• Main Page
  • Related Pages
  • Modules
  • Data Structures
  • Files
  • File List
  • Globals

libavcodec/vc1.c

Go to the documentation of this file.
00001 /*
00002  * VC-1 and WMV3 decoder
00003  * Copyright (c) 2006-2007 Konstantin Shishkov
00004  * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
00005  *
00006  * This file is part of FFmpeg.
00007  *
00008  * FFmpeg is free software; you can redistribute it and/or
00009  * modify it under the terms of the GNU Lesser General Public
00010  * License as published by the Free Software Foundation; either
00011  * version 2.1 of the License, or (at your option) any later version.
00012  *
00013  * FFmpeg is distributed in the hope that it will be useful,
00014  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00015  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00016  * Lesser General Public License for more details.
00017  *
00018  * You should have received a copy of the GNU Lesser General Public
00019  * License along with FFmpeg; if not, write to the Free Software
00020  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
00021  */
00022 
00028 #include "internal.h"
00029 #include "dsputil.h"
00030 #include "avcodec.h"
00031 #include "mpegvideo.h"
00032 #include "vc1.h"
00033 #include "vc1data.h"
00034 #include "vc1acdata.h"
00035 #include "msmpeg4data.h"
00036 #include "unary.h"
00037 #include "simple_idct.h"
00038 #include "mathops.h"
00039 #include "vdpau_internal.h"
00040 
00041 #undef NDEBUG
00042 #include <assert.h>
00043 
00044 #define MB_INTRA_VLC_BITS 9
00045 #define DC_VLC_BITS 9
00046 #define AC_VLC_BITS 9
00047 static const uint16_t table_mb_intra[64][2];
00048 
00049 
00055 static int vc1_init_common(VC1Context *v)
00056 {
00057     static int done = 0;
00058     int i = 0;
00059 
00060     v->hrd_rate = v->hrd_buffer = NULL;
00061 
00062     /* VLC tables */
00063     if(!done)
00064     {
00065         done = 1;
00066         init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
00067                  ff_vc1_bfraction_bits, 1, 1,
00068                  ff_vc1_bfraction_codes, 1, 1, 1);
00069         init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
00070                  ff_vc1_norm2_bits, 1, 1,
00071                  ff_vc1_norm2_codes, 1, 1, 1);
00072         init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
00073                  ff_vc1_norm6_bits, 1, 1,
00074                  ff_vc1_norm6_codes, 2, 2, 1);
00075         init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
00076                  ff_vc1_imode_bits, 1, 1,
00077                  ff_vc1_imode_codes, 1, 1, 1);
00078         for (i=0; i<3; i++)
00079         {
00080             init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
00081                      ff_vc1_ttmb_bits[i], 1, 1,
00082                      ff_vc1_ttmb_codes[i], 2, 2, 1);
00083             init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
00084                      ff_vc1_ttblk_bits[i], 1, 1,
00085                      ff_vc1_ttblk_codes[i], 1, 1, 1);
00086             init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
00087                      ff_vc1_subblkpat_bits[i], 1, 1,
00088                      ff_vc1_subblkpat_codes[i], 1, 1, 1);
00089         }
00090         for(i=0; i<4; i++)
00091         {
00092             init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
00093                      ff_vc1_4mv_block_pattern_bits[i], 1, 1,
00094                      ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
00095             init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
00096                      ff_vc1_cbpcy_p_bits[i], 1, 1,
00097                      ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
00098             init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
00099                      ff_vc1_mv_diff_bits[i], 1, 1,
00100                      ff_vc1_mv_diff_codes[i], 2, 2, 1);
00101         }
00102         for(i=0; i<8; i++)
00103             init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
00104                      &vc1_ac_tables[i][0][1], 8, 4,
00105                      &vc1_ac_tables[i][0][0], 8, 4, 1);
00106         init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
00107                  &ff_msmp4_mb_i_table[0][1], 4, 2,
00108                  &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
00109     }
00110 
00111     /* Other defaults */
00112     v->pq = -1;
00113     v->mvrange = 0; /* 7.1.1.18, p80 */
00114 
00115     return 0;
00116 }
00117 
00118 /***********************************************************************/
00129 enum Imode {
00130     IMODE_RAW,
00131     IMODE_NORM2,
00132     IMODE_DIFF2,
00133     IMODE_NORM6,
00134     IMODE_DIFF6,
00135     IMODE_ROWSKIP,
00136     IMODE_COLSKIP
00137 }; //imode defines
00139 
00146 static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
00147     int x, y;
00148 
00149     for (y=0; y<height; y++){
00150         if (!get_bits1(gb)) //rowskip
00151             memset(plane, 0, width);
00152         else
00153             for (x=0; x<width; x++)
00154                 plane[x] = get_bits1(gb);
00155         plane += stride;
00156     }
00157 }
00158 
00166 static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
00167     int x, y;
00168 
00169     for (x=0; x<width; x++){
00170         if (!get_bits1(gb)) //colskip
00171             for (y=0; y<height; y++)
00172                 plane[y*stride] = 0;
00173         else
00174             for (y=0; y<height; y++)
00175                 plane[y*stride] = get_bits1(gb);
00176         plane ++;
00177     }
00178 }
00179 
00187 static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
00188 {
00189     GetBitContext *gb = &v->s.gb;
00190 
00191     int imode, x, y, code, offset;
00192     uint8_t invert, *planep = data;
00193     int width, height, stride;
00194 
00195     width = v->s.mb_width;
00196     height = v->s.mb_height;
00197     stride = v->s.mb_stride;
00198     invert = get_bits1(gb);
00199     imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
00200 
00201     *raw_flag = 0;
00202     switch (imode)
00203     {
00204     case IMODE_RAW:
00205         //Data is actually read in the MB layer (same for all tests == "raw")
00206         *raw_flag = 1; //invert ignored
00207         return invert;
00208     case IMODE_DIFF2:
00209     case IMODE_NORM2:
00210         if ((height * width) & 1)
00211         {
00212             *planep++ = get_bits1(gb);
00213             offset = 1;
00214         }
00215         else offset = 0;
00216         // decode bitplane as one long line
00217         for (y = offset; y < height * width; y += 2) {
00218             code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
00219             *planep++ = code & 1;
00220             offset++;
00221             if(offset == width) {
00222                 offset = 0;
00223                 planep += stride - width;
00224             }
00225             *planep++ = code >> 1;
00226             offset++;
00227             if(offset == width) {
00228                 offset = 0;
00229                 planep += stride - width;
00230             }
00231         }
00232         break;
00233     case IMODE_DIFF6:
00234     case IMODE_NORM6:
00235         if(!(height % 3) && (width % 3)) { // use 2x3 decoding
00236             for(y = 0; y < height; y+= 3) {
00237                 for(x = width & 1; x < width; x += 2) {
00238                     code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
00239                     if(code < 0){
00240                         av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
00241                         return -1;
00242                     }
00243                     planep[x + 0] = (code >> 0) & 1;
00244                     planep[x + 1] = (code >> 1) & 1;
00245                     planep[x + 0 + stride] = (code >> 2) & 1;
00246                     planep[x + 1 + stride] = (code >> 3) & 1;
00247                     planep[x + 0 + stride * 2] = (code >> 4) & 1;
00248                     planep[x + 1 + stride * 2] = (code >> 5) & 1;
00249                 }
00250                 planep += stride * 3;
00251             }
00252             if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
00253         } else { // 3x2
00254             planep += (height & 1) * stride;
00255             for(y = height & 1; y < height; y += 2) {
00256                 for(x = width % 3; x < width; x += 3) {
00257                     code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
00258                     if(code < 0){
00259                         av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
00260                         return -1;
00261                     }
00262                     planep[x + 0] = (code >> 0) & 1;
00263                     planep[x + 1] = (code >> 1) & 1;
00264                     planep[x + 2] = (code >> 2) & 1;
00265                     planep[x + 0 + stride] = (code >> 3) & 1;
00266                     planep[x + 1 + stride] = (code >> 4) & 1;
00267                     planep[x + 2 + stride] = (code >> 5) & 1;
00268                 }
00269                 planep += stride * 2;
00270             }
00271             x = width % 3;
00272             if(x) decode_colskip(data  ,             x, height    , stride, &v->s.gb);
00273             if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
00274         }
00275         break;
00276     case IMODE_ROWSKIP:
00277         decode_rowskip(data, width, height, stride, &v->s.gb);
00278         break;
00279     case IMODE_COLSKIP:
00280         decode_colskip(data, width, height, stride, &v->s.gb);
00281         break;
00282     default: break;
00283     }
00284 
00285     /* Applying diff operator */
00286     if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
00287     {
00288         planep = data;
00289         planep[0] ^= invert;
00290         for (x=1; x<width; x++)
00291             planep[x] ^= planep[x-1];
00292         for (y=1; y<height; y++)
00293         {
00294             planep += stride;
00295             planep[0] ^= planep[-stride];
00296             for (x=1; x<width; x++)
00297             {
00298                 if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
00299                 else                                 planep[x] ^= planep[x-1];
00300             }
00301         }
00302     }
00303     else if (invert)
00304     {
00305         planep = data;
00306         for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
00307     }
00308     return (imode<<1) + invert;
00309 }
00310  //Bitplane group
00312 
00313 #define FILTSIGN(a) ((a) >= 0 ? 1 : -1)
00314 
00322 static av_always_inline int vc1_filter_line(uint8_t* src, int stride, int pq){
00323     uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
00324 
00325     int a0 = (2*(src[-2*stride] - src[ 1*stride]) - 5*(src[-1*stride] - src[ 0*stride]) + 4) >> 3;
00326     int a0_sign = a0 >> 31;        /* Store sign */
00327     a0 = (a0 ^ a0_sign) - a0_sign; /* a0 = FFABS(a0); */
00328     if(a0 < pq){
00329         int a1 = FFABS((2*(src[-4*stride] - src[-1*stride]) - 5*(src[-3*stride] - src[-2*stride]) + 4) >> 3);
00330         int a2 = FFABS((2*(src[ 0*stride] - src[ 3*stride]) - 5*(src[ 1*stride] - src[ 2*stride]) + 4) >> 3);
00331         if(a1 < a0 || a2 < a0){
00332             int clip = src[-1*stride] - src[ 0*stride];
00333             int clip_sign = clip >> 31;
00334             clip = ((clip ^ clip_sign) - clip_sign)>>1;
00335             if(clip){
00336                 int a3 = FFMIN(a1, a2);
00337                 int d = 5 * (a3 - a0);
00338                 int d_sign = (d >> 31);
00339                 d = ((d ^ d_sign) - d_sign) >> 3;
00340                 d_sign ^= a0_sign;
00341 
00342                 if( d_sign ^ clip_sign )
00343                     d = 0;
00344                 else{
00345                     d = FFMIN(d, clip);
00346                     d = (d ^ d_sign) - d_sign;          /* Restore sign */
00347                     src[-1*stride] = cm[src[-1*stride] - d];
00348                     src[ 0*stride] = cm[src[ 0*stride] + d];
00349                 }
00350                 return 1;
00351             }
00352         }
00353     }
00354     return 0;
00355 }
00356 
00366 static void vc1_loop_filter(uint8_t* src, int step, int stride, int len, int pq)
00367 {
00368     int i;
00369     int filt3;
00370 
00371     for(i = 0; i < len; i += 4){
00372         filt3 = vc1_filter_line(src + 2*step, stride, pq);
00373         if(filt3){
00374             vc1_filter_line(src + 0*step, stride, pq);
00375             vc1_filter_line(src + 1*step, stride, pq);
00376             vc1_filter_line(src + 3*step, stride, pq);
00377         }
00378         src += step * 4;
00379     }
00380 }
00381 
00382 static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
00383 {
00384     int i, j;
00385     if(!s->first_slice_line)
00386         vc1_loop_filter(s->dest[0], 1, s->linesize, 16, pq);
00387     vc1_loop_filter(s->dest[0] + 8*s->linesize, 1, s->linesize, 16, pq);
00388     for(i = !s->mb_x*8; i < 16; i += 8)
00389         vc1_loop_filter(s->dest[0] + i, s->linesize, 1, 16, pq);
00390     for(j = 0; j < 2; j++){
00391         if(!s->first_slice_line)
00392             vc1_loop_filter(s->dest[j+1], 1, s->uvlinesize, 8, pq);
00393         if(s->mb_x)
00394             vc1_loop_filter(s->dest[j+1], s->uvlinesize, 1, 8, pq);
00395     }
00396 }
00397 
00398 /***********************************************************************/
00402 static int vop_dquant_decoding(VC1Context *v)
00403 {
00404     GetBitContext *gb = &v->s.gb;
00405     int pqdiff;
00406 
00407     //variable size
00408     if (v->dquant == 2)
00409     {
00410         pqdiff = get_bits(gb, 3);
00411         if (pqdiff == 7) v->altpq = get_bits(gb, 5);
00412         else v->altpq = v->pq + pqdiff + 1;
00413     }
00414     else
00415     {
00416         v->dquantfrm = get_bits1(gb);
00417         if ( v->dquantfrm )
00418         {
00419             v->dqprofile = get_bits(gb, 2);
00420             switch (v->dqprofile)
00421             {
00422             case DQPROFILE_SINGLE_EDGE:
00423             case DQPROFILE_DOUBLE_EDGES:
00424                 v->dqsbedge = get_bits(gb, 2);
00425                 break;
00426             case DQPROFILE_ALL_MBS:
00427                 v->dqbilevel = get_bits1(gb);
00428                 if(!v->dqbilevel)
00429                     v->halfpq = 0;
00430             default: break; //Forbidden ?
