Actual source code: ex77.c

  1: /*$Id: ex77.c,v 1.12 2001/08/07 21:30:08 bsmith Exp $*/

  3: static char help[] = "Tests the various sequential routines in MatSBAIJ format. Same as ex74.c except diagonal entries of the matrices are zeros.n";

 5:  #include petscmat.h

  7: /* extern int MatReorderingSeqSBAIJ(Mat,IS); */

  9: int main(int argc,char **args)
 10: {
 11:   Vec         x,y,b,s1,s2;
 12:   Mat         A;           /* linear system matrix */
 13:   Mat         sA,sC;         /* symmetric part of the matrices */

 15:   int         n,mbs=16,bs=1,nz=3,prob=2;
 16:   PetscScalar neg_one = -1.0,value[3],alpha=0.1;
 17:   int         ierr,i,j,col[3],size,row,I,J,n1,*ip_ptr;
 18:   IS          ip, isrow, iscol;
 19:   PetscRandom rand;
 20:   PetscTruth  reorder=PETSC_FALSE,getrow=PETSC_FALSE;
 21:   MatInfo     minfo1,minfo2;
 22:   PetscScalar *vr1,*vr2,*vr1_wk,*vr2_wk;
 23:   int         *cols1,*cols2;
 24:   PetscReal   norm1,norm2,tol=1.e-10;

 26:   PetscInitialize(&argc,&args,(char *)0,help);
 27:   MPI_Comm_size(PETSC_COMM_WORLD,&size);
 28:   if (size != 1) SETERRQ(1,"This is a uniprocessor example only!");
 29:   PetscOptionsGetInt(PETSC_NULL,"-bs",&bs,PETSC_NULL);
 30:   PetscOptionsGetInt(PETSC_NULL,"-mbs",&mbs,PETSC_NULL);

 32:   n = mbs*bs;
 33:   ierr=MatCreateSeqBAIJ(PETSC_COMM_WORLD,bs,n,n,nz,PETSC_NULL, &A);
 34:   ierr=MatCreateSeqSBAIJ(PETSC_COMM_WORLD,bs,n,n,nz,PETSC_NULL, &sA);

 36:   /* Test MatGetOwnershipRange() */
 37:   MatGetOwnershipRange(A,&I,&J);
 38:   MatGetOwnershipRange(sA,&i,&j);
 39:   if (i-I || j-J){
 40:     PetscPrintf(PETSC_COMM_SELF,"Error: MatGetOwnershipRange() in MatSBAIJ formatn");
 41:   }

 43:   /* Assemble matrix */
 44:   if (bs == 1){
 45:     PetscOptionsGetInt(PETSC_NULL,"-test_problem",&prob,PETSC_NULL);
 46:     if (prob == 1){ /* tridiagonal matrix */
 47:       value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;
 48:       for (i=1; i<n-1; i++) {
 49:         col[0] = i-1; col[1] = i; col[2] = i+1;
 50:         MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);
 51:         MatSetValues(sA,1,&i,3,col,value,INSERT_VALUES);
 52:       }
 53:       i = n - 1; col[0]=0; col[1] = n - 2; col[2] = n - 1;
 54:       value[0]= 0.1; value[1]=-1; value[2]=2;
 55:       MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);
 56:       MatSetValues(sA,1,&i,3,col,value,INSERT_VALUES);

