining phase. Such additional testing might spot out some
bugs in the internal logic.
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8.2 Additional Little Helpers

8.2.1 Random Number Generation

To facilitate reproducible troubleshooting, a seed value of random generator of NumPy can be provided in debug
mode (python is called without —0O) via environment variable MVPA_SEED=<int>. Otherwise it gets seeded
with random integer which can be displayed with debug id RANDOM e.g.:

> MVPA_SEED=123 MVPA_DEBUG=RANDOM python test_clf.py
[RANDOM] DBG: Seeding RNG with 123

> MVPA_DEBUG=RANDOM python test_clf.py
[RANDOM] DBG: Seeding RNG with 1447286079

8.2.2 Others

(to be written)

8.3 FSL Bindings

(to be written)
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CHAPTER
NINE

Data vs. Dataset: A Glossary

(to be written)
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CHAPTER
TEN

PyMVPA for Matlab Users

(to be written)

35



36



CHAPTER
ELEVEN

Frequently Asked Questions

11.1 | am tired of writing these endless import blocks. Any alter-
native?

Sure. Instead of individually importing all pieces that are required by a script, you can import them
all at once. A simple:

import mvpa.suite as mvpa

makes everything directly accessible through the mvpa namespace, e.g. mvpa.datasets.base.Dataset
becomes mvpa.Dataset. Really lazy people can even do:

from mvpa.suite import =x

However, as always there is a price to pay for this convenience. In contrast to the individual imports
there is some intial performance and memory cost. In the worst case you’ll get all external dependen-
cies loaded (e.g. a full R session), just because you have them installed. Therefore, it might be better
to limit this use to case where individual key presses matter and use individual imports for production
scripts.

11.2 | feel like | want to contribute something, do you mind?

Not at all! If you think there is something that is not well explained in the documentation, send us
an improvement. If you implemented a new algorithm using PyMVPA that you want to share, please
share. If you have an idea for some other improvement (e.g. speed, functionality), but you have no
time/cannot/do not want to implement it yourself, please post your idea to the PyMVPA mailing list.

11.3 The manual is quite insufficient. When will you improve it?

Writing a manual can be a tricky task if you already know the details and have to imagine what might
be the most interesting information for someone who is just starting. If you feel that something is
missing which has cost you some time to figure out, please drop us a note and we will add it as soon
as possible. If you have developed some code snippets to demonstrate some feature or non-trivial
behaviour, please consider sharing this snippet with us and we will put it into the example collection
or the manual. Thanks!
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CHAPTER
TWELVE

Examples

Each of the following examples is a stand-alone script containing all necessary code to run some analysis. All
examples are shipped with PYMVPA and can be found in the doc/examples/ directory in the source package. This
directory include some more special-interest examples which are not listed here.

Some examples need to access sample dataset available under data/ directory within root of PyMVPA hierarchy,
thus they have to be invoked directly from PyMVPA root (e.g. doc/examples/searchlight_2d.py).

12.1 Simple Plotting of Classifier Behavior

This example runs a number of classifiers on a simple dataset and plots the decision surface of each classifier.

#!/usr/bin/env python

#emacs: —+— mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil —#*-—
#ex: set sts=4 ts=4 sw=4 et:

#H# ##E #HA AEF FEF FHE HHE AEE FEF FEE HHE HEE FEE FRAE REE A FEE FEE #AE R
#

# See COPYING file distributed along with the PyMVPA package for the

# copyright and license terms.

#

### ### #AH #AE HHA FAF FAE AAS AR FEF FAE EE AR FREF REE #HE REE FEE #EE R

"""Example demonstrating a simple classifiction of a 2-D dataset"""

from mvpa.suite import =

mon

# Command above substitutes the following list

import numpy as N
import pylab as P

# local imports

from mvpa.datasets import Dataset

from mvpa.clfs.plr import PLR

from mvpa.clfs.ridge import RidgeReg

from mvpa.clfs.svm import RbfNuSVMC, LinearNuSVMC
from mvpa.clfs.knn import kNN

mown

# set up the labeled data
# two skewed 2-D distributions
num_dat = 200

dist = 4

feat_pos=N.random.randn (2, num_dat)
feat_pos [0, :] = 2.

feat_pos[l, :] = .5

feat_pos [0, :] += dist
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feat_neg=N.random.randn (2, num_dat)
feat_neg[0, :] %= .5

feat_negll, :]1 »= 2.

