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Abstract

I describe the conformance test suite for ANSI Common Lisp distributed as part of GNU Common
Lisp (GCL). The test suite includes more than 20,000 individual tests, as well as random test generators for
exercising specific parts of Common Lisp implementations, and has revealed many conformance bugs in all
implementations on which it has been run.

1 Introduction

One of the strengths of Common Lisp is the existence of a large, detailed standard specifying the behavior of
conforming implementations. The value of the standard to users is enhanced when they can be confident that
implementations that purport to conform actually do.

In the 1990s I found substantial numbers of conformance bugs in many Lisp implementations. As a result,
I decided to build a comprehensive functional test suite for Common Lisp. The goals of the effort were, in no
particular order:

� To thoroughly familiarize myself with the standard.

� To provide a tool to locate conformance problems in CL implementations, both commercial and free.

� To enable implementors to improve CL implementations while maintaining conformance.

� To explore the standard itself for ambiguities, unintended consequences, and other problems.

� To explore different testing strategies.

I deliberately did not design the test suite to measure or rank conformance of Lisp implementations. For
this reason, I will not here report the overall score of any implementation.

I decided to locate the test suite in the GCL development tree for two reasons. First, its development team
had a goal of making GCL more ANSI compliant, and tests would assist there. Secondly, the GCL CVS tree
is easily publicly accessible1 , so any developers or users of Common Lisp implementations would have easy
access to it.

The test suite was constructed over the period from 1998 to 2005, with most of the work done in 2002 to
2004. As of 24 May 2005, the test suite contains over 20,000 tests.

The test suite is based on a version of the ANSI Common Lisp specification (ANSI/INCITS 226-1994,
formerly ANSI X3.226-1994) that was made publicly available by Harlequin (now LispWorks) in hyperlinked
form in 1996 [9].

Table 1 contains a list of Lisp implementations on which I am aware the test suite has been run.
�
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Implementation Hardware Platforms
GNU Common Lisp All debian platforms
GNU CLISP x86
CMUCL x86, Sparc
SBCL x86, x86-64, Sparc, MIPS, Alpha, PowerPC
Allegro CL (6.2, 7) x86, Sparc, PowerPC
LispWorks (4.3) x86
OpenMCL PowerPC
ABCL x86 (JVM)
ECL x86

Table 1: Implementations Tested

(deftest let.17
(let ((x :bad))
(declare (special x))
(let ((x :good)) ;; lexical binding
(let ((y x))
(declare (special x)) ;; free declaration
y)))

:good)

Figure 1: Example of a test

2 Infrastructure

The test suite uses Waters’ RT package [11]. This package provides a simple interface for defining tests. In its
original form, tests are defined with a name (typically a symbol or string), a form to be evaluated, and zero or
more expected values. The test passes if the form evaluates to the specified number of values, and those values
are as specified. See figure 1 for an example from the test suite:

As the test suite evolved RT was extended. Features added include:

� Error conditions raised by tests may be trapped.

� Tests may optionally be executed by wrapping the form to be evaluated in a lambda form, compiling
it, and calling the compiled code. This makes sense for testing Lisp itself, but would not be useful for
testing Lisp applications.

� A subset of the tests can be run repeatedly, in random order, a style of testing called Repeated Random
Regression by Kaner, Bond and McGee [2]2

� Notes may be attached to tests, and these notes used to turn off groups of tests.

� Tests can be marked as being expected to fail. Unexpected failures are reported separately.

2This was previously called ‘Extended Random Regression’; McGee renamed it to avoid the confusing acronym.