00431             }
00432             if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
00433             {
00434                 pqdiff = get_bits(gb, 3);
00435                 if (pqdiff == 7) v->altpq = get_bits(gb, 5);
00436                 else v->altpq = v->pq + pqdiff + 1;
00437             }
00438         }
00439     }
00440     return 0;
00441 }
00442 
00445 static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
00446 {
00447     uint8_t *Y;
00448     int ys, us, vs;
00449     DSPContext *dsp = &v->s.dsp;
00450 
00451     if(v->rangeredfrm) {
00452         int i, j, k;
00453         for(k = 0; k < 6; k++)
00454             for(j = 0; j < 8; j++)
00455                 for(i = 0; i < 8; i++)
00456                     block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
00457 
00458     }
00459     ys = v->s.current_picture.linesize[0];
00460     us = v->s.current_picture.linesize[1];
00461     vs = v->s.current_picture.linesize[2];
00462     Y = v->s.dest[0];
00463 
00464     dsp->put_pixels_clamped(block[0], Y, ys);
00465     dsp->put_pixels_clamped(block[1], Y + 8, ys);
00466     Y += ys * 8;
00467     dsp->put_pixels_clamped(block[2], Y, ys);
00468     dsp->put_pixels_clamped(block[3], Y + 8, ys);
00469 
00470     if(!(v->s.flags & CODEC_FLAG_GRAY)) {
00471         dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
00472         dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
00473     }
00474 }
00475 
00479 static void vc1_mc_1mv(VC1Context *v, int dir)
00480 {
00481     MpegEncContext *s = &v->s;
00482     DSPContext *dsp = &v->s.dsp;
00483     uint8_t *srcY, *srcU, *srcV;
00484     int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
00485 
00486     if(!v->s.last_picture.data[0])return;
00487 
00488     mx = s->mv[dir][0][0];
00489     my = s->mv[dir][0][1];
00490 
00491     // store motion vectors for further use in B frames
00492     if(s->pict_type == FF_P_TYPE) {
00493         s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
00494         s->current_picture.motion_val[1][s->block_index[0]][1] = my;
00495     }
00496     uvmx = (mx + ((mx & 3) == 3)) >> 1;
00497     uvmy = (my + ((my & 3) == 3)) >> 1;
00498     if(v->fastuvmc) {
00499         uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
00500         uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
00501     }
00502     if(!dir) {
00503         srcY = s->last_picture.data[0];
00504         srcU = s->last_picture.data[1];
00505         srcV = s->last_picture.data[2];
00506     } else {
00507         srcY = s->next_picture.data[0];
00508         srcU = s->next_picture.data[1];
00509         srcV = s->next_picture.data[2];
00510     }
00511 
00512     src_x = s->mb_x * 16 + (mx >> 2);
00513     src_y = s->mb_y * 16 + (my >> 2);
00514     uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
00515     uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
00516 
00517     if(v->profile != PROFILE_ADVANCED){
00518         src_x   = av_clip(  src_x, -16, s->mb_width  * 16);
00519         src_y   = av_clip(  src_y, -16, s->mb_height * 16);
00520         uvsrc_x = av_clip(uvsrc_x,  -8, s->mb_width  *  8);
00521         uvsrc_y = av_clip(uvsrc_y,  -8, s->mb_height *  8);
00522     }else{
00523         src_x   = av_clip(  src_x, -17, s->avctx->coded_width);
00524         src_y   = av_clip(  src_y, -18, s->avctx->coded_height + 1);
00525         uvsrc_x = av_clip(uvsrc_x,  -8, s->avctx->coded_width  >> 1);
00526         uvsrc_y = av_clip(uvsrc_y,  -8, s->avctx->coded_height >> 1);
00527     }
00528 
00529     srcY += src_y * s->linesize + src_x;
00530     srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
00531     srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
00532 
00533     /* for grayscale we should not try to read from unknown area */
00534     if(s->flags & CODEC_FLAG_GRAY) {
00535         srcU = s->edge_emu_buffer + 18 * s->linesize;
00536         srcV = s->edge_emu_buffer + 18 * s->linesize;
00537     }
00538 
00539     if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
00540        || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
00541        || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
00542         uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
00543 
00544         srcY -= s->mspel * (1 + s->linesize);
00545         ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
00546                             src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
00547         srcY = s->edge_emu_buffer;
00548         ff_emulated_edge_mc(uvbuf     , srcU, s->uvlinesize, 8+1, 8+1,
00549                             uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
00550         ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
00551                             uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
00552         srcU = uvbuf;
00553         srcV = uvbuf + 16;
00554         /* if we deal with range reduction we need to scale source blocks */
00555         if(v->rangeredfrm) {
00556             int i, j;
00557             uint8_t *src, *src2;
00558 
00559             src = srcY;
00560             for(j = 0; j < 17 + s->mspel*2; j++) {
00561                 for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
00562                 src += s->linesize;
00563             }
00564             src = srcU; src2 = srcV;
00565             for(j = 0; j < 9; j++) {
00566                 for(i = 0; i < 9; i++) {
00567                     src[i] = ((src[i] - 128) >> 1) + 128;
00568                     src2[i] = ((src2[i] - 128) >> 1) + 128;
00569                 }
00570                 src += s->uvlinesize;
00571                 src2 += s->uvlinesize;
00572             }
00573         }
00574         /* if we deal with intensity compensation we need to scale source blocks */
00575         if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
00576             int i, j;
00577             uint8_t *src, *src2;
00578 
00579             src = srcY;
00580             for(j = 0; j < 17 + s->mspel*2; j++) {
00581                 for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
00582                 src += s->linesize;
00583             }
00584             src = srcU; src2 = srcV;
00585             for(j = 0; j < 9; j++) {
00586                 for(i = 0; i < 9; i++) {
00587                     src[i] = v->lutuv[src[i]];
00588                     src2[i] = v->lutuv[src2[i]];
00589                 }
00590                 src += s->uvlinesize;
00591                 src2 += s->uvlinesize;
00592             }
00593         }
00594         srcY += s->mspel * (1 + s->linesize);
00595     }
00596 
00597     if(s->mspel) {
00598         dxy = ((my & 3) << 2) | (mx & 3);
00599         dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0]    , srcY    , s->linesize, v->rnd);
00600         dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
00601         srcY += s->linesize * 8;
00602         dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize    , srcY    , s->linesize, v->rnd);
00603         dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
00604     } else { // hpel mc - always used for luma
00605         dxy = (my & 2) | ((mx & 2) >> 1);
00606 
00607         if(!v->rnd)
00608             dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
00609         else
00610             dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
00611     }
00612 
00613     if(s->flags & CODEC_FLAG_GRAY) return;
00614     /* Chroma MC always uses qpel bilinear */
00615     uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
00616     uvmx = (uvmx&3)<<1;
00617     uvmy = (uvmy&3)<<1;
00618     if(!v->rnd){
00619         dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
00620         dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
00621     }else{
00622         dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
00623         dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
00624     }
00625 }
00626 
00629 static void vc1_mc_4mv_luma(VC1Context *v, int n)
00630 {
00631     MpegEncContext *s = &v->s;
00632     DSPContext *dsp = &v->s.dsp;
00633     uint8_t *srcY;
00634     int dxy, mx, my, src_x, src_y;
00635     int off;
00636 
00637     if(!v->s.last_picture.data[0])return;
00638     mx = s->mv[0][n][0];
00639     my = s->mv[0][n][1];
00640     srcY = s->last_picture.data[0];
00641 
00642     off = s->linesize * 4 * (n&2) + (n&1) * 8;
00643 
00644     src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
00645     src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
00646 
00647     if(v->profile != PROFILE_ADVANCED){
00648         src_x   = av_clip(  src_x, -16, s->mb_width  * 16);
00649         src_y   = av_clip(  src_y, -16, s->mb_height * 16);
00650     }else{
00651         src_x   = av_clip(  src_x, -17, s->avctx->coded_width);
00652         src_y   = av_clip(  src_y, -18, s->avctx->coded_height + 1);
00653     }
00654 
00655     srcY += src_y * s->linesize + src_x;
00656 
00657     if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
00658        || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
00659        || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
00660         srcY -= s->mspel * (1 + s->linesize);
00661         ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
00662                             src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
00663         srcY = s->edge_emu_buffer;
00664         /* if we deal with range reduction we need to scale source blocks */
00665         if(v->rangeredfrm) {
00666             int i, j;
00667             uint8_t *src;
00668 
00669             src = srcY;
00670             for(j = 0; j < 9 + s->mspel*2; j++) {
00671                 for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
00672                 src += s->linesize;
00673             }
00674         }
00675         /* if we deal with intensity compensation we need to scale source blocks */
00676         if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
00677             int i, j;
00678             uint8_t *src;
00679 
00680             src = srcY;
00681             for(j = 0; j < 9 + s->mspel*2; j++) {
00682                 for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
00683                 src += s->linesize;
00684             }
00685         }
00686         srcY += s->mspel * (1 + s->linesize);
00687     }
00688 
00689     if(s->mspel) {
00690         dxy = ((my & 3) << 2) | (mx & 3);
00691         dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
00692     } else { // hpel mc - always used for luma
00693         dxy = (my & 2) | ((mx & 2) >> 1);
00694         if(!v->rnd)
00695             dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
00696         else
00697             dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
00698     }
00699 }
00700 
00701 static inline int median4(int a, int b, int c, int d)
00702 {
00703     if(a < b) {
00704         if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
00705         else      return (FFMIN(b, c) + FFMAX(a, d)) / 2;
00706     } else {
00707         if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
00708         else      return (FFMIN(a, c) + FFMAX(b, d)) / 2;
00709     }
00710 }
00711 
00712 
00715 static void vc1_mc_4mv_chroma(VC1Context *v)
00716 {
00717     MpegEncContext *s = &v->s;
00718     DSPContext *dsp = &v->s.dsp;
00719     uint8_t *srcU, *srcV;
00720     int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
00721     int i, idx, tx = 0, ty = 0;
00722     int mvx[4], mvy[4], intra[4];
00723     static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
00724 
00725     if(!v->s.last_picture.data[0])return;
00726     if(s->flags & CODEC_FLAG_GRAY) return;
00727 
00728     for(i = 0; i < 4; i++) {
00729         mvx[i] = s->mv[0][i][0];
00730         mvy[i] = s->mv[0][i][1];
00731         intra[i] = v->mb_type[0][s->block_index[i]];
00732     }
00733 
00734     /* calculate chroma MV vector from four luma MVs */
00735     idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
00736     if(!idx) { // all blocks are inter
00737         tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
00738         ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
00739     } else if(count[idx] == 1) { // 3 inter blocks
00740         switch(idx) {
00741         case 0x1:
00742             tx = mid_pred(mvx[1], mvx[2], mvx[3]);
00743             ty = mid_pred(mvy[1], mvy[2], mvy[3]);
00744             break;
00745         case 0x2:
00746             tx = mid_pred(mvx[0], mvx[2], mvx[3]);
00747             ty = mid_pred(mvy[0], mvy[2], mvy[3]);
00748             break;
00749         case 0x4:
00750             tx = mid_pred(mvx[0], mvx[1], mvx[3]);
00751             ty = mid_pred(mvy[0], mvy[1], mvy[3]);
00752             break;
00753         case 0x8:
00754             tx = mid_pred(mvx[0], mvx[1], mvx[2]);
00755             ty = mid_pred(mvy[0], mvy[1], mvy[2]);
00756             break;
00757         }
00758     } else if(count[idx] == 2) {
00759         int t1 = 0, t2 = 0;
00760         for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
00761         for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
00762         tx = (mvx[t1] + mvx[t2]) / 2;
00763         ty = (mvy[t1] + mvy[t2]) / 2;
00764     } else {
00765         s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
00766         s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
00767         return; //no need to do MC for inter blocks
00768     }
00769 
00770     s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
00771     s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
00772     uvmx = (tx + ((tx&3) == 3)) >> 1;
00773     uvmy = (ty + ((ty&3) == 3)) >> 1;
00774     if(v->fastuvmc) {
00775         uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
00776         uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
00777     }
00778 
00779     uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
00780     uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
00781 
00782     if(v->profile != PROFILE_ADVANCED){
00783         uvsrc_x = av_clip(uvsrc_x,  -8, s->mb_width  *  8);
00784         uvsrc_y = av_clip(uvsrc_y,  -8, s->mb_height *  8);
00785     }else{
00786         uvsrc_x = av_clip(uvsrc_x,  -8, s->avctx->coded_width  >> 1);
00787         uvsrc_y = av_clip(uvsrc_y,  -8, s->avctx->coded_height >> 1);
00788     }
00789 
00790     srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
00791     srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
00792     if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
00793        || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
00794        || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
00795         ff_emulated_edge_mc(s->edge_emu_buffer     , srcU, s->uvlinesize, 8+1, 8+1,
00796                             uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
00797         ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
00798                             uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
00799         srcU = s->edge_emu_buffer;
00800         srcV = s->edge_emu_buffer + 16;
00801 
00802         /* if we deal with range reduction we need to scale source blocks */
00803         if(v->rangeredfrm) {
00804             int i, j;
00805             uint8_t *src, *src2;
00806 
00807             src = srcU; src2 = srcV;
00808             for(j = 0; j < 9; j++) {
00809                 for(i = 0; i < 9; i++) {
00810                     src[i] = ((src[i] - 128) >> 1) + 128;
00811                     src2[i] = ((src2[i] - 128) >> 1) + 128;
00812                 }
00813                 src += s->uvlinesize;
00814                 src2 += s->uvlinesize;
00815             }
00816         }
00817         /* if we deal with intensity compensation we need to scale source blocks */
00818         if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
00819             int i, j;
00820             uint8_t *src, *src2;
00821 
00822             src = srcU; src2 = srcV;
00823             for(j = 0; j < 9; j++) {
00824                 for(i = 0; i < 9; i++) {
00825                     src[i] = v->lutuv[src[i]];
00826                     src2[i] = v->lutuv[src2[i]];
00827                 }
00828                 src += s->uvlinesize;
00829                 src2 += s->uvlinesize;
00830             }
00831         }
00832     }
00833 
00834     /* Chroma MC always uses qpel bilinear */
00835     uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
00836     uvmx = (uvmx&3)<<1;
00837     uvmy = (uvmy&3)<<1;
00838     if(!v->rnd){
00839         dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
00840         dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
00841     }else{
00842         dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
00843         dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
00844     }
00845 }
00846 
00847 static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
00848 
00856 static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
00857 {
00858     VC1Context *v = avctx->priv_data;
00859 
00860     av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
00861     v->profile = get_bits(gb, 2);
00862     if (v->profile == PROFILE_COMPLEX)
00863     {
00864         av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
00865     }
00866 
00867     if (v->profile == PROFILE_ADVANCED)
00868     {
00869         v->zz_8x4 = ff_vc1_adv_progressive_8x4_zz;
00870         v->zz_4x8 = ff_vc1_adv_progressive_4x8_zz;
00871         return decode_sequence_header_adv(v, gb);
00872     }
00873     else
00874     {
00875         v->zz_8x4 = wmv2_scantableA;
00876         v->zz_4x8 = wmv2_scantableB;
00877         v->res_sm = get_bits(gb, 2); //reserved
00878         if (v->res_sm)
00879         {
00880             av_log(avctx, AV_LOG_ERROR,
00881                    "Reserved RES_SM=%i is forbidden\n", v->res_sm);
00882             return -1;
00883         }
00884     }
00885 
00886     // (fps-2)/4 (->30)
00887     v->frmrtq_postproc = get_bits(gb, 3); //common
00888     // (bitrate-32kbps)/64kbps
00889     v->bitrtq_postproc = get_bits(gb, 5); //common
00890     v->s.loop_filter = get_bits1(gb); //common
00891     if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
00892     {
00893         av_log(avctx, AV_LOG_ERROR,
00894                "LOOPFILTER shell not be enabled in simple profile\n");
00895     }
00896     if(v->s.avctx->skip_loop_filter >= AVDISCARD_ALL)
00897         v->s.loop_filter = 0;
00898 
00899     v->res_x8 = get_bits1(gb); //reserved
00900     v->multires = get_bits1(gb);
00901     v->res_fasttx = get_bits1(gb);
00902     if (!v->res_fasttx)
00903     {
00904         v->s.dsp.vc1_inv_trans_8x8 = ff_simple_idct;
00905         v->s.dsp.vc1_inv_trans_8x4 = ff_simple_idct84_add;
00906         v->s.dsp.vc1_inv_trans_4x8 = ff_simple_idct48_add;
00907         v->s.dsp.vc1_inv_trans_4x4 = ff_simple_idct44_add;
00908     }
00909 
00910     v->fastuvmc =  get_bits1(gb); //common
00911     if (!v->profile && !v->fastuvmc)
00912     {
00913         av_log(avctx, AV_LOG_ERROR,
00914                "FASTUVMC unavailable in Simple Profile\n");
00915         return -1;
00916     }
00917     v->extended_mv =  get_bits1(gb); //common
00918     if (!v->profile && v->extended_mv)
00919     {
00920         av_log(avctx, AV_LOG_ERROR,
00921                "Extended MVs unavailable in Simple Profile\n");
00922         return -1;
00923     }
00924     v->dquant =  get_bits(gb, 2); //common
00925     v->vstransform =  get_bits1(gb); //common
00926 
00927     v->res_transtab = get_bits1(gb);
00928     if (v->res_transtab)
00929     {
00930         av_log(avctx, AV_LOG_ERROR,
00931                "1 for reserved RES_TRANSTAB is forbidden\n");
00932         return -1;
00933     }
00934 
00935     v->overlap = get_bits1(gb); //common
00936 
00937     v->s.resync_marker = get_bits1(gb);
00938     v->rangered = get_bits1(gb);
00939     if (v->rangered && v->profile == PROFILE_SIMPLE)
00940     {
00941         av_log(avctx, AV_LOG_INFO,
00942                "RANGERED should be set to 0 in simple profile\n");
00943     }
00944 
00945     v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
00946     v->quantizer_mode = get_bits(gb, 2); //common
00947 
00948     v->finterpflag = get_bits1(gb); //common
00949     v->res_rtm_flag = get_bits1(gb); //reserved
00950     if (!v->res_rtm_flag)
00951     {
00952 //            av_log(avctx, AV_LOG_ERROR,
00953 //                   "0 for reserved RES_RTM_FLAG is forbidden\n");
00954         av_log(avctx, AV_LOG_ERROR,
00955                "Old WMV3 version detected, only I-frames will be decoded\n");
00956         //return -1;
00957     }
00958     //TODO: figure out what they mean (always 0x402F)
00959     if(!v->res_fasttx) skip_bits(gb, 16);
00960     av_log(avctx, AV_LOG_DEBUG,
00961                "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
00962                "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
00963                "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
00964                "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
00965                v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
00966                v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
00967                v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
00968                v->dquant, v->quantizer_mode, avctx->max_b_frames
00969                );
00970     return 0;
00971 }
00972 
00973 static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
00974 {
00975     v->res_rtm_flag = 1;
00976     v->level = get_bits(gb, 3);
00977     if(v->level >= 5)
00978     {
00979         av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
