
Lire Developer’s Manual

Joost van Baal

Egon L. Willighagen

Francis J. Lacoste

Lire Developer’s Manual
by Joost van Baal, Egon L. Willighagen, and Francis J. Lacoste

Copyright © 2000, 2001, 2002 by Stichting LogReport Foundation

This manual is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free

Software Foundation; either version 2 of the License, or (at your option) any later version.

This is distributed in the hope that it will be useful, butwithout any warranty; without even the implied warranty ofmerchantabilityor fitness for a

particular purpose. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this manual (see COPYING); if not, check with

http://www.gnu.org/copyleft/gpl.html (http://www.gnu.org/copyleft/gpl.html) or write to the Free Software Foundation, Inc., 59 Temple Place -

Suite 330, Boston, MA 02111, USA.

Revision History

Revision 20020214 $Date: 2002/02/10 23:03:49 $
$Id: dev-manual.dbx,v 1.27 2002/02/10 23:03:49 flacoste Exp $

Table of Contents
Preface...i

What This Book Contains...i
How Is This Book Organized?..i
Conventions Used...i
If You Don’t Find Something In This Manual..i

I. Lire Architecture ...i

1. Architecture Overview...1
Definitions..1

2. Logs Abstraction into DLF..4
3. Report Generation..6
4. Report Formatting..7

XSLT Transformation...7
Perl Text Formatting...7
Chart Generation..7

5. Responder Architecture..8
6. Source Tree Layout..9

II. Extending Lire ..10

7. Writing a New Superservice..11
DLF Design..11
The DLF Schema..12

8. Writing New Service..13
Writing a Log File to DLF Converter...13
API for 2DLF Scripts...13

9. Writing a New Report..14
Report Informations..14
Report’s Display Specification...14
Filter Specification..14
Calculation Specification..14

10. Writing Advanced Reports...15
Using a Derived Schema..15
Writing Extension Reports...15

III. Lire Developers’ Conventions ..16

11. Developers’ Toolbox..17
Required Tools To Build From CVS..17
Accessing Lire’s CVS...17

CVS primer...17
SourceForge..18
Mailing Lists...18

12. Coding Standards...19
Shell Coding Standards..19
Perl Coding Standards..19

13. Commit Policy...20
CVS Branches..20

Hands-on example..20

iii

Naming, what it looks like..20
Creating a Branch...21
Accessing a Branch...21
Merging Branches on the Trunk...21

14. Testing..23
15. Making a Release...24

Setting version in NEWS file...24
Tagging the CVS..24
Building The "Standard" Tarball..24
Building The "Full" Tarball..25
Building The Debian Package..26
Building The RPM Package...28
Uploading The Release...28

The LogReport Webserver..28
Advertising The Release...29

SourceForge..29
Freshmeat.net..29

16. Website Maintenance...30
Documentation on the LogReport Website..30

Publishing the DTD’s..30
17. Writing Documentation..32

UML Diagrams...32
UML Editing...32
Diagram Types..32

IV. Developer’s Reference...33

18. Lire DLF Schema Markup Language..34
19. Lire Report Specification Markup Language...35
20. Lire Report Markup Language...36
21. The Lire::Program API..37
22. The DLF Schema API..38
23. The Report Specification API..39

iv

List of Figures
1-1. Lire’s Design..1
2-1. DLF Converter Process..4

List of Examples

v

Preface
Log file analysis is both an essential and tedious part of system administration. It is essential because it’s
the best way of profiling the usage of the service installed on the network. It’s tedious because programs
generate a lot of data and tools to report on this data are often unavailable or incomplete. When such
tools exist, they are generally specific to one product, which means that you can’t compare e.g. your
Qmail and Exim mail servers.

Lire is a software package developed by the Stichting LogReport Foundation to generate useful reports
from raw log files of various network programs. Multiple programs are supported for various types of
network services. Lire also supports various output formats for the generated reports.

What This Book Contains
This book is theLire Developer’s Manual. It describes the architecture and design of Lire. It contains
comprehensive instructions on how to extend Lire. Its intended audience is system administrators or
programmers that want to extend Lire or want to understand its internals.

There is another book, theLire User’s Manualwhich describes how to install, configure and use Lire. Its
intended audience is system administrators that want to install and use Lire to gather informations about
the services operating on their network.

How Is This Book Organized?
This book is divided in four parts.Part Igives an overview of the architecture and design of Lire.

You will find in Part II informations about how to extend Lire. In this part, you will learn on how to add a
new DLF format to Lire, write log file converters and add reports for a superservice. There is also a
chapter dedicated to the Report API which can be used to write complex reports.

