
High Quality C Preprocessor mcpp

Kiyoshi Matsui
kmatsui@t3.rim.or.jp

November 12, 2006

Abstract

There has been a long history of confusion about
the specifications of C preprocessing. Although,
after C90, preprocessor specifications tend to
converge to the Standard, so called Standard-
conforming preprocessors still sometimes behave
wrong.

Moreover, the existing preprocessors have not a
little implementation-specific behaviors, and as a
result preprocessing sometimes impairs portabil-
ity, although one of the purpose of preprocessing
is to provide portability. Besides, debug of prepro-
cessing, which is difficult in compile phase, should
be supported by preprocessor, however, the exist-
ing preprocessors have little of that functionality.
Under these problems lies the fact that in most
compiler systems preprocessor has been an ad-
dition to compiler. This situation has not much
changed until now.

mcpp has been developed attempting to solve
these problems. mcpp is a free and portable C
preprocessor and provides a validation suite to
make thorough tests and evaluation of C/C++ pre-
processors. When this validation suite is applied
to various preprocessors, mcpp achieves a promi-
nent result. mcpp not only has the highest confor-
mance but also provides a variety of on-target di-
agnostic messages and #pragma directives to out-
put debugging information. mcpp thus allows
users to check almost all the preprocessing prob-
lems of source code.

1 Introduction

There has been a long history of confusion
about the specifications of C preprocessors. Al-
though, after C90 (C89),2–5 preprocessor specifi-
cations have converged to the Standard, so called
Standard-conforming preprocessors still some-
times behave wrong. It can be said that prepro-
cessing is a rather immature field compared to
compiling.

Behind this, there lies a background that pre-
processing specifications before C90 were very
ambiguous. C90 gave the first overall definition
of C preprocessing, going back to the principles
of preprocessing. C90, however, has some com-
promising parts with the historical negative in-
heritance, which have not been cleared even by
C99.6–8 Moreover, most of the existing preproces-
sors seem to have grafted each specifications of
the Standards one by one without C preprocess-
ing principles being made clear, thus prolonging
the problems. The subordinate situation of pre-
processor to compiler makes another background
of the problems.

Against these backgrounds, not a few C pro-
grams have preprocessing level problems, such
as unnecessarily implementation-dependent code
lacking of portability. One of the reasons for exis-
tence of the preprocessing phase in C is to provide
greater portability, however, in fact, preprocessing
itself has often impaired it.

In addition, preprocessing causes debugging dif-
ficulties. Since preprocessing is a “pre”process
of compiling, preprocessing directives and macros

1



disappear in compile phase. Although the prepro-
cessors themselves should assist debug of prepro-
cess phase, no preprocessor does this.

I have been developing a C preprocessor for a
long time. My work had already been released as
cpp V.2.0 and V.2.2 in August 1998 and in Novem-
ber 1998 respectively. During the course of updat-
ing the software to V.2.3, it was selected as one of
the “Exploratory Software Projects” for year 2002
and for year 2003 by Information-technology Pro-
motion Agency (IPA), Japan.1 V.2.3 and V.2.4 were
released as the results of the project. After the
project, V.2.5 and V.2.6 were released. My cpp is
called mcpp (Matsui CPP) to distinguish it from
other cpps.

mcpp is probably number one C preprocessor
now available in the world. I say this not merely
from self-praise, but because of its big feature that
its behaviors have been completely verified using
“Validation Suite”, which I developed in parallel
with mcpp.

Another feature is that it provides a lot of di-
agnostic messages and #pragma directives for de-
bugging information that allows you to check al-
most all the preprocessing problems in source pro-
grams and to increase source portability.

Also it is a portable preprocessor easily imple-
mentable for any compiler system, and hence can
assure portability of preprocess phase indepen-
dent on the compilers proper. Its source is struc-
tured on clearly defined preprocessing principles,
and its specifications are clear.

This document is organized as follows:
Section 2: Provides an overview of mcpp.
Section 3: Introduces briefly the basic specifica-

tions of Standard C preprocessing.
Section 4: Introduces mcpp’s accompanying

Validation Suite and shows data to compare Stan-
dard conformance level and qualities with other
preprocessors.

Section 5: Shows examples of bugs and prob-
lems in compiler-system-resident preprocessors.

Section 6: Describes source checking by mcpp
of the real world programs.

Section 7: Discusses C preprocessing principles
and how to implement them.

Section 8: Describes the current version of
mcpp and future update plans.

2 mcpp Overview

mcpp has the following features:

1. Has the highest conformance to C/C++ Stan-
dards because mcpp aims at becoming a ref-
erence model of C and C++ preprocessors.
mcpp provides run-time options to enable
C99 and C++989, 10 behaviors, needless to say
C90.

2. Provides a validation suite that allows you
to test and evaluate C or C++ preprocessors
themselves in great detail and comprehen-
sively.

3. Provides a lot of diagnostic messages of more
than one hundred types to pinpoint a prob-
lem in source code. They are divided into sev-
eral classes. Messages of which class are dis-
played is controlled by run-time options.

4. Provides the #pragma directives to output
various debugging information. The direc-
tives allow you to trace tokenization and
macro expansion, to output a macro definition
list and etc.