00980     }
00981     v->chromaformat = get_bits(gb, 2);
00982     if (v->chromaformat != 1)
00983     {
00984         av_log(v->s.avctx, AV_LOG_ERROR,
00985                "Only 4:2:0 chroma format supported\n");
00986         return -1;
00987     }
00988 
00989     // (fps-2)/4 (->30)
00990     v->frmrtq_postproc = get_bits(gb, 3); //common
00991     // (bitrate-32kbps)/64kbps
00992     v->bitrtq_postproc = get_bits(gb, 5); //common
00993     v->postprocflag = get_bits1(gb); //common
00994 
00995     v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
00996     v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
00997     v->s.avctx->width = v->s.avctx->coded_width;
00998     v->s.avctx->height = v->s.avctx->coded_height;
00999     v->broadcast = get_bits1(gb);
01000     v->interlace = get_bits1(gb);
01001     v->tfcntrflag = get_bits1(gb);
01002     v->finterpflag = get_bits1(gb);
01003     skip_bits1(gb); // reserved
01004 
01005     v->s.h_edge_pos = v->s.avctx->coded_width;
01006     v->s.v_edge_pos = v->s.avctx->coded_height;
01007 
01008     av_log(v->s.avctx, AV_LOG_DEBUG,
01009                "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
01010                "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
01011                "TFCTRflag=%i, FINTERPflag=%i\n",
01012                v->level, v->frmrtq_postproc, v->bitrtq_postproc,
01013                v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
01014                v->tfcntrflag, v->finterpflag
01015                );
01016 
01017     v->psf = get_bits1(gb);
01018     if(v->psf) { //PsF, 6.1.13
01019         av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
01020         return -1;
01021     }
01022     v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
01023     if(get_bits1(gb)) { //Display Info - decoding is not affected by it
01024         int w, h, ar = 0;
01025         av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
01026         v->s.avctx->coded_width  = w = get_bits(gb, 14) + 1;
01027         v->s.avctx->coded_height = h = get_bits(gb, 14) + 1;
01028         av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
01029         if(get_bits1(gb))
01030             ar = get_bits(gb, 4);
01031         if(ar && ar < 14){
01032             v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
01033         }else if(ar == 15){
01034             w = get_bits(gb, 8);
01035             h = get_bits(gb, 8);
01036             v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
01037         }
01038         av_log(v->s.avctx, AV_LOG_DEBUG, "Aspect: %i:%i\n", v->s.avctx->sample_aspect_ratio.num, v->s.avctx->sample_aspect_ratio.den);
01039 
01040         if(get_bits1(gb)){ //framerate stuff
01041             if(get_bits1(gb)) {
01042                 v->s.avctx->time_base.num = 32;
01043                 v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
01044             } else {
01045                 int nr, dr;
01046                 nr = get_bits(gb, 8);
01047                 dr = get_bits(gb, 4);
01048                 if(nr && nr < 8 && dr && dr < 3){
01049                     v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
01050                     v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
01051                 }
01052             }
01053         }
01054 
01055         if(get_bits1(gb)){
01056             v->color_prim = get_bits(gb, 8);
01057             v->transfer_char = get_bits(gb, 8);
01058             v->matrix_coef = get_bits(gb, 8);
01059         }
01060     }
01061 
01062     v->hrd_param_flag = get_bits1(gb);
01063     if(v->hrd_param_flag) {
01064         int i;
01065         v->hrd_num_leaky_buckets = get_bits(gb, 5);
01066         skip_bits(gb, 4); //bitrate exponent
01067         skip_bits(gb, 4); //buffer size exponent
01068         for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
01069             skip_bits(gb, 16); //hrd_rate[n]
01070             skip_bits(gb, 16); //hrd_buffer[n]
01071         }
01072     }
01073     return 0;
01074 }
01075 
01076 static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
01077 {
01078     VC1Context *v = avctx->priv_data;
01079     int i;
01080 
01081     av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
01082     v->broken_link = get_bits1(gb);
01083     v->closed_entry = get_bits1(gb);
01084     v->panscanflag = get_bits1(gb);
01085     v->refdist_flag = get_bits1(gb);
01086     v->s.loop_filter = get_bits1(gb);
01087     v->fastuvmc = get_bits1(gb);
01088     v->extended_mv = get_bits1(gb);
01089     v->dquant = get_bits(gb, 2);
01090     v->vstransform = get_bits1(gb);
01091     v->overlap = get_bits1(gb);
01092     v->quantizer_mode = get_bits(gb, 2);
01093 
01094     if(v->hrd_param_flag){
01095         for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
01096             skip_bits(gb, 8); //hrd_full[n]
01097         }
01098     }
01099 
01100     if(get_bits1(gb)){
01101         avctx->coded_width = (get_bits(gb, 12)+1)<<1;
01102         avctx->coded_height = (get_bits(gb, 12)+1)<<1;
01103     }
01104     if(v->extended_mv)
01105         v->extended_dmv = get_bits1(gb);
01106     if((v->range_mapy_flag = get_bits1(gb))) {
01107         av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
01108         v->range_mapy = get_bits(gb, 3);
01109     }
01110     if((v->range_mapuv_flag = get_bits1(gb))) {
01111         av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
01112         v->range_mapuv = get_bits(gb, 3);
01113     }
01114 
01115     av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
01116         "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
01117         "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
01118         "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
01119         v->broken_link, v->closed_entry, v->panscanflag, v->refdist_flag, v->s.loop_filter,
01120         v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
01121 
01122     return 0;
01123 }
01124 
01125 static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
01126 {
01127     int pqindex, lowquant, status;
01128 
01129     if(v->finterpflag) v->interpfrm = get_bits1(gb);
01130     skip_bits(gb, 2); //framecnt unused
01131     v->rangeredfrm = 0;
01132     if (v->rangered) v->rangeredfrm = get_bits1(gb);
01133     v->s.pict_type = get_bits1(gb);
01134     if (v->s.avctx->max_b_frames) {
01135         if (!v->s.pict_type) {
01136             if (get_bits1(gb)) v->s.pict_type = FF_I_TYPE;
01137             else v->s.pict_type = FF_B_TYPE;
01138         } else v->s.pict_type = FF_P_TYPE;
01139     } else v->s.pict_type = v->s.pict_type ? FF_P_TYPE : FF_I_TYPE;
01140 
01141     v->bi_type = 0;
01142     if(v->s.pict_type == FF_B_TYPE) {
01143         v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
01144         v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
01145         if(v->bfraction == 0) {
01146             v->s.pict_type = FF_BI_TYPE;
01147         }
01148     }
01149     if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
01150         skip_bits(gb, 7); // skip buffer fullness
01151 
01152     /* calculate RND */
01153     if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
01154         v->rnd = 1;
01155     if(v->s.pict_type == FF_P_TYPE)
01156         v->rnd ^= 1;
01157 
01158     /* Quantizer stuff */
01159     pqindex = get_bits(gb, 5);
01160     if(!pqindex) return -1;
01161     if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
01162         v->pq = ff_vc1_pquant_table[0][pqindex];
01163     else
01164         v->pq = ff_vc1_pquant_table[1][pqindex];
01165 
01166     v->pquantizer = 1;
01167     if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
01168         v->pquantizer = pqindex < 9;
01169     if (v->quantizer_mode == QUANT_NON_UNIFORM)
01170         v->pquantizer = 0;
01171     v->pqindex = pqindex;
01172     if (pqindex < 9) v->halfpq = get_bits1(gb);
01173     else v->halfpq = 0;
01174     if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
01175         v->pquantizer = get_bits1(gb);
01176     v->dquantfrm = 0;
01177     if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
01178     v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
01179     v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
01180     v->range_x = 1 << (v->k_x - 1);
01181     v->range_y = 1 << (v->k_y - 1);
01182     if (v->multires && v->s.pict_type != FF_B_TYPE) v->respic = get_bits(gb, 2);
01183 
01184     if(v->res_x8 && (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)){
01185         v->x8_type = get_bits1(gb);
01186     }else v->x8_type = 0;
01187 //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
01188 //        (v->s.pict_type == FF_P_TYPE) ? 'P' : ((v->s.pict_type == FF_I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
01189 
01190     if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
01191 
01192     switch(v->s.pict_type) {
01193     case FF_P_TYPE:
01194         if (v->pq < 5) v->tt_index = 0;
01195         else if(v->pq < 13) v->tt_index = 1;
01196         else v->tt_index = 2;
01197 
01198         lowquant = (v->pq > 12) ? 0 : 1;
01199         v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
01200         if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
01201         {
01202             int scale, shift, i;
01203             v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
01204             v->lumscale = get_bits(gb, 6);
01205             v->lumshift = get_bits(gb, 6);
01206             v->use_ic = 1;
01207             /* fill lookup tables for intensity compensation */
01208             if(!v->lumscale) {
01209                 scale = -64;
01210                 shift = (255 - v->lumshift * 2) << 6;
01211                 if(v->lumshift > 31)
01212                     shift += 128 << 6;
01213             } else {
01214                 scale = v->lumscale + 32;
01215                 if(v->lumshift > 31)
01216                     shift = (v->lumshift - 64) << 6;
01217                 else
01218                     shift = v->lumshift << 6;
01219             }
01220             for(i = 0; i < 256; i++) {
01221                 v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
01222                 v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
01223             }
01224         }
01225         if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
01226             v->s.quarter_sample = 0;
01227         else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
01228             if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
01229                 v->s.quarter_sample = 0;
01230             else
01231                 v->s.quarter_sample = 1;
01232         } else
01233             v->s.quarter_sample = 1;
01234         v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
01235 
01236         if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
01237                  v->mv_mode2 == MV_PMODE_MIXED_MV)
01238                 || v->mv_mode == MV_PMODE_MIXED_MV)
01239         {
01240             status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
01241             if (status < 0) return -1;
01242             av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
01243                    "Imode: %i, Invert: %i\n", status>>1, status&1);
01244         } else {
01245             v->mv_type_is_raw = 0;
01246             memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
01247         }
01248         status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
01249         if (status < 0) return -1;
01250         av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
01251                "Imode: %i, Invert: %i\n", status>>1, status&1);
01252 
01253         /* Hopefully this is correct for P frames */
01254         v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
01255         v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
01256 
01257         if (v->dquant)
01258         {
01259             av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
01260             vop_dquant_decoding(v);
01261         }
01262 
01263         v->ttfrm = 0; //FIXME Is that so ?
01264         if (v->vstransform)
01265         {
01266             v->ttmbf = get_bits1(gb);
01267             if (v->ttmbf)
01268             {
01269                 v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
01270             }
01271         } else {
01272             v->ttmbf = 1;
01273             v->ttfrm = TT_8X8;
01274         }
01275         break;
01276     case FF_B_TYPE:
01277         if (v->pq < 5) v->tt_index = 0;
01278         else if(v->pq < 13) v->tt_index = 1;
01279         else v->tt_index = 2;
01280 
01281         lowquant = (v->pq > 12) ? 0 : 1;
01282         v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
01283         v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
01284         v->s.mspel = v->s.quarter_sample;
01285 
01286         status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
01287         if (status < 0) return -1;
01288         av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
01289                "Imode: %i, Invert: %i\n", status>>1, status&1);
01290         status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
01291         if (status < 0) return -1;
01292         av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
01293                "Imode: %i, Invert: %i\n", status>>1, status&1);
01294 
01295         v->s.mv_table_index = get_bits(gb, 2);
01296         v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
01297 
01298         if (v->dquant)
01299         {
01300             av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
01301             vop_dquant_decoding(v);
01302         }
01303 
01304         v->ttfrm = 0;
01305         if (v->vstransform)
01306         {
01307             v->ttmbf = get_bits1(gb);
01308             if (v->ttmbf)
01309             {
01310                 v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
01311             }
01312         } else {
01313             v->ttmbf = 1;
01314             v->ttfrm = TT_8X8;
01315         }
01316         break;
01317     }
01318 
01319     if(!v->x8_type)
01320     {
01321         /* AC Syntax */
01322         v->c_ac_table_index = decode012(gb);
01323         if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
01324         {
01325             v->y_ac_table_index = decode012(gb);
01326         }
01327         /* DC Syntax */
01328         v->s.dc_table_index = get_bits1(gb);
01329     }
01330 
01331     if(v->s.pict_type == FF_BI_TYPE) {
01332         v->s.pict_type = FF_B_TYPE;
01333         v->bi_type = 1;
01334     }
01335     return 0;
01336 }
01337 
01338 static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
01339 {
01340     int pqindex, lowquant;
01341     int status;
01342 
01343     v->p_frame_skipped = 0;
01344 
01345     if(v->interlace){
01346         v->fcm = decode012(gb);
01347         if(v->fcm) return -1; // interlaced frames/fields are not implemented
01348     }
01349     switch(get_unary(gb, 0, 4)) {
01350     case 0:
01351         v->s.pict_type = FF_P_TYPE;
01352         break;
01353     case 1:
01354         v->s.pict_type = FF_B_TYPE;
01355         break;
01356     case 2:
01357         v->s.pict_type = FF_I_TYPE;
01358         break;
01359     case 3:
01360         v->s.pict_type = FF_BI_TYPE;
01361         break;
01362     case 4:
01363         v->s.pict_type = FF_P_TYPE; // skipped pic
01364         v->p_frame_skipped = 1;
01365         return 0;
01366     }
01367     if(v->tfcntrflag)
01368         skip_bits(gb, 8);
01369     if(v->broadcast) {
01370         if(!v->interlace || v->psf) {
01371             v->rptfrm = get_bits(gb, 2);
01372         } else {
01373             v->tff = get_bits1(gb);
01374             v->rptfrm = get_bits1(gb);
01375         }
01376     }
01377     if(v->panscanflag) {
01378         //...
01379     }
01380     v->rnd = get_bits1(gb);
01381     if(v->interlace)
01382         v->uvsamp = get_bits1(gb);
01383     if(v->finterpflag) v->interpfrm = get_bits1(gb);
01384     if(v->s.pict_type == FF_B_TYPE) {
01385         v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
01386         v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
01387         if(v->bfraction == 0) {
01388             v->s.pict_type = FF_BI_TYPE; /* XXX: should not happen here */
01389         }
01390     }
01391     pqindex = get_bits(gb, 5);
01392     if(!pqindex) return -1;
01393     v->pqindex = pqindex;
01394     if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
01395         v->pq = ff_vc1_pquant_table[0][pqindex];
01396     else
01397         v->pq = ff_vc1_pquant_table[1][pqindex];
01398 
01399     v->pquantizer = 1;
01400     if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
01401         v->pquantizer = pqindex < 9;
01402     if (v->quantizer_mode == QUANT_NON_UNIFORM)
01403         v->pquantizer = 0;
01404     v->pqindex = pqindex;
01405     if (pqindex < 9) v->halfpq = get_bits1(gb);
01406     else v->halfpq = 0;
01407     if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
01408         v->pquantizer = get_bits1(gb);
01409     if(v->postprocflag)
01410         v->postproc = get_bits(gb, 2);
01411 
01412     if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
01413 
01414     switch(v->s.pict_type) {
01415     case FF_I_TYPE:
01416     case FF_BI_TYPE:
01417         status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
01418         if (status < 0) return -1;
01419         av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
01420                 "Imode: %i, Invert: %i\n", status>>1, status&1);
01421         v->condover = CONDOVER_NONE;
01422         if(v->overlap && v->pq <= 8) {
01423             v->condover = decode012(gb);
01424             if(v->condover == CONDOVER_SELECT) {
01425                 status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
01426                 if (status < 0) return -1;
01427                 av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
01428                         "Imode: %i, Invert: %i\n", status>>1, status&1);
01429             }
01430         }
01431         break;
01432     case FF_P_TYPE:
01433         if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
01434         else v->mvrange = 0;
01435         v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
01436         v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
01437         v->range_x = 1 << (v->k_x - 1);
01438         v->range_y = 1 << (v->k_y - 1);
01439 
01440         if (v->pq < 5) v->tt_index = 0;
01441         else if(v->pq < 13) v->tt_index = 1;
01442         else v->tt_index = 2;
01443 
01444         lowquant = (v->pq > 12) ? 0 : 1;
01445         v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
01446         if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
01447         {
01448             int scale, shift, i;
01449             v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
01450             v->lumscale = get_bits(gb, 6);
01451             v->lumshift = get_bits(gb, 6);
01452             /* fill lookup tables for intensity compensation */
01453             if(!v->lumscale) {
01454                 scale = -64;
01455                 shift = (255 - v->lumshift * 2) << 6;
01456                 if(v->lumshift > 31)
01457                     shift += 128 << 6;
01458             } else {
01459                 scale = v->lumscale + 32;
01460                 if(v->lumshift > 31)
01461                     shift = (v->lumshift - 64) << 6;
01462                 else
01463                     shift = v->lumshift << 6;
01464             }
01465             for(i = 0; i < 256; i++) {
01466                 v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
01467                 v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
01468             }
01469             v->use_ic = 1;
01470         }
01471         if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
01472             v->s.quarter_sample = 0;
01473         else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
01474             if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
01475                 v->s.quarter_sample = 0;
01476             else
01477                 v->s.quarter_sample = 1;
01478         } else
01479             v->s.quarter_sample = 1;
01480         v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
01481 
01482         if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
01483                  v->mv_mode2 == MV_PMODE_MIXED_MV)
01484                 || v->mv_mode == MV_PMODE_MIXED_MV)
01485         {
01486             status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
01487             if (status < 0) return -1;
01488             av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
01489                    "Imode: %i, Invert: %i\n", status>>1, status&1);
01490         } else {
01491             v->mv_type_is_raw = 0;
01492             memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
01493         }
01494         status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
01495         if (status < 0) return -1;
01496         av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
01497                "Imode: %i, Invert: %i\n", status>>1, status&1);
01498 
01499         /* Hopefully this is correct for P frames */
01500         v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
01501         v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
01502         if (v->dquant)
01503         {
01504             av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
01505             vop_dquant_decoding(v);
01506         }
01507 
01508         v->ttfrm = 0; //FIXME Is that so ?