 58:       i = 0; col[0] = 0; col[1] = 1; col[2]=n-1;
 59:       value[0] = 2.0; value[1] = -1.0; value[2]=0.1;
 60:       MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);
 61:       MatSetValues(sA,1,&i,3,col,value,INSERT_VALUES);
 62:     }
 63:     else if (prob ==2){ /* matrix for the five point stencil */
 64:       n1 = (int) (sqrt((PetscReal)n) + 0.001);
 65:       if (n1*n1 - n) SETERRQ(PETSC_ERR_ARG_WRONG,"sqrt(n) must be a positive interger!");
 66:       for (i=0; i<n1; i++) {
 67:         for (j=0; j<n1; j++) {
 68:           I = j + n1*i;
 69:           if (i>0)   {
 70:             J = I - n1;
 71:             MatSetValues(A,1,&I,1,&J,&neg_one,INSERT_VALUES);
 72:             MatSetValues(sA,1,&I,1,&J,&neg_one,INSERT_VALUES);
 73:           }
 74:           if (i<n1-1) {
 75:             J = I + n1;
 76:             MatSetValues(A,1,&I,1,&J,&neg_one,INSERT_VALUES);
 77:             MatSetValues(sA,1,&I,1,&J,&neg_one,INSERT_VALUES);
 78:           }
 79:           if (j>0)   {
 80:             J = I - 1;
 81:             MatSetValues(A,1,&I,1,&J,&neg_one,INSERT_VALUES);
 82:             MatSetValues(sA,1,&I,1,&J,&neg_one,INSERT_VALUES);
 83:           }
 84:           if (j<n1-1) {
 85:             J = I + 1;
 86:             MatSetValues(A,1,&I,1,&J,&neg_one,INSERT_VALUES);
 87:             MatSetValues(sA,1,&I,1,&J,&neg_one,INSERT_VALUES);
 88:           }
 89:           /*
 90:           MatSetValues(A,1,&I,1,&I,&four,INSERT_VALUES);
 91:           MatSetValues(sA,1,&I,1,&I,&four,INSERT_VALUES);
 92:           */
 93:         }
 94:       }
 95:     }
 96:   }
 97:   else { /* bs > 1 */
 98: #ifdef DIAGB
 99:     for (block=0; block<n/bs; block++){
100:       /* diagonal blocks */
101:       value[0] = -1.0; value[1] = 4.0; value[2] = -1.0;
102:       for (i=1+block*bs; i<bs-1+block*bs; i++) {
103:         col[0] = i-1; col[1] = i; col[2] = i+1;
104:         MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);
105:         MatSetValues(sA,1,&i,3,col,value,INSERT_VALUES);
106:       }
107:       i = bs - 1+block*bs; col[0] = bs - 2+block*bs; col[1] = bs - 1+block*bs;
108:       value[0]=-1.0; value[1]=4.0;
109:       MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);
110:       MatSetValues(sA,1,&i,2,col,value,INSERT_VALUES);

112:       i = 0+block*bs; col[0] = 0+block*bs; col[1] = 1+block*bs;
113:       value[0]=4.0; value[1] = -1.0;
114:       MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);
115:       MatSetValues(sA,1,&i,2,col,value,INSERT_VALUES);
116:     }
117: #endif
118:     /* off-diagonal blocks */
119:     value[0]=-1.0;
120:     for (i=0; i<(n/bs-1)*bs; i++){
121:       col[0]=i+bs;
122:       MatSetValues(A,1,&i,1,col,value,INSERT_VALUES);
123:       MatSetValues(sA,1,&i,1,col,value,INSERT_VALUES);
124:       col[0]=i; row=i+bs;
125:       MatSetValues(A,1,&row,1,col,value,INSERT_VALUES);
126:       MatSetValues(sA,1,&row,1,col,value,INSERT_VALUES);
127:     }
128:   }
129:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
130:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
131:   /* PetscPrintf(PETSC_COMM_SELF,"n The Matrix: n");
132:   MatView(A, VIEWER_DRAW_WORLD);
133:   MatView(A, VIEWER_STDOUT_WORLD); */

135:   MatAssemblyBegin(sA,MAT_FINAL_ASSEMBLY);
136:   MatAssemblyEnd(sA,MAT_FINAL_ASSEMBLY);
137:   /* PetscPrintf(PETSC_COMM_SELF,"n Symmetric Part of Matrix: n");
138:   MatView(sA, VIEWER_DRAW_WORLD); 
139:   MatView(sA, VIEWER_STDOUT_WORLD); 
140:   */