feat_neg[0, :] —-= dist

# set up the testing features

x1 = N.linspace (=10, 10, 100)

x2 = N.linspace(-10, 10, 100)

X,y = N.meshgrid(xl, x2);

feat_test = N.array((N.ravel(x), N.ravel(y)))

# create the pymvpa dataset from the labeled features

patt
patt
patt

# se
clfs

ernsPos = Dataset (samples=feat_pos.T, labels=1)
ernsNeg = Dataset (samples=feat_neg.T, labels=0)
erns = patternsPos + patternsNeg

t up classifiers to try out
= {/Ridge Regression’: RidgeReg(),
"Linear SVM’: LinearNuSVMC (probability=1,
enable_states=[’probabilities’]),
"RBE SVM’ : RbENuSVMC (probability=1,
enable_states=['probabilities’]),
"Logistic Regression’: PLR(criterion=0.00001),
’k-Nearest—-Neighbour’: kNN (k=10)}

# loop over classifiers and show how they do

fig

=0

# make a new figure

P.fi
for

gure (figsize=(8,12))

c in clfs:

# tell which one we are doing

print "Running %s classifier..." % (c)

# make a new subplot for each classifier
fig += 1
P.subplot (3,2, fiqg)

# plot the training points
P.plot (feat_pos[0, :]1, feat_pos[l, :1, "r.")
P.plot (feat_neg[0O, :], feat_negll, :1, "b.")

# select the clasifier
clf = clfs|[c]

# enable saving of the values used for the prediction
clf.states.enable(’values’)

# train with the known points
clf.train(patterns)

# run the predictions on the test values
pre = clf.predict (feat_test.T)

# 1f ridge, use the prediction, otherwise use the values
if ¢ == 'Ridge Regression’ or c == ’'k-Nearest-Neighbour’ :
# use the prediction
res = N.asarray (pre)
elif ¢ == ’"Logistic Regression’:
# get out the values used for the prediction
res = N.asarray(clf.values)
else:
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# get the probabilities from the svm
res = N.asarray ([ (gq[1][1] - g[l][0] + 1) / 2
for g in clf.probabilities])

# reshape the results
= N.asarray (res) .reshape ((100, 100))

N

# plot the predictions

P.pcolor(x, y, z, shading=’interp’)
P.clim(0, 1)

P.colorbar ()

P

.contour(x, y, 2z, linewidths=1, colors='black’, hold=True)

# add the title
P.title(c)

# show all the cool figures
P.show ()

12.2 Easy Searchlight

Run a searchlight analysis on the example fMRI dataset that is shipped with PYMVPA. This example is part of the
PyMVPA source distribution: doc/examples/searchlight_2d.py".

#!/usr/bin/python

#emacs: —+—- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil —#*-—
#ex: set sts=4 ts=4 sw=4 et:

#H# ##H# #HFA HEF FEF FAE HHFE AEE FEF FREE RS AEE FEF FREE REE SRR A #AE R
#

# See COPYING file distributed along with the PyMVPA package for the

# copyright and license terms.

#

#H# #AH #AA AEF FEF FAE HHAE ARA FEF FAEE RHE AEA FEF FREE REE REE AR #EE #EE #

"""Example demonstrating a searchlight analysis on an fMRI dataset"""

from mvpa.suite import =«
mmn

# Command above substitutes commands below

import numpy as N
import pylab as P

# local imports

from mvpa.misc.iohelpers import SampleAttributes

from mvpa.datasets.niftidataset import NiftiDataset

from mvpa.datasets.misc import zscore

from mvpa.misc.signal import detrend

from mvpa.clfs.knn import kNN

from mvpa.clfs.svm import LinearNuSVMC

from mvpa.clfs.transerror import TransferError

from mvpa.datasets.splitter import NFoldSplitter, OddEvenSplitter
from mvpa.algorithms.cvtranserror import CrossValidatedTransferError
from mvpa.measures.searchlight import Searchlight

from mvpa.misc import debug

mwn

# enable debug output for searchlight call
debug.active += ["SLC"]
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#

# load PyMVPA example dataset

#

attr = SampleAttributes (’data/attributes.txt’)

dataset = NiftiDataset (samples='data/bold.nii.gz’,
labels=attr.labels,
chunks=attr.chunks,
mask='data/mask.nii.gz’)