5. mcpp’s multi-byte character processing can
handle a variety of Japanese EUC-JP, shift-
JIS and ISO-2022-JP, Chinese GB-2312, Tai-
wanese Big-5 and Korean KSX-1001 encod-
ings as well as UTF-8. For the compiler
proper which cannot recognize shift-JIS, ISO-
2022-JP or Big-5, mcpp can complement it.

6. Processing speed is not so slow; it can be used
not only for debugging purpose but also for
daily use. It can work properly in a system
with a small amount of memory.

7. mcpp’s source is portable. It can be com-
piled with any C90, C99 or C++98 conform-
ing compiler systems. mcpp is so designed

2



that it can generate a preprocessor to be used
replacing a compiler-system-resident one (if
possible) on UNIX-like systems or Windows
by modifying some settings in header files on
compilation of mcpp. mcpp’s source also al-
lows to generate a compiler-independent pre-
processor which behaves on its own indepen-
dent of any compiler systems. Moreover, you
can also compile mcpp as a subroutine to be
called from some other main program.

8. In addition to “Standard” mode, which con-
forms to C90, C99 and C++98 Standards,
mcpp has various behavioral modes, includ-
ing the mode of K&R1st specifications, the
Reiser model cpp mode and what I call “post-
Standard” mode in which all the problems in
C Standards are cleared.

9. On UNIX-like systems, a configure script can
be used to automatically generate a mcpp ex-
ecutable. If GCC testsuite has been installed,
most of the testcases of validation suite can be
automatically executed by ‘make check’ com-
mand.

10. mcpp is an open source software. Under the
BSD-style license, all of the sources, docu-
ments and the validation suite are provided
open.

11. Sufficient documentation is provided both
in Japanese and in English. The En-
glish versions was translated by Highwell
inc.(Tokyo)19 from the Japanese ones at “Ex-
ploratory Software Projects” and have been
revised by the author. After the project, the
updates have been done by the author.

(a) INSTALL – Describes how to configure
and make mcpp.

(b) mcpp-summary.pdf – This summary doc-
ument.

(c) mcpp-manual.html: Users Manual – De-
scribes how to use mcpp, its specifica-
tions and meanings of diagnostic mes-
sages. Also suggests how to write
portable source code.

(d) mcpp-porting.html: Porting Manual –
Describes how to port mcpp to particu-
lar compiler systems.

(e) cpp-test.html: Validation Suite Manual
– Also explain C Standards. It indicates
contradictions and deficiencies in Stan-
dards themselves and proposes alterna-
tives. It also shows the results of apply-
ing Validation Suite to several preproces-
sors.

3 Basic Specifications of
Preprocess

Before entering into the subject, let me summa-
rize the basic specifications of Standard C/C++
preprocessing.

3.1 Procedure of Preprocess

The procedure of preprocessing was not at all de-
scribed in K&R1st, hence had been the source of
many confusions. C90 made clear the procedure
by specifying the translation phases as follows:

1. Map source file characters to source character
set, if necessary. Replace trigraphs.

2. Delete <backslash><newline> sequences,
splicing physical source lines to form logical
source lines.

3. Decompose source file to preprocessing-
tokens and white space sequences. Re-
place each comment by one space character.
<newline>s are retained.

4. Execute preprocessing directives, expand
macro invocations. Process header file named
by #include directive from phase 1 through
phase 4, recursively.

5. Convert from source character set to execu-
tion character set, including escape sequences
in string literals and character constants.

3



Table 1: Number of Test Items and Scores covered by Validation Suite V.1.5.2
Number of Highest
Test Items Score

K&R 31 166
Standard C90 140 432
conformance C99 20 98

C++98 9 26
Quality diagnostics 47 74
issues others 18 164

total 265 960

6. Concatenate adjacent string literals.

7. Convert preprocessing-tokens into tokens and
compile.

8. Link.

After that, C99 added processing of _Pragma()
operator in phase 4, also added and modified a few
words. Nevertheless, the above outline was not
changed.

C++98 inserted ‘instantiation’ phase after
phase 7, and appended a so-called UCN specifi-
cation, that is to convert source file character not
in the basic source character set to universal char-
acter name (UCN) in phase 1, and convert it again
to execution character set in phase 5.

Of these translation phases, from phase 1
through phase 4 are usually called preprocessing.

3.2 Diagnostics and Documentation

The definitions of diagnostics and document are
virtually all the same among C90, C99 and C++98
except some difference of wording, and defined as
follows:

Implementation shall issue diagnostic message,
if a translation unit contains a violation of any
syntax rule or constraint. It is implementation-
defined how a diagnostic is identified.

Implementation shall document its choice on
any implementation-defined behavior.

4 Results of Applying
Validation Suite to Various
Preprocessors

One of the problems involved in preprocessor de-
velopment is how to verify preprocessor’s behav-
ior and its quality. Though most compiler systems
calls themselves as “Standard conforming”, their
verification data are not shown in many cases.
Wrong behavior or poor quality of compiler sys-
tems is, of course, out of question. However, in
fact, many problems were detected in existing pre-
processors when they were tested with Validation
Suite. Validation Suite provides quite a lot of test
items to measure various aspects of a preproces-
sor objectively and comprehensively as much as
possible.