Part III is targeted at developers that want to participate in Lire’s development. It contains informations
about CVS access, coding conventions, tools needed to build from CVS, release management and other
aspects important to those part of the Lire development team.

Finally, Part IV is a reference section which gives comprehensive details about the various XML formats
used by Lire and gives in-depth descriptions of its various APIs.

Conventions Used

If You Don’t Find Something In This Manual
You can report typos, incorrect grammar or any other editorial problem to <bugs@logreport.org >.
We welcome reader’s feedback. If you feel that certain parts of this manual aren’t clear, are missing

i

Preface

information or lacking in any other aspect, please tell us. Of course, if you feel like writing the missing
information yourself, we’ll very happily accept your patch. We will make our best effort to improve this
manual.

Remember, that there is another manual, theLire User’s Manualwhich contains comprehensive
information on how to install, use and configure Lire. It also contains reference informations about all of
Lire’s standard reports and supported services.

There are various public mailing lists for Lire’s users. There is a general users’ discussion list where you
can find help on how to install and use Lire. You can subscribe to this list by sending an empty email
with a subject ofsubscribeto <questions-request@logreport.org >. Email for the list should be
sent to <questions@logreport.org >.

You can keep track of Lire’s new release by subscribing to the announcement mailing list. You can
subscribe yourself by sending an empty email with a subject ofsubscribeto
<announcement-request@logreport.org >.

Finally, if you’re interested in Lire’s development, there is a development mailing list to which you can
subscribe by sending an empty email with a subject ofsubscribeto
<development-request@logreport.org >. Email to the list should be sent to
<development@logreport.org >.

All posts on these lists are archived on a public website.

ii

I. Lire Architecture

Chapter 1. Architecture Overview
Lire’s intend to be the universal log reporting tool. It should be able to process logs from any products
and generate useful reports from it. To be useful in the heterogeneous networks that are common
nowadays, reports from different products accomplishing similiar functionalities should be comparable.
To this end, Lire is designed around a three processes architecture.

Lire’s architecture contains three processes:

1. Log Abstraction. The first process abstracts logs from different products into a generic format
(DLF) that can be shared by all products that have similar functionality. For example, log files from
products as different as Apache and Microsoft Internet Information Server will be transformed into
an identical format.

2. Report Generation.The second process generates a report from the generic log. This report is
based on the user’s configuration. This process is a generic report engine that compute the report
based on specifications that describes the operations that are need to create the report. The report is
generated in a generic XML format.

3. Report Formatting. The last process converts the generic XML report’s format into a more
standard output format for human reading like HTML, text or PDF.

Figure 1-1. Lire’s Design

Application
Specific
Logs

Log
Abstraction DLF

Report
Generation
Process

XML
Report

Report
Formatting
Process

PDF

HTML

Text

lr_log2report

<service>2dlf lr_dlf2report lr_xml2<format>

The mapping of those three processes can be seen in theFigure 1-1figure which present the intermediary
products of those processes and their mapping to the Lire’s component that implement them. Each of
these processes is detailed in a later chapter.

1

Chapter 1. Architecture Overview

Definitions
This section defines more precisely some terms that will be used often in the rest of this manual.

DLF

Example 1-1. DNS DLF Excerpts

1010912574 10.0.0.2 121.68.134.195.in-addr.arpa PTR recurs
1010912574 10.0.0.2 121.68.134.195.in-addr.arpa PTR recurs
1010912592 10.0.0.2 120.67.123.212.in-addr.arpa PTR recurs
1010912600 10.0.0.2 207.7.178.212.in-addr.arpa PTR recurs
1010912600 10.0.0.2 tr16.kennisnet.nl A recurs
1010912616 10.0.0.2 120.67.123.212.in-addr.arpa PTR recurs
1010912630 10.0.0.2 207.7.178.212.rbl.maps.vix.com ANY recurs
1010912630 10.0.0.2 NLnet.nl ANY recurs

DLF stands for “Distilled Log Format”. This is the generic log format used by Lire to abstract the
different products log files. This is a really simple ASCII format where each event is represented by
one line. The information about the event is represented by fields separated by spaces. All
non-printable ASCII characters are replaced by?. Spaces in field’s value are replaced by_ (the
underscore). Each lines must have the same number of fields. A DLF file doesn’t contains any
header information.Example 1-1shows an excerpt of a DNS DLF file.

DLF Schema

Information about the order of the fields in a DLF file, their types and what they represent is
specified in the DLF’s schema. Schemas are defined in XML files using the Lire DLF Schema
Markup Language (LDSML). Lire’s offers an API (only in Perl for now) to programmaticaly access
the information of the schema.

It’s the fact that several different products’ log files can share a common DLF schema that makes
Lire’s reportseasily comparable.