Section of CLHS Size (Bytes) Number of Tests
Arrays 212623 1109
Characters 38655 256
Conditions 71250 658
Cons 264208 1816
Data & Control Flow 185973 1217
Environment 51110 206
Eval/Compile 41638 234
Files 26375 87
Hash Tables 38752 158
Iteration 98339 767
Numbers 290991 1382
Objects 283549 774
Packages 162203 493
Pathnames 47100 215
Printer 454314 2364
Reader 101662 663
Sequences 562210 3219
Streams 165956 796
Strings 83982 415
Structures 46271 1366
Symbols 106063 1141
System Construction 16909 77
Types 104804 599
Misc 291883 679
Infrastructure 115090
Random Testers 190575
Total 4052485 20702

Table 2: Sizes of Parts of the Test Suite

3 Functional Tests

The bulk of the test suite consists of functional tests derived from specific parts of the ANSI specification.
Typically, for each standardized operator there is a file operator.lsp containing tests for that operator. This
provides a crude form of traceability. There are exceptions to this naming convention, and many tests that test
more than one operator are located somewhat arbitrarily. Table 2 shows the number and size of tests for each
section of the ANSI specification.

Individual tests vary widely in power. Some are as simple as a test that (CAR NIL) is NIL. Others are
more involved. For example, TYPES.9 checks that SUBTYPEP is transitive on a large collection of built-in
types.

The time required to run the test suite depends on the implementation, but it is not excessive on modern
hardware. SBCL 0.9.0.41 on a machine with 2 GHz 64 bit AMD processor, for example, runs the test suite in
under eight minutes.

Error tests have been written where the error behavior is specified by the standard. This includes spec-



ifications in the ‘Exceptional Situations’ sections for operator dictionary entries, as well as tests for calls to
functions with too few or too many arguments, keyword parameter errors, and violations of the first paragraph
of CLHS section 14.1.2.3. When type errors are specified or when the CLHS requires that some operator have
a well-defined meaning on any Lisp value, the tests iterate over a set of precomputed Lisp objects called the
‘universe’ that contains representatives of all standardized Lisp classes. In some cases a subset of this universe
is used, for efficiency reasons.

There are some rules that perform random input testing. This testing technique is described more fully in
the next section. Other tests are themselves deterministic, but are the product of one of the suite’s high volume
random test harnesses. The ‘Misc’ entry in table 2 refers to these randomly generated tests. Each of these tests
caused a failure in at least one implementation.

Inevitably, bugs have appeared in the test suite. Running the test suite on multiple implementations (see
table 1) exposes most problems. If a test fails in most of them, it is likely (but not certain) that the test is
flawed. Feedback from implementors has also been invaluable, and is deeply appreciated. In some cases, when
it has not been possible to agree on the proper interpretation of the standard, I’ve added a note to the set of
disputed tests so they can be disabled as a group. This is in keeping with the purpose of the test suite – to help
implementors, not judge implementations.

4 Random Testing

Random testing (more properly, random-input testing) is a standard technique in the testing of hardware sys-
tems. However, it has been the subject of controversy in the software testing community for more than two
decades. Myers [8] called it “Probably the poorest ... methodology of all”. This assessment presumes that the
cost of executing tests and checking their results for validity dominates the cost of constructing the tests. If
test inputs can be constructed and results checked automatically, it may be very cost-effective to generate and
execute many lower quality tests. Kaner et al. call this High Volume Automated Testing [2].

Duran and Ntafos [3] report favorably on the ability of random testing to find relatively subtle bugs without
a great deal of effort. Random testing has been used to test Unix utilities (so-called ‘fuzz testing’) [7], database
systems [10], and C compilers [6, 5, 4]. Bach and Schroeder [1] report that random input testing compares well
with the ability of the popular All-Pairs testing technique at actually finding bugs.

Random input testing provides a powerful means of testing algebraic properties of systems. Common Lisp
has many instances where such properties can be checked, and the test suite tests many of them. Random testing
is used to test numeric operators, type operators, the compiler, some sequence operators, and the readability of
objects printed in ‘print readably’ mode.

One criticism of random testing is its irreproducibility. With care, this needn’t be a problem. If a random
failure is sufficiently frequent, it can be reproduced with high probability by simply running a randomized test
again. Tests can also be designed so that on failure, they print sufficient information so that a non-randomized
test can be constructed exercising the bug. Most of the randomized tests in the test suite have this property.

4.1 Compiler Tests

Efficiency of compiled code has long been one of Common Lisp’s strengths. Implementations have been touted
as in some cases approaching the speed of statically typed languages. Achieving this efficiency places strong
demands on Lisp compilers. A sufficiently smart compiler needs a sufficiently smart test suite.