#
# preprocessing

#

# do chunkswise linear detrending on dataset
detrend(dataset, perchunk=True, model=’'linear’)

# only use ’rest’, ’"house’ and ’scrambled’ samples from dataset
dataset = dataset.selectSamples (
N.array([ 1 in [0,2,6] for 1 in dataset.labels], dtype='bool’))

# zscore dataset relative to baseline (’rest’) mean
zscore (dataset, perchunk=True, baselinelabels=[0], targetdtype=’float32’)

# remove baseline samples from dataset for final analysis
dataset = dataset.selectSamples (N.array ([l != 0 for 1 in dataset.labels],
dtype=’'bool’))

#
# Run Searchlight
#

# choose classifier
clf = LinearNuSVMC ()

# setup measure to be computed by Searchlight

# cross-validated mean transfer using an odd-even dataset splitter

cv = CrossValidatedTransferError (TransferError (clf),
NFoldSplitter())

# setup plotting
fig = 0
P.figure(figsize=(12,4))

for radius in [1,5,10]:
# tell which one we are doing
print "Running searchlight with radius: %i ..." % (radius)

# setup Searchlight with a custom radius
# radius has to be in the same unit as the nifti file’s pixdim property.
sl = Searchlight (cv, radius=radius)

# run searchlight on example dataset and retrieve error map
sl_map = sl (dataset)

# map sensitivity map into original dataspace
orig_sl_map = dataset.mapReverse (N.array (sl_map))
masked_orig_sl _map = N.ma.masked_array(orig_sl_map, mask=orig_sl_map == 0)

# make a new subplot for each classifier
fig += 1
P.subplot (1,3,fig)
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P.title (’Radius %1’ % radius)

P.imshow (masked_orig_sl _map[O],
interpolation='nearest’,
aspect=1.25,
cmap=P.cm.autumn)

P.clim(0.5, 0.65)

P.colorbar (shrink=0.6)

# show all the cool figures
P.show ()

12.3 Sensitivity Measure

Run some basic and meta sensitivity measures on the example fMRI dataset that comes with PYMVPA and plot
the computed featurewise measures for each.

#!/usr/bin/env python

#emacs: —x— mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil —x-—

#ex: set sts=4 ts=4 sw=4 et:

#H## ### #AF FEA HHE FEE AFE B FEE HEE R HEE HEE FEE HEE #EF HEE R #EE #
#

# See COPYING file distributed along with the PyMVPA package for the

# copyright and license terms.

#

#H## #A## #AF FEE HAE AR AFE FAF FEE AR FEE AEE #EE FEE RS R FEE AR #EE
"""Example demonstrating some FeaturewiseDatasetMeasures performing on a fMRI

dataset with brain activity recorded while perceiving images of objects

(shoes vs. chairs).

Generated images show sensitivity maps computed by six sensitivity analyzers.

This example assumes that the PyMVPA example dataset is located in data/.

mwn

from mvpa.suite import =«
mmn

# Command above substitutes commands below

import numpy as N
import pylab as P

# local imports

from mvpa.datasets.niftidataset Import NiftiDataset

from mvpa.misc.iohelpers import SampleAttributes

from mvpa.measures.anova import OneWayAnova

from mvpa.clfs.svm import LinearNuSVMC

from mvpa.datasets.misc import zscore

from mvpa.misc.signal import detrend

from mvpa.measures.splitmeasure Import SplitFeaturewiseMeasure
from mvpa.datasets.splitter import OddEvenSplitter, NFoldSplitter

mwn

# load PyMVPA example dataset

attr = SampleAttributes(’data/attributes.txt’)

dataset = NiftiDataset (samples='data/bold.nii.gz’,
labels=attr.labels,
chunks=attr.chunks,
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mask='data/mask.nii.gz’)

# define sensitivity analyzer
sensanas = {’a) ANOVA’: OneWayAnova (transformer=N.abs),

"b) Linear SVM weights’: LinearNuSVMC () .getSensitivityAnalyzer (

transformer=N.abs),
"c) Splitting ANOVA (odd-even)’:
SplitFeaturewiseMeasure (OneWayAnova (transformer=N.abs),
OddEvenSplitter()),
"d) Splitting SVM (odd-even)’:
SplitFeaturewiseMeasure (