Report

A report is what is generated by Lire. It is made of severalsubreports. Those subreports can be
grouped into sections. The report is computed from the DLF file (and not the native log file) based
on a configuration file which describes the subreports that make up the report along with their
parameters. (Consult theLire User’s ManualsectionCustomizing Lirefor more information.)

2

Chapter 1. Architecture Overview

Service

Put simply, a service is a specific application that produce log. Altough it is usually the case, one
application will be equivalent to one service. For example, the mysql service is used to process
MySQL’s log files.

But more precisely, a service is a specific log format. For example, the common service can be used
for all web servers that supports the Common Log Format. Similarly, the welf service can be used to
process the firewalls’ log files written using WebTrends Enhanced Log Format.

In order to generate areporton it, the native log will be converted to the appropriatesuperservice’s
DLF schema

Subreport

A subreport is a particular view on the DLF log’s data. Subreports are defined in XML files using
the Lire Report Specification Markup Language (LRSML). (Altough it defines subreports, it is
called a Report Specification because several subreports makes up the report.) Example of a
subreport would beRequests by Hours of the Day.

Subreport are defined for a particularDLF schema.

Superservice

A superservice is a collection of service that shares the sameDLF schemaandreport. It is used to
group together applications (services) that offers the same kind of functionalities.

Lire currently supports 8 superservices: database, dns, email, firewall, ftp, print, proxy, and www.

3

Chapter 2. Logs Abstraction into DLF
Native log files for different applications are converted into the appropriate DLF file through log format
specific converter (called DLF converters).Figure 2-1shows a simple picture of the convertion process.
On this diagram, you’ll see that thesendmail2dlfDLF converter is used to transform a Sendmail’s log
file into a DLF file using the email DLF schema. Similarly, the convertion processes for the nms and
w3c_extended services are depicted.

Figure 2-1. DLF Converter Process

Sendmail
Log File

sendmail2dlf email
DLF file

nms2dlf email
DLF file

Netscape
Messaging
Server
Log File

IIS 5.0
Log File

www
DLF file

Lire DLF Converter API

w3c_extended2dlf

4

Chapter 2. Logs Abstraction into DLF

A DLF converter is simply a filter that reads on input the service’s native log file and outputs a DLF file
in the appropriate superservice’s DLF schema. That filter uses the Lire DLF Converter API to generate
the DLF file correctly.

Information about writing new DLF converter can be found inChapter 8.

5

Chapter 3. Report Generation

6

Chapter 4. Report Formatting

XSLT Transformation

Perl Text Formatting

Chart Generation

7

Chapter 5. Responder Architecture

8

Chapter 6. Source Tree Layout
Service specific scripts should reside in $CVSROOT/service/<service>/script/. Configuration data
should be in <service>/etc/. Service specific documentation in <service>/doc/.

Futhermore, in each subdirectory, there should be a Makefile.am.

9

II. Extending Lire

Chapter 7. Writing a New Superservice
Writing a new superservice involves several things:

1. Making new directories in CVS:

• /service/<superservice>/

• /service/<superservice>/script/

• /service/<superservice>/reports/

2. Adding several files:

• /service/<superservice>/Makefile.am

• /service/<superservice>/reports/Makefile.am

• /service/<superservice>/script/Makefile.am

• /service/<superservice>/<superservice>.cfg

• /service/<superservice>/<superservice>.xml This file specifies the superservice’s
DLF format. Ideally, it should offer a place for each and every snippet of information which will
ever be found in a logfile from a program which offers functionality defined by the superservice.

3. Writing service plugins (2dlf scripts):

• /service/<superservice>/script/<service>2dlf.in

4. Adapting several files:

• /service/all/etc/defaults.in (to add a TODLF declaration)

• /service/all/lib/Lire/DataTypes.pm (adjust the check_superservice function.)

• /service/configure.in (add the Makefiles and 2dlf script to AC_OUTPUT, to get them
converted from <service>2dlf.in to <service>2dlf.)

• /service/Makefile.am (add the superservice directory to SUBDIRS, so that make gets run
there too, when called from the root source directory.)

5. Update Documentation:

• User Manual: Chapter "Supported Applications".

• Add manpages for scripts

6. Updatelr_config

11

Chapter 7. Writing a New Superservice

DLF Design

The DLF Schema

12

Chapter 8. Writing New Service

Writing a Log File to DLF Converter

API for 2DLF Scripts

13

Chapter 9. Writing a New Report
Writing a new report involves writing a report specification, e.g.
/service/<superservice>/reports/top-foo-by-bar.xml , and adding this report along with
possible configuration parameters to<service>/<service>.cfg . Beware! The name of the report
generally consists of alphanumerics and ’-’, but the name of parameters maynot contain any ’-’. It
generally consists of alphanumerics and ’_’.