As shown in Table 1, Validation Suite V.1.5.2
contains as much as 265 test items, of which, 230
cover preprocessor behaviors and 35 documenta-
tion and quality evaluation. Score of each test
item is weighted. The lowest score of each item

4



Table 2: Validation Results of Each Preprocessor
Preprocessor year/month conformance quality overall

K&R C90 C99 C++ total diag- others evalu-
98 nostic ation

DECUS cpp 1 1985/01 150 240 0 0 390 15 78 483
mcpp 2.0 2 1998/08 166 430 58 10 664 68 125 857
Borland C 5.5 3 2000/08 164 366 20 6 556 18 72 646
GCC 2.95.3 4 2001/03 166 404 56 6 632 24 113 769
GCC 3.2 5 2002/08 166 419 86 20 691 32 117 840
ucpp 1.3 6 2003/01 166 384 88 9 647 25 88 760
Visual C 2003 7 2003/04 156 394 43 15 608 21 83 712
LCC-Win32 2003-08 8 2003/08 158 376 18 6 558 19 84 661
Wave 1.0.0 9 2004/01 140 338 53 18 549 21 79 649
mcpp 2.4 10 2004/02 166 432 98 22 718 74 134 926
GCC 3.4.3 11 2004/11 166 415 87 20 688 38 120 846
Visual C 2005 12 2005/09 160 399 65 17 641 20 77 738
LCC-Win32 2006-03 13 2006/03 156 374 22 6 558 22 85 665
GCC 4.1.1 14 2006/05 166 417 87 20 690 38 120 848
mcpp 2.6.2 15 2006/11 166 432 98 22 718 74 136 928
highest score 166 432 98 26 722 74 164 960

is all 0.
1DECUS cpp: Original version written by Martin Minow,11

which was slightly revised by the author and compiled by
Linux/GCC.

2mcpp 2.0: Free software developed by the author. Was
rewritten based on DECUS cpp. Was ported to various com-
piler systems, such as FreeBSD/GCC 2.7, DJGPP V.1.12,
WIN32/Borland C 4.0, MS-DOS/Turbo C 2.0, etc. Although
mcpp allows generation of a preprocessor of various specs, the
standard mode of the executable compiled by GCC on Linux
was used for this test.

3Borland C 5.5: Japanese version. Borland.12

4GCC 2.95.3: Bundled in VineLinux 3.2 or CygWIN 1.3.10.
5GCC 3.2: Compiled by the author on Linux.13

6ucpp 1.3: Portable free software written by Thomas Pornin.
A compiler-independent preprocessor.14

7Visual C++ 2003: Visual C++ .net 2003. Microsoft.
8LCC-Win32 2003-08: Developed by Jacob Navia. Dennis

Ritchie’s C90 preprocessor is used as its preprocessing part.16

9Wave 1.0.0: Free software written by Hartmut Kaiser. Im-
plemented using “Boost C++ preprocessor library” written by
Paul Mensonides et. al. Tested about an executable for Win-
dows.17

10mcpp 2.4: From V.2.0 onward, has been ported to Linux,
FreeBSD / GCC 2.95-3.2, CygWIN 1.3.10, LCC-Win32 2003-08,
Borland C 5.5 and Visual C++ 2003.

11GCC 3.4.3: Compiled by the author on Linux.

“Standard conformance” includes evaluation of
diagnostic messages and documentation, as well
as of behaviors. “K&R” means specifications com-
mon between K&R1st and C90. “Standard confor-
mance” for C99 and C++98 deals with new specifi-
cations that do not exist in C90. “Standard confor-
mance” covers all the specifications of Standards.

“Quality: diagnostics” deals with diagnostic
messages that are not required by the Standards.
“Quality: others” deals with execution options,
#pragmas, multi-byte character handling, pro-
cessing speed, etc.

There are some rooms for subjective evaluation
in the quality items and the allocation of points,
and there are problems in measuring the diverse
items with one yardstick. Nevertheless, I think

12Visual C 2005: Visual C++ 2005 Express Edition. Mi-
crosoft. 15

13LCC-Win32 2006-03: LCC-Win32 2006/03 version.
14GCC 4.1.1: Compiled by the author on Linux.
15mcpp 2.6.2: mcpp V.2.6.2. From V.2.4 onward, has been

ported to GCC 3.3-4.1, MinGW/MSYS and Visual C++ 2005.18

5



0 100 200 300 400 500 600 700 800 900

highest score

MCPP 2.6.2

GCC 4.1.1

LCC-WIN32 0603

Visual C 2005

GCC 3.4.3

MCPP 2.4

Wave 1.0.0

LCC-Win32 0308

Visual C 2003

ucpp 1.3

GCC 3.2

GCC 2.95.3

Borland C 5.5

MCPP 2.0

DECUS cpp

C90 conformance (K&R spec) C90 conformance (new spec) C99, C++98 conformance quality

Figure 1: Validation Results of Each Preprocessor

that this scale gives results fairly close to the ac-
tual usage impressions.

Table 2 and figure 1 shows the summary of re-
sults of applying Validation Suite V.1.5.2 to sev-
eral compiler systems. The table and the figure
shows compiler systems in a chronological order.

