The omniORB2 User’s Guide

Sai-Lai Lo
(email: sli@orl.co.uk)
Olivetti & Oracle Research Laboratory

Note: this document is very incomplete at the moment! More chapters will be added to
document the ORB’s APIs and its internals.

13 Mar, 1997

Contents

1

Introduction 1
1.1 Features 1
111 CORBA2compliant 1
1.1.2 Multithreading 1
1.1.3 Portability 2
1.1.4 Missingfeatures 2
1.2 Setting Up Your Environment 2
The Basics 5
2.1 TheEchoObjectExample 5
2.2 Specifying the Echo interfaceinIDL 5
2.3 GeneratingtheC++stubs 6
24 AQuick TouroftheC++stubs 6
241 ObjectReference 6
2.4.2 Object Implementation. 9
2.5 Writing the object implementation 10
2.6 Writingtheclient 1
2.7 Example 1 - Colocated Client and Implementation 12
2.7.1 ORB/BOAinitialisation 13
2.7.2 Objectinitialisation 13
2.7.3 Clientinvocation 14
2.7.4 Objectdisposal 14
2.8 Example 2 - Different AddressSpaces 15
2.8.1 Object Implementation: Generating a Stringified Object Reference 15
2.8.2 Client: Using a Stringified Object Reference 16
2.8.3 Catching System Exceptions 16
2.8.4 Lifetime of an Object Implementation 17
2.9 Example 3 - Using the COS Naming Service 17
2.9.1 Obtaining the Root Context Object Reference 18
2.9.2 The Naming ServiceInterface 18
2.10 Source Listing 19
2.10.1 echolicc 19
2.10.2 greeting.CC o o i 20
2103 egl.cC. e 21
2.10.4 eg2.implcc 23
2105 eg2.cltcc 24

2.10.6 eg3.implcc
2.10.7 eg3cltcc.

3 The omniORB2 API

3.1
3.2
3.3
3.4

ORB and BOA initialization options

Run-time Tracing and Diagnostic Messages

ObjectKeys

Trapping omniORB2 Internal Errors

Chapter 1

Introduction

OmniORB?2 is an Object Request Broker (ORB) that implements the 2.0 specification
of the Common Object Request Broker Architecture (CORBA) [OMG96a]. This user
guide tells you how to use omniORB2 to develop CORBA applications. It assumes a
basic understanding of CORBA.

In this chapter, we give an overview of the main features of omniORB2 and what
you need to do to setup your environment to run omniORB2.

1.1 Features

1.1.1 CORBA 2 compliant

OmniORB2 implements the Internet Inter-ORB Protocol (I1OP). This protocol provides
omniORB2 the means of achieving interoperability with the ORBs implemented by
other vendors. In fact, this is the native protocol used by omniORB2 for the commu-
nication amongst its objects residing in different address spaces. Moreover, the IDL to
C++ language mapping provided by omniORB2 conforms to the latest revision of the
CORBA specification.

1.1.2 Multithreading

OmniORB?2 is fully multithreaded. To achieve low IIOP call overhead, unnecessary
call-multiplexing is eliminated. At any time, there is at most one call in-flight in each
communication channel between two address spaces. To do so without limiting the
level of concurrency, new channels connecting the two address spaces are created on
demand and cached when there are more concurrent calls in progress. Each channel
is served by a dedicated thread. This arrangement provides maximal concurrency
and eliminates any thread switching in either of the address spaces to process a call.
Furthermore, to maximize the throughput in processing large call arguments, large
data elements are sent as soon as they are processed while the other arguments are
being marshalled.

2 CHAPTER 1. INTRODUCTION

1.1.3 Portability

At ORL, the ability to target a single source tree to multiple platforms is very impor-
tant. This is difficult to achieve if the IDL to C++ mapping for these platforms are
different. We avoid this problem by making sure that only one IDL to C++ mapping is
used. We run several flavours of Unices, Windows NT, Windows 95 and our in-house
developed systems for our own hardware. OmniORB2 have been ported to all these
platforms. The IDL to C++ mapping for these targets are all the same.

OmniORB2 uses real C++ exceptions and nested classes. We stay with the CORBA
specification’s standard mapping as much as possible and do not use the alternative
mappings for C++ dialects. The only exception is the mapping of modules to C++
classes instead of namespaces.

OmniORB2 relies on the native thread libraries to provide the multithreading ca-
pability. A small class library (omnithread [Richardson96a]) is used to encapsulated
the (possibly different) APIs of the native thread libraries. In the application code, it
is recommended but not mandatory to use this class library for thread management.
It should be easy to port omnithread to any platform that either supports the POSIX
thread standard or has a thread package that supports similar capabilities.