142:   /* Test MatNorm() */
143:   MatNorm(A,NORM_FROBENIUS,&norm1);
144:   MatNorm(sA,NORM_FROBENIUS,&norm2);
145:   norm1 -= norm2;
146:   if (norm1<-tol || norm1>tol){
147:     PetscPrintf(PETSC_COMM_SELF,"Error: MatNorm(), fnorm1-fnorm2=%16.14en",norm1);
148:   }
149:   MatNorm(A,NORM_INFINITY,&norm1);
150:   MatNorm(sA,NORM_INFINITY,&norm2);
151:   norm1 -= norm2;
152:   if (norm1<-tol || norm1>tol){
153:     PetscPrintf(PETSC_COMM_SELF,"Error: MatNorm(), inf_norm1-inf_norm2=%16.14en",norm1);
154:   }
155: 
156:   /* Test MatGetInfo(), MatGetSize(), MatGetBlockSize() */
157:   MatGetInfo(A,MAT_LOCAL,&minfo1);
158:   MatGetInfo(sA,MAT_LOCAL,&minfo2);
159:   /*
160:   printf("matrix nonzeros (BAIJ format) = %d, allocated nonzeros= %dn", (int)minfo1.nz_used,(int)minfo1.nz_allocated); 
161:   printf("matrix nonzeros(SBAIJ format) = %d, allocated nonzeros= %dn", (int)minfo2.nz_used,(int)minfo2.nz_allocated); 
162:   */
163:   i = (int) (minfo1.nz_used - minfo2.nz_used);
164:   j = (int) (minfo1.nz_allocated - minfo2.nz_allocated);
165:   if (i<0 || j<0) {
166:     PetscPrintf(PETSC_COMM_SELF,"Error: MatGetInfo()n");
167:   }

169:   MatGetSize(A,&I,&J);
170:   MatGetSize(sA,&i,&j);
171:   if (i-I || j-J) {
172:     PetscPrintf(PETSC_COMM_SELF,"Error: MatGetSize()n");
173:   }
174: 
175:   MatGetBlockSize(A, &I);
176:   MatGetBlockSize(sA, &i);
177:   if (i-I){
178:     PetscPrintf(PETSC_COMM_SELF,"Error: MatGetBlockSize()n");
179:   }

181:   /* Test MatGetRow() */
182:   if (getrow){
183:     row = n/2;
184:     PetscMalloc(n*sizeof(PetscScalar),&vr1);
185:     vr1_wk = vr1;
186:     PetscMalloc(n*sizeof(PetscScalar),&vr2);
187:     vr2_wk = vr2;
188:     MatGetRow(A,row,&J,&cols1,&vr1);
189:     vr1_wk += J-1;
190:     MatGetRow(sA,row,&j,&cols2,&vr2);
191:     vr2_wk += j-1;
192:     VecCreateSeq(PETSC_COMM_SELF,j,&x);
193: 
194:     for (i=j-1; i>-1; i--){
195:       VecSetValue(x,i,*vr2_wk - *vr1_wk,INSERT_VALUES);
196:       vr2_wk--; vr1_wk--;
197:     }
198:     VecNorm(x,NORM_1,&norm2);
199:     if (norm2<-tol || norm2>tol) {
200:       PetscPrintf(PETSC_COMM_SELF,"Error: MatGetRow()n");
201:     }
202:     VecDestroy(x);
203:     MatRestoreRow(A,row,&J,&cols1,&vr1);
204:     MatRestoreRow(sA,row,&j,&cols2,&vr2);
205:     PetscFree(vr1);
206:     PetscFree(vr2);

208:     /* Test GetSubMatrix() */
209:     /* get a submatrix consisting of every next block row and column of the original matrix */
210:     /* for symm. matrix, iscol=isrow. */
211:     PetscMalloc(n*sizeof(IS),&isrow);
212:     PetscMalloc(n*sizeof(int),&ip_ptr);
213:     j = 0;
214:     for (n1=0; n1<mbs; n1 += 2){ /* n1: block row */
215:       for (i=0; i<bs; i++) ip_ptr[j++] = n1*bs + i;
216:     }
217:     ISCreateGeneral(PETSC_COMM_SELF, j, ip_ptr, &isrow);
218:     /* ISView(isrow, VIEWER_STDOUT_SELF); */
219: 
220:     MatGetSubMatrix(sA,isrow,isrow,PETSC_DECIDE,MAT_INITIAL_MATRIX,&sC);
221:     ISDestroy(isrow);
222:     PetscFree(ip_ptr);
223:     printf("sA =n");
224:     MatView(sA,PETSC_VIEWER_STDOUT_WORLD);
225:     printf("submatrix of sA =n");
226:     MatView(sC,PETSC_VIEWER_STDOUT_WORLD);
227:     MatDestroy(sC);
228:   }