Compilers (and Lisp compilers in particular) are an ideal target for random input testing. Inputs may
have many parts that interact in the compiler in unpredictable ways. Because the language has a well-defined



semantics, it is easy to generate related, but different, forms that should yield the same result (thereby providing
a test oracle.)

The Random Tester performs the following steps. For some input parameters � and � (each positive inte-
gers):

1. Produce a list of � symbols that will be the parameters of a lambda expression. These parameters will
have integer values.

2. Produce a list of � finite integer subrange types. These will be the types of the lambda parameters. The
endpoints of these types are not uniformly distributed, but instead follow an approximately exponential
distribution, preferring small integers over larger ones. Integers close in absolute value to integer powers
of 2 are also overrepresented.

3. Generate a random conforming Lisp form of ‘size’ approximately � containing (mostly) integer-valued
forms. The parameters from step 1 occur as free variables.

4. From this form, construct two lambda forms. In the first, the lambda parameters are declared to have
their integer types, and random OPTIMIZE settings are included. In the second, a different set of
OPTIMIZE settings is declared, and all the standardized Lisp functions that occur in the form are de-
clared NOTINLINE. The goal here is to attempt to make optimizations work differently on the two forms.

5. For each lambda form, its value on each set of inputs is computed. This is done either by compiling the
lambda form and calling it on the inputs, or by evaling forms in which the lambda form is the CAR and
the argument list the CDR.

6. A failure occurs if any call to the compiler or evaluator signals an error, or if the two lambda forms yield
different results on any of the inputs.

This procedure very quickly – within seconds – found failures in every Lisp implementation on which it
was tried. Failures included assertion failures in the compiler, type errors, differing return values, code that
caused segmentation faults, and in some cases code that crashed the Lisps entirely. Most of the 679 ‘Misc’ tests
in table 2 were produced by this tester; each represents a failure in one or more implementations.

Generating failing tests was easy, but minimizing them was tedious and time consuming. I therefore wrote
a pruner that repeatedly tries to simplify a failing random form, replacing integer-valued subforms with simpler
ones, until no substitution preserving failure exists. In most cases, this greatly reduced the size of the failing
form. Others have previously observed that bug-exposing random inputs can often be automatically simplified
[12, 6]. The desire to be able to automatically simplify the failing forms constrained the tester; I will discuss
this problem later in section 6.

Table 3 contains a list of the fourteen compiler bugs detected by the random tester in GNU CLISP. Roughly
200 million iterations of the random tester were executed to find these bugs, using a single 1.2 GHz Athlon
XP+ workstation running intermittently over a period of months. All these bugs have been fixed (in CVS) and
CLISP now fails only when the random forms produce bignum values that exceed CLISP’s internal limit.

The greatest obstacle to using the random tester is the presence of unfixed, high probability bugs. If an
implementation has such a bug, it will generate many useless hits that will conceal lower probability bugs.

4.2 Types and Compilation

Type inference and type-based specialization of built-in operators is a vital part of any high performance Lisp
compiler for stock hardware, so it makes sense to focus testing effort on it. The test suite contains a facility



Sourceforge Bug # Type of Bug Description
813119 C Simplification of conditional forms
842910 C Simplification of conditional forms
842912 R Incorrect generated code
842913 R Incorrect generated code
858011 C Compiler didn’t handle implicit block in FLET
858658 R Incorrect code for UNWIND-PROTECT and multiple values
860052 C Involving RETURN-FROM and MULTIPLE-VALUE-PROG1.
864220 C Integer tags in tagbody forms.
864479 C Compiler bug in stack analysis.
866282 V Incorrect value computed due to erroneous side effect

analysis in compiler on special variables
874859 R Stack mixup causing catch tag to be returned.
889037 V Bug involving nested LABELS, UNWIND-PROTECT,DOTIMES forms.
890138 R Incorrect bytecodes for CASE, crashing the Lisp.
1167991 C Simplification of conditional forms.