1.1.4 Missing features

OmniORB?2 is not (yet) a complete implementation of the CORBA core. The following
is a list of the missing features.

e The Typcode and the Any type is not supported. Support for these types will be
added shortly.

e The BOA only support the persistent server activation policy. Other dynamic
activation and deactivation policies are not supported.

e The Dynamic Invocation Interface is not supported.
e The Dynamic Skeleton Interface is not supported.

e OmniORB2 does not has its own Interface Repository.

These features may be implemented in the short to medium term.
It is best to check out the latest status on the omniORB2 home page
(http://iwww.orl.co.uk/omniORB/omniORB.html).

1.2 Setting Up Your Environment

After you have unpacked the distribution, read all the README files at the top level
of the directory tree. These files contain essential information on installing, building
and using omniORB2 on the supported platforms.

The following is a checklist of what you have to do:

1.2. SETTING UP YOUR ENVIRONMENT 3

1. Setup the naming service. An implementation of the COS Naming Service,
called omniNames, is provided in this distribution. If you want to use the ser-
vice, you have to start it up first. Consult the document “The OMNI Naming
Service” for details. When omniNames starts up, it writes the stringified object
reference for its root context on standard error. This is needed by the omniORB2
runtime. See below for how to configure the runtime. You can also use other
naming service implementations provided that you can obtain the stringified
object reference for its root context.

2. Configure the omniORB2 runtime. At startup the omniORB runtime tries to
read the configuration file omniORB.cfg to obtain the object reference to the
root context of the Naming Service. This object reference is returned by the call
resolve_initial_references("NameService")

(@ On Unix platforms, omniORB2 looks for the environment variable
OMNIORBCONFIG If this variable is defined, it contains the pathname of
the omniORB2 configuration file. If the variable is not set, omniORB2 will
use the compiled-in pathname (/fetc/omniORB.cfg) to locate the file.

(b) On Win32 platforms (Windows NT, Windows ’95), omniORB2 first checks
the environment variable (OMNIORBCONFIQ to obtain the pathname of
the configuration file. If this is not set, it then attempts to obtain config-
uration data in the system registry. It searches for the data under the key
HKEYLOCALMACHINESOFTWARB®RL omniORB\2.0

The format of the entry is the word NAMESERVICHollowed by space and the
stringified IOR all on one line. For example:

NAMESERVICE I0R:000000000000002049444c3a436f734e616d696e672f4e6160696e674
36f6e746578743a312e300000000001000000000000002c0001000000000012776962626¢C
652e77662626c652e636f6d0004d20000000¢3371b8c09528a18700000001

Aternatively, the stringified IOR can be placed in the system registry
on Win32 platforms, in the (string) value NAMESERVICEunder the key
HKEYLOCALMACHINESOFTWARBRL\ omniORB\2.0 .

3. Compiler flags. You should be able to build the whole distribution using the
makefiles provided. The makefiles are configured to supply a set of preprocessor
defines that are necessary to compile omniORB2 programs. The preprocessor
defines are needed because the same set of header files are used for all platforms.
If you are to incorporate omniORB2 into your own development environment,
these are the necessary preprocessor defines:

CHAPTER 1. INTRODUCTION

| Platform | Preprocessor Defines

Sun Solaris 2.x -D__sunos__ -D__sparc__ -D__OSVERSION__=5 -DSVR4
-DUsePthread -D_REENTRANT -D__ OMNIORB2___

Digital Unix 3.2 -D_osfl -D__alpha__ -D_ OSVERSION__ =3
-D_REENTRANT -D__ OMNIORB2__

x86 Linux 2.0 -D__linux__ -D__i86__ -D__OSVERSION__=2

with linuxthreads 0.5 | -D_REENTRANT

Windows NT -D__NT__ -MD -GX -D_X86_ -D__OMNIORB2__

The makefiles are good examples on how omniORB2 programs are built. Please
study them before you try to incorporate omniORB2 into other development
environments.

Chapter 2

The Basics

In this chapter, we go through three examples to illustrate the practical steps to use
omniORB2. By going through the source code of each example, the essential concepts
and APIs are introduced. If you have no previous experience with using CORBA, you
should study this chapter in detail. There are pointers to other essential documents
you should be familiar with.

If you have experience with using other ORBs, you should still go through this
chapter because it provides important information about the features and APIs that
are necessarily omniORB2 specific. For instance, the object implementation skeleton
is covered in section 2.4.2.

2.1 The Echo Object Example

Our example is an object which has only one method. The method simply echos the
argument string. We have to:

1. define the object interface in IDL;
2. use the IDL compiler to generate the stub code?’;
3. provide the object implementation;

4. write the client code.

The source code of this example is included in the last section of this chapter. The
files are also included in the distribution. The README file in the example directory
contains instructions on how to build and run the programs.