230:   /* Test MatDiagonalScale(), MatGetDiagonal(), MatScale() */
231:   PetscRandomCreate(PETSC_COMM_SELF,RANDOM_DEFAULT,&rand);
232:   VecCreateSeq(PETSC_COMM_SELF,n,&x);
233:   VecDuplicate(x,&s1);
234:   VecDuplicate(x,&s2);
235:   VecDuplicate(x,&y);
236:   VecDuplicate(x,&b);

238:   VecSetRandom(rand,x);

240:   MatDiagonalScale(A,x,x);
241:   MatDiagonalScale(sA,x,x);

243:   MatGetDiagonal(A,s1);
244:   MatGetDiagonal(sA,s2);
245:   VecNorm(s1,NORM_1,&norm1);
246:   VecNorm(s2,NORM_1,&norm2);
247:   norm1 -= norm2;
248:   if (norm1<-tol || norm1>tol) {
249:     PetscPrintf(PETSC_COMM_SELF,"Error:MatGetDiagonal() n");
250:   }

252:   MatScale(&alpha,A);
253:   MatScale(&alpha,sA);

255:   /* Test MatMult(), MatMultAdd() */
256:   for (i=0; i<40; i++) {
257:     VecSetRandom(rand,x);
258:     MatMult(A,x,s1);
259:     MatMult(sA,x,s2);
260:     VecNorm(s1,NORM_1,&norm1);
261:     VecNorm(s2,NORM_1,&norm2);
262:     norm1 -= norm2;
263:     if (norm1<-tol || norm1>tol) {
264:       PetscPrintf(PETSC_COMM_SELF,"Error: MatMult(), MatDiagonalScale() or MatScale()n");
265:     }
266:   }

268:   for (i=0; i<40; i++) {
269:     VecSetRandom(rand,x);
270:     VecSetRandom(rand,y);
271:     MatMultAdd(A,x,y,s1);
272:     MatMultAdd(sA,x,y,s2);
273:     VecNorm(s1,NORM_1,&norm1);
274:     VecNorm(s2,NORM_1,&norm2);
275:     norm1 -= norm2;
276:     if (norm1<-tol || norm1>tol) {
277:       PetscPrintf(PETSC_COMM_SELF,"Error:MatMultAdd(), MatDiagonalScale() or MatScale() n");
278:     }
279:   }

281:   /* Test MatReordering() */
282:   MatGetOrdering(A,MATORDERING_NATURAL,&isrow,&iscol);
283:   ip = isrow;

285:   if (reorder){
286:     ISGetIndices(ip,&ip_ptr);
287:     i = ip_ptr[1]; ip_ptr[1] = ip_ptr[mbs-2]; ip_ptr[mbs-2] = i;
288:     i = ip_ptr[0]; ip_ptr[0] = ip_ptr[mbs-1]; ip_ptr[mbs-1] = i;
289:     ierr= ISRestoreIndices(ip,&ip_ptr);

291:     MatReorderingSeqSBAIJ(sA, ip);
292:     /* ISView(ip, VIEWER_STDOUT_SELF); 
293:        MatView(sA,VIEWER_DRAW_SELF); */
294:   }
295: 
296:   ISDestroy(iscol);
297:   /* ISDestroy(isrow);*/

299:   ISDestroy(isrow);
300:   MatDestroy(A);
301:   MatDestroy(sA);
302:   VecDestroy(x);
303:   VecDestroy(y);
304:   VecDestroy(s1);
305:   VecDestroy(s2);
306:   VecDestroy(b);
307:   PetscRandomDestroy(rand);

309:   PetscFinalize();
310:   return 0;
311: }