Report Informations

Report’s Display Specification

Filter Specification

Calculation Specification

14

Chapter 10. Writing Advanced Reports

Using a Derived Schema

Writing Extension Reports

15

III. Lire Developers’ Conventions

Chapter 11. Developers’ Toolbox

Required Tools To Build From CVS
In order to be able to build the program from the CVS tree and make a tarball distribution the following
tools are needed:

• docbook2manxml& man_xml from docbook2x(http://docbook2x.sourceforge.net/) (v. >0.6.1)

• DocBook XML 4.1.2

• DocBook DSSSL stylesheets

• autotools

• (open)jade

• lynx

• GNU make

• Perl’s XML::Parser module

For Debian woody the packages are: docbook-utils
(http://packages.debian.org/testing/text/docbook-utils.html), docbook-xml-stylesheets, autoconf
(http://packages.debian.org/testing/devel/autoconf.html), automake
(http://packages.debian.org/testing/devel/automake.html), autotools-dev
(http://packages.debian.org/testing/devel/autotools-dev.html), jade
(http://packages.debian.org/testing/text/jade.html), lynx
(http://packages.debian.org/testing/web/lynx.html), make
(http://packages.debian.org/testing/devel/make.html) and libxml-parser-perl.

Accessing Lire’s CVS
Make sure you’ve got an account onSourceForge(http://www.sourceforge.net). Get yourself added to
the logreport project. (Joost van Baal joostvb@logreport.org can do this for you.) Make sure your ssh
public key is on the sourceforge server.

Weekly, a full backup of the complete LogReport CVS as hosted on SourceForge is made, and written to
hibou:/data/backup/cvs/ .

CVS primer
If you’ve got a Unix like system, make sure you’ve got this

CVSROOT=:ext:cvs.logreport.sourceforge.net:/cvsroot/logreport
CVS_RSH=ssh

17

Chapter 11. Developers’ Toolbox

in your shell environment.

Of course, you could do something like

$ eval ‘ssh-agent‘
$ ssh-add

to get a nice ssh-agent running.

Now do something like

$ cd ~/cvs-sourceforge/logreport
$ cvs co service

There are also repositories called ’docs’ and ’package’. In the former the webpages are located and in the
latter the package files for Debian GNU/Linux and other distributions are kept.

Files can then be edited and commited:

$ vi somefile
$ cvs commit somefile

and get flamed ;)

Subscribe yourself to the commit list (commit-request@logreport.org), to get all commit messages,
along with unified diffs.

SourceForge

Mailing Lists

18

Chapter 12. Coding Standards
Indentation should be four spaces. No tabs please.

Shell Coding Standards
Shell scripts should run -e. Shell script should be portable. Refer to
http://doc.mdcc.cx/doc/autobook/html/autobook_208.html
(http://doc.mdcc.cx/doc/autobook/html/autobook_208.html).

Perl Coding Standards
Perl scripts should use strict, and run -w.

19

Chapter 13. Commit Policy
Make sure your changes run on your own platform before commiting. Try not to break things for other
platform though. Currently, Lire supported platforms are GNU/Linux (Debian GNU/Linux, Red Hat
Linux, Mandrake Linux), FreeBSD, OpenBSD and Solaris.

Documentation should be updated ASAP, in case it’s obsolete or incomplete by new commits.

CVS Branches
When doing major architectural changes to Lire, branches in CVS are created to make it possible to
continue to fix bugs and to add small enhancements to the stable version while development continues on
the unstable version. This applies mainly to the service repository. The doc and package repositories
generally don’t need branching.

Hands-on example
A branching gets announced. Be sure to have all your pending changes commited before the branching
occurs. After a branch has been made, one can do this:

$ cd ~/cvs-sourceforge/logreport
$ mv service service-HEAD
$ cvs co -r lire-20010924 service
$ mv service service-lire-20010924

or (with the same result)

$ mv service service-HEAD
$ cvs co -r lire-20010924 -d service-lire-20010924 service

Now, when working on stuff which should be shipped in the coming release, one should work in
service-lire-20010924. When working on stuff which is rather fancy and experimental, and which needs
a lot of work to get stabilized, one should work in service-HEAD.

Naming, what it looks like
Here is what branches schematically look like:

release-20010629_1 ---> lire-unstable-20010703 ---> HEAD
\

\
lire-20010630 ---> lire-stable-20010701

20

Chapter 13. Commit Policy

In this diagram a branch namedlire-20010630 was created from therelease-20010629_1 tag.
lire-unstable-20010703 is another tag on thetrunk (thetrunk is the main branch).HEADisn’t a real
tag, it always points to latest version on the trunk.