2.2 Specifying the Echo interface in IDL

We define an object interface, called Echo, as follows:

1The stub code is the C++ code that provides the object mapping as defined in the CORBA 2.0 speci-
fication.

6 CHAPTER 2. THE BASICS

interface Echo {
string echoString(in string mesg);

h

If you are new to IDL, you can learn about its syntax in Chapter 3 of the CORBA
specification 2.0 [OMG96a].

For the moment, you only need to know that the interface consists of a single
operation, echoString, which takes a string as an argument and returns a copy of the
same string.

The interface is written in a file, called echo.idl

For simplicity, the interface is defined in the global IDL namespace. This practice
should be avoided for the sake of object reusuability. If every CORBA developer de-
fines their interfaces in the global IDL namespace, there is a danger of name clashes
between two independently defined interfaces. Therefore, it is better to qualify your
interfaces by defining them inside module names. Of course, this does not eliminate
the chance of a name clash unless some form of naming convention is agreed globally.
Nevertheless, a well-chosen module name can help a lot.

2.3 Generating the C++ stubs

From the IDL file, we use the IDL compiler to produce the C++ mapping of the in-
terface. The IDL compiler for omniORB2 is called omniidl2 . Given the IDL file,
omniidl2 produces two stub files: a C++ header file and a C++ source file. For ex-
ample, from the file echo.idl , the following files are produced:

e echo.hh

e echoSK.cc

2.4 A Quick Tour of the C++ stubs

The C++ stubs conform to the mapping defined in the CORBA 2.0 specification (chap-
ter 16-18). It is important to understand the mapping before you start writing any
serious CORBA applications.

Before going any further, it is worth knowing what the mapping looks like.

2.4.1 Object Reference

The use of an object interface denotes an object reference. For the example interface
Echo, the C++ mapping for its object reference is Echo_ptr . The type is defined in
echo.hh. The relevant section of the code is reproduced below:

class Echo;
typedef Echo* Echo_ptr;

24. A QUICK TOUR OF THE C++ STUBS 7

class Echo : public virtual omniObject, public virtual CORBA::Object {
public:

virtual char * echoString (const char * mesg) = 0;
static Echo_ptr _nil();

static Echo_ptr _duplicate(Echo_ptr);

static Echo_ptr _narrow(CORBA::Object_ptr);

... /I methods generated for internal use

h

In a compliant application, the operations defined in an object interface should
only be invoked via an object reference. This is done by using arrow (“—”) on an
object reference. For example, the call to the operation echoString would be written
as obj —echoString(mesg)

It should be noted that the concrete type of an object reference is opaque, i.e. you
must not make any assumption about how an object reference is implemented. In
our example, even though Echo ptr is implemented as a pointer to the class Echo, it
should not be used as a C++ pointer, i.e. conversion to void*, arithmetic operations,
and relational operations, including test for equality using operation== must not be
performed on the type.

In addition to echoString , the mapping also defines three static member func-
tions in the class Echo: _nil , _duplicate , and _narrow . Note that these are opera-
tions on an object reference.

The _nil function returns a nil object reference of the Echo interface. The following
call is guaranteed to return TRUE:

CORBA::Boolean true_result = CORBA::is_nil(Echo::_nil());

Remember, CORBA::is nil() is the only compliant way to check if an object
reference is nil. You should not use the equality operator==.

The _duplicate function returns a new object reference of the Echo interface.
The new object reference can be used interchangeably with the old object reference to
perform an operation on the same object.

All CORBA objects inherit from the generic object CORBA::Object
CORBA::Object ptr is the object reference for CORBA::Object . Any object
reference is therefore conceptually inherited from CORBA::Object _ptr . In other
words, an object reference such as Echo_ptr can be used in places where a
CORBA::Object ptr isexpected.

The _narrow function takes an argument of the type CORBA::Object _ptr and
returns a new object reference of the Echo interface. If the actual (runtime) type of the
argument object reference can be widened to Echo _ptr , _narrow will return a valid
object reference. Otherwise it will return a nil object reference.

To indicate that an object reference will no longer be accessed, you can call the
CORBA::release operation. Its signature is as follows:

8 CHAPTER 2. THE BASICS

class CORBA {
static void release(CORBA::Object_ptr obj);
... /I other methods

You should not use an object reference once you have called CORBA::release
This is because the associated resources may have been deallocated. Notice that we
are referring to the resources associated with the object reference and not the object
implementation. Here is a concrete example, if the implementation of an object re-
sides in a different address space, then a call to CORBA::release will only caused
the resources associated with the object reference in the current address space to be
deallocated. The object implementation in the other address space is unaffected.