As shown in the table, mcpp is the best in ev-
ery aspect. Its conformance is perfect except it
does not implement the C++98 queer specifica-
tion to convert multi-byte character to UCN. It has
more leads over other preprocessors on quality is-
sues, such as abundant and accurate diagnostic
messages, comprehensive documentation, useful
execution options, #pragmas for debugging, han-
dling of various multi-byte character encodings,
and portability.

According to the table, the second best prepro-
cessor to mcpp is GCC (GNU C) / cpp (cc1). GCC

presents almost no problems as long as it pro-
cesses C90 conforming sources. However, it still
has the following problems, except for some unim-
plemented C99 and C++98 specifications, which
will be implemented over time:

1. Diagnostic messages are insufficient. With
the -pedantic -Wall option, many prob-
lems can be checked, but there still remain
a lot of unchecked problems.

2. It provides little functionality to output de-
bugging information.

3. Documentation is insufficient; there are some
unclear or undocumented specifications.

4. GCC uses its own specifications that are in-
consistent with the Standards. Extended

6



specifications should be implemented with
#pragma.

Compared with GCC V.2/cpp, GCC V.3/cc1 has
been much improved in these aspects, but is still
insufficient.

mcpp is inferior to GCC/cc1 only in processing
speed.

Other preprocessor has much more problems
than GCC. The following problems are commonly
found in many preprocessors.

1. As for the new specifications of C99 and
C++98, most of the preprocessors implement
only half of them.

2. Most preprocessors do not provide diagnostics
sufficiently.

3. Most preprocessors provide few diagnostics
on portability matters.

4. It is not uncommon to see off-target diagnos-
tics issued.

5. Most preprocessors do not provide document
sufficiently.

6. Most preprocessors cannot handle more than
1 or 2 multi-byte character encodings.

Moreover, at least 1 or 2 bugs are found in most
preprocessors.

5 Examples of Preprocessor
Bugs and Erroneous
Specifications

Each preprocessor contains various bugs and erro-
neous specifications, only some of which this sec-
tion cites. The samples are shown in figure 2.

5.1 Comment Generating Macro

Example-1 is a macro definition that is actually
found in a Visual C Platform SDK system header.

example-1
#define _VARIANT_BOOL /##/

example-2
_VARIANT_BOOL bool;

example-3
#if MACRO_0 && 10 / MACRO_0

example-4
#if MACRO_0 ? 10 / MACRO_0 : 0

example-5
#if 1 / 0

example-6
#include <limits.h>
#if LONG_MAX + 1 > SHRT_MAX

Figure 2: Sample of Preprocessor Bugs

This definition is used as shown in example-2.
This code expects _VARIANT_BOOL to be expanded
into //, commenting out that line. Actually, Vi-
sual C/cl.exe processes this line as expected.

However, // is not a preprocessing-token. In
addition, macro should be defined and expanded
after source is parsed into tokens and a comment
is converted into one space. Therefore, it is irra-
tional for a macro to generate comments. When
this macro is expanded into //, the result is unde-
fined since // is not a valid preprocessing-token.

This macro is, indeed, out of question, however,
it is Visual C/cl.exe, which allows such an outra-
geous macro to be processed as a comment, should
be blamed. This example reveals the following se-
rious problems this preprocessor has:

1. Preprocessing is not token-based but
character-based in this example.

2. Preprocessing procedure (translation phases)
is implemented arbitrarily and lacks in logi-
cal consistency.

5.1.1 mcpp’s diagnostic

mcpp issues some diagnostics while preprocess-
ing <windows.h>, and on the macro of example-2

7



c:/program files/microsoft platform sdk/include/oaidl.h:442:
error: Not a valid preprocessing token "//"

in macro "_VARIANT_BOOL" defined as: #define _VARIANT_BOOL /##/
/* c:/program files/microsoft platform sdk/include/wtypes.h:1073 */
from c:/program files/microsoft platform sdk/include/oaidl.h: 442:

_VARIANT_BOOL bool;
from c:/program files/microsoft platform sdk/include/msxml.h: 274:

#include "oaidl.h"
...

Figure 3: A sample of diagnostic issued by mcpp

issues a diagnostic as shown in figure 3. (The lines
are broken appropriately for printing.)

First, the source file name and the line number
which contains the macro call in question, diag-
nostic message body, next, definition of the macro
and its location, then, each includer’s line which
#include the source file, tracing back the nested
includes one after the other. — It is clear what
and where the problem is.

5.2 Expressions That Should Be
Skipped Causes an Error

The expressions in example-3 and 4 are correct
ones. These expressions are so carefully writ-
ten that a division is carried out only when a de-
nominator is not zero. However, some preproces-
sors perform a division when MACRO_0 is zero and
cause an error. Example-3 used to cause an er-
ror in many preprocessors, but nowadays it is pro-
cessed properly. Example-4 still causes an error in
Visual C 2003, 2005, which shows that its prepro-
cessor does not implement basic C specifications
of expression evaluation correctly.

On the other hand, Borland C 5.5 issues a warn-
ing to both example-3 and 4, which may not be
definitely wrong. However, Borland C issues the
same warning to a real division by zero shown in
example-5. In other words, Borland C cannot tell
correct source code from wrong code. Turbo C is-
sued the same error message to both correct ex-
pressions and incorrect ones that cause a zero di-
vision error. Borland C simply degrades the error
message to a warning. This could not be called

non-conforming, but indicates a patchy work and
poor quality of diagnostic messages.