Creating a Branch
To create a branch, one runs the commandcvs rtag -b -r release-tag branch-name
module . Note that this command doesn’t need a checkout version of the repository. For example, to
create thelire-stable branch in the service repository, one would usecvs rtag -b -r
release-20010629_1 lire-stable service .

Accessing a Branch
To start working on a particular branch, you docvs update -r branch-name . For example, to
work on thelire-stable branch, you do in your checked out version,cvs update -r
lire-stable . This will update your copy to the versionlire-stable and will commit all future
changes on that branch.

Alternatively, you can also specify a branch when checking out a module usingcvs co -r
branch-name module . For example, you could checkout the stable version of Lire by usingcvs
co -r lire-stable service .

To see if you are working on a particular branch, you can use thecvs status file command. For
example, runningcvs status NEWS could show :

===
File: NEWS Status: Up-to-date

Working revision: 1.74
Repository revision: 1.74 /cvsroot/logreport/service/NEWS,v
Sticky Tag: lire-stable
Sticky Date: (none)
Sticky Options: (none)

The branch is indicated by theSticky Tag: keyword. If its value is(none) you are working on the
HEAD.

To work on theHEAD, one removes the sticky tag by using the commandcvs update -A .

Merging Branches on the Trunk
One can bring bug fixes and small enhancements made on a branch into the unstable version on the trunk
by doing a merge. You do a merge by using the commandcvs update -j branch-to-merge in
your working directory of the trunk. Conflicts are resolved in the usual CVS way. For example, to merge

21

Chapter 13. Commit Policy

the changes of the stable branch in the development branch, you would usecvs update -j
lire-stable .

You should tag the branch after each successful merge so that future changes can be easily merged. For
example, after merging, you do in a checked out copy of thelire-stable branch :cvs tag
lire-stable-merged-20010715 . In this way, one week later, we can merge the week’s changes
of the stable branch into the unstable branch by doingcvs update -j
lire-stable-merged-20010715 -j lire-stable .

22

Chapter 14. Testing
One week before release, the software should be tested on all supported platforms. In between releases,
the system gets tested on various platforms on an ad hoc basis. When testing, use the to-be-released
tarball. Runmake dist to generate such a tarball. Releases are done about every month.

23

Chapter 15. Making a Release
Before making an official Lire release, it should have been tested on all supported platforms. A release
shouldn’t be made unless Lire builds, installs and generates an ASCII report from all supported log files
on all supported platforms. If this is not the case, the release should be delayed untill this is fixed.

Making a new release of Lire involves many steps :

1. Writing final version number in NEWS.

2. Tagging the CVS.

3. Building the "Standard" Lire tarball.

4. Building the "Full" Lire tarball.

5. Building the Debian GNU/Linux package.

6. Building the RPM package.

7. Uploading the tarballs and packages available.

8. Advertising the release.

Setting version in NEWS file
In between releases, the NEWS file generally reads "version in cvs". This should of course be changed to
e.g. "version 20011205".

Tagging the CVS
Run e.g.cvs tag lire-20011017 .

Building The "Standard" Tarball
The "Standard" tarball is the one that contains only the code needed to build and install Lire. It doesn’t
contain required libraries like expat or XML::Parser. There is also a "Full" version of the tarball that
includes those libraries.

1. Start from a fresh copy by running the commandmake maintainer-clean-recursive in
the directory where you checked out Lire’s source code.

a. Make sure that there are no tarballs in theextras subdirectory.

2. Set the version and prepare the source tree by running the command./bootstrap . (You can
overwrite the pre-cooked version by doing e.g.echo ‘date +%Y%m%d‘-R-f-jvb-1 >
VERSION . Make sure your version hasn’t got too many characters. Non-GNU tar chokes on too
long pathnames in the archive.)

24

Chapter 15. Making a Release

3. Generate Makefiles

a. Run./configure

4. Build Lire and create the tarball by running the commandmake distcheck .

This will build a tarballlire- version .tar.gz and then makes sure that the content of this tarball
can be build and installed. If that command fails, Lire isn’t ready to be released. Fix the errors before
making the release.

5. Sign Lire’s tarball with you public key. To do this with GnuPG, rungpg --detach-sign
--armor lire- version .tar.gz .

A file lire- version .tar.gz.asc will get created. Publish this file, together with the tarball.
Now, people downloading the tarball can verify its integrity by downloading the .asc along with it,
as well as your public key, and by runninggpg --verify lire- version .tar.gz.asc .