As described above, the equality operator== should not be used on object ref-
erences. To test if two object references are equivalent, the member function
_is _equivalent of the generic object CORBA::Object can be used. Here is an ex-
ample of its usage:

Echo_ptr A;

/I initialized A to a valid object reference
Echo_ptr B = A;
CORBA::Boolean true_result = A->_is_equivalent(B);
/I Note: the above call is guaranteed to be TRUE

You have now been introduced to most of the operations that can be invoked
via Echo_ptr . The generic object CORBA::Object provides a few more operations
and all of them can be invoked via Echo_ptr . These operations deal mainly with
CORBA’s dynamic interfaces. You do not have to understand them in order to use the
C++ mapping provided via the stubs. For details, please read the CORBA specifica-
tion [OMG96a] chapter 17.

Since object references must be released explicitly, their usage is prone to error and
can lead to memory leakage. The mapping defines the object reference variable type
to make life easier. In our example, the variable type Echo_var is defined?.

The Echo _var is more convenient to use because it will automatically release its
object reference when it is deallocated or when assigned a new object reference. For
many operations, mixing data of type Echo_var and Echo_ptr is possible without
any explicit operations or castings 3. For instance, the operation echoString can be
called using the arrow (“—") on a Echo_var , as one can do with a Echo_ptr .

The usage of Echo var is illustrated below:

Echo_var a;

2In omniORB2, all object reference variable types are instantiated from the template type
_CORBA._ObjRef_Var.

®However, the implementation of the type conversion operator() between Echo_var and Echo.ptr
varies slightly among different C++ compilers, you may need to do an explicit casting when the compiler
complains about the conversion being ambiguous.

24. A QUICK TOUR OF THE C++ STUBS 9

Echo_ptr p = ... /I somehow obtain an object reference

a=np; /I a assumes ownership of p, must not use p anymore
Echo var b = a; /I implicit _duplicate

p = .. /I somehow obtain another object reference

a = Echo::_duplicate(p); /I release old object reference

/l a now holds a copy of p.

2.4.2 Object Implementation

Unlike the client side of an object, i.e. the use of object references, the CORBA spec-
ification 2.0 deliberately leave many of the necessary functionalities to implement an
object unspecified. As a consequence, it is very unlikely the implementation code of
an object on top of two different ORBs can be identical. However, most of the code are
expected to be portable. In particular, the body of an operation implementation can
normally be ported with no or little modification.

OmniORB2 uses C++ inheritance to provide the skeleton code for object imple-
mentation. For each object interface, a skeleton class is generated. In our example,
the skeleton class _sk _Echo is generated for the Echo IDL interface. An object imple-
mentation can be written by creating an implementation class that derives from the
skeleton class.

The skeleton class _sk _Echo is defined in echo.hh . The relevant section of the
code is reproduced below.

class _sk Echo : public virtual Echo {
public:
_sk _Echo(const omniORB::objectKey& K);
virtual char * echoString (const char * mesg) = 0;

Echo_ptr _this();

void _obj_is_ready(BOA_ptr);
void _dispose();

BOA ptr _boa();

omniORB::objectKey _key();
... Il methods generated for internal use

3

The code fragment shows the only member functions that can be used in the ob-
jectimplementation code. Other member functions are generated for internal use only.
Unless specified otherwise, the description below is omniORB2 specific. The func-
tions are:

echoString it is through this abstract function that an implementation class provides
the implementation of the echoString operation. Notice that its signature is
the same as the echoString function that can be invoked via the Echo_ptr
object reference. The signature of this function is specified by the CORBA
specfication.

10 CHAPTER 2. THE BASICS

_this this function returns an object reference for the target object. The returned value
must be deallocated via CORBA::release . See 2.7 for an example of how this
function is used.

_obj_is_ready this function tells the Basic Object Adaptor* (BOA) that the object is
ready to serve. Until this function is called, the BOA would not serve any in-
coming calls to this object. See 2.7 for an example of how this function is used.

_dispose this function tells the BOA to dispose of the object. The BOA will stop serv-
ing incoming calls of this object and remove any resources associated with it.
See 2.7 for an example of how this function is used.

_boa this function returns a reference to the BOA that serves this object.

_key this function returns the key that the ORB used to identify this object. The
type omniORB::objectKey is opaque to application code. The function
omniORB::keyToOctetSequence can be used to convert the key to a se-
quence of octets.

2.5 Writing the object implementation

You define an implementation class to provide the object implementation. There is

little constraint on how you design your implementation class except that it has to in-

herit from the stubs’ skeleton class and to implement all the abstract functions defined

in the skeleton class. Each of these abstract functions corresponds to an operation of

the interface. They are hooks for the ORB to perform upcalls to your implementation.
Here is a simple implementation of the Echo object.

class Echo_i : public virtual _sk Echo {
public:

Echo_i() {}

virtual "Echo_i() {}

virtual char * echoString(const char *mesg);

3

char *

Echo_i::echoString(const char *mesg) {
char *p = CORBA::string_dup(mesg);
return p;

}

There are three points to note here:

Storage Responsibilities A string, which is used as an IN argument and the return
value of echoString , is a variable size data type. Other examples of variable
size data types include sequences, type “any”, etc. For these data types, you
must be clear about who’s responsibility to allocate and release their associated
storage. As a rule of thumb, the client (or the caller to the implementation func-
tions) owns the storage of all IN arguments, the object implementation (or the

*The interface of a BOA is described in chapter 8 of the CORBA specification.