Legend:
C Condition thrown by the compiler (assert or type check failure.)
R Condition thrown at runtime (incorrectly compiled code).
V Incorrect value returned by compiled code.

Table 3: Compiler bugs found in GNU CLISP by Random Tester

for generating random inputs for operators and compiling them with appropriate randomly generated type
annotations, then checking if the result matches that from an unoptimized version of the operator.

As an example, the operator ISQRT had this bug in one commercial implementation:

(compile nil ’(lambda (x) (declare (type (member 4 -1) x)
(optimize speed (safety 1)))

(isqrt x)))
==> Error: -1 is illegal argument to isqrt

Amusingly, the bug occurs only when the negative integer is the second item in the MEMBER list. The test that
found this bug is succinctly defined via a macro:

(def-type-prop-test isqrt ’isqrt ’((integer 0)) 1)

The function to be compiled can be generated in such a way that it stores the result value into an array special-
ized to a type that contains the expected value. This is intended to allow the result value to remain unboxed.

The general random testing framework of section 4.1 is also useful for testing type-based compiler opti-
mizations, with two drawbacks: it currently only handles integer operators, and it is less efficient than the more
focused tests. Even so, it was used to improve unboxed arithmetic in several implementations (SBCL, CMUCL,
GCL, ABCL).

4.3 SUBTYPEP Testing

The test suite uses the algebraic properties of the SUBTYPEP function in both deterministic and randomized
tests. For example, if T1 is known to be a subtype of T2, we can also check:



(subtypep ’(not t2) ’(not t1))
(subtypep ’(and t1 (not t2)) nil)
(subtypep ’(or (not t1) t2) t)

The generator/pruner approach of the compiler random tester was applied to testing SUBTYPEP. Random
types were generated and, if one was a subtype of the other, the three alternative formulas were also tested. If
any return the two values (false, true), a failure has been found.

Christophe Rhodes used feedback from this tester to fix logic and performance bugs in SBCL’s SUBTYPEP
implementation. The handling of CONS types is particularly interesting, since deciding the subtype relationship
in the presence of cons types is NP-hard. At least one implementation’s SUBTYPEPwill run wild on moderately
complicated cons types, consuming large amounts of memory before aborting.

4.4 Repeated Random Regression

As mentioned earlier, RRR is a technique for executing tests in an extended random sequence, in order to flush
out interaction bugs and slow corruption problems. As an experiment, RT was extended to support RRR on
subsets of the tests. The main result was to find many unwanted dependencies in the test suite, particularly
among the package tests. These dependencies had not surfaced when the tests had been run in their normal
order.

After fixing these problems, RRR did find one CLOS bug in CLISP, involving interaction between generic
functions and class redefinitions. The bug was localized by bisecting the set of tests being run until a minimal
core had been found, then minimizing the sequence of invocations of those tests. If more bugs of this kind are
found it may be worthwhile to add a delta debugging [12] facility to perform automatic test minimization.

In Lisps that support preemptively scheduled threads, it would be interesting to use RRR with subsets of
the tests that lack global side effects. The tests would be run in two or more threads at once in order to find
thread safety problems.

5 Issues with the ANSI Common Lisp Specification

Building the test suite involved going over the standard in detail. Many points were unclear, ambiguous, or
contradictory; some parts of the standard proved difficult to test in a portable way. This section describes some
of these findings.

See ‘Proposed ANSI Revisions and Clarifications’ on http://www.cliki.net/ for a more complete
list that includes issues arising from the test suite.

5.1 Testability

Some parts of the standard proved difficult to test in a completely conforming way. The specification of path-
names, for example, was difficult to test. The suite has assumed that UNIX-like filenames are legal as physical
pathnames.

Floating point operators presented problems. The standard does not specify the accuracy of floating point
computations, even if it does specify a minimum precision for each of the standardized float types. 3 Some
implementations have accuracy that varies depending on the details of compilation; in particular, boxed values

3The standard does specify a feature indicating the implementation purports to conform to the IEEE Standard for Binary Floating
Point Arithmetic (ANSI/IEEE Std 754-1985); this suite does not test this.



may be constrained to 64 bits while unboxed values in machine registers may have additional ‘hidden’ bits.
These differences make differential testing challenging.