LinearNuSVMC () .getSensitivityAnalyzer (transformer=N.abs),

OddEvenSplitter()),
"e) Splitting ANOVA (nfold)’:
SplitFeaturewiseMeasure (OneWayAnova (transformer=N.abs),
NFoldSplitter()),
"f) Splitting SVM (nfold)’:
SplitFeaturewiseMeasure (

LinearNuSVMC () .getSensitivityAnalyzer (transformer=N.abs),

NFoldSplitter())
# do chunkswise linear detrending on dataset
detrend(dataset, perchunk=True, model='linear’)

# only use ’rest’, ’shoe’ and ’bottle’ samples from dataset
dataset = dataset.selectSamples (

N.array ([ 1 in [0,3,7] for 1 in dataset.labels], dtype='"bool’))

# zscore dataset relative to baseline (’rest’) mean
zscore (dataset, perchunk=True, baselinelabels=[0], targetdtype=’float32’)

# remove baseline samples from dataset for final analysis
dataset = dataset.selectSamples (N.array ([l != 0 for 1 in dataset.labels],
dtype=’"bool’))

fig = 0
P.figure(figsize=(8,8))

keys = sensanas.keys()
keys.sort ()

for s in keys:
# tell which one we are doing
print "Running %s ..." % (s)

# compute sensitivies
smap = sensanas|[s] (dataset)

# map sensitivity map into original dataspace
orig_smap = dataset.mapReverse (smap)
masked_orig_smap = N.ma.masked_array(orig_smap, mask=orig_smap == 0)

# make a new subplot for each classifier
fig += 1
P.subplot (3,2,fiqg)

P.title(s)
P.imshow (masked_orig_smap([0],

interpolation=’'nearest’,
aspect=1.25,
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cmap=P.cm.autumn)

# uniform scaling per base sensitivity analyzer
if s.count (/ANOVA’) :

P.clim(0, 0.4)
else:

P.clim(0, 0.055)

P.colorbar (shrink=0.6)

# show all the cool figures
P.show ()

12.4 Classification of SVD-mapped Datasets

Demonstrate the usage of a dataset mapper performing singular value decomposition within a cross-validation.

#!/usr/bin/python

#emacs: —+— mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil —*-—
#ex: set sts=4 ts=4 sw=4 et:

#H## A#E #AF FHEA HHEE FHAE AFE FAF FEE HEE FAF REE HAE FEE AEE REF FEE AR FAE O#F
#

# See COPYING file distributed along with the PyMVPA package for the

# copyright and license terms.

#

#H## #A## #AF HEE HHE FEE AEE EEE FEE HEE FEE REE HEE FEE AEE R F RS AR #EE #
"""Example demonstrating a how to use data projection onto SVD components

for xany* clasifier"""

from mvpa.suite import =x

mwn

# Command above substitutes commands below

import numpy as N
import pylab as P

# local imports

from mvpa.misc.iohelpers import SampleAttributes
from mvpa.datasets.niftidataset import NiftiDataset
from mvpa.datasets.misc import zscore

from mvpa.misc.signal import detrend

from mvpa.clfs.transerror import TransferError
from mvpa.datasets.splitter import NFoldSplitter
from mvpa.algorithms.cvtranserror import CrossValidatedTransferError
from mvpa.clfs.svm import LinearCSVMC

from mvpa.clfs.base import MappedClassifier

from mvpa.mappers import SVDMapper

from mvpa.misc import debug

mwn

debug.active += ["CROSSC"]

# plotting helper function

def makeBarPlot (data, labels=None, title=None, ylim=None, ylabel=None) :
xlocations = N.array (range (len(data))) + 0.5
width = 0.5

# work with arrays
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data = N.array (data)

# plot bars
plot = P.bar (xlocations,
data.mean (axis=1),
yerr=data.std(axis=1) / N.sqgrt (data.shape[l]),
width=width,
color="0.6",
ecolor="black’)
P.axhline (0.5, 1ls="--", color="0.4")

if ylim:
P.ylim (% (ylim))

if title:
P.title(title)

if labels:
P.xticks (xlocations+ width/2, labels)

if ylabel:
P.ylabel (ylabel)

P.x1im (0, xlocations[-1]+width=*2)

#

# load PyMVPA example dataset

#

attr = SampleAttributes (’data/attributes.txt’)

dataset = NiftiDataset (samples='data/bold.nii.gz’,
labels=attr.labels,
chunks=attr.chunks,
mask="data/mask.nii.gz’)