2.6. WRITING THE CLIENT 11

callee) must copy the data if it wants to retain a copy. For OUT arguments and
return values, the object implementation allocates the storage and passes the
ownership to the client. The client must release the storage when the variables
will no longer be used. For details, please refer to Table 24-27 of the CORBA
specification.

Multi-threading As omniORB2 is fully multithreaded, multiple threads may perform
the same upcall to your implementation concurrently. It is up to your implemen-
tation to synchronise the threads’ accesses to shared data. In our simple exam-
ple, we have no shared data to protect so no thread synchronisation is necessary.

Instantiation You must not instantiate an implementation as automatic variables. In-
stead, you should always instantiate an implementation using the new operator,
i.e. its storage is allocated on the heap. The reason behind this restriction will
become clear in section 2.7.

2.6 Writing the client

Here is an example of how a Echo _ptr object reference is used.

void
hello(CORBA::Object_ptr obj)
{
Echo_var e = Echo::_narrow(obj); /I line 1
if (CORBA::is_nil(e)) { /I line 2
cerr << "hello: cannot invoke on a nil object reference.\n" << endl;
return;
}
CORBA::String_var src = (const char*) "Hello!; // line 3
CORBA::String_var dest; Il line 4
dest = e->echoString(src); /I line 5

cerr << "l said\"" << src << "\"."
<< " The Object said\"™ << dest <<"\"" << endl;

Briefly, the function hello accepts a generic object reference. The object reference
(obj) is narrowed to Echo _ptr . If the object reference returned by Echo:: _narrow
is not nil, the operation echoString is invoked. Finally, both the argument to and
the return value of echoString are printed to cerr.

The example also illustrates how T_var types are used. As it was explained in the
previous section, T_var types take care of storage allocation and release automatically
when variables of the type are assigned to or when the variables go out of scope.

In line 1, the variable e takes over the storage responsibility of the object reference
returned by Echo:: _narrow . The object reference is released by the destructor of
e. Itis called automatically when the function returns. Line 2 and 5 shows how a

12 CHAPTER 2. THE BASICS

Echo var variable is used. As said earlier, Echo_var type can be used interchange-
ably with Echo_ptr type.

The argument and the return value of echoString are stored in
CORBA::String var variable src and dest respectively. The strings managed by
the variables are deallocated by the destructor of CORBA::String _var . It is called
automatically when the function returns. Line 5 shows how CORBA::String _var
variables are used. They can be used in place of a string (for which the mapping
is char*)°. As used in line 3, assigning a constant string (const char*) to a
CORBA::String var causes the string to be copied. On the otherhand, assigning a
char* to a CORBA::String _var , as used in line 5, causes the latter to assume the
ownership of the string®.

Under the C++ mapping, T_var types are provided for all the non-basic data types.
It is obvious that one should use automatic variables whenever possible both to avoid
memory leak and to maximize performance. However, when one has to allocate data
items on the heap, it is a good practice to use the T_var types to manage the heap
storage.

2.7 Example 1 - Colocated Client and Implementation

Having introduced the client and the object implementation, we can now describe
how to link up the two via the ORB. In this section, we describe an example in which
both the client and the object implementation are in the same address space. In the
next two sections, we shall describe the case where the two are in different address
spaces.

The code for this example is reproduced below:

int
main(int argc, char **argv)
{
CORBA::ORB_ptr orb
CORBA::BOA ptr boa

CORBA::ORB init(argc,argv,"omniORB2"); // line 1
orb->BOA_init(argc,argv,"omniORB2_BOA"); // line 2

Echo_i *myobj = new Echo_i(); /I line 3
myobj->_obj_is_ready(boa); /I line 4
boa->impl_is_ready(0,1); /I line 5
Echo_ptr myobjRef = myobj->_this(); I/l line 6
hello(myobjRef); /I line 7
CORBA::release(myobjRef); /I line 8
myobj->_dispose(); I/l line 9
return O;

A conversion operator() of CORBA::String_var converts a CORBA::String_var to a char*.
®Please refer to the CORBA specification 16.7 for the details of the String_var mapping. Other T_var
types are also covered in chapter 16.

