001 // --- BEGIN LICENSE BLOCK --- 002 /* 003 * Copyright (c) 2009, Mikio L. Braun 004 * All rights reserved. 005 * 006 * Redistribution and use in source and binary forms, with or without 007 * modification, are permitted provided that the following conditions are 008 * met: 009 * 010 * * Redistributions of source code must retain the above copyright 011 * notice, this list of conditions and the following disclaimer. 012 * 013 * * Redistributions in binary form must reproduce the above 014 * copyright notice, this list of conditions and the following 015 * disclaimer in the documentation and/or other materials provided 016 * with the distribution. 017 * 018 * * Neither the name of the Technische Universit??t Berlin nor the 019 * names of its contributors may be used to endorse or promote 020 * products derived from this software without specific prior 021 * written permission. 022 * 023 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 024 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 025 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 026 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 027 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 028 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 029 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 030 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 031 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 032 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 033 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 034 */ 035 // --- END LICENSE BLOCK --- 036 037 package org.jblas; 038 039 /** 040 * Solving linear equations. 041 */ 042 public class Solve { 043 /** Solves the linear equation A*X = B. */ 044 public static DoubleMatrix solve(DoubleMatrix A, DoubleMatrix B) { 045 A.assertSquare(); 046 DoubleMatrix X = B.dup(); 047 int[] ipiv = new int[B.rows]; 048 SimpleBlas.gesv(A.dup(), ipiv, X); 049 return X; 050 } 051 052 /** Solves the linear equation A*X = B for symmetric A. */ 053 public static DoubleMatrix solveSymmetric(DoubleMatrix A, DoubleMatrix B) { 054 A.assertSquare(); 055 DoubleMatrix X = B.dup(); 056 int[] ipiv = new int[B.rows]; 057 SimpleBlas.sysv('U', A.dup(), ipiv, X); 058 return X; 059 } 060 061 062 /** Solves the linear equation A*X = B for symmetric and positive definite A. */ 063 public static DoubleMatrix solvePositive(DoubleMatrix A, DoubleMatrix B) { 064 A.assertSquare(); 065 DoubleMatrix X = B.dup(); 066 SimpleBlas.posv('U', A.dup(), X); 067 return X; 068 } 069 070 //BEGIN 071 // The code below has been automatically generated. 072 // DO NOT EDIT! 073 /** Solves the linear equation A*X = B. */ 074 public static FloatMatrix solve(FloatMatrix A, FloatMatrix B) { 075 A.assertSquare(); 076 FloatMatrix X = B.dup(); 077 int[] ipiv = new int[B.rows]; 078 SimpleBlas.gesv(A.dup(), ipiv, X); 079 return X; 080 } 081 082 /** Solves the linear equation A*X = B for symmetric A. */ 083 public static FloatMatrix solveSymmetric(FloatMatrix A, FloatMatrix B) { 084 A.assertSquare(); 085 FloatMatrix X = B.dup(); 086 int[] ipiv = new int[B.rows]; 087 SimpleBlas.sysv('U', A.dup(), ipiv, X); 088 return X; 089 } 090 091 092 /** Solves the linear equation A*X = B for symmetric and positive definite A. */ 093 public static FloatMatrix solvePositive(FloatMatrix A, FloatMatrix B) { 094 A.assertSquare(); 095 FloatMatrix X = B.dup(); 096 SimpleBlas.posv('U', A.dup(), X); 097 return X; 098 } 099 100 //END 101 }