01509         if (v->vstransform)
01510         {
01511             v->ttmbf = get_bits1(gb);
01512             if (v->ttmbf)
01513             {
01514                 v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
01515             }
01516         } else {
01517             v->ttmbf = 1;
01518             v->ttfrm = TT_8X8;
01519         }
01520         break;
01521     case FF_B_TYPE:
01522         if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
01523         else v->mvrange = 0;
01524         v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
01525         v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
01526         v->range_x = 1 << (v->k_x - 1);
01527         v->range_y = 1 << (v->k_y - 1);
01528 
01529         if (v->pq < 5) v->tt_index = 0;
01530         else if(v->pq < 13) v->tt_index = 1;
01531         else v->tt_index = 2;
01532 
01533         lowquant = (v->pq > 12) ? 0 : 1;
01534         v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
01535         v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
01536         v->s.mspel = v->s.quarter_sample;
01537 
01538         status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
01539         if (status < 0) return -1;
01540         av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
01541                "Imode: %i, Invert: %i\n", status>>1, status&1);
01542         status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
01543         if (status < 0) return -1;
01544         av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
01545                "Imode: %i, Invert: %i\n", status>>1, status&1);
01546 
01547         v->s.mv_table_index = get_bits(gb, 2);
01548         v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
01549 
01550         if (v->dquant)
01551         {
01552             av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
01553             vop_dquant_decoding(v);
01554         }
01555 
01556         v->ttfrm = 0;
01557         if (v->vstransform)
01558         {
01559             v->ttmbf = get_bits1(gb);
01560             if (v->ttmbf)
01561             {
01562                 v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
01563             }
01564         } else {
01565             v->ttmbf = 1;
01566             v->ttfrm = TT_8X8;
01567         }
01568         break;
01569     }
01570 
01571     /* AC Syntax */
01572     v->c_ac_table_index = decode012(gb);
01573     if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
01574     {
01575         v->y_ac_table_index = decode012(gb);
01576     }
01577     /* DC Syntax */
01578     v->s.dc_table_index = get_bits1(gb);
01579     if ((v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) && v->dquant) {
01580         av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
01581         vop_dquant_decoding(v);
01582     }
01583 
01584     v->bi_type = 0;
01585     if(v->s.pict_type == FF_BI_TYPE) {
01586         v->s.pict_type = FF_B_TYPE;
01587         v->bi_type = 1;
01588     }
01589     return 0;
01590 }
01591 
01592 /***********************************************************************/
01603 #define GET_MQUANT()                                           \
01604   if (v->dquantfrm)                                            \
01605   {                                                            \
01606     int edges = 0;                                             \
01607     if (v->dqprofile == DQPROFILE_ALL_MBS)                     \
01608     {                                                          \
01609       if (v->dqbilevel)                                        \
01610       {                                                        \
01611         mquant = (get_bits1(gb)) ? v->altpq : v->pq;           \
01612       }                                                        \
01613       else                                                     \
01614       {                                                        \
01615         mqdiff = get_bits(gb, 3);                              \
01616         if (mqdiff != 7) mquant = v->pq + mqdiff;              \
01617         else mquant = get_bits(gb, 5);                         \
01618       }                                                        \
01619     }                                                          \
01620     if(v->dqprofile == DQPROFILE_SINGLE_EDGE)                  \
01621         edges = 1 << v->dqsbedge;                              \
01622     else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES)            \
01623         edges = (3 << v->dqsbedge) % 15;                       \
01624     else if(v->dqprofile == DQPROFILE_FOUR_EDGES)              \
01625         edges = 15;                                            \
01626     if((edges&1) && !s->mb_x)                                  \
01627         mquant = v->altpq;                                     \
01628     if((edges&2) && s->first_slice_line)                       \
01629         mquant = v->altpq;                                     \
01630     if((edges&4) && s->mb_x == (s->mb_width - 1))              \
01631         mquant = v->altpq;                                     \
01632     if((edges&8) && s->mb_y == (s->mb_height - 1))             \
01633         mquant = v->altpq;                                     \
01634   }
01635 
01643 #define GET_MVDATA(_dmv_x, _dmv_y)                                  \
01644   index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
01645                        VC1_MV_DIFF_VLC_BITS, 2);                    \
01646   if (index > 36)                                                   \
01647   {                                                                 \
01648     mb_has_coeffs = 1;                                              \
01649     index -= 37;                                                    \
01650   }                                                                 \
01651   else mb_has_coeffs = 0;                                           \
01652   s->mb_intra = 0;                                                  \
01653   if (!index) { _dmv_x = _dmv_y = 0; }                              \
01654   else if (index == 35)                                             \
01655   {                                                                 \
01656     _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample);          \
01657     _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample);          \
01658   }                                                                 \
01659   else if (index == 36)                                             \
01660   {                                                                 \
01661     _dmv_x = 0;                                                     \
01662     _dmv_y = 0;                                                     \
01663     s->mb_intra = 1;                                                \
01664   }                                                                 \
01665   else                                                              \
01666   {                                                                 \
01667     index1 = index%6;                                               \
01668     if (!s->quarter_sample && index1 == 5) val = 1;                 \
01669     else                                   val = 0;                 \
01670     if(size_table[index1] - val > 0)                                \
01671         val = get_bits(gb, size_table[index1] - val);               \
01672     else                                   val = 0;                 \
01673     sign = 0 - (val&1);                                             \
01674     _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign;     \
01675                                                                     \
01676     index1 = index/6;                                               \
01677     if (!s->quarter_sample && index1 == 5) val = 1;                 \
01678     else                                   val = 0;                 \
01679     if(size_table[index1] - val > 0)                                \
01680         val = get_bits(gb, size_table[index1] - val);               \
01681     else                                   val = 0;                 \
01682     sign = 0 - (val&1);                                             \
01683     _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign;     \
01684   }
01685 
01688 static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
01689 {
01690     int xy, wrap, off = 0;
01691     int16_t *A, *B, *C;
01692     int px, py;
01693     int sum;
01694 
01695     /* scale MV difference to be quad-pel */
01696     dmv_x <<= 1 - s->quarter_sample;
01697     dmv_y <<= 1 - s->quarter_sample;
01698 
01699     wrap = s->b8_stride;
01700     xy = s->block_index[n];
01701 
01702     if(s->mb_intra){
01703         s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
01704         s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
01705         s->current_picture.motion_val[1][xy][0] = 0;
01706         s->current_picture.motion_val[1][xy][1] = 0;
01707         if(mv1) { /* duplicate motion data for 1-MV block */
01708             s->current_picture.motion_val[0][xy + 1][0] = 0;
01709             s->current_picture.motion_val[0][xy + 1][1] = 0;
01710             s->current_picture.motion_val[0][xy + wrap][0] = 0;
01711             s->current_picture.motion_val[0][xy + wrap][1] = 0;
01712             s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
01713             s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
01714             s->current_picture.motion_val[1][xy + 1][0] = 0;
01715             s->current_picture.motion_val[1][xy + 1][1] = 0;
01716             s->current_picture.motion_val[1][xy + wrap][0] = 0;
01717             s->current_picture.motion_val[1][xy + wrap][1] = 0;
01718             s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
01719             s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
01720         }
01721         return;
01722     }
01723 
01724     C = s->current_picture.motion_val[0][xy - 1];
01725     A = s->current_picture.motion_val[0][xy - wrap];
01726     if(mv1)
01727         off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
01728     else {
01729         //in 4-MV mode different blocks have different B predictor position
01730         switch(n){
01731         case 0:
01732             off = (s->mb_x > 0) ? -1 : 1;
01733             break;
01734         case 1:
01735             off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
01736             break;
01737         case 2:
01738             off = 1;
01739             break;
01740         case 3:
01741             off = -1;
01742         }
01743     }
01744     B = s->current_picture.motion_val[0][xy - wrap + off];
01745 
01746     if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
01747         if(s->mb_width == 1) {
01748             px = A[0];
01749             py = A[1];
01750         } else {
01751             px = mid_pred(A[0], B[0], C[0]);
01752             py = mid_pred(A[1], B[1], C[1]);
01753         }
01754     } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
01755         px = C[0];
01756         py = C[1];
01757     } else {
01758         px = py = 0;
01759     }
01760     /* Pullback MV as specified in 8.3.5.3.4 */
01761     {
01762         int qx, qy, X, Y;
01763         qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
01764         qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
01765         X = (s->mb_width << 6) - 4;
01766         Y = (s->mb_height << 6) - 4;
01767         if(mv1) {
01768             if(qx + px < -60) px = -60 - qx;
01769             if(qy + py < -60) py = -60 - qy;
01770         } else {
01771             if(qx + px < -28) px = -28 - qx;
01772             if(qy + py < -28) py = -28 - qy;
01773         }
01774         if(qx + px > X) px = X - qx;
01775         if(qy + py > Y) py = Y - qy;
01776     }
01777     /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
01778     if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
01779         if(is_intra[xy - wrap])
01780             sum = FFABS(px) + FFABS(py);
01781         else
01782             sum = FFABS(px - A[0]) + FFABS(py - A[1]);
01783         if(sum > 32) {
01784             if(get_bits1(&s->gb)) {
01785                 px = A[0];
01786                 py = A[1];
01787             } else {
01788                 px = C[0];
01789                 py = C[1];
01790             }
01791         } else {
01792             if(is_intra[xy - 1])
01793                 sum = FFABS(px) + FFABS(py);
01794             else
01795                 sum = FFABS(px - C[0]) + FFABS(py - C[1]);
01796             if(sum > 32) {
01797                 if(get_bits1(&s->gb)) {
01798                     px = A[0];
01799                     py = A[1];
01800                 } else {
01801                     px = C[0];
01802                     py = C[1];
01803                 }
01804             }
01805         }
01806     }
01807     /* store MV using signed modulus of MV range defined in 4.11 */
01808     s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
01809     s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
01810     if(mv1) { /* duplicate motion data for 1-MV block */
01811         s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
01812         s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
01813         s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
01814         s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
01815         s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
01816         s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
01817     }
01818 }
01819 
01822 static void vc1_interp_mc(VC1Context *v)
01823 {
01824     MpegEncContext *s = &v->s;
01825     DSPContext *dsp = &v->s.dsp;
01826     uint8_t *srcY, *srcU, *srcV;
01827     int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
01828 
01829     if(!v->s.next_picture.data[0])return;
01830 
01831     mx = s->mv[1][0][0];
01832     my = s->mv[1][0][1];
01833     uvmx = (mx + ((mx & 3) == 3)) >> 1;
01834     uvmy = (my + ((my & 3) == 3)) >> 1;
01835     if(v->fastuvmc) {
01836         uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
01837         uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
01838     }
01839     srcY = s->next_picture.data[0];
01840     srcU = s->next_picture.data[1];
01841     srcV = s->next_picture.data[2];
01842 
01843     src_x = s->mb_x * 16 + (mx >> 2);
01844     src_y = s->mb_y * 16 + (my >> 2);
01845     uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
01846     uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
01847 
01848     if(v->profile != PROFILE_ADVANCED){
01849         src_x   = av_clip(  src_x, -16, s->mb_width  * 16);
01850         src_y   = av_clip(  src_y, -16, s->mb_height * 16);
01851         uvsrc_x = av_clip(uvsrc_x,  -8, s->mb_width  *  8);
01852         uvsrc_y = av_clip(uvsrc_y,  -8, s->mb_height *  8);
01853     }else{
01854         src_x   = av_clip(  src_x, -17, s->avctx->coded_width);
01855         src_y   = av_clip(  src_y, -18, s->avctx->coded_height + 1);
01856         uvsrc_x = av_clip(uvsrc_x,  -8, s->avctx->coded_width  >> 1);
01857         uvsrc_y = av_clip(uvsrc_y,  -8, s->avctx->coded_height >> 1);
01858     }
01859 
01860     srcY += src_y * s->linesize + src_x;
01861     srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
01862     srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
01863 
01864     /* for grayscale we should not try to read from unknown area */
01865     if(s->flags & CODEC_FLAG_GRAY) {
01866         srcU = s->edge_emu_buffer + 18 * s->linesize;
01867         srcV = s->edge_emu_buffer + 18 * s->linesize;
01868     }
01869 
01870     if(v->rangeredfrm
01871        || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
01872        || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
01873         uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
01874 
01875         srcY -= s->mspel * (1 + s->linesize);
01876         ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
01877                             src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
01878         srcY = s->edge_emu_buffer;
01879         ff_emulated_edge_mc(uvbuf     , srcU, s->uvlinesize, 8+1, 8+1,
01880                             uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
01881         ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
01882                             uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
01883         srcU = uvbuf;
01884         srcV = uvbuf + 16;
01885         /* if we deal with range reduction we need to scale source blocks */
01886         if(v->rangeredfrm) {
01887             int i, j;
01888             uint8_t *src, *src2;
01889 
01890             src = srcY;
01891             for(j = 0; j < 17 + s->mspel*2; j++) {
01892                 for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
01893                 src += s->linesize;
01894             }
01895             src = srcU; src2 = srcV;
01896             for(j = 0; j < 9; j++) {
01897                 for(i = 0; i < 9; i++) {
01898                     src[i] = ((src[i] - 128) >> 1) + 128;
01899                     src2[i] = ((src2[i] - 128) >> 1) + 128;
01900                 }
01901                 src += s->uvlinesize;
01902                 src2 += s->uvlinesize;
01903             }
01904         }
01905         srcY += s->mspel * (1 + s->linesize);
01906     }
01907 
01908     mx >>= 1;
01909     my >>= 1;
01910     dxy = ((my & 1) << 1) | (mx & 1);
01911 
01912     dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
01913 
01914     if(s->flags & CODEC_FLAG_GRAY) return;
01915     /* Chroma MC always uses qpel blilinear */
01916     uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
01917     uvmx = (uvmx&3)<<1;
01918     uvmy = (uvmy&3)<<1;
01919     dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
01920     dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
01921 }
01922 
01923 static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
01924 {
01925     int n = bfrac;
01926 
01927 #if B_FRACTION_DEN==256
01928     if(inv)
01929         n -= 256;
01930     if(!qs)
01931         return 2 * ((value * n + 255) >> 9);
01932     return (value * n + 128) >> 8;
01933 #else
01934     if(inv)
01935         n -= B_FRACTION_DEN;
01936     if(!qs)
01937         return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
01938     return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
01939 #endif
01940 }
01941 
01944 static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
01945 {
01946     if(v->use_ic) {
01947         v->mv_mode2 = v->mv_mode;
01948         v->mv_mode = MV_PMODE_INTENSITY_COMP;
01949     }
01950     if(direct) {
01951         vc1_mc_1mv(v, 0);
01952         vc1_interp_mc(v);
01953         if(v->use_ic) v->mv_mode = v->mv_mode2;
01954         return;
01955     }
01956     if(mode == BMV_TYPE_INTERPOLATED) {
01957         vc1_mc_1mv(v, 0);
01958         vc1_interp_mc(v);
01959         if(v->use_ic) v->mv_mode = v->mv_mode2;
01960         return;
01961     }
01962 
01963     if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
01964     vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
01965     if(v->use_ic) v->mv_mode = v->mv_mode2;
01966 }
01967 
01968 static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
01969 {
01970     MpegEncContext *s = &v->s;
01971     int xy, wrap, off = 0;
01972     int16_t *A, *B, *C;
01973     int px, py;
01974     int sum;
01975     int r_x, r_y;
01976     const uint8_t *is_intra = v->mb_type[0];
01977 
01978     r_x = v->range_x;
01979     r_y = v->range_y;
01980     /* scale MV difference to be quad-pel */
01981     dmv_x[0] <<= 1 - s->quarter_sample;
01982     dmv_y[0] <<= 1 - s->quarter_sample;
01983     dmv_x[1] <<= 1 - s->quarter_sample;
01984     dmv_y[1] <<= 1 - s->quarter_sample;
01985 
01986     wrap = s->b8_stride;
01987     xy = s->block_index[0];
01988 
01989     if(s->mb_intra) {
01990         s->current_picture.motion_val[0][xy][0] =
01991         s->current_picture.motion_val[0][xy][1] =
01992         s->current_picture.motion_val[1][xy][0] =
01993         s->current_picture.motion_val[1][xy][1] = 0;
01994         return;
01995     }
01996     s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
01997     s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
01998     s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
01999     s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
02000 
02001     /* Pullback predicted motion vectors as specified in 8.4.5.4 */
02002     s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width  << 6) - 4 - (s->mb_x << 6));
02003     s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
02004     s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width  << 6) - 4 - (s->mb_x << 6));
02005     s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
02006     if(direct) {
02007         s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
02008         s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
02009         s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
02010         s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
02011         return;
02012     }
02013 
02014     if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
02015         C = s->current_picture.motion_val[0][xy - 2];
02016         A = s->current_picture.motion_val[0][xy - wrap*2];
02017         off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
02018         B = s->current_picture.motion_val[0][xy - wrap*2 + off];
02019 
02020         if(!s->mb_x) C[0] = C[1] = 0;
02021         if(!s->first_slice_line) { // predictor A is not out of bounds
02022             if(s->mb_width == 1) {
02023                 px = A[0];
02024                 py = A[1];
02025             } else {
02026                 px = mid_pred(A[0], B[0], C[0]);
02027                 py = mid_pred(A[1], B[1], C[1]);
02028             }
02029         } else if(s->mb_x) { // predictor C is not out of bounds
02030             px = C[0];
02031             py = C[1];
02032         } else {
02033             px = py = 0;
02034         }
02035         /* Pullback MV as specified in 8.3.5.3.4 */
02036         {
02037             int qx, qy, X, Y;
02038             if(v->profile < PROFILE_ADVANCED) {
02039                 qx = (s->mb_x << 5);