2.7. EXAMPLE 1 - COLOCATED CLIENT AND IMPLEMENTATION 13

The example illustrates several important interactions among the ORB, the object
implementation and the client. Here are the details:

2.7.1 ORB/BOA initialisation

line1 The ORB is initialised by calling the CORBA::ORBinit function. The func-
tion uses the 3rd argument to determine which ORB should be returned. To
use omniORB2, this argument must either be “omniORB2” or NULL. If it is
NULL, there must be an argument, -ORBid “omniORB2”, in argv . Like any
command-line arguments understood by the ORB, it will be removed from argv
when CORBA::ORBIinit returns. Therefore, an application is not required to
handle any command-line arguments it does not understand. If the ORB identi-
fier is not “omniORB2”, the initialisation will fail and a nil ORBptr will be re-
turned. If supplied, omniORB2 also reads the configuration file omniORB.cfg .
Among other things, the file provides a list of initial object references. One ex-
ample of these object references is the naming service. Its use will be discussed
in section 2.9.1. If any error occurs during the processing of the configuration
file, the system exception CORBA:INITIALIZE is raised.

line 2 The BOA is initialised by calling the ORB’s BOAIinit . The 3rd argument
must either be “omniORB2_.BOA” or NULL. If it is NULL, then argv must con-
tain an argument, -BOAid “omniORB2_BOA”. If the BOA identifier is not “om-
niORB2_BOA”, the initialisation will fail and a nil BOA_ptr will be returned.
Like ORBInit , any command-line arguments understood by BOAinit will be
removed from argv .

2.7.2 Obiject initialisation
line 3 An instance of the Echo object is initialised using the new operator.

line 4 The object’s _obj _is _ready is called. This function informs the BOA that this
object is ready to serve. Until this function is called, the BOA will not accept any
invocation on the object and will not perform any upcall to the object.

line5 The BOA's impl _is _ready is called. This function tells the BOA the imple-
mentation is ready. After this call, the BOA will accept IIOP requests from other
address spaces. There are 2 points to note here:

1. boa—impl _is _ready can be called any time after BOAinit is called (line
2). In other words, object instances can be initialised and advertised to the
BOA before or after this function is called.

2. The 2nd argument’ to impl _is _ready tells the ORB whether this call
should be non-blocking. The default value of this argument is FALSE(0)
and the call will block indefinitely within the ORB. If there are more things
the main thread should do after it calls impl _is _ready , as it is the case
in this example, the non-blocking option (TRUE=1) should be specified.
Whether the main thread blocks in this call or not, the ORB is not affected

"The 1st argument is a pointer to the implementation definition and is always ignored by omniORB2.

14 CHAPTER 2. THE BASICS

because its functions are provided by other threads spawned internally.
Notice that the signature of impl _is _ready in the CORBA specification
does not have the 2nd argument®. Therefore, calling impl _is _ready with
the non-blocking option is omniORB2 specific.

2.7.3 Clientinvocation

line 6 The object reference is obtained from the implementation by calling _this
Like any object reference, the return value of _this must be released by
CORBA:release when itis no longer needed.

line 7 Call hello with this object reference. The argument is widened implicitly to
the generic object reference CORBA::Object _ptr .

line 8 Release the object reference.

One of the important characteristic of an object reference is that it is completely lo-
cation transparent. A client can invoke on the object using its object reference without
any need to know whether the object is colocated in the same address space or resided
in a different address space.

In case of colocated client and object implementation, omniORB2 is able to short-
circuit the client calls to direct calls on the implementation methods. The cost of an
invocation is reduced to that of a function call. This optimisation is applicable not
only to object references returned by the _this function but to any object references
that are passed around within the same address space or received from other address
spaces via IIOP calls.

2.7.4 Object disposal

line 9 To dispose of an object implementation and release all the resources associated
with it, the _dispose function is called. In fact, this is the only clean way to
get rid of an object implementation. Even though the object is created using
the new operator in the application code, the application should never call the
delete operator on the object directly.

Once an application calls _dispose on an object implementation, the pointer to
the object should not be used any more. At the time the _dispose call is made, there
may be other threads invoking on the object, omniORB2 ensures that all these calls
are completed before removing the object from its internal tables and releasing the
resources associated with it. The storage associated with the object is released by
omniORB2 using the delete operator. This is why all object implementation should be
initialised using the new operator (section 2.5).

8The CORBA specification does not specify when impl _is _ready should return. Many ORB vendors
choose to implement impl _is _ready as blocking until a certain time-out value is exceeded. In a single
threaded implementation this is necessary to give the ORB the time to serve incoming requests.

2.8. EXAMPLE 2 - DIFFERENT ADDRESS SPACES 15

The disposal of an object implementation by omniORB2 may also be deferred
when colocated clients continue to hold on to copies of the object’s reference®. This
behavior is to prevent the short-circuited calls from the clients to fail unpredictably.