Building The "Full" Tarball
The "Full" tarball is the one that contains the required Perl and XML libraries along with Lire’s source
code. This tarball should be calledlire-full- version .tar.gz .

1. If you have built the "Standard" tarball, you should move it someplace else along with its signature,
because this procedure will overwrite it.

2. Start from a fresh copy by running the commandmake maintainer-clean-recursive in
the directory where you checked out Lire’s source code.

3. Add the required libraries’ tarball in theextras subdirectory. Those tarballs can be downloaded
usingwget.

a. wget
http://www.cpan.org/modules/by-module/XML/XML-Parser.2.30.tar.gz

b. wget
http://prdownloads.sourceforge.net/expat/expat-1.95.2.tar.gz

4. Set the version and prepare the source tree by running the command./bootstrap .

5. Build Lire.

a. Run./configure

b. Runmake

6. Create the tarball by running the commandmake followed by the commandmake distcheck .

This will build a tarball and then make sure that the content of this tarball can be build and installed.
If that command fails, Lire isn’t ready to be released. Fix the errors before making the release.

7. Rename the generated tarball tolire-full- version .tar.gz .

8. Sign Lire’s tarball with you public key. To do this with GnuPG, rungpg --detach-sign
--armor lire-full- version .tar.gz .

25

Chapter 15. Making a Release

A file lire-full- version .tar.gz.asc will get created. Publish this file, together with the
tarball. Now, people downloading the tarball can verify its integrity by downloading the .asc along
with it, as well as your public key, and by runninggpg --verify
lire-full- version .tar.gz.asc .

Building The Debian Package
This is a raw unformatted dump of what we did to build and upload the Lire .deb.

$ cd ~/cvs-sourceforge/logreport/package/debian
$ vi changelog

:r !date --rfc

$ cd /usr/local/src/debian/lire/debian/20010219

Run ’debian-install-build woody’. This does:

$ cd /usr/local/src/debian/lire/debian/20010219
$ cp \

~/cvs-sourceforge/logreport/service/lire-20010219.tar.gz .

$ tar zxf lire-20010219.tar.gz
$ cd lire/20010418
$ mv lire-20010418 lire-20010418.orig
$ tar zxf lire-20010418.tar.gz
$ cd lire-20010418
$ mkdir debian
$ cp \

~/cvs-sourceforge/logreport/package/debian/[^C]* debian/

Export the shell environment variable EMAIL, it should hold your emailaddress, as it is to appear in the
package’s maintainers field. (One could use ’dh_make --copyright gpl -s’ on first time debianizing.)
Build the .deb by running:

$ debuild 2>&1 | tee /tmp/build

Check the .deb:

$ debc | less

After havingreally tested it (dpkg -i, purge, etc.), optionally install it on any local apt-able websites you
might have (Joost has one on http://mdcc.cx/debian/) and upload it to hibou’s apt-able archive:

$ scp lire_20010418-1_all.deb \
hibou.logreport.org:/var/www/logreport.org/pub/debian/dists/local/contrib/binary-all/admin/

26

Chapter 15. Making a Release

$ scp lire_20010418*.gz \
hibou.logreport.org:/var/www/logreport.org/pub/debian/dists/local/contrib/source/admin/

On hibou, update the Packages file by running

$ cd /var/www/logreport.org/pub/debian
$ make

Move the old debian stuff to hibou:/pub/archive/debian/ .

Upload it to the official debian mirrors:

vanbaal@gelfand:/usr...src/debian/lire/20010418% date; \
dupload lire_20010418-1_i386.changes

Thu Apr 19 14:27:38 CEST 2001
Uploading (ftp) to ftp.uk.debian.org:debian/UploadQueue/
[job lire_20010418-1_i386 from lire_20010418-1_i386.changes New dpkg-dev, announcement will NOT be sent

lire_20010418.orig.tar.gz, md5sum ok
lire_20010418-1.diff.gz, md5sum ok
lire_20010418-1_all.deb, md5sum ok
lire_20010418-1.dsc, md5sum ok
lire_20010418-1_i386.changes ok]