02040                 qy = (s->mb_y << 5);
02041                 X = (s->mb_width << 5) - 4;
02042                 Y = (s->mb_height << 5) - 4;
02043                 if(qx + px < -28) px = -28 - qx;
02044                 if(qy + py < -28) py = -28 - qy;
02045                 if(qx + px > X) px = X - qx;
02046                 if(qy + py > Y) py = Y - qy;
02047             } else {
02048                 qx = (s->mb_x << 6);
02049                 qy = (s->mb_y << 6);
02050                 X = (s->mb_width << 6) - 4;
02051                 Y = (s->mb_height << 6) - 4;
02052                 if(qx + px < -60) px = -60 - qx;
02053                 if(qy + py < -60) py = -60 - qy;
02054                 if(qx + px > X) px = X - qx;
02055                 if(qy + py > Y) py = Y - qy;
02056             }
02057         }
02058         /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
02059         if(0 && !s->first_slice_line && s->mb_x) {
02060             if(is_intra[xy - wrap])
02061                 sum = FFABS(px) + FFABS(py);
02062             else
02063                 sum = FFABS(px - A[0]) + FFABS(py - A[1]);
02064             if(sum > 32) {
02065                 if(get_bits1(&s->gb)) {
02066                     px = A[0];
02067                     py = A[1];
02068                 } else {
02069                     px = C[0];
02070                     py = C[1];
02071                 }
02072             } else {
02073                 if(is_intra[xy - 2])
02074                     sum = FFABS(px) + FFABS(py);
02075                 else
02076                     sum = FFABS(px - C[0]) + FFABS(py - C[1]);
02077                 if(sum > 32) {
02078                     if(get_bits1(&s->gb)) {
02079                         px = A[0];
02080                         py = A[1];
02081                     } else {
02082                         px = C[0];
02083                         py = C[1];
02084                     }
02085                 }
02086             }
02087         }
02088         /* store MV using signed modulus of MV range defined in 4.11 */
02089         s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
02090         s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
02091     }
02092     if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
02093         C = s->current_picture.motion_val[1][xy - 2];
02094         A = s->current_picture.motion_val[1][xy - wrap*2];
02095         off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
02096         B = s->current_picture.motion_val[1][xy - wrap*2 + off];
02097 
02098         if(!s->mb_x) C[0] = C[1] = 0;
02099         if(!s->first_slice_line) { // predictor A is not out of bounds
02100             if(s->mb_width == 1) {
02101                 px = A[0];
02102                 py = A[1];
02103             } else {
02104                 px = mid_pred(A[0], B[0], C[0]);
02105                 py = mid_pred(A[1], B[1], C[1]);
02106             }
02107         } else if(s->mb_x) { // predictor C is not out of bounds
02108             px = C[0];
02109             py = C[1];
02110         } else {
02111             px = py = 0;
02112         }
02113         /* Pullback MV as specified in 8.3.5.3.4 */
02114         {
02115             int qx, qy, X, Y;
02116             if(v->profile < PROFILE_ADVANCED) {
02117                 qx = (s->mb_x << 5);
02118                 qy = (s->mb_y << 5);
02119                 X = (s->mb_width << 5) - 4;
02120                 Y = (s->mb_height << 5) - 4;
02121                 if(qx + px < -28) px = -28 - qx;
02122                 if(qy + py < -28) py = -28 - qy;
02123                 if(qx + px > X) px = X - qx;
02124                 if(qy + py > Y) py = Y - qy;
02125             } else {
02126                 qx = (s->mb_x << 6);
02127                 qy = (s->mb_y << 6);
02128                 X = (s->mb_width << 6) - 4;
02129                 Y = (s->mb_height << 6) - 4;
02130                 if(qx + px < -60) px = -60 - qx;
02131                 if(qy + py < -60) py = -60 - qy;
02132                 if(qx + px > X) px = X - qx;
02133                 if(qy + py > Y) py = Y - qy;
02134             }
02135         }
02136         /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
02137         if(0 && !s->first_slice_line && s->mb_x) {
02138             if(is_intra[xy - wrap])
02139                 sum = FFABS(px) + FFABS(py);
02140             else
02141                 sum = FFABS(px - A[0]) + FFABS(py - A[1]);
02142             if(sum > 32) {
02143                 if(get_bits1(&s->gb)) {
02144                     px = A[0];
02145                     py = A[1];
02146                 } else {
02147                     px = C[0];
02148                     py = C[1];
02149                 }
02150             } else {
02151                 if(is_intra[xy - 2])
02152                     sum = FFABS(px) + FFABS(py);
02153                 else
02154                     sum = FFABS(px - C[0]) + FFABS(py - C[1]);
02155                 if(sum > 32) {
02156                     if(get_bits1(&s->gb)) {
02157                         px = A[0];
02158                         py = A[1];
02159                     } else {
02160                         px = C[0];
02161                         py = C[1];
02162                     }
02163                 }
02164             }
02165         }
02166         /* store MV using signed modulus of MV range defined in 4.11 */
02167 
02168         s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
02169         s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
02170     }
02171     s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
02172     s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
02173     s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
02174     s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
02175 }
02176 
02186 static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
02187                               int16_t **dc_val_ptr, int *dir_ptr)
02188 {
02189     int a, b, c, wrap, pred, scale;
02190     int16_t *dc_val;
02191     static const uint16_t dcpred[32] = {
02192     -1, 1024,  512,  341,  256,  205,  171,  146,  128,
02193          114,  102,   93,   85,   79,   73,   68,   64,
02194           60,   57,   54,   51,   49,   47,   45,   43,
02195           41,   39,   38,   37,   35,   34,   33
02196     };
02197 
02198     /* find prediction - wmv3_dc_scale always used here in fact */
02199     if (n < 4)     scale = s->y_dc_scale;
02200     else           scale = s->c_dc_scale;
02201 
02202     wrap = s->block_wrap[n];
02203     dc_val= s->dc_val[0] + s->block_index[n];
02204 
02205     /* B A
02206      * C X
02207      */
02208     c = dc_val[ - 1];
02209     b = dc_val[ - 1 - wrap];
02210     a = dc_val[ - wrap];
02211 
02212     if (pq < 9 || !overlap)
02213     {
02214         /* Set outer values */
02215         if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
02216         if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
02217     }
02218     else
02219     {
02220         /* Set outer values */
02221         if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
02222         if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
02223     }
02224 
02225     if (abs(a - b) <= abs(b - c)) {
02226         pred = c;
02227         *dir_ptr = 1;//left
02228     } else {
02229         pred = a;
02230         *dir_ptr = 0;//top
02231     }
02232 
02233     /* update predictor */
02234     *dc_val_ptr = &dc_val[0];
02235     return pred;
02236 }
02237 
02238 
02250 static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
02251                               int a_avail, int c_avail,
02252                               int16_t **dc_val_ptr, int *dir_ptr)
02253 {
02254     int a, b, c, wrap, pred, scale;
02255     int16_t *dc_val;
02256     int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
02257     int q1, q2 = 0;
02258 
02259     /* find prediction - wmv3_dc_scale always used here in fact */
02260     if (n < 4)     scale = s->y_dc_scale;
02261     else           scale = s->c_dc_scale;
02262 
02263     wrap = s->block_wrap[n];
02264     dc_val= s->dc_val[0] + s->block_index[n];
02265 
02266     /* B A
02267      * C X
02268      */
02269     c = dc_val[ - 1];
02270     b = dc_val[ - 1 - wrap];
02271     a = dc_val[ - wrap];
02272     /* scale predictors if needed */
02273     q1 = s->current_picture.qscale_table[mb_pos];
02274     if(c_avail && (n!= 1 && n!=3)) {
02275         q2 = s->current_picture.qscale_table[mb_pos - 1];
02276         if(q2 && q2 != q1)
02277             c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
02278     }
02279     if(a_avail && (n!= 2 && n!=3)) {
02280         q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
02281         if(q2 && q2 != q1)
02282             a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
02283     }
02284     if(a_avail && c_avail && (n!=3)) {
02285         int off = mb_pos;
02286         if(n != 1) off--;
02287         if(n != 2) off -= s->mb_stride;
02288         q2 = s->current_picture.qscale_table[off];
02289         if(q2 && q2 != q1)
02290             b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
02291     }
02292 
02293     if(a_avail && c_avail) {
02294         if(abs(a - b) <= abs(b - c)) {
02295             pred = c;
02296             *dir_ptr = 1;//left
02297         } else {
02298             pred = a;
02299             *dir_ptr = 0;//top
02300         }
02301     } else if(a_avail) {
02302         pred = a;
02303         *dir_ptr = 0;//top
02304     } else if(c_avail) {
02305         pred = c;
02306         *dir_ptr = 1;//left
02307     } else {
02308         pred = 0;
02309         *dir_ptr = 1;//left
02310     }
02311 
02312     /* update predictor */
02313     *dc_val_ptr = &dc_val[0];
02314     return pred;
02315 }
02316  // Block group
02318 
02325 static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
02326 {
02327     int xy, wrap, pred, a, b, c;
02328 
02329     xy = s->block_index[n];
02330     wrap = s->b8_stride;
02331 
02332     /* B C
02333      * A X
02334      */
02335     a = s->coded_block[xy - 1       ];
02336     b = s->coded_block[xy - 1 - wrap];
02337     c = s->coded_block[xy     - wrap];
02338 
02339     if (b == c) {
02340         pred = a;
02341     } else {
02342         pred = c;
02343     }
02344 
02345     /* store value */
02346     *coded_block_ptr = &s->coded_block[xy];
02347 
02348     return pred;
02349 }
02350 
02360 static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
02361 {
02362     GetBitContext *gb = &v->s.gb;
02363     int index, escape, run = 0, level = 0, lst = 0;
02364 
02365     index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
02366     if (index != vc1_ac_sizes[codingset] - 1) {
02367         run = vc1_index_decode_table[codingset][index][0];
02368         level = vc1_index_decode_table[codingset][index][1];
02369         lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
02370         if(get_bits1(gb))
02371             level = -level;
02372     } else {
02373         escape = decode210(gb);
02374         if (escape != 2) {
02375             index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
02376             run = vc1_index_decode_table[codingset][index][0];
02377             level = vc1_index_decode_table[codingset][index][1];
02378             lst = index >= vc1_last_decode_table[codingset];
02379             if(escape == 0) {
02380                 if(lst)
02381                     level += vc1_last_delta_level_table[codingset][run];
02382                 else
02383                     level += vc1_delta_level_table[codingset][run];
02384             } else {
02385                 if(lst)
02386                     run += vc1_last_delta_run_table[codingset][level] + 1;
02387                 else
02388                     run += vc1_delta_run_table[codingset][level] + 1;
02389             }
02390             if(get_bits1(gb))
02391                 level = -level;
02392         } else {
02393             int sign;
02394             lst = get_bits1(gb);
02395             if(v->s.esc3_level_length == 0) {
02396                 if(v->pq < 8 || v->dquantfrm) { // table 59
02397                     v->s.esc3_level_length = get_bits(gb, 3);
02398                     if(!v->s.esc3_level_length)
02399                         v->s.esc3_level_length = get_bits(gb, 2) + 8;
02400                 } else { //table 60
02401                     v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
02402                 }
02403                 v->s.esc3_run_length = 3 + get_bits(gb, 2);
02404             }
02405             run = get_bits(gb, v->s.esc3_run_length);
02406             sign = get_bits1(gb);
02407             level = get_bits(gb, v->s.esc3_level_length);
02408             if(sign)
02409                 level = -level;
02410         }
02411     }
02412 
02413     *last = lst;
02414     *skip = run;
02415     *value = level;
02416 }
02417 
02425 static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
02426 {
02427     GetBitContext *gb = &v->s.gb;
02428     MpegEncContext *s = &v->s;
02429     int dc_pred_dir = 0; /* Direction of the DC prediction used */
02430     int run_diff, i;
02431     int16_t *dc_val;
02432     int16_t *ac_val, *ac_val2;
02433     int dcdiff;
02434 
02435     /* Get DC differential */
02436     if (n < 4) {
02437         dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
02438     } else {
02439         dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
02440     }
02441     if (dcdiff < 0){
02442         av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
02443         return -1;
02444     }
02445     if (dcdiff)
02446     {
02447         if (dcdiff == 119 /* ESC index value */)
02448         {
02449             /* TODO: Optimize */
02450             if (v->pq == 1) dcdiff = get_bits(gb, 10);
02451             else if (v->pq == 2) dcdiff = get_bits(gb, 9);
02452             else dcdiff = get_bits(gb, 8);
02453         }
02454         else
02455         {
02456             if (v->pq == 1)
02457                 dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
02458             else if (v->pq == 2)
02459                 dcdiff = (dcdiff<<1) + get_bits1(gb)   - 1;
02460         }
02461         if (get_bits1(gb))
02462             dcdiff = -dcdiff;
02463     }
02464 
02465     /* Prediction */
02466     dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
02467     *dc_val = dcdiff;
02468 
02469     /* Store the quantized DC coeff, used for prediction */
02470     if (n < 4) {
02471         block[0] = dcdiff * s->y_dc_scale;
02472     } else {
02473         block[0] = dcdiff * s->c_dc_scale;
02474     }
02475     /* Skip ? */
02476     run_diff = 0;
02477     i = 0;
02478     if (!coded) {
02479         goto not_coded;
02480     }
02481 
02482     //AC Decoding
02483     i = 1;
02484 
02485     {
02486         int last = 0, skip, value;
02487         const int8_t *zz_table;
02488         int scale;
02489         int k;
02490 
02491         scale = v->pq * 2 + v->halfpq;
02492 
02493         if(v->s.ac_pred) {
02494             if(!dc_pred_dir)
02495                 zz_table = wmv1_scantable[2];
02496             else
02497                 zz_table = wmv1_scantable[3];
02498         } else
02499             zz_table = wmv1_scantable[1];
02500 
02501         ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
02502         ac_val2 = ac_val;
02503         if(dc_pred_dir) //left
02504             ac_val -= 16;
02505         else //top
02506             ac_val -= 16 * s->block_wrap[n];
02507 
02508         while (!last) {
02509             vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
02510             i += skip;
02511             if(i > 63)
02512                 break;
02513             block[zz_table[i++]] = value;
02514         }
02515 
02516         /* apply AC prediction if needed */
02517         if(s->ac_pred) {
02518             if(dc_pred_dir) { //left
02519                 for(k = 1; k < 8; k++)
02520                     block[k << 3] += ac_val[k];
02521             } else { //top
02522                 for(k = 1; k < 8; k++)
02523                     block[k] += ac_val[k + 8];
02524             }
02525         }
02526         /* save AC coeffs for further prediction */
02527         for(k = 1; k < 8; k++) {
02528             ac_val2[k] = block[k << 3];
02529             ac_val2[k + 8] = block[k];
02530         }
02531 
02532         /* scale AC coeffs */
02533         for(k = 1; k < 64; k++)
02534             if(block[k]) {
02535                 block[k] *= scale;
02536                 if(!v->pquantizer)
02537                     block[k] += (block[k] < 0) ? -v->pq : v->pq;
02538             }
02539 
02540         if(s->ac_pred) i = 63;
02541     }
02542 
02543 not_coded:
02544     if(!coded) {
02545         int k, scale;
02546         ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
02547         ac_val2 = ac_val;
02548 
02549         scale = v->pq * 2 + v->halfpq;
02550         memset(ac_val2, 0, 16 * 2);
02551         if(dc_pred_dir) {//left
02552             ac_val -= 16;
02553             if(s->ac_pred)
02554                 memcpy(ac_val2, ac_val, 8 * 2);
02555         } else {//top
02556             ac_val -= 16 * s->block_wrap[n];
02557             if(s->ac_pred)
02558                 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
02559         }
02560 
02561         /* apply AC prediction if needed */
02562         if(s->ac_pred) {
02563             if(dc_pred_dir) { //left
02564                 for(k = 1; k < 8; k++) {
02565                     block[k << 3] = ac_val[k] * scale;
02566                     if(!v->pquantizer && block[k << 3])
02567                         block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
02568                 }
02569             } else { //top
02570                 for(k = 1; k < 8; k++) {
02571                     block[k] = ac_val[k + 8] * scale;
02572                     if(!v->pquantizer && block[k])
02573                         block[k] += (block[k] < 0) ? -v->pq : v->pq;
02574                 }
02575             }
02576             i = 63;
02577         }
02578     }
02579     s->block_last_index[n] = i;
02580 
02581     return 0;
02582 }
02583 
02592 static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
02593 {
02594     GetBitContext *gb = &v->s.gb;
02595     MpegEncContext *s = &v->s;
02596     int dc_pred_dir = 0; /* Direction of the DC prediction used */
02597     int run_diff, i;
02598     int16_t *dc_val;
02599     int16_t *ac_val, *ac_val2;
02600     int dcdiff;
02601     int a_avail = v->a_avail, c_avail = v->c_avail;
02602     int use_pred = s->ac_pred;
02603     int scale;
02604     int q1, q2 = 0;
02605     int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
02606 
02607     /* Get DC differential */
02608     if (n < 4) {
02609         dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
02610     } else {
02611         dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
02612     }
02613     if (dcdiff < 0){
02614         av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
02615         return -1;
02616     }
02617     if (dcdiff)
02618     {
02619         if (dcdiff == 119 /* ESC index value */)
02620         {
02621             /* TODO: Optimize */
02622             if (mquant == 1) dcdiff = get_bits(gb, 10);
02623             else if (mquant == 2) dcdiff = get_bits(gb, 9);
02624             else dcdiff = get_bits(gb, 8);
02625         }
02626         else
02627         {
02628             if (mquant == 1)
02629                 dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
02630             else if (mquant == 2)
02631                 dcdiff = (dcdiff<<1) + get_bits1(gb)   - 1;
02632         }
02633         if (get_bits1(gb))
02634             dcdiff = -dcdiff;
02635     }
02636 
02637     /* Prediction */
02638     dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
02639     *dc_val = dcdiff;
02640 
02641     /* Store the quantized DC coeff, used for prediction */
02642     if (n < 4) {
02643         block[0] = dcdiff * s->y_dc_scale;
02644     } else {
02645         block[0] = dcdiff * s->c_dc_scale;
02646     }
02647     /* Skip ? */
02648     run_diff = 0;
02649     i = 0;
02650 
02651     //AC Decoding
02652     i = 1;
02653 
02654     /* check if AC is needed at all */
02655     if(!a_avail && !c_avail) use_pred = 0;
02656     ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
02657     ac_val2 = ac_val;
02658 
02659     scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
02660 
02661     if(dc_pred_dir) //left
02662         ac_val -= 16;
02663     else //top
02664         ac_val -= 16 * s->block_wrap[n];
02665 
02666     q1 = s->current_picture.qscale_table[mb_pos];
02667     if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
02668     if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
02669     if(dc_pred_dir && n==1) q2 = q1;
02670     if(!dc_pred_dir && n==2) q2 = q1;
02671     if(n==3) q2 = q1;
02672 
02673     if(coded) {
02674         int last = 0, skip, value;
02675         const int8_t *zz_table;
02676         int k;
02677 
02678         if(v->s.ac_pred) {
02679             if(!dc_pred_dir)
02680                 zz_table = wmv1_scantable[2];
02681             else
02682                 zz_table = wmv1_scantable[3];
02683         } else
02684             zz_table = wmv1_scantable[1];
02685 
02686         while (!last) {
02687             vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
02688             i += skip;
02689             if(i > 63)
02690                 break;
02691             block[zz_table[i++]] = value;
02692         }
02693 
02694         /* apply AC prediction if needed */
02695         if(use_pred) {
02696             /* scale predictors if needed*/
02697             if(q2 && q1!=q2) {
02698                 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
02699                 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
02700 
02701                 if(dc_pred_dir) { //left
02702                     for(k = 1; k < 8; k++)
02703                         block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
02704                 } else { //top
02705                     for(k = 1; k < 8; k++)
02706                         block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
02707                 }
02708             } else {
02709                 if(dc_pred_dir) { //left
02710                     for(k = 1; k < 8; k++)
02711                         block[k << 3] += ac_val[k];