5.3 Overflow is Overlooked

The constant expression in example-6 causes an
overflow in C90. Most preprocessors do not is-
sue a diagnostic to this overflow. In other words,
any message is not issued even if the value wraps
round, and the sign and the comparison result are
reversed. GCC and Borland C are inconsistent
about this; they issue a warning to some cases,
but not to most.

6 Why Is Source Code Check
by Preprocessors
Required?

Now, we will see source code checking by mcpp of
the real world programs, taking examples of glibc
and others.

Not a few C programs have preprocessing level
problems; there are ones that are content with
successful compilation in a particular compiler
system and lack of portability, ones that are un-
necessarily tricky, and ones that are still based
on the specifications of a particular compiler sys-
tem before C90. These sources will spoil porta-
bility, readability and maintainability, and, what
is worse, they will be likely bug-prone. Although,
in many cases, it is easy to rewrite such question-
able sources into portable and clear ones, however,

8



they are often left as they are.
One of the reasons for the existence of such

sources is that preprocessing specifications before
C90 were very ambiguous, which still leaves a
trail even now when C99 Standard has been al-
ready established. Another reason is that the ex-
isting preprocessors are too reticent; since they
pass questionable sources without issuing mes-
sages, problems remain unnoticed.

6.1 How Much Do Preprocessors
Affect Sources?

By replacing a compiler-system-resident prepro-
cessor with mcpp, almost all the preprocessing
problems in source programs, ranging from po-
tential bugs and Standard violations to portability
problems, can be identified.

Since mcpp V.2.0, I have reported the results of
applying mcpp to FreeBSD 2.2.2 (May 1997) ker-
nel and libc sources. Libc sources had almost no
problems, but some kernel sources had some, al-
though such sources account for only a small por-
tion of the total number of source programs. Many
of the problems were not originated in 4.4BSD-lite
but written during porting to FreeBSD and en-
hancement.

When I applied mcpp V.2.3 then under de-
velopment to preprocess Linux/glibc (GNU LIBC)
2.1.3 (September 2000) sources, I found a lot of
problems. These problems were frequently found
in the programs that use traditional preprocess-
ing specifications in UNIX-like systems and those
that use GCC/cpp’s own or undocumented spec-
ifications. I think GCC/cpp’s default passing of
such undesirable sources without issuing a mes-
sage not only preserves them but also produces
new ones. It is more problematic that such coding
is not necessarily found in old sources only; it is
sometimes found in newly written sources. Some-
times, similar problems are found even in system
headers.

On the other hand, there are some improve-
ments; for example, nested comments, a Standard
violation that was frequently found by the mid-

dle of 1990s on UNIX-like systems, are no longer
found. This is because GCC/cpp no longer allowed
them. This indicates how much a preprocessor af-
fects sources coding.

6.2 Sample Glibc Source Code
Fragment

To see some preprocessing problems, let me take
examples of glibc 2.1.3 source code fragments. The
samples are shown in figure 4.

6.2.1 Multi-line String Literal

Example-7 shows this case. This traditional spec-
ification does not need to be used at all, but it is
still used. Makefile sometimes generates this.

The preprocessing directive lines shown here re-
quire line splicing, so the code fragment should be
written as shown in example-8.

Regardless of directive lines or not, a more gen-
eral way of coding is to use string literal concate-
nation as shown in example-9. If this line were not
a directive one, line splicing would be, of course,
not required.

This way of coding is found in many source files,
but, somehow, the old way of writing still remains
in some.

6.2.2 ∗.S Files That Require
Preprocessing

Some assembler sources have preprocessing direc-
tives, such as #if, and C comments embedded.

It is recommended that the asm() function
should be used whenever possible, as shown in
example-9, to embed the assembler source part in
a string literal, and that not ∗.S but ∗.c should be
used as a file name. In this way, directive lines
other than #include can be used in the middle of
the lines of string literals.

Some assembler sources have a macro embed-
ded, which cannot be dealt with asm(). This type
of source is not a C source and essentially should
be processed with an assembler macro processor.

9



example-7
#define ELF_MACHINE_RUNTIME_TRAMPOLINE asm ("\

.text

.globl _dl_runtime_resolve
etc. ...

");

example-8
#define ELF_MACHINE_RUNTIME_TRAMPOLINE asm ("\

.text\n\

.globl _dl_runtime_resolve\n\
etc. ...\n\

");

example-9
#define ELF_MACHINE_RUNTIME_TRAMPOLINE asm ("\t" \

".text\n\t" \
".globl _dl_runtime_resolve\n\t" \
"etc. ...\n");

example-10
#define HAVE_MREMAP defined(__linux__) && !defined(__arm__)

example-11
#if HAVE_MREMAP

example-12
defined(__linux__) && !defined(__arm__)

example-13
defined(1) && !defined(__arm__)

example-14
#if defined(__linux__) && !defined(__arm__)
#define HAVE_MREMAP 1
#endif

example-15
#define CHAR_CLASS_TRANS SWAPU16

example-16
#define SWAPU16(w) ((((w) >> 8) & 0xff) | (((w) & 0xff) << 8))

example-17
#define CHAR_CLASS_TRANS(w) SWAPU16(w)

Figure 4: Code Fragments from glibc

10



It is not desirable to use a C preprocessor for this
purpose.