To summarise, an application can make no assumption as to when the object is
disposed by omniORB2 after the _dispose call returns. If it is necessary to have
better control on when to stop serving incoming requests, the work should be done
by the object implementation itself, such as by keeping track of the current serving
state.

2.8 Example 2 - Different Address Spaces

In this example, the client and the object implementation reside in two different ad-
dress spaces. The code of this example is almost the same as the previous example.
The only difference is the extra work need to be done to pass the object reference from
the object implementation to the client.

The simplest (and quite primitive) way to pass an object reference between two
address spaces is to produce a stringified version of the object reference and to pass
this string to the client as a command-line argument. The string is then converted by
the client into a proper object reference. This method is used in this example. In the
next example, we shall introduce a better way of passing the object reference using
the COS Naming Service.

2.8.1 Object Implementation: Generating a Stringified Object Reference

The main function of the object implementation side is reproduced below. The full
listing (eg2_impl.cc) can be found at the end of this chapter.

int
main(int argc, char **argv)
{
CORBA::ORB_ptr orb
CORBA::BOA ptr boa

CORBA::ORB_init(argc,argv,"omniORB2");
orb->BOA_init(argc,argv,"omniORB2_BOA");

Echo_i *myobj = new Echo_i();
myobj->_obj_is_ready(boa);

{
Echo_var myobjRef = myobj->_this();
CORBA::String_var p;
p = orb->object to_string(myobjRef); Mine 1

cerr << " << (char®)p << "™ << endl;

}

boa->impl_is_ready(); /I block here indefinitely

®Object references held by clients in other address spaces will not prevent the object implementation
from being disposed of. If these clients invoke on the object after it is disposed, the system exception
INV_OBJREF is raised.

16 CHAPTER 2. THE BASICS

/I See the explanation in example 1
return O;

}

The stringified object reference is obtained by calling the ORB’s function
_object _to _string (line 1). This is a sequence starting with the signature “IOR:”
and followed by a hexadecimal string. All CORBA 2.0 compliant ORBs are able to
convert the string into its internal representation of a so-called Interoperable Object
Reference (IOR). The IOR contains the location information and a key to uniquely
identify the object implementation in its own address space'®. From the IOR, an ob-
ject reference can be constructed.

2.8.2 Client: Using a Stringified Object Reference

The stringified object reference is passed to the client as a command-line argument.
The client uses the ORB’s function string _to _object to convert the string into a
generic object reference (CORBA::Object _ptr). The relevant section of the code is
reproduced below. The full listing (eg2 _clt.cc) can be found at the end of this chap-
ter.

try {
CORBA::Object_var obj = orb->string_to_object(argv[1]);
hello(obj);

catch(CORBA::COMM_FAILURE& ex) {
... Il code to handle communication failure

}

2.8.3 Catching System Exceptions

When omniORB2 detects an error condition, it may raise a system exception. The
CORBA specification defines a series of exceptions covering most of the error condi-
tions that an ORB may encounter. The client may choose to catch these exceptions
and recover from the error condition'!. For instance, the code fragment, shown in sec-
tion 2.8.2, catches the system exception COMM_FAILURE which indicates that com-
munication with the object implementation in another address space has failed.

All system exceptions inherit from the class CORBA::SystemException . With
compilers that support RTTI¥13, a single catch CORBA::SystemException will
catch all the different system exceptions thrown by omniORB2.

When omniORB2 detects an internal inconsistency that is most likely to be caused
by a bug in the runtime, it raises the exception omniORB::fatalException . When
this exception is raised, it is not sensible to proceed with any operation that involves

Notice that the object key is not globally unique across address spaces.

If a system exception is not caught, the C++ runtime will call the terminate function. This function
is defaulted to abort the whole process and on some system will cause a core file to be produced.

12Run Time Type ldentification

18 noticeable exception is the GNU C++ compiler (version 2.7.2). It doesn’t support RTTI unless the
compilation flag -frtti is specified. The omniORB2 runtime is not compiled with the -frtti flag. It is said
that RTTI will be properly supported in the upcoming version 2.8.

2.9. EXAMPLE 3 - USING THE COS NAMING SERVICE 17

the ORB’s runtime. It is best to exit the program immediately. The exception structure
carries by omniORB::fatalException contains the exact location (the file name
and the line number) where the exception is raised. You are strongly encourage to file
a bug report and point out the location.

2.8.4 Lifetime of an Object Implementation

It may be obvious but it has to stated that an object implementation exists only for the
duration of the process’s lifetime. When the same program is run again, a different
instance of the object implementation is created. More significantly, the IOR, and
hence the object reference, of this instance is different from that of the previous
run.

For instance, if you look at the stringified object reference produced by the pro-
gram eg2 _impl in different runs, they are all different. The implication is that you
cannot store away the stringified object reference and expect to be able to use it again
later when the original program run has terminated.