02712                 } else { //top
02713                     for(k = 1; k < 8; k++)
02714                         block[k] += ac_val[k + 8];
02715                 }
02716             }
02717         }
02718         /* save AC coeffs for further prediction */
02719         for(k = 1; k < 8; k++) {
02720             ac_val2[k] = block[k << 3];
02721             ac_val2[k + 8] = block[k];
02722         }
02723 
02724         /* scale AC coeffs */
02725         for(k = 1; k < 64; k++)
02726             if(block[k]) {
02727                 block[k] *= scale;
02728                 if(!v->pquantizer)
02729                     block[k] += (block[k] < 0) ? -mquant : mquant;
02730             }
02731 
02732         if(use_pred) i = 63;
02733     } else { // no AC coeffs
02734         int k;
02735 
02736         memset(ac_val2, 0, 16 * 2);
02737         if(dc_pred_dir) {//left
02738             if(use_pred) {
02739                 memcpy(ac_val2, ac_val, 8 * 2);
02740                 if(q2 && q1!=q2) {
02741                     q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
02742                     q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
02743                     for(k = 1; k < 8; k++)
02744                         ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
02745                 }
02746             }
02747         } else {//top
02748             if(use_pred) {
02749                 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
02750                 if(q2 && q1!=q2) {
02751                     q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
02752                     q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
02753                     for(k = 1; k < 8; k++)
02754                         ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
02755                 }
02756             }
02757         }
02758 
02759         /* apply AC prediction if needed */
02760         if(use_pred) {
02761             if(dc_pred_dir) { //left
02762                 for(k = 1; k < 8; k++) {
02763                     block[k << 3] = ac_val2[k] * scale;
02764                     if(!v->pquantizer && block[k << 3])
02765                         block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
02766                 }
02767             } else { //top
02768                 for(k = 1; k < 8; k++) {
02769                     block[k] = ac_val2[k + 8] * scale;
02770                     if(!v->pquantizer && block[k])
02771                         block[k] += (block[k] < 0) ? -mquant : mquant;
02772                 }
02773             }
02774             i = 63;
02775         }
02776     }
02777     s->block_last_index[n] = i;
02778 
02779     return 0;
02780 }
02781 
02790 static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
02791 {
02792     GetBitContext *gb = &v->s.gb;
02793     MpegEncContext *s = &v->s;
02794     int dc_pred_dir = 0; /* Direction of the DC prediction used */
02795     int run_diff, i;
02796     int16_t *dc_val;
02797     int16_t *ac_val, *ac_val2;
02798     int dcdiff;
02799     int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
02800     int a_avail = v->a_avail, c_avail = v->c_avail;
02801     int use_pred = s->ac_pred;
02802     int scale;
02803     int q1, q2 = 0;
02804 
02805     /* XXX: Guard against dumb values of mquant */
02806     mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
02807 
02808     /* Set DC scale - y and c use the same */
02809     s->y_dc_scale = s->y_dc_scale_table[mquant];
02810     s->c_dc_scale = s->c_dc_scale_table[mquant];
02811 
02812     /* Get DC differential */
02813     if (n < 4) {
02814         dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
02815     } else {
02816         dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
02817     }
02818     if (dcdiff < 0){
02819         av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
02820         return -1;
02821     }
02822     if (dcdiff)
02823     {
02824         if (dcdiff == 119 /* ESC index value */)
02825         {
02826             /* TODO: Optimize */
02827             if (mquant == 1) dcdiff = get_bits(gb, 10);
02828             else if (mquant == 2) dcdiff = get_bits(gb, 9);
02829             else dcdiff = get_bits(gb, 8);
02830         }
02831         else
02832         {
02833             if (mquant == 1)
02834                 dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
02835             else if (mquant == 2)
02836                 dcdiff = (dcdiff<<1) + get_bits1(gb)   - 1;
02837         }
02838         if (get_bits1(gb))
02839             dcdiff = -dcdiff;
02840     }
02841 
02842     /* Prediction */
02843     dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
02844     *dc_val = dcdiff;
02845 
02846     /* Store the quantized DC coeff, used for prediction */
02847 
02848     if (n < 4) {
02849         block[0] = dcdiff * s->y_dc_scale;
02850     } else {
02851         block[0] = dcdiff * s->c_dc_scale;
02852     }
02853     /* Skip ? */
02854     run_diff = 0;
02855     i = 0;
02856 
02857     //AC Decoding
02858     i = 1;
02859 
02860     /* check if AC is needed at all and adjust direction if needed */
02861     if(!a_avail) dc_pred_dir = 1;
02862     if(!c_avail) dc_pred_dir = 0;
02863     if(!a_avail && !c_avail) use_pred = 0;
02864     ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
02865     ac_val2 = ac_val;
02866 
02867     scale = mquant * 2 + v->halfpq;
02868 
02869     if(dc_pred_dir) //left
02870         ac_val -= 16;
02871     else //top
02872         ac_val -= 16 * s->block_wrap[n];
02873 
02874     q1 = s->current_picture.qscale_table[mb_pos];
02875     if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
02876     if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
02877     if(dc_pred_dir && n==1) q2 = q1;
02878     if(!dc_pred_dir && n==2) q2 = q1;
02879     if(n==3) q2 = q1;
02880 
02881     if(coded) {
02882         int last = 0, skip, value;
02883         const int8_t *zz_table;
02884         int k;
02885 
02886         zz_table = wmv1_scantable[0];
02887 
02888         while (!last) {
02889             vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
02890             i += skip;
02891             if(i > 63)
02892                 break;
02893             block[zz_table[i++]] = value;
02894         }
02895 
02896         /* apply AC prediction if needed */
02897         if(use_pred) {
02898             /* scale predictors if needed*/
02899             if(q2 && q1!=q2) {
02900                 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
02901                 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
02902 
02903                 if(dc_pred_dir) { //left
02904                     for(k = 1; k < 8; k++)
02905                         block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
02906                 } else { //top
02907                     for(k = 1; k < 8; k++)
02908                         block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
02909                 }
02910             } else {
02911                 if(dc_pred_dir) { //left
02912                     for(k = 1; k < 8; k++)
02913                         block[k << 3] += ac_val[k];
02914                 } else { //top
02915                     for(k = 1; k < 8; k++)
02916                         block[k] += ac_val[k + 8];
02917                 }
02918             }
02919         }
02920         /* save AC coeffs for further prediction */
02921         for(k = 1; k < 8; k++) {
02922             ac_val2[k] = block[k << 3];
02923             ac_val2[k + 8] = block[k];
02924         }
02925 
02926         /* scale AC coeffs */
02927         for(k = 1; k < 64; k++)
02928             if(block[k]) {
02929                 block[k] *= scale;
02930                 if(!v->pquantizer)
02931                     block[k] += (block[k] < 0) ? -mquant : mquant;
02932             }
02933 
02934         if(use_pred) i = 63;
02935     } else { // no AC coeffs
02936         int k;
02937 
02938         memset(ac_val2, 0, 16 * 2);
02939         if(dc_pred_dir) {//left
02940             if(use_pred) {
02941                 memcpy(ac_val2, ac_val, 8 * 2);
02942                 if(q2 && q1!=q2) {
02943                     q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
02944                     q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
02945                     for(k = 1; k < 8; k++)
02946                         ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
02947                 }
02948             }
02949         } else {//top
02950             if(use_pred) {
02951                 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
02952                 if(q2 && q1!=q2) {
02953                     q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
02954                     q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
02955                     for(k = 1; k < 8; k++)
02956                         ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
02957                 }
02958             }
02959         }
02960 
02961         /* apply AC prediction if needed */
02962         if(use_pred) {
02963             if(dc_pred_dir) { //left
02964                 for(k = 1; k < 8; k++) {
02965                     block[k << 3] = ac_val2[k] * scale;
02966                     if(!v->pquantizer && block[k << 3])
02967                         block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
02968                 }
02969             } else { //top
02970                 for(k = 1; k < 8; k++) {
02971                     block[k] = ac_val2[k + 8] * scale;
02972                     if(!v->pquantizer && block[k])
02973                         block[k] += (block[k] < 0) ? -mquant : mquant;
02974                 }
02975             }
02976             i = 63;
02977         }
02978     }
02979     s->block_last_index[n] = i;
02980 
02981     return 0;
02982 }
02983 
02986 static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
02987                               uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
02988 {
02989     MpegEncContext *s = &v->s;
02990     GetBitContext *gb = &s->gb;
02991     int i, j;
02992     int subblkpat = 0;
02993     int scale, off, idx, last, skip, value;
02994     int ttblk = ttmb & 7;
02995     int pat = 0;
02996 
02997     if(ttmb == -1) {
02998         ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
02999     }
03000     if(ttblk == TT_4X4) {
03001         subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
03002     }
03003     if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
03004         subblkpat = decode012(gb);
03005         if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
03006         if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
03007         if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
03008     }
03009     scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
03010 
03011     // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
03012     if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
03013         subblkpat = 2 - (ttblk == TT_8X4_TOP);
03014         ttblk = TT_8X4;
03015     }
03016     if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
03017         subblkpat = 2 - (ttblk == TT_4X8_LEFT);
03018         ttblk = TT_4X8;
03019     }
03020     switch(ttblk) {
03021     case TT_8X8:
03022         pat = 0xF;
03023         i = 0;
03024         last = 0;
03025         while (!last) {
03026             vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
03027             i += skip;
03028             if(i > 63)
03029                 break;
03030             idx = wmv1_scantable[0][i++];
03031             block[idx] = value * scale;
03032             if(!v->pquantizer)
03033                 block[idx] += (block[idx] < 0) ? -mquant : mquant;
03034         }
03035         if(!skip_block){
03036             s->dsp.vc1_inv_trans_8x8(block);
03037             s->dsp.add_pixels_clamped(block, dst, linesize);
03038             if(apply_filter && cbp_top  & 0xC)
03039                 vc1_loop_filter(dst, 1, linesize, 8, mquant);
03040             if(apply_filter && cbp_left & 0xA)
03041                 vc1_loop_filter(dst, linesize, 1, 8, mquant);
03042         }
03043         break;
03044     case TT_4X4:
03045         pat = ~subblkpat & 0xF;
03046         for(j = 0; j < 4; j++) {
03047             last = subblkpat & (1 << (3 - j));
03048             i = 0;
03049             off = (j & 1) * 4 + (j & 2) * 16;
03050             while (!last) {
03051                 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
03052                 i += skip;
03053                 if(i > 15)
03054                     break;
03055                 idx = ff_vc1_simple_progressive_4x4_zz[i++];
03056                 block[idx + off] = value * scale;
03057                 if(!v->pquantizer)
03058                     block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
03059             }
03060             if(!(subblkpat & (1 << (3 - j))) && !skip_block){
03061                 s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
03062                 if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
03063                     vc1_loop_filter(dst + (j&1)*4 + (j&2)*2*linesize, 1, linesize, 4, mquant);
03064                 if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
03065                     vc1_loop_filter(dst + (j&1)*4 + (j&2)*2*linesize, linesize, 1, 4, mquant);
03066             }
03067         }
03068         break;
03069     case TT_8X4:
03070         pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
03071         for(j = 0; j < 2; j++) {
03072             last = subblkpat & (1 << (1 - j));
03073             i = 0;
03074             off = j * 32;
03075             while (!last) {
03076                 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
03077                 i += skip;
03078                 if(i > 31)
03079                     break;
03080                 idx = v->zz_8x4[i++]+off;
03081                 block[idx] = value * scale;
03082                 if(!v->pquantizer)
03083                     block[idx] += (block[idx] < 0) ? -mquant : mquant;
03084             }
03085             if(!(subblkpat & (1 << (1 - j))) && !skip_block){
03086                 s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
03087                 if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
03088                     vc1_loop_filter(dst + j*4*linesize, 1, linesize, 8, mquant);
03089                 if(apply_filter && cbp_left & (2 << j))
03090                     vc1_loop_filter(dst + j*4*linesize, linesize, 1, 4, mquant);
03091             }
03092         }
03093         break;
03094     case TT_4X8:
03095         pat = ~(subblkpat*5) & 0xF;
03096         for(j = 0; j < 2; j++) {
03097             last = subblkpat & (1 << (1 - j));
03098             i = 0;
03099             off = j * 4;
03100             while (!last) {
03101                 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
03102                 i += skip;
03103                 if(i > 31)
03104                     break;
03105                 idx = v->zz_4x8[i++]+off;
03106                 block[idx] = value * scale;
03107                 if(!v->pquantizer)
03108                     block[idx] += (block[idx] < 0) ? -mquant : mquant;
03109             }
03110             if(!(subblkpat & (1 << (1 - j))) && !skip_block){
03111                 s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
03112                 if(apply_filter && cbp_top & (2 << j))
03113                     vc1_loop_filter(dst + j*4, 1, linesize, 4, mquant);
03114                 if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
03115                     vc1_loop_filter(dst + j*4, linesize, 1, 8, mquant);
03116             }
03117         }
03118         break;
03119     }
03120     return pat;
03121 }
03122  // Macroblock group
03124 
03125 static const int size_table  [6] = { 0, 2, 3, 4,  5,  8 };
03126 static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
03127 
03130 static int vc1_decode_p_mb(VC1Context *v)
03131 {
03132     MpegEncContext *s = &v->s;
03133     GetBitContext *gb = &s->gb;
03134     int i, j;
03135     int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
03136     int cbp; /* cbp decoding stuff */
03137     int mqdiff, mquant; /* MB quantization */
03138     int ttmb = v->ttfrm; /* MB Transform type */
03139 
03140     int mb_has_coeffs = 1; /* last_flag */
03141     int dmv_x, dmv_y; /* Differential MV components */
03142     int index, index1; /* LUT indexes */
03143     int val, sign; /* temp values */
03144     int first_block = 1;
03145     int dst_idx, off;
03146     int skipped, fourmv;
03147     int block_cbp = 0, pat;
03148     int apply_loop_filter;
03149 
03150     mquant = v->pq; /* Loosy initialization */
03151 
03152     if (v->mv_type_is_raw)
03153         fourmv = get_bits1(gb);
03154     else
03155         fourmv = v->mv_type_mb_plane[mb_pos];
03156     if (v->skip_is_raw)
03157         skipped = get_bits1(gb);
03158     else
03159         skipped = v->s.mbskip_table[mb_pos];
03160 
03161     s->dsp.clear_blocks(s->block[0]);
03162 
03163     apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
03164     if (!fourmv) /* 1MV mode */
03165     {
03166         if (!skipped)
03167         {
03168             GET_MVDATA(dmv_x, dmv_y);
03169 
03170             if (s->mb_intra) {
03171                 s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
03172                 s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
03173             }
03174             s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
03175             vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
03176 
03177             /* FIXME Set DC val for inter block ? */
03178             if (s->mb_intra && !mb_has_coeffs)
03179             {
03180                 GET_MQUANT();
03181                 s->ac_pred = get_bits1(gb);
03182                 cbp = 0;
03183             }
03184             else if (mb_has_coeffs)
03185             {
03186                 if (s->mb_intra) s->ac_pred = get_bits1(gb);
03187                 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
03188                 GET_MQUANT();
03189             }
03190             else
03191             {
03192                 mquant = v->pq;
03193                 cbp = 0;
03194             }
03195             s->current_picture.qscale_table[mb_pos] = mquant;
03196 
03197             if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
03198                 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
03199                                 VC1_TTMB_VLC_BITS, 2);
03200             if(!s->mb_intra) vc1_mc_1mv(v, 0);
03201             dst_idx = 0;
03202             for (i=0; i<6; i++)
03203             {
03204                 s->dc_val[0][s->block_index[i]] = 0;
03205                 dst_idx += i >> 2;
03206                 val = ((cbp >> (5 - i)) & 1);
03207                 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
03208                 v->mb_type[0][s->block_index[i]] = s->mb_intra;
03209                 if(s->mb_intra) {
03210                     /* check if prediction blocks A and C are available */
03211                     v->a_avail = v->c_avail = 0;
03212                     if(i == 2 || i == 3 || !s->first_slice_line)
03213                         v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
03214                     if(i == 1 || i == 3 || s->mb_x)
03215                         v->c_avail = v->mb_type[0][s->block_index[i] - 1];
03216 
03217                     vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
03218                     if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
03219                     s->dsp.vc1_inv_trans_8x8(s->block[i]);
03220                     if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
03221                     s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
03222                     if(v->pq >= 9 && v->overlap) {
03223                         if(v->c_avail)
03224                             s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
03225                         if(v->a_avail)
03226                             s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
03227                     }
03228                     if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
03229                         int left_cbp, top_cbp;
03230                         if(i & 4){
03231                             left_cbp = v->cbp[s->mb_x - 1]            >> (i * 4);
03232                             top_cbp  = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
03233                         }else{
03234                             left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1]           >> ((i+1)*4));
03235                             top_cbp  = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
03236                         }
03237                         if(left_cbp & 0xC)
03238                             vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
03239                         if(top_cbp  & 0xA)
03240                             vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
03241                     }
03242                     block_cbp |= 0xF << (i << 2);
03243                 } else if(val) {
03244                     int left_cbp = 0, top_cbp = 0, filter = 0;
03245                     if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
03246                         filter = 1;
03247                         if(i & 4){
03248                             left_cbp = v->cbp[s->mb_x - 1]            >> (i * 4);
03249                             top_cbp  = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
03250                         }else{
03251                             left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1]           >> ((i+1)*4));
03252                             top_cbp  = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
03253                         }
03254                         if(left_cbp & 0xC)
03255                             vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
03256                         if(top_cbp  & 0xA)
03257                             vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
03258                     }
03259                     pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