6.2.3 Macro Expanded to ‘defined’

There is a macro definition shown in example-10
and the macro is used as shown in example-11.

However, the behavior is undefined in Stan-
dard C when a #if line have a ‘defined’ pp-token
in a macro expansion result. Apart from it, this
macro invocation is first replaced as example-
12. Supposing that __linux__ is defined as 1,
and __arm__ is not defined, it finally expands as
shown in example-13. defined(1) on a #if ex-
pression, of course, is a syntax error.

The same thing would happen to GCC/cpp, if
HAVE_MREMAP were not on a #if line. However,
on the #if line, GCC/cpp stops macro expansion at
example-12 and evaluates it as a #if expression.
This behavior lacks of consistency in that how to
expand a macro differs between when the macro
is on a #if line and when on other lines. It also
lacks of portability. This code should be written as
shown in example-14. 16

By the way, mcpp issues an error on example-
11, and in addition, if you sandwich the line with
#pragma directives as:

#pragma MCPP debug expand token
#if HAVE_MREMAP
#pragma MCPP end_debug

it outputs macro expansion process, and you can
grasp what is wrong.

6.2.4 Object-Like Macros Expanded to
Function-like Macros

Some object-like macros are defined to be ex-
panded to function-like macro names. These
macros are expanded as function-like macros.
This happens because the token sequence imme-
diately following the object-like macro invocations
are involved in macro expansion. This way of ex-
pansion is a traditional specification before C90,

16This macro was revised in glibc 2.2.

which was approved by C90. In that sense, it can
be described as providing greater portability. Let
me take an example of an object-like macro shown
in example-15.
SWAPU16 is defined as shown in example-16.
What seems to be an object-like macro that is

actually expanded as a function-like macro is in-
ferior in readability at least. There is no rea-
son to write in this way at least in this example.
This way of writing originates in an idea of editor-
like text replacement, which is not desirable for C
function-like macro. This macro should be writ-
ten as a function-like macro from the beginning,
as shown in example-17.

6.2.5 Undocumented Specifications on
Environment Variable

This is a problem not of C source but of a
Makefile. In GCC 2/cpp, there is an undoc-
umented specification that if an environment
variable SUNPRO_DEPENDENCIES is defined and
the -dM option is specified, macro definitions
in source code are output to the file specified
with the environment variable. One of the
Makefiles follows this specification. Also, there
is another similar environment variable named
DEPENDENCIES_OUTPUT, which is documented. I
wonder why these environment variables need to
be used?

Besides, among the scripts or tools used in mak-
ing glibc, I found some which unnecessarily de-
pend on the trivial details of GCC / cpp (cc1) be-
havior.

In addition to the above, there is some more
undesirable coding, most of which can be easily
written in a clearer and more readable way. The
source programs in question account for only a
small portion of total number of the Glibc source
files that extends to several thousands, however, if
GCC/cpp had issued a warning to such programs,
they would have been rewritten already, or writ-
ten in a quite different way from the beginning.

11



7 Principles of C
Preprocessing and mcpp
implementation

Behind the many preprocessing problems iden-
tified by mcpp and its Validation Suite, there
lies a confusion about principles of C preprocess-
ing. The principles and specifications of C pre-
processing before C90 were quite ambiguous. C90
gave the first overall definition of C preprocessing,
going back to its principles. Most existing pre-
processors, however, seem to have implemented
each specifications of the Standard one by one
without C preprocessing principles being made
clear, thus prolonging the problems. Furthermore,
C90’s own contradictions and ambiguities stem-
ming from the historical background, which have
not been revised even by C99, makes the problem
more complex.

Some principles may be reasonably extracted
from C90 preprocessing specifications:

1. Preprocessing is token-based in principle.

2. The syntax of macro call with arguments is
similar to that of function call.

3. Processing of macros is one of the preprocess-
ing tasks and have no priority over other pro-
cessing.

4. Preprocessing is the phase of “pre”processing
independent from the execution environment,
and requires little implementation-defined
parts.

Those are also the principles of mcpp imple-
mentation.

7.1 Token-Based Processing

C preprocessing is “token-based” in principle.
Since the principle had been ambiguous before
C90, an idea of character-based text processing
came in. After C90, many preprocessors have

overlooked or even allowed themselves to per-
form character-based text processing, still leav-
ing the problem. What is worse, C90 itself con-
tains some compromising parts with character-
based processing, as in the specifications of # op-
erator or header-name token. (For the discussion
on this issue, see section 2.7 of cpp-test.html.)

mcpp has a program structure that strictly
follows the token-based preprocessing princi-
ple, which is quite different from traditional
character-based preprocessing. Other preproces-
sors seem to aim at token-based processing, but
character-based processing got mixed occasion-
ally. I think a certain percentage of preprocessor
bugs is caused by this.

In Borland C 5.5 or Visual C 2003, 2005, for ex-
ample, a token generated by macro expansion is
sometimes merged with the proceeding or follow-
ing one to become one token. This is an example
of half-hearted token handling. Also many pre-
processors do not issue any warning to an illegal
token generated by macro expansion because they
simply neglect checking a token generated by pre-
processing.