#
# preprocessing
#

# do chunkswise linear detrending on dataset
detrend(dataset, perchunk=True, model=’'linear’)

# only use ’rest’, ’face’ and ’"house’ samples from dataset
dataset = dataset.selectSamples (
N.array([ 1 in [0,4,5] for 1 in dataset.labels], dtype='bool’))

# zscore dataset relative to baseline (’rest’) mean
zscore (dataset, perchunk=True, baselinelabels=[0], targetdtype=’float32’)

# remove baseline samples from dataset for final analysis
dataset = dataset.selectSamples(N.array ([l != 0 for 1 in dataset.labels],
dtype='bool’))

# define some classifiers: a simple one and several classifiers with built-in
# SVDs
clfs = [("All orig. features’, LinearCSVMC()),
("All PCs’, MappedClassifier (LinearCSVMC (), SVDMapper())),
("First 3 PCs’, MappedClassifier (LinearCSVMC(),
SVDMapper (selector=range(5)))),
("First 50 PCs’, MappedClassifier (LinearCSVMC(),
SVDMapper (selector=range (50)))),
("PCs 3-50", MappedClassifier (LinearCSVMC (),
SVDMapper (selector=range (3, 50)))) ]
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# run and visualize in barplot
results = []
labels = []

for desc, clf in clfs:
print desc
cv = CrossValidatedTransferError (
TransferError (clf),
NFoldSplitter (),
enable_states=['results’])
cv (dataset)

results.append(cv.results)
labels.append (desc)

makeBarPlot (results, labels=labels, title='Linear C-SVM classification’)
P.show ()

12.5 Compare SMLR to Linear SVM Classifier

Runs both classifiers on the the same dataset and compare their performance. This example also shows an example
usage of confusion matrices and how two classifers can be combined.

#!/usr/bin/env python

#emacs: —x— mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil —x-—
#ex: set sts=4 ts=4 sw=4 et:

#H## A## #AF FEA HHEE FHE AFE B FEE HEE R AEE HEE FEE AEE #EF HEE R FEE #
#

# See COPYING file distributed along with the PyMVPA package for the

# copyright and license terms.

#

### ### #AF #EE HAE FEE AFE FAF FEE AR FEE AEE HEE FEE AEE R FEE AR #EE
"""Example demonstrating a SMLR classifier"""

from mvpa.suite import =«
mmn

# Command above substitutes commands below
import numpy as N

from mvpa.datasets import Dataset
from mvpa.clfs.smlr import SMLR
from mvpa.clfs.svm import LinearNuSVMC

from mvpa.clfs.transerror import ConfusionMatrix
mmn

from mvpa.misc import debug
debug.active.append (' SMLR_")

# features of sample data
print "Generating samples..."
nfeat = 10000

nsamp = 100

ntrain = 90
goodfeat = 10
offset = .5

# create the sample datasets
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sampl = N.random.randn (nsamp,nfeat)
sampl[:, :goodfeat] += offset

samp2 = N.random.randn (nsamp,nfeat)
samp2[:, :goodfeat] -= offset

# create the pymvpa training dataset from the labeled features
patternsPos = Dataset (samples=sampl|[:ntrain,:], labels=1)
patternsNeg = Dataset (samples=samp2[:ntrain, :], labels=0)
trainpat = patternsPos + patternsNeg

# create patters for the testing dataset

patternsPos = Dataset (samples=sampl [ntrain:,:], labels=1)
patternsNeg = Dataset (samples=samp2[ntrain:,:], labels=0)
testpat = patternsPos + patternsNeg

# set up the SMLR classifier
print "Evaluating SMLR classifier..."
smlr = SMLR(fit_all_weights=True)

# enable saving of the values used for the prediction
smlr.states.enable ('values’)

# train with the known points
smlr.train (trainpat)

# run the predictions on the test values
pre = smlr.predict (testpat.samples)

# calculate the confusion matrix

smlr_confusion = ConfusionMatrix (
labels=trainpat.uniquelabels, targets=testpat.labels,
predictions=pre)

# now do the same for a linear SVM
print "Evaluating Linear SVM classifier..."
lsvm = LinearNuSVMC (probability=1)

# enable saving of the values used for the prediction
lsvm.states.enable (' values’)

# train with the known points
lsvm.train(trainpat)

# run the predictions on the test values
pre = lsvm.predict (testpat.samples)

# calculate the confusion matrix

lsvm_confusion = ConfusionMatrix (
labels=trainpat.uniquelabels, targets=testpat.labels,
predictions=pre)