03260                     block_cbp |= pat << (i << 2);
03261                     if(!v->ttmbf && ttmb < 8) ttmb = -1;
03262                     first_block = 0;
03263                 }
03264             }
03265         }
03266         else //Skipped
03267         {
03268             s->mb_intra = 0;
03269             for(i = 0; i < 6; i++) {
03270                 v->mb_type[0][s->block_index[i]] = 0;
03271                 s->dc_val[0][s->block_index[i]] = 0;
03272             }
03273             s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
03274             s->current_picture.qscale_table[mb_pos] = 0;
03275             vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
03276             vc1_mc_1mv(v, 0);
03277             return 0;
03278         }
03279     } //1MV mode
03280     else //4MV mode
03281     {
03282         if (!skipped /* unskipped MB */)
03283         {
03284             int intra_count = 0, coded_inter = 0;
03285             int is_intra[6], is_coded[6];
03286             /* Get CBPCY */
03287             cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
03288             for (i=0; i<6; i++)
03289             {
03290                 val = ((cbp >> (5 - i)) & 1);
03291                 s->dc_val[0][s->block_index[i]] = 0;
03292                 s->mb_intra = 0;
03293                 if(i < 4) {
03294                     dmv_x = dmv_y = 0;
03295                     s->mb_intra = 0;
03296                     mb_has_coeffs = 0;
03297                     if(val) {
03298                         GET_MVDATA(dmv_x, dmv_y);
03299                     }
03300                     vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
03301                     if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
03302                     intra_count += s->mb_intra;
03303                     is_intra[i] = s->mb_intra;
03304                     is_coded[i] = mb_has_coeffs;
03305                 }
03306                 if(i&4){
03307                     is_intra[i] = (intra_count >= 3);
03308                     is_coded[i] = val;
03309                 }
03310                 if(i == 4) vc1_mc_4mv_chroma(v);
03311                 v->mb_type[0][s->block_index[i]] = is_intra[i];
03312                 if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
03313             }
03314             // if there are no coded blocks then don't do anything more
03315             if(!intra_count && !coded_inter) return 0;
03316             dst_idx = 0;
03317             GET_MQUANT();
03318             s->current_picture.qscale_table[mb_pos] = mquant;
03319             /* test if block is intra and has pred */
03320             {
03321                 int intrapred = 0;
03322                 for(i=0; i<6; i++)
03323                     if(is_intra[i]) {
03324                         if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
03325                             || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
03326                             intrapred = 1;
03327                             break;
03328                         }
03329                     }
03330                 if(intrapred)s->ac_pred = get_bits1(gb);
03331                 else s->ac_pred = 0;
03332             }
03333             if (!v->ttmbf && coded_inter)
03334                 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
03335             for (i=0; i<6; i++)
03336             {
03337                 dst_idx += i >> 2;
03338                 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
03339                 s->mb_intra = is_intra[i];
03340                 if (is_intra[i]) {
03341                     /* check if prediction blocks A and C are available */
03342                     v->a_avail = v->c_avail = 0;
03343                     if(i == 2 || i == 3 || !s->first_slice_line)
03344                         v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
03345                     if(i == 1 || i == 3 || s->mb_x)
03346                         v->c_avail = v->mb_type[0][s->block_index[i] - 1];
03347 
03348                     vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
03349                     if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
03350                     s->dsp.vc1_inv_trans_8x8(s->block[i]);
03351                     if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
03352                     s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
03353                     if(v->pq >= 9 && v->overlap) {
03354                         if(v->c_avail)
03355                             s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
03356                         if(v->a_avail)
03357                             s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
03358                     }
03359                     if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
03360                         int left_cbp, top_cbp;
03361                         if(i & 4){
03362                             left_cbp = v->cbp[s->mb_x - 1]            >> (i * 4);
03363                             top_cbp  = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
03364                         }else{
03365                             left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1]           >> ((i+1)*4));
03366                             top_cbp  = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
03367                         }
03368                         if(left_cbp & 0xC)
03369                             vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
03370                         if(top_cbp  & 0xA)
03371                             vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
03372                     }
03373                     block_cbp |= 0xF << (i << 2);
03374                 } else if(is_coded[i]) {
03375                     int left_cbp = 0, top_cbp = 0, filter = 0;
03376                     if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
03377                         filter = 1;
03378                         if(i & 4){
03379                             left_cbp = v->cbp[s->mb_x - 1]            >> (i * 4);
03380                             top_cbp  = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
03381                         }else{
03382                             left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1]           >> ((i+1)*4));
03383                             top_cbp  = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
03384                         }
03385                         if(left_cbp & 0xC)
03386                             vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
03387                         if(top_cbp  & 0xA)
03388                             vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
03389                     }
03390                     pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
03391                     block_cbp |= pat << (i << 2);
03392                     if(!v->ttmbf && ttmb < 8) ttmb = -1;
03393                     first_block = 0;
03394                 }
03395             }
03396             return 0;
03397         }
03398         else //Skipped MB
03399         {
03400             s->mb_intra = 0;
03401             s->current_picture.qscale_table[mb_pos] = 0;
03402             for (i=0; i<6; i++) {
03403                 v->mb_type[0][s->block_index[i]] = 0;
03404                 s->dc_val[0][s->block_index[i]] = 0;
03405             }
03406             for (i=0; i<4; i++)
03407             {
03408                 vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
03409                 vc1_mc_4mv_luma(v, i);
03410             }
03411             vc1_mc_4mv_chroma(v);
03412             s->current_picture.qscale_table[mb_pos] = 0;
03413             return 0;
03414         }
03415     }
03416     v->cbp[s->mb_x] = block_cbp;
03417 
03418     /* Should never happen */
03419     return -1;
03420 }
03421 
03424 static void vc1_decode_b_mb(VC1Context *v)
03425 {
03426     MpegEncContext *s = &v->s;
03427     GetBitContext *gb = &s->gb;
03428     int i, j;
03429     int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
03430     int cbp = 0; /* cbp decoding stuff */
03431     int mqdiff, mquant; /* MB quantization */
03432     int ttmb = v->ttfrm; /* MB Transform type */
03433     int mb_has_coeffs = 0; /* last_flag */
03434     int index, index1; /* LUT indexes */
03435     int val, sign; /* temp values */
03436     int first_block = 1;
03437     int dst_idx, off;
03438     int skipped, direct;
03439     int dmv_x[2], dmv_y[2];
03440     int bmvtype = BMV_TYPE_BACKWARD;
03441 
03442     mquant = v->pq; /* Loosy initialization */
03443     s->mb_intra = 0;
03444 
03445     if (v->dmb_is_raw)
03446         direct = get_bits1(gb);
03447     else
03448         direct = v->direct_mb_plane[mb_pos];
03449     if (v->skip_is_raw)
03450         skipped = get_bits1(gb);
03451     else
03452         skipped = v->s.mbskip_table[mb_pos];
03453 
03454     s->dsp.clear_blocks(s->block[0]);
03455     dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
03456     for(i = 0; i < 6; i++) {
03457         v->mb_type[0][s->block_index[i]] = 0;
03458         s->dc_val[0][s->block_index[i]] = 0;
03459     }
03460     s->current_picture.qscale_table[mb_pos] = 0;
03461 
03462     if (!direct) {
03463         if (!skipped) {
03464             GET_MVDATA(dmv_x[0], dmv_y[0]);
03465             dmv_x[1] = dmv_x[0];
03466             dmv_y[1] = dmv_y[0];
03467         }
03468         if(skipped || !s->mb_intra) {
03469             bmvtype = decode012(gb);
03470             switch(bmvtype) {
03471             case 0:
03472                 bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
03473                 break;
03474             case 1:
03475                 bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
03476                 break;
03477             case 2:
03478                 bmvtype = BMV_TYPE_INTERPOLATED;
03479                 dmv_x[0] = dmv_y[0] = 0;
03480             }
03481         }
03482     }
03483     for(i = 0; i < 6; i++)
03484         v->mb_type[0][s->block_index[i]] = s->mb_intra;
03485 
03486     if (skipped) {
03487         if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
03488         vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
03489         vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
03490         return;
03491     }
03492     if (direct) {
03493         cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
03494         GET_MQUANT();
03495         s->mb_intra = 0;
03496         mb_has_coeffs = 0;
03497         s->current_picture.qscale_table[mb_pos] = mquant;
03498         if(!v->ttmbf)
03499             ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
03500         dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
03501         vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
03502         vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
03503     } else {
03504         if(!mb_has_coeffs && !s->mb_intra) {
03505             /* no coded blocks - effectively skipped */
03506             vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
03507             vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
03508             return;
03509         }
03510         if(s->mb_intra && !mb_has_coeffs) {
03511             GET_MQUANT();
03512             s->current_picture.qscale_table[mb_pos] = mquant;
03513             s->ac_pred = get_bits1(gb);
03514             cbp = 0;
03515             vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
03516         } else {
03517             if(bmvtype == BMV_TYPE_INTERPOLATED) {
03518                 GET_MVDATA(dmv_x[0], dmv_y[0]);
03519                 if(!mb_has_coeffs) {
03520                     /* interpolated skipped block */
03521                     vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
03522                     vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
03523                     return;
03524                 }
03525             }
03526             vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
03527             if(!s->mb_intra) {
03528                 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
03529             }
03530             if(s->mb_intra)
03531                 s->ac_pred = get_bits1(gb);
03532             cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
03533             GET_MQUANT();
03534             s->current_picture.qscale_table[mb_pos] = mquant;
03535             if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
03536                 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
03537         }
03538     }
03539     dst_idx = 0;
03540     for (i=0; i<6; i++)
03541     {
03542         s->dc_val[0][s->block_index[i]] = 0;
03543         dst_idx += i >> 2;
03544         val = ((cbp >> (5 - i)) & 1);
03545         off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
03546         v->mb_type[0][s->block_index[i]] = s->mb_intra;
03547         if(s->mb_intra) {
03548             /* check if prediction blocks A and C are available */
03549             v->a_avail = v->c_avail = 0;
03550             if(i == 2 || i == 3 || !s->first_slice_line)
03551                 v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
03552             if(i == 1 || i == 3 || s->mb_x)
03553                 v->c_avail = v->mb_type[0][s->block_index[i] - 1];
03554 
03555             vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
03556             if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
03557             s->dsp.vc1_inv_trans_8x8(s->block[i]);
03558             if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
03559             s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
03560         } else if(val) {
03561             vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
03562             if(!v->ttmbf && ttmb < 8) ttmb = -1;
03563             first_block = 0;
03564         }
03565     }
03566 }
03567 
03570 static void vc1_decode_i_blocks(VC1Context *v)
03571 {
03572     int k, j;
03573     MpegEncContext *s = &v->s;
03574     int cbp, val;
03575     uint8_t *coded_val;
03576     int mb_pos;
03577 
03578     /* select codingmode used for VLC tables selection */
03579     switch(v->y_ac_table_index){
03580     case 0:
03581         v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
03582         break;
03583     case 1:
03584         v->codingset = CS_HIGH_MOT_INTRA;
03585         break;
03586     case 2:
03587         v->codingset = CS_MID_RATE_INTRA;
03588         break;
03589     }
03590 
03591     switch(v->c_ac_table_index){
03592     case 0:
03593         v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
03594         break;
03595     case 1:
03596         v->codingset2 = CS_HIGH_MOT_INTER;
03597         break;
03598     case 2:
03599         v->codingset2 = CS_MID_RATE_INTER;
03600         break;
03601     }
03602 
03603     /* Set DC scale - y and c use the same */
03604     s->y_dc_scale = s->y_dc_scale_table[v->pq];
03605     s->c_dc_scale = s->c_dc_scale_table[v->pq];
03606 
03607     //do frame decode
03608     s->mb_x = s->mb_y = 0;
03609     s->mb_intra = 1;
03610     s->first_slice_line = 1;
03611     for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
03612         for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
03613             ff_init_block_index(s);
03614             ff_update_block_index(s);
03615             s->dsp.clear_blocks(s->block[0]);
03616             mb_pos = s->mb_x + s->mb_y * s->mb_width;
03617             s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
03618             s->current_picture.qscale_table[mb_pos] = v->pq;
03619             s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
03620             s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
03621 
03622             // do actual MB decoding and displaying
03623             cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
03624             v->s.ac_pred = get_bits1(&v->s.gb);
03625 
03626             for(k = 0; k < 6; k++) {
03627                 val = ((cbp >> (5 - k)) & 1);
03628 
03629                 if (k < 4) {
03630                     int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
03631                     val = val ^ pred;
03632                     *coded_val = val;
03633                 }
03634                 cbp |= val << (5 - k);
03635 
03636                 vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
03637 
03638                 s->dsp.vc1_inv_trans_8x8(s->block[k]);
03639                 if(v->pq >= 9 && v->overlap) {
03640                     for(j = 0; j < 64; j++) s->block[k][j] += 128;
03641                 }
03642             }
03643 
03644             vc1_put_block(v, s->block);
03645             if(v->pq >= 9 && v->overlap) {
03646                 if(s->mb_x) {
03647                     s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
03648                     s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
03649                     if(!(s->flags & CODEC_FLAG_GRAY)) {
03650                         s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
03651                         s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
03652                     }
03653                 }
03654                 s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
03655                 s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
03656                 if(!s->first_slice_line) {
03657                     s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
03658                     s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
03659                     if(!(s->flags & CODEC_FLAG_GRAY)) {
03660                         s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
03661                         s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
03662                     }
03663                 }
03664                 s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
03665                 s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
03666             }
03667             if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[mb_pos]);
03668 
03669             if(get_bits_count(&s->gb) > v->bits) {
03670                 ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
03671                 av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
03672                 return;
03673             }
03674         }
03675         ff_draw_horiz_band(s, s->mb_y * 16, 16);
03676         s->first_slice_line = 0;
03677     }
03678     ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
03679 }
03680 
03683 static void vc1_decode_i_blocks_adv(VC1Context *v)
03684 {
03685     int k, j;
03686     MpegEncContext *s = &v->s;
03687     int cbp, val;
03688     uint8_t *coded_val;
03689     int mb_pos;
03690     int mquant = v->pq;
03691     int mqdiff;
03692     int overlap;
03693     GetBitContext *gb = &s->gb;
03694 
03695     /* select codingmode used for VLC tables selection */
03696     switch(v->y_ac_table_index){
03697     case 0:
03698         v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
03699         break;
03700     case 1:
03701         v->codingset = CS_HIGH_MOT_INTRA;
03702         break;
03703     case 2:
03704         v->codingset = CS_MID_RATE_INTRA;
03705         break;
03706     }
03707 
03708     switch(v->c_ac_table_index){
03709     case 0:
03710         v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
03711         break;
03712     case 1:
03713         v->codingset2 = CS_HIGH_MOT_INTER;
03714         break;
03715     case 2:
03716         v->codingset2 = CS_MID_RATE_INTER;
03717         break;
03718     }
03719 
03720     //do frame decode
03721     s->mb_x = s->mb_y = 0;
03722     s->mb_intra = 1;
03723     s->first_slice_line = 1;
03724     for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
03725         for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
03726             ff_init_block_index(s);
03727             ff_update_block_index(s);
03728             s->dsp.clear_blocks(s->block[0]);
03729             mb_pos = s->mb_x + s->mb_y * s->mb_stride;
03730             s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
03731             s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
03732             s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
03733 
03734             // do actual MB decoding and displaying
03735             cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
03736             if(v->acpred_is_raw)
03737                 v->s.ac_pred = get_bits1(&v->s.gb);
03738             else
03739                 v->s.ac_pred = v->acpred_plane[mb_pos];
03740 
03741             if(v->condover == CONDOVER_SELECT) {
03742                 if(v->overflg_is_raw)
03743                     overlap = get_bits1(&v->s.gb);
03744                 else
03745                     overlap = v->over_flags_plane[mb_pos];
03746             } else
03747                 overlap = (v->condover == CONDOVER_ALL);
03748 
03749             GET_MQUANT();
03750 
03751             s->current_picture.qscale_table[mb_pos] = mquant;
03752             /* Set DC scale - y and c use the same */
03753             s->y_dc_scale = s->y_dc_scale_table[mquant];
03754             s->c_dc_scale = s->c_dc_scale_table[mquant];
03755 
03756             for(k = 0; k < 6; k++) {
03757                 val = ((cbp >> (5 - k)) & 1);
03758 
03759                 if (k < 4) {
03760                     int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
03761                     val = val ^ pred;
03762                     *coded_val = val;
03763                 }
03764                 cbp |= val << (5 - k);
03765 
03766                 v->a_avail = !s->first_slice_line || (k==2 || k==3);
03767                 v->c_avail = !!s->mb_x || (k==1 || k==3);
03768 
03769                 vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
03770 
03771                 s->dsp.vc1_inv_trans_8x8(s->block[k]);
03772                 for(j = 0; j < 64; j++) s->block[k][j] += 128;
03773             }
03774 
03775             vc1_put_block(v, s->block);
03776             if(overlap) {
03777                 if(s->mb_x) {
03778                     s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
03779                     s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
03780                     if(!(s->flags & CODEC_FLAG_GRAY)) {