Uploading (ftp) to uk (ftp.uk.debian.org)
lire_20010418.orig.tar.gz 163.1 kB , ok (12 s, 13.59 kB/s)
lire_20010418-1.diff.gz 32.6 kB , ok (3 s, 10.88 kB/s)
lire_20010418-1_all.deb 222.4 kB , ok (16 s, 13.90 kB/s)
lire_20010418-1.dsc 0.6 kB , ok (0 s, 0.60 kB/s)
lire_20010418-1_i386.changes 1.2 kB , ok (1 s, 1.22 kB/s)]

check ftp://ftp.uk.debian.org/debian/UploadQueue/

For a potato release:

vanbaal@gelfand:~/cvs-sourceforge/logreport/package% scp \
../service/lire-20010626.tar.gz stegun:/usr/local/src/debian/lire/

joostvb@stegun:/usr...sr/local/src/debian/lire% tar zxf \
lire-20010626.tar.gz

joostvb@stegun:/usr...sr/local/src/debian/lire% mv \
lire-20010626 lire-20010626.orig

joostvb@stegun:/usr...sr/local/src/debian/lire% tar zxf \
lire-20010626.tar.gz

joostvb@stegun:/usr...sr/local/src/debian/lire% mkdir \
lire-20010626/debian

vanbaal@gelfand:~/cvs-sourceforge/logreport/package% scp \
debian/[^C]* stegun:/usr/local/src/debian/lire/lire-20010626/debian/

vanbaal@gelfand:~/cvs-sourceforge/logreport/package% scp \
debian-potato/[^C]* stegun:/usr/local/src/debian/lire/lire-20010626/debian/

27

Chapter 15. Making a Release

joostvb@stegun:/usr...sr/local/src/debian/lire% patch -p0 \
< lire-20010626/debian/lire-20010626.patch

joostvb@stegun:/usr...ebian/lire/lire-20010626% debuild

-rw-r--r-- 1 joostvb src 14k Jun 28 15:21 lire_20010626-1potato2.diff.gz
-rw-r--r-- 1 joostvb src 625 Jun 28 15:23 lire_20010626-1potato2.dsc
-rw-r--r-- 1 joostvb src 208k Jun 28 15:22 lire_20010626-1potato2_all.deb
-rw-r--r-- 1 joostvb src 1.1k Jun 28 15:23 lire_20010626-1potato2_i386.changes

or use the debian-install-build script in cvs-sourceforge/logreport/package.

Building The RPM Package

Uploading The Release
To release a new distribution, publish the tarball on various places, and send an announcement to the
<announcement@logreport.org > mailinglist, stating the most interesting new features. Furthermore,
add a newsitem to the websites’ news list. We’ll describe how to upload the tarball to various places.

The LogReport Webserver
Upload the tarball to the LogReport webserver like this.

$ scp lire-20001211.tar.gz hibou.logreport.org:/var/www/logreport.org/pub/

On hibou, do:

$ cd /var/www/logreport.org/pub
$ chown .www lire-20010525.tar.gz
$ chmod g+w lire-20010525.tar.gz

$ tar zxf lire-20001211.tar.gz
$ rm current && ln -s lire-20001211 current
$ rm current.tar.gz && ln -s lire-20001211.tar.gz current.tar.gz
$ rm -rf lire-20001205
$ mv lire-20001205.tar.gz archive

Update theREADME.txt file: Run

$ cd /var/www/logreport.org/pub

28

Chapter 15. Making a Release

$ (echo \
’current is the latest official release’; echo; ls -lF c*) > README.txt

Check the symlink to the documentation stuff in the tarball.

Check if the stuff in http://logreport.org/pub/docs is still up to date.

Advertising The Release

SourceForge
In order to release a distribution on SourceForge (SF), you login with your SF account on the SF website.
Once logged in you go to the project webpage (https://sourceforge.net/projects/logreport/) and choose
Admin. Down at the bottom of that page is a a[Edit/Add File Releases]link (click it
(https://sourceforge.net/project/admin/editpackages.php?group_id=5049)).

You are able to edit packages, like the Lire package in the LogReport project. To add a new release,
choose[Add Release]. As a release name uses the date, like 20010407, assign it to the Lire package and
then use theCreate This Releasebutton to makes it effective.

The next page shows 4 steps of which only one (step 2) is not straightforward. In that step you assign
files to a release (.tar.gz, .deb, .rpm). These files should be uploaded to SF’s Upload anonymous FTP site
at ftp://upload.sourceforge.net/incoming/. Make sure the file is placed in the/incoming directory. Click
Refresh Viewin Step 2 to add the files you uploaded to the FTP site. Check the files belonging to the
release and ClickAdd Files. In step 3, set Processor to any. Set file type to .deb and source.gz. Click
update/refresh. Step 4: send notice. Done.

Freshmeat.net
On Freshmeat.net, releases are not released, but get announced only. These announcements attract a lot
of attention. The webpage for the Lire package can be found at http://freshmeat.net/projects/lire/.

To announce a new release go to Lire - development branch (http://freshmeat.net/branches/14593/)
webpage. ChooseAdd Releasefrom the Project pull down menu in the light blue area. The rest is very
straightforward.

29

Chapter 16. Website Maintenance
We give hints on how to upgrade the website: installing stuff from current CVS on http://logreport.org
(http://logreport.org/).