The Objects chapter contains interfaces that are intended to be used with the Metaobject Protocol (MOP).
Since the MOP is not part of the standard, some of these cannot be tested. For example, there is apparently
no conforming way to obtain an instance of class METHOD-COMBINATION, or to produce any subclass of
GENERIC-FUNCTION except for STANDARD-GENERIC-FUNCTION.

5.2 Unintended Consequences

There seem to be many issues associated with Common Lisp’s type system. One example is the TYPE-OF
function. According to the standard, this function has the property that

For any object that is an element of some built-in type: [. . . ] the type returned is a recognizable
subtype of that built-in type.

A built-in type is defined to be

built-in type n. one of the types in Figure 4-2.

Figure 4-2 of the standard contains UNSIGNED-BYTE, the type of nonnegative integers. These constraints
imply that TYPE-OF can never return FIXNUM or BIGNUM for any nonnegative integer, since neither of those
types is a subtype of UNSIGNED-BYTE.

A more serious set of problems involves UPGRADED-ARRAY-ELEMENT-TYPE. 4 This function (from
types to types) is specified to satisfy these two axioms for all types
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This theorem has a number of unpleasant consequences. For example, if (UNSIGNED-BYTE 16) and
(SIGNED-BYTE 16) are specialized array element types, then so must be (UNSIGNED-BYTE 15). Even
worse, since BIT and CHARACTER are required to be specialized array element types, and since they are
disjoint, then NIL, the empty type, must also be a specialized array element type. Topping all this off, note that

A string is a specialized vector whose elements are of type character or a subtype of type character.
(CLHS page for STRING)

Since NIL is a subtype of CHARACTER, a vector with array element type NIL is a string. It is impossible for a
conforming implementation to have only a single representation of strings.5

4I ignore the issue that, strictly speaking, UPGRADED-ARRAY-ELEMENT-TYPE is either an identity function or is not computable,
since as defined it must work on SATISFIES types.

5But since ‘nil strings’ can never be accessed, it’s acceptable in non-safe code to just assume string accesses are to some other string
representation. The SBCL implementors took advantage of this when using nil strings as a stepping stone to Unicode support.



6 Directions For Future Work

The test suite still has a few areas that are not sufficiently tested. Setf expanders need more testing, as do logical
pathnames and file compilation. Floating point functions are inadequately tested. As mentioned earlier, it isn’t
clear what precision is expected of these functions, but perhaps tests can be written that check if the error is too
large (in some sufficiently useful sense.)

The random compiler tester, as implemented, is constrained to generate forms that remain conforming
as they are simplified. This limits the use of certain operators that do not take the entire set of integers as
their arguments. For example, ISQRT appears only in forms like (ISQRT (ABS ...)), and this pattern is
preserved during pruning. The forms also make very limited use of non-numeric types.

More sophisticated random tester could avoid these limitations. One approach would be to randomly gen-
erate trees from which Lisp forms could be produced, but that also carry along information that would enable
pruning to be done more intelligently. Another approach would be to check each pruned form for validity on
the set of chosen random inputs by doing a trial run with all operators replaced by special versions that always
check for illegal behaviors. I intend to explore both options.

The test suite has been written mostly as a ‘black box’ suite (aside from the randomly generated Misc tests).
It would be interesting to add more implementation knowledge, with tests that, while conforming, will be more
useful if the Lisp has been implemented in a particular way. The type propagation tester is an example of this
kind of ‘gray box’ testing.

It would be interesting to determine the level of coverage achieved by the test suite in various implemen-
tations. The coverage is probably not very good, since the suite cannot contain tests of nonstandardized error
situations, but this should be confirmed, and compared against the coverage obtained from running typical
applications. Internal coverage could also provide feedback for nudging the random tester toward testing rela-
tively untested parts of the compiler, say by using an evolutionary algorithm on the parameters governing the
construction of random forms.
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