03781                         s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
03782                         s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
03783                     }
03784                 }
03785                 s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
03786                 s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
03787                 if(!s->first_slice_line) {
03788                     s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
03789                     s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
03790                     if(!(s->flags & CODEC_FLAG_GRAY)) {
03791                         s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
03792                         s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
03793                     }
03794                 }
03795                 s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
03796                 s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
03797             }
03798             if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[mb_pos]);
03799 
03800             if(get_bits_count(&s->gb) > v->bits) {
03801                 ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
03802                 av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
03803                 return;
03804             }
03805         }
03806         ff_draw_horiz_band(s, s->mb_y * 16, 16);
03807         s->first_slice_line = 0;
03808     }
03809     ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
03810 }
03811 
03812 static void vc1_decode_p_blocks(VC1Context *v)
03813 {
03814     MpegEncContext *s = &v->s;
03815 
03816     /* select codingmode used for VLC tables selection */
03817     switch(v->c_ac_table_index){
03818     case 0:
03819         v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
03820         break;
03821     case 1:
03822         v->codingset = CS_HIGH_MOT_INTRA;
03823         break;
03824     case 2:
03825         v->codingset = CS_MID_RATE_INTRA;
03826         break;
03827     }
03828 
03829     switch(v->c_ac_table_index){
03830     case 0:
03831         v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
03832         break;
03833     case 1:
03834         v->codingset2 = CS_HIGH_MOT_INTER;
03835         break;
03836     case 2:
03837         v->codingset2 = CS_MID_RATE_INTER;
03838         break;
03839     }
03840 
03841     s->first_slice_line = 1;
03842     memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
03843     for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
03844         for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
03845             ff_init_block_index(s);
03846             ff_update_block_index(s);
03847             s->dsp.clear_blocks(s->block[0]);
03848 
03849             vc1_decode_p_mb(v);
03850             if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
03851                 ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
03852                 av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
03853                 return;
03854             }
03855         }
03856         memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
03857         ff_draw_horiz_band(s, s->mb_y * 16, 16);
03858         s->first_slice_line = 0;
03859     }
03860     ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
03861 }
03862 
03863 static void vc1_decode_b_blocks(VC1Context *v)
03864 {
03865     MpegEncContext *s = &v->s;
03866 
03867     /* select codingmode used for VLC tables selection */
03868     switch(v->c_ac_table_index){
03869     case 0:
03870         v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
03871         break;
03872     case 1:
03873         v->codingset = CS_HIGH_MOT_INTRA;
03874         break;
03875     case 2:
03876         v->codingset = CS_MID_RATE_INTRA;
03877         break;
03878     }
03879 
03880     switch(v->c_ac_table_index){
03881     case 0:
03882         v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
03883         break;
03884     case 1:
03885         v->codingset2 = CS_HIGH_MOT_INTER;
03886         break;
03887     case 2:
03888         v->codingset2 = CS_MID_RATE_INTER;
03889         break;
03890     }
03891 
03892     s->first_slice_line = 1;
03893     for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
03894         for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
03895             ff_init_block_index(s);
03896             ff_update_block_index(s);
03897             s->dsp.clear_blocks(s->block[0]);
03898 
03899             vc1_decode_b_mb(v);
03900             if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
03901                 ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
03902                 av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
03903                 return;
03904             }
03905             if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[s->mb_x + s->mb_y *s->mb_stride]);
03906         }
03907         ff_draw_horiz_band(s, s->mb_y * 16, 16);
03908         s->first_slice_line = 0;
03909     }
03910     ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
03911 }
03912 
03913 static void vc1_decode_skip_blocks(VC1Context *v)
03914 {
03915     MpegEncContext *s = &v->s;
03916 
03917     ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
03918     s->first_slice_line = 1;
03919     for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
03920         s->mb_x = 0;
03921         ff_init_block_index(s);
03922         ff_update_block_index(s);
03923         memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
03924         memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
03925         memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
03926         ff_draw_horiz_band(s, s->mb_y * 16, 16);
03927         s->first_slice_line = 0;
03928     }
03929     s->pict_type = FF_P_TYPE;
03930 }
03931 
03932 static void vc1_decode_blocks(VC1Context *v)
03933 {
03934 
03935     v->s.esc3_level_length = 0;
03936     if(v->x8_type){
03937         ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
03938     }else{
03939 
03940         switch(v->s.pict_type) {
03941         case FF_I_TYPE:
03942             if(v->profile == PROFILE_ADVANCED)
03943                 vc1_decode_i_blocks_adv(v);
03944             else
03945                 vc1_decode_i_blocks(v);
03946             break;
03947         case FF_P_TYPE:
03948             if(v->p_frame_skipped)
03949                 vc1_decode_skip_blocks(v);
03950             else
03951                 vc1_decode_p_blocks(v);
03952             break;
03953         case FF_B_TYPE:
03954             if(v->bi_type){
03955                 if(v->profile == PROFILE_ADVANCED)
03956                     vc1_decode_i_blocks_adv(v);
03957                 else
03958                     vc1_decode_i_blocks(v);
03959             }else
03960                 vc1_decode_b_blocks(v);
03961             break;
03962         }
03963     }
03964 }
03965 
03969 static av_always_inline const uint8_t* find_next_marker(const uint8_t *src, const uint8_t *end)
03970 {
03971     uint32_t mrk = 0xFFFFFFFF;
03972 
03973     if(end-src < 4) return end;
03974     while(src < end){
03975         mrk = (mrk << 8) | *src++;
03976         if(IS_MARKER(mrk))
03977             return src-4;
03978     }
03979     return end;
03980 }
03981 
03982 static av_always_inline int vc1_unescape_buffer(const uint8_t *src, int size, uint8_t *dst)
03983 {
03984     int dsize = 0, i;
03985 
03986     if(size < 4){
03987         for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
03988         return size;
03989     }
03990     for(i = 0; i < size; i++, src++) {
03991         if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
03992             dst[dsize++] = src[1];
03993             src++;
03994             i++;
03995         } else
03996             dst[dsize++] = *src;
03997     }
03998     return dsize;
03999 }
04000 
04005 static av_cold int vc1_decode_init(AVCodecContext *avctx)
04006 {
04007     VC1Context *v = avctx->priv_data;
04008     MpegEncContext *s = &v->s;
04009     GetBitContext gb;
04010 
04011     if (!avctx->extradata_size || !avctx->extradata) return -1;
04012     if (!(avctx->flags & CODEC_FLAG_GRAY))
04013         avctx->pix_fmt = PIX_FMT_YUV420P;
04014     else
04015         avctx->pix_fmt = PIX_FMT_GRAY8;
04016     v->s.avctx = avctx;
04017     avctx->flags |= CODEC_FLAG_EMU_EDGE;
04018     v->s.flags |= CODEC_FLAG_EMU_EDGE;
04019 
04020     if(avctx->idct_algo==FF_IDCT_AUTO){
04021         avctx->idct_algo=FF_IDCT_WMV2;
04022     }
04023 
04024     if(ff_h263_decode_init(avctx) < 0)
04025         return -1;
04026     if (vc1_init_common(v) < 0) return -1;
04027 
04028     avctx->coded_width = avctx->width;
04029     avctx->coded_height = avctx->height;
04030     if (avctx->codec_id == CODEC_ID_WMV3)
04031     {
04032         int count = 0;
04033 
04034         // looks like WMV3 has a sequence header stored in the extradata
04035         // advanced sequence header may be before the first frame
04036         // the last byte of the extradata is a version number, 1 for the
04037         // samples we can decode
04038 
04039         init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
04040 
04041         if (decode_sequence_header(avctx, &gb) < 0)
04042           return -1;
04043 
04044         count = avctx->extradata_size*8 - get_bits_count(&gb);
04045         if (count>0)
04046         {
04047             av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
04048                    count, get_bits(&gb, count));
04049         }
04050         else if (count < 0)
04051         {
04052             av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
04053         }
04054     } else { // VC1/WVC1
04055         const uint8_t *start = avctx->extradata;
04056         uint8_t *end = avctx->extradata + avctx->extradata_size;
04057         const uint8_t *next;
04058         int size, buf2_size;
04059         uint8_t *buf2 = NULL;
04060         int seq_initialized = 0, ep_initialized = 0;
04061 
04062         if(avctx->extradata_size < 16) {
04063             av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
04064             return -1;
04065         }
04066 
04067         buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
04068         if(start[0]) start++; // in WVC1 extradata first byte is its size
04069         next = start;
04070         for(; next < end; start = next){
04071             next = find_next_marker(start + 4, end);
04072             size = next - start - 4;
04073             if(size <= 0) continue;
04074             buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
04075             init_get_bits(&gb, buf2, buf2_size * 8);
04076             switch(AV_RB32(start)){
04077             case VC1_CODE_SEQHDR:
04078                 if(decode_sequence_header(avctx, &gb) < 0){
04079                     av_free(buf2);
04080                     return -1;
04081                 }
04082                 seq_initialized = 1;
04083                 break;
04084             case VC1_CODE_ENTRYPOINT:
04085                 if(decode_entry_point(avctx, &gb) < 0){
04086                     av_free(buf2);
04087                     return -1;
04088                 }
04089                 ep_initialized = 1;
04090                 break;
04091             }
04092         }
04093         av_free(buf2);
04094         if(!seq_initialized || !ep_initialized){
04095             av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
04096             return -1;
04097         }
04098     }
04099     avctx->has_b_frames= !!(avctx->max_b_frames);
04100     s->low_delay = !avctx->has_b_frames;
04101 
04102     s->mb_width = (avctx->coded_width+15)>>4;
04103     s->mb_height = (avctx->coded_height+15)>>4;
04104 
04105     /* Allocate mb bitplanes */
04106     v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
04107     v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
04108     v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
04109     v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
04110 
04111     v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
04112     v->cbp = v->cbp_base + s->mb_stride;
04113 
04114     /* allocate block type info in that way so it could be used with s->block_index[] */
04115     v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
04116     v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
04117     v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
04118     v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
04119 
04120     /* Init coded blocks info */
04121     if (v->profile == PROFILE_ADVANCED)
04122     {
04123 //        if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
04124 //            return -1;
04125 //        if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
04126 //            return -1;
04127     }
04128 
04129     ff_intrax8_common_init(&v->x8,s);
04130     return 0;
04131 }
04132 
04133 
04137 static int vc1_decode_frame(AVCodecContext *avctx,
04138                             void *data, int *data_size,
04139                             const uint8_t *buf, int buf_size)
04140 {
04141     VC1Context *v = avctx->priv_data;
04142     MpegEncContext *s = &v->s;
04143     AVFrame *pict = data;
04144     uint8_t *buf2 = NULL;
04145     const uint8_t *buf_start = buf;
04146 
04147     /* no supplementary picture */
04148     if (buf_size == 0) {
04149         /* special case for last picture */
04150         if (s->low_delay==0 && s->next_picture_ptr) {
04151             *pict= *(AVFrame*)s->next_picture_ptr;
04152             s->next_picture_ptr= NULL;
04153 
04154             *data_size = sizeof(AVFrame);
04155         }
04156 
04157         return 0;
04158     }
04159 
04160     /* We need to set current_picture_ptr before reading the header,
04161      * otherwise we cannot store anything in there. */
04162     if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
04163         int i= ff_find_unused_picture(s, 0);
04164         s->current_picture_ptr= &s->picture[i];
04165     }
04166 
04167     if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
04168         if (v->profile < PROFILE_ADVANCED)
04169             avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
04170         else
04171             avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
04172     }
04173 
04174     //for advanced profile we may need to parse and unescape data
04175     if (avctx->codec_id == CODEC_ID_VC1) {
04176         int buf_size2 = 0;
04177         buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
04178 
04179         if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
04180             const uint8_t *start, *end, *next;
04181             int size;
04182 
04183             next = buf;
04184             for(start = buf, end = buf + buf_size; next < end; start = next){
04185                 next = find_next_marker(start + 4, end);
04186                 size = next - start - 4;
04187                 if(size <= 0) continue;
04188                 switch(AV_RB32(start)){
04189                 case VC1_CODE_FRAME:
04190                     if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
04191                         buf_start = start;
04192                     buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
04193                     break;
04194                 case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
04195                     buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
04196                     init_get_bits(&s->gb, buf2, buf_size2*8);
04197                     decode_entry_point(avctx, &s->gb);
04198                     break;
04199                 case VC1_CODE_SLICE:
04200                     av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
04201                     av_free(buf2);
04202                     return -1;
04203                 }
04204             }
04205         }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
04206             const uint8_t *divider;
04207 
04208             divider = find_next_marker(buf, buf + buf_size);
04209             if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
04210                 av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
04211                 av_free(buf2);
04212                 return -1;
04213             }
04214 
04215             buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
04216             // TODO
04217             av_free(buf2);return -1;
04218         }else{
04219             buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
04220         }
04221         init_get_bits(&s->gb, buf2, buf_size2*8);
04222     } else
04223         init_get_bits(&s->gb, buf, buf_size*8);
04224     // do parse frame header
04225     if(v->profile < PROFILE_ADVANCED) {
04226         if(vc1_parse_frame_header(v, &s->gb) == -1) {
04227             av_free(buf2);
04228             return -1;
04229         }
04230     } else {
04231         if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
04232             av_free(buf2);
04233             return -1;
04234         }
04235     }
04236 
04237     if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){
04238         av_free(buf2);
04239         return -1;
04240     }
04241 
04242     // for hurry_up==5
04243     s->current_picture.pict_type= s->pict_type;
04244     s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
04245 
04246     /* skip B-frames if we don't have reference frames */
04247     if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
04248         av_free(buf2);
04249         return -1;//buf_size;
04250     }
04251     /* skip b frames if we are in a hurry */
04252     if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
04253     if(   (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
04254        || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
04255        ||  avctx->skip_frame >= AVDISCARD_ALL) {
04256         av_free(buf2);
04257         return buf_size;
04258     }
04259     /* skip everything if we are in a hurry>=5 */
04260     if(avctx->hurry_up>=5) {
04261         av_free(buf2);
04262         return -1;//buf_size;
04263     }
04264 
04265     if(s->next_p_frame_damaged){
04266         if(s->pict_type==FF_B_TYPE)
04267             return buf_size;
04268         else
04269             s->next_p_frame_damaged=0;
04270     }
04271 
04272     if(MPV_frame_start(s, avctx) < 0) {
04273         av_free(buf2);
04274         return -1;
04275     }
04276 
04277     s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
04278     s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
04279 
04280     if ((CONFIG_VC1_VDPAU_DECODER || CONFIG_WMV3_VDPAU_DECODER)
04281         &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
04282         ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
04283     else {
04284         ff_er_frame_start(s);
04285 
04286         v->bits = buf_size * 8;
04287         vc1_decode_blocks(v);
04288 //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
04289 //  if(get_bits_count(&s->gb) > buf_size * 8)
04290 //      return -1;
04291         ff_er_frame_end(s);
04292     }
04293 
04294     MPV_frame_end(s);
04295 
04296 assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
04297 assert(s->current_picture.pict_type == s->pict_type);
04298     if (s->pict_type == FF_B_TYPE || s->low_delay) {
04299         *pict= *(AVFrame*)s->current_picture_ptr;
04300     } else if (s->last_picture_ptr != NULL) {
04301         *pict= *(AVFrame*)s->last_picture_ptr;
04302     }
04303 
04304     if(s->last_picture_ptr || s->low_delay){
04305         *data_size = sizeof(AVFrame);
04306         ff_print_debug_info(s, pict);
04307     }
04308 
04309     /* Return the Picture timestamp as the frame number */
04310     /* we subtract 1 because it is added on utils.c     */
04311     avctx->frame_number = s->picture_number - 1;
04312 
04313     av_free(buf2);
04314     return buf_size;
04315 }
04316 
04317 
04321 static av_cold int vc1_decode_end(AVCodecContext *avctx)
04322 {
04323     VC1Context *v = avctx->priv_data;
04324 
04325     av_freep(&v->hrd_rate);
04326     av_freep(&v->hrd_buffer);
04327     MPV_common_end(&v->s);
04328     av_freep(&v->mv_type_mb_plane);
04329     av_freep(&v->direct_mb_plane);
04330     av_freep(&v->acpred_plane);
04331     av_freep(&v->over_flags_plane);
04332     av_freep(&v->mb_type_base);
04333     av_freep(&v->cbp_base);
04334     ff_intrax8_common_end(&v->x8);
04335     return 0;
04336 }
04337 
04338 
04339 AVCodec vc1_decoder = {
04340     "vc1",
04341     CODEC_TYPE_VIDEO,
04342     CODEC_ID_VC1,
04343     sizeof(VC1Context),
04344     vc1_decode_init,
04345     NULL,
04346     vc1_decode_end,
04347     vc1_decode_frame,
04348     CODEC_CAP_DELAY,
04349     NULL,
04350     .flush          = ff_mpeg_flush,
04351     .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
04352     .pix_fmts = ff_pixfmt_list_420
04353 };
04354 
04355 AVCodec wmv3_decoder = {
04356     "wmv3",
04357     CODEC_TYPE_VIDEO,
04358     CODEC_ID_WMV3,
04359     sizeof(VC1Context),
04360     vc1_decode_init,
04361     NULL,
04362     vc1_decode_end,
04363     vc1_decode_frame,
04364     CODEC_CAP_DELAY,
04365     NULL,
04366     .flush          = ff_mpeg_flush,
04367     .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
04368     .pix_fmts = ff_pixfmt_list_420
04369 };
04370 
04371 #if CONFIG_WMV3_VDPAU_DECODER
04372 AVCodec wmv3_vdpau_decoder = {
04373     "wmv3_vdpau",
04374     CODEC_TYPE_VIDEO,
04375     CODEC_ID_WMV3,
04376     sizeof(VC1Context),
04377     vc1_decode_init,
04378     NULL,
04379     vc1_decode_end,
04380     vc1_decode_frame,
04381     CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
04382     NULL,
04383     .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
04384     .pix_fmts = (enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE}
04385 };
04386 #endif
04387 
04388 #if CONFIG_VC1_VDPAU_DECODER
04389 AVCodec vc1_vdpau_decoder = {
04390     "vc1_vdpau",
04391     CODEC_TYPE_VIDEO,
04392     CODEC_ID_VC1,
04393     sizeof(VC1Context),
04394     vc1_decode_init,
04395     NULL,
04396     vc1_decode_end,
04397     vc1_decode_frame,
04398     CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
04399     NULL,
04400     .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
04401     .pix_fmts = (enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE}
04402 };
04403 #endif

Generated on Tue Nov 4 2014 12:59:23 for ffmpeg by  doxygen 1.7.1