7.2 Function-Like Expansion of
Function-Like Macro

Expansion of a macro without an argument is
rather straightforward. On the other hand, for ex-
pansion of macros with arguments, many specifi-
cations have been existed historically, thus lead-
ing to tremendous confusion about it. Although
C90 seems to have put an end to this confusion, it
still lingers. For details on this issue, refer to 2.7.6
of cpp-test.html.

This confusion is due to two factors: Text-
based thinking that originates in editor-like text
replacement, and the traditional specification on
macro expansion, that is, if a replacement list
forms the first half part of another argument
macro invocation, the succeeding token sequence
are involved in rescanning during macro expan-
sion. The example shown in 6.2.4 is one of the
least serious cases. This results from the fact

12



that C preprocessor’s traditional implementation
happens to have such a deficiency. Is not it a
bug specification, although unintentional, which
introduced various abnormal macros?

C90 tried put an end to this confusion about
how to expand macros with arguments by nam-
ing them “function-like macro” and establishing
a specification similar to that of a function call.
In other words, C90 first intended that function-
like macro and function are interchangeable each
other. C90 articulated that a macro in an argu-
ment is first expanded and then a parameter in
a replacement list is substituted with the corre-
sponding argument and that macro expansion in
an argument must be completed within the argu-
ment. (Before C90, it seems that, in many cases,
a parameter is first substituted with an argument
and then is expanded during rescanning.)

On the other hand, however, C90 approved
the bug specification that succeeding token se-
quence are involved in rescanning, which violates
the function-like processing principle, resulting
in prolonged confusion. At the same time, C90
added the stipulation that a macro with the same
name should not be re-replaced during rescanning
to prevent infinite recursion in macro expansion.
However, because of its approval of involvement
of succeeding token sequence, the range in which
such re-replacement is inhibited still remains un-
clear. Thus, C Standards continue to sway, issuing
a corrigendum and then revising it.

7.3 Separation of Macro Expansion
from the Other Processing

Many C preprocessors seem to have a traditional
program structure in which a replacement list and
its succeeding text are read successively during
macro rescanning. Each time they replace a macro
invocation with its replacement list, they repeat
rescanning for the next macro with its start point
shifting gradually.

This traditional program structure illustrates
the historical background of C preprocessors: they
were derived from macro processors. In some pre-

processors, including GCC 2/cpp, a macro rescan-
ning routine is de facto main routine of a prepro-
cessor. The main routine rescans text with its
start point shifting gradually until it reaches the
end of an input file, during the course of which,
a routine to process preprocessing directives is
called. This is an old macro processor structure
with a disadvantage that macro expansion and
other processing are likely to got mixed. As shown
in 6.2.3, how to expand a macro differs between
when the macro is on a #if line and when on other
lines. This is one of the examples of this mixture.
(GCC 2/cpp internally treats defined on a #if line
as a special macro.)

mcpp provides a macro expansion routine in
Standard and post-Standard modes that is quite
different from traditional routines. The macro ex-
pansion routine is dedicated to macro expansion
and performs no other tasks. Likewise, other rou-
tines ask the routine for all macro expansion and
only receive the result. The macro expansion rou-
tine has a recursive structure, not of a repeat-
ing one, with a simple mechanism to prevent re-
replacement of a macro with the same name. Ex-
pansion of a function-like macro strictly follows
the function-like processing principle, and rescan-
ning is basically completed within a macro invoca-
tion. This is all that the macro expansion routine
does in post-Standard mode. In Standard mode,
the macro expansion routine provides a mecha-
nism to deal with the irregular specification in C
Standards so that it can exceptionally handle suc-
ceeding token sequence only when necessary. This
makes a program structure more clear but also
makes it easy to detect an abnormal macro to is-
sue a warning.

7.4 Portable C Preprocessor

Although one of the reasons for existence of the
preprocessing phase in C is to provide greater
portability, preprocessing itself has often spoiled
it, because in most compiler systems the prepro-
cessor has been an addition to the compiler and
has had unnecessarily implementation-specific
behaviors. In contrast, C90 specified preprocess-

13



ing as a phase mostly independent from the execu-
tion environment, hence guaranteed rather great
portability.

What is more, thanks to C90, most parts of a
preprocessor itself can be written portable, unlike
other components of a C compiler system. Thus, it
might be even possible for every compiler system
to use the same high quality and portable prepro-
cessor. A portable preprocessor for portable source
has been ready to appear since C90. Develop-
ment of mcpp began motivated by this situation.
Though many existing compilers have absorbed
preprocessor into themselves, it is not a good
program structure where a preprocessor and a
compiler interdepend complexly. An independent
preprocessor has a merit of decreasing compiler-
dependent behaviors and increasing portability of
preprocessing as an independent phase.

The above principles were embodied in the C90
preprocessing stipulations. At the same time, the
above contradictions also existed, which were left
to later Standard to solve. C99, however, solved
none of these basic problems, while it added some
new features. What is worse, there are a few areas
where simple-and-clearness of the specifications
were lost by the appended features. C++98 has
more problems than C99. (For these problems, re-
fer to cpp-test.html.)