# now train SVM with selected features

print "Evaluating Linear SVM classifier with SMLR’s features..."

keepInd = (N.abs(smlr.weights) .mean (axis=1) !=0)
newtrainpat = trainpat.selectFeatures (keepInd, sort=False)
newtestpat = testpat.selectFeatures (keepInd, sort=False)

# train with the known points
lsvm.train (newtrainpat)
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# run the predictions on the test values
pre = lsvm.predict (newtestpat.samples)

# calculate the confusion matrix

lsvm_confusion_sparse = ConfusionMatrix(
labels=newtrainpat.uniquelabels, targets=newtestpat.labels,

predictions=pre)

print "SMLR Percent Correct:\t%g%2

(Retained %d/%d features)" % \

(smlr_confusion.percentCorrect,
(smlr.weights!=0) .sum(), N.prod(smlr.weights.shape))

o

print "linear-SVM Percent Correct:\t2%g%s" % \
(lsvm_confusion.percentCorrect)

print "linear—-SVM Percent Correct

(with ¢d features from SMLR) :\t%g%2" % \

(keepInd.sum(), lsvm_confusion_sparse.percentCorrect)

Contents
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CHAPTER
THIRTEEN

License

The PyMVPA package, including all examples, code snippets and attached documentation is covered by the MIT
license.

The MIT License

Copyright (c) 2006-2008 Michael Hanke
2007-2008 Yaroslav Halchenko

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
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CHAPTER
FOURTEEN

PyMVPA Development Changelog

This changelog only lists rather macroscopic changes to PyYMVPA. The full VCS changelog is available here:

http://git.debian.org/?p=pkg-exppsy/pymvpa.git;a=summary

‘Closes’ statement IDs refer to the Debian bug tracking system and can be queried by visiting the URL:

http://bugs.debian.org/<bug id>

Unreleased changes Changes described here are not yet released, but available from VCS repository.

(currently none)

14.1 Releases

e 0.2.2 (Tue, 17 Jun 2008)

Extended build instructions: Added section on OpenSUSE.

Replaced ugly PYMVPA_LIBSVM environment variable to trigger compiling the LIBSVM wrap-
per with a proper ‘—with-libsvm’ switch in setup.py. Additionally, setup.py now detects if included
LIBSVM has been built and enables LIBSVM wrapper automatically in this case.

Added proper Makefiles for LIBSVM copy, with configurable compiler flags.

Added ‘setup.cfg’ to remove the need to manually specify swig-opts (Windows specific configuration
is in ‘setup.cfg.win’).

* 0.2.1 (Sun, 15 Jun 2008)

Several improvements to make building PyMVPA on Windows systems easy (e.g. added dedicated
Makefile.win to build a binary installer).

Improved and extended documentation for building and installing PyYMVPA.

Include a minimal copy of the required (patched) LIBSVM library (currently version 2.85.0) for con-
venience. This copy is automatically compiled and used for the LIBSVM wrapper when PyMVPA
built using the Make approach.

* 0.2.0 (Wed, 29 May 2008)

New Splitter class (HalfSplitter) to split into first and second half.

New Splitter class (CustomSplitter) to allow for splits with an arbitrary number of datasets per split
and the ability to specify the association of samples with any of those datasets (not just the validation
set).

New sparse multinomial logistic regression (SMLR) classifier and associated sensitivity analyzer.

New least angle regression classifier (LARS).
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New gaussian process regression classifier (GPR).

Initial documentation on extending PyYMVPA.

Switch to Sphinx for documentation handling.

New example comparing the performance of all classifiers on some artificial datasets.

New data mapper performing singular value decomposition (SVDMapper) and an example showing
its usage.

More sophisticated data preprocessing: removal of non-linear trends and other arbitrary confounding
regressors.

New Harvester class to feed data from arbitrary generators into multiple objects and store results of
returned values and arbitrary properties.

Added documentation about how to build patched libsvm version with sane debug output.

libsvm bindings are not build by default anymore. Instructions on how to reenable them are available
in the manual.

New wrapper from SVM implementation of the Shogun toolbox.
Important bugfix in RFE, which reported incorrect feature ids in some cases.

Added ability to compute stats/probabilities for all measures and transfer errors.

* 0.1.0 (Wed, 20 Feb 2008)

First public release.
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