If you wanna upload a complete new site:

vanbaal@gelfand:~/cvs-sourceforge/docs% tar --exclude CVS -zcf \
htdocs.tar.gz htdocs

vanbaal@gelfand:~/cvs-sourceforge/docs% scp htdocs.tar.gz \
hibou.logreport.org:

vanbaal@hibou:~% tar zxf htdocs.tar.gz
vanbaal@hibou:~% mv htdocs logreport.org

vanbaal@hibou:/var/www% rm -rf logreport.org.bak
vanbaal@hibou:/var/www% mv logreport.org logreport.org.bak
vanbaal@hibou:/var/www% mv ~/logreport.org .
vanbaal@hibou:/var/www% mv logreport.org.bak/pub logreport.org/
vanbaal@hibou:/var/www% mv logreport.org.bak/9* logreport.org/

vanbaal@hibou:/var/www% chown -R .www logreport.org
vanbaal@hibou:/var/www% chmod -R g+w logreport.org

or, if you’ve only changed some pages:

vanbaal@gelfand:~/cvs-sourceforge/logreport/docs% scp \
htdocs/developers.phtml htdocs/toolbar.inc htdocs/news.inc \
hibou.logreport.org:/var/www/logreport.org/

Documentation on the LogReport Website
Be sure the links to stuff under/pub/current are still alive. E.g. the filesTODO, dev-manual.html

anduser-manual.html are linked to.

Publishing the DTD’s
The DTD’s are published as HTML on the website by using
hibou:/usr/local/src/dtdparse/dtdparse-2.0b2-LogReportPatched.tar.gz , which is a
patched version of Norman Walsh’s dtdparse utility. Before the utility is run, make sure that the

30

Chapter 16. Website Maintenance

DocBook DTD is not included in the parsing process, because the DocBook DTD should not be
published. This is done by changing the line:

<!ENTITY % load.docbookx "INCLUDE" >

into:

<!ENTITY % load.docbookx "IGNORE" >

The webpages are then generated with:

perl ~/dtdparse-2.0b2-patched/dtdparse.pl --title "XML Lire Report Markup Language" --output lire.xml lire.dtd
perl ~/dtdparse-2.0b2-patched/dtdformat.pl --html lire.xml

The resultinglire directory can be tar-ed, gziped and unpacked again on hibou in the directory
/var/www/logreport.org/pub/docs/dtd/ .

The other two DTD’s are HTML-anized similarly, but keep in mind to change the title when running
dtdparse.pl.

31

Chapter 17. Writing Documentation
Documentation of the Lire project is done in DocBook XML 4.1.2. TheLire User’s Manualhas more
information about DocBook.

After editing theLire Developer’s Manualor theLire User’s Manual, you should runmake
check-xml to make sure the document is still a valid DocBook document. You should fix any errors
before commiting your changes.

If everything went right, documentation is build in txt, tex, html and pdf format by runningmake
dist , or justmake in doc/ . We give some hints which might be helpful in case you’ll have to build the
documentation manually.

To generate PDF:

$ jade -t tex -d /path/to/DSSSL/docbook/print/docbook.dsl roadmap.xml
$ pdfjadetex roadmap.tex

The last step is actually done two or three times to resolve page numbers.

To generate HTML:

$ jade -t sgml -d html.dsl roadmap.xml

And now use thehtml.dsl in thedoc/source directory. (If needed adjust it to reflect the location of
your DSSSL stylesheets). Use lynx to generate TXT output from HTML with:

$ lynx -nolist -dump roadmap.html > roadmap.txt

UML Diagrams
Unified Modelling Language (UML) is a set of definitions on how design diagrams are composed. These
diagrams will help to document and understand the internals of Lire, and are used as such in this manual.

UML Editing
Several UML editors are available, but few are open source. Among these are Dia (general diagram editor
for Gnome), ArgoUML (written in Java) and UML Modeler (http://uml.sf.net/) (UML specific editor for
KDE). The latter was used to draw the diagrams found in CVS/service/doc/uml-diagrams .

Diagram Types
UML supports several diagram types. Two important ones areclass diagramsandsequence diagrams.
The former is used to depict the relations and associations between classes. Classes can be programs or
modules. The latter is used to show how certain tasks are performed in time, and can be used to model
the sequence of events.

32

IV. Developer’s Reference

Chapter 18. Lire DLF Schema Markup
Language

34

Chapter 19. Lire Report Specification Markup
Language

35

Chapter 20. Lire Report Markup Language

36

Chapter 21. The Lire::Program API

37

Chapter 22. The DLF Schema API

38

Chapter 23. The Report Specification API

39