After all, it can be said that, in the history of
C preprocessing, C90 was the one and only at-
tempt to clarify the basics of the language, though
not satisfactory enough. Today, the specifications
began to diffuse again, and clarification stepping
into the basics is required. I think that the di-
rection should be to complete the principles which
C90 did only halfway.

mcpp is a C preprocessor which is constructed
on the principles of “token-based processing”,
“function-like expansion of function-like macro”,
“separation of macro expansion routine from other
processing” and “portable preprocessing”. In its
conforming mode, mcpp obeys the Standard’s ir-
regularities using some modifications on these
principles. In addition, mcpp provides prepro-
cessing in what I call “post-Standard” mode, in
which these principles are obeyed thoroughly by

eliminating irregularities from Standards them-
selves and reorganizing them. If no problems were
detected in this mode, the source can be said as
having high portability as long as preprocessing
is concerned.

8 Current Version and
Update Plans

8.1 V.2.6

mcpp V.2.6 was released in July 2006, and was an
update to V.2.5 which had been released in March
2005. The updated points are as follows:

1. Made compiler-independent-build really inde-
pendent of any compiler systems.

2. Integrated Standard mode and pre-Standard
mode into one executable, made all the behav-
ioral modes to be specified by the invocation
options.

3. Added portings to GCC 4.0 and Visual C++
2005.

4. Removed codes for pre-C90 compilers and
codes for compiler systems on MS-DOS.

5. Revised some minor points.

6. Rewritten the documents accordingly.

In V.2.6.1, released in August 2006, porting to
MinGW/MSYS was added.

In V.2.6.2, released in November 2006, most of
the text file documents were converted to html,
and subroutine-build to use mcpp as a subroutine
from other main program was created.

8.2 Update Plans for V.2.7

Updating of mcpp is far behind from the previous
plan. At present, following updates are planned
for mcpp V.2.7.

14



1. mcpp diagnostic messages will be stored in
a separate file so that anyone can add diag-
nostic messages in various languages at any
time.

2. An option to automatically rewrite un-
portable source programs to portable ones
will be implemented.

3. A series of testcases for testing mcpp’s own
specifications will be added to Validation
Suite.

9 Conclusion

I have been developing a C preprocessor mcpp
aiming at the highest conformance, the highest
quality and usefulness for source checking. Since
validation system is indispensable for developing
a language processing system, and no adequate
one existed for preprocessor, I developed an ex-
haustive validation suite for preprocessor in par-
allel to mcpp. As a result, I have succeeded to
show superiority of mcpp over other preproces-
sors. Besides, I showed advantage of a prepro-
cessor independent on compiler systems, in de-
creasing compiler-dependent behaviors and assur-
ing portability of preprocessing. Also, I discussed
the implementation method of C preprocessor and
asserted that it is vital for an excellent preproces-
sor to construct program on the ground of clear
principles.

It was in 1992 when I began to develop mcpp
based on DECUS cpp. After ten years, mcpp
was adopted to one of the “Exploratory Software
Projects”, which gave me a chance to send it out
into the world. With the finishes that extended
for nearly two years, I completed a C preprocessor
that I think ranks number one in the world. mcpp
with its English documents became ready for in-
ternational evaluation. Moreover, I was estimated
as one of the highest class programmers by the
achievement of “Exploratory Software Projects”. I
am also satisfied with myself, who have done a
good job as a middle-aged amateur programmer.

I have continued updating of mcpp after the
project, and will keep on it. Many C programmers
comments and feedback, as well as participation
in mcpp development are welcome!

Related Materials and URLs

[1] Information-technology Promotion Agency
(IPA), Japan,
“Exploratory Software Projects”.
http://www.ipa.go.jp/jinzai/esp/

[2] ISO/IEC. ISO/IEC 9899:1990(E) Program-
ming Languages – C. 1990.

[3] ISO/IEC.
ibid. Technical Corrigendum 1. 1994.

[4] ISO/IEC.
ibid. Amendment 1: C integrity. 1995.

[5] ISO/IEC.
ibid. Technical Corrigendum 2. 1996.

[6] ISO/IEC. ISO/IEC 9899:1999(E) Program-
ming Languages – C. 1999.

[7] ISO/IEC.
ibid. Technical Corrigendum 1. 2001.

[8] ISO/IEC.
ibid. Technical Corrigendum 2. 2004.

[9] ISO/IEC. ISO/IEC 14882:1998(E) Pro-
gramming Languages – C++. 1998.

[10] ISO/IEC. ISO/IEC 14882:2003(E) Pro-
gramming Languages – C++. 2003.

[11] Martin Minow, DECUS cpp.
http://www.isc.org/index.pl?/

sources/devel/

[12] Borland Software Corp.,
Borland C++ Compiler 5.5
http://www.borland.co.jp/

cppbuilder/freecompiler/

[13] Free Software Foundation, GCC.
http://gcc.gnu.org/

15



[14] Thomas Pornin., ucpp.
http://pornin.nerim.net/ucpp/

[15] Microsoft Corporation,
http://msdn.microsoft.com/vstudio/

express/visualc/default.aspx

[16] Jacob Navia., LCC-Win32.
http://www.q-software-

solutions.com/lccwin32/

[17] Hartmut Kaiser, Wave V.1.0.0.
http://spirit.sourceforge.net/

[18] Kiyoshi Matsui, mcpp.
http://mcpp.sourceforge.net/

[19] Highwell, Inc. Limited Company.
http://www.highwell.net/

16