For system services and other applications, it may be desirable to have “persis-
tent” object implementations. The objects are “persistent” in the sense that they can
be contacted using the same IOR when they are instantiated in different program runs.
To provide this functionality, omniORB2 needs to be provided with two pieces of in-
formation: the (network) location and the object key. The details of how this can be
done will be described in the later part of this manual.

Alternatively, an indirection from textual pathnames to object references can be
used. Applications can register object implementations at runtime to a haming ser-
vice and bind them to fixed pathnames. Clients can bind to the object implementa-
tions at runtime by asking the naming service to resolve the pathnames to the object
references. CORBA defines a naming service, which is a component of the Common
Object Services (COS) [OMG96b], that can be used for this purpose. The next section
describes an example of how to use the COS Naming Service.

2.9 Example 3 - Using the COS Naming Service

In this example, the object implementation uses the COS Naming Service [OMG96b]
to pass on the object reference to the client. This method is by-far more practical
than using stringified object references. The full listing of the object implementation
(eg3_impl.cc)and the client (eg3 _clt.cc) can be found at the end of this chapter.

The object reference is bound to the pathname “test/Echo”*. The pathname con-
sists of the context test and the object name Echo. Both the context and the object name
has an attribute kind. This attribute is a string that is intended to be used to describe
the name in a syntax-independent way. The naming service does not interpret, assign,
or manage these values. However both the name and the kind attribute must match

A pathname, or in the Naming Service’s terminology- a compound name, is a sequence of textual
names. Each name component except the last one is bound to a naming context. A naming context is
analogous to a directory in a filing system, it can contain names of object references or other naming
contexts. The last name component is bound to an object reference. Note: '/’ is purely a notation to
separate two components in the pathname. It does not appear in the compound name that is registered
with the Naming Service.

18 CHAPTER 2. THE BASICS

for a name lookup to succeed. In this example, the kind values for test and Echo are
chosen to be “my_context” and “Object” respectively. This is an arbitrary choice for
there is no standardised set of kind values.

2.9.1 Obtaining the Root Context Object Reference

The initial contact with the Naming Service can be established via what we called the
root context. The object reference to the root context is provided by the ORB and can be
obtained by calling resolve _initial _references . The following code fragment
shows how it is used:

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");

CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

CosNaming::NamingContext_var rootContext;
rootContext = CosNaming::NamingContext:: _narrow(initServ);

Remember, omniORB2 constructs its internal list of initial references at
initialisation time using the information provided in the configuration file
omniORB.cfg . If this file is not present, the internal list will be empty and
resolve _initial references will raise a CORBA::ORB::InvalidName exception.

2.9.2 The Naming Service Interface

Itis beyond the scope of this chapter to describe in detail the Naming Service interface.
You should consult the CORBAservices specification [OMG96b] (chapter 3). The code
listed in eg3_impl.cc and eg3_clt.cc are good examples of how the service can be
used. Please spend time to study the examples carefully.

2.10. SOURCE LISTING

2.10 Source Listing

2.10.1 echo.i.cc

/I echo_i.cc - This source code demonstrates an implmentation of the

1 object interface Echo. It is part of the three examples
1 used in Chapter 2 "The Basics" of the omniORB2 user guide.
I

#include <string.h>
#include "echo.hh"

class Echo_i : public virtual _sk _Echo {
public:

Echo_i() {}

virtual "Echo_i() {}

virtual char * echoString(const char *mesg);

3

char *

Echo_i::echoString(const char *mesg) {
char *p = CORBA::string_dup(mesg);
return p;

}

19

20 CHAPTER 2. THE BASICS

2.10.2 greeting.cc

/I greeting.cc - This source code demonstrates the use of an object

1 reference by a client to perform an operation on an

/1 object. It is part of the three examples used

/1 in Chapter 2 "The Basics" of the omniORB2 user guide.
I

#include <iostream.h>
#include "echo.hh"

void
hello(CORBA::Object_ptr obj)
{

Echo_var e = Echo::_narrow(obj);

if (CORBA::is_nil(e)) {
cerr << "hello: cannot invoke on a nil object reference.\n" << endl;
return;

}

CORBA::String_var src = (const char*) "Hello!"; // String literals are not
/I const char*. Must do
/I explicit casting to
/I force the use of the copy
I/l operator=().
CORBA::String_var dest;

dest = e->echoString(src);

cerr << "l said\"" << src << "\"."
<< " The Object said\" << dest <<"\"" << endl;

2.10. SOURCE LISTING 21

2.10.3 egl.cc

/I egl.cc - This is the source code of example 1 used in Chapter 2
1 "The Basics" of the omniORB2 user guide.

I

/1 In this example, both the object implementation and the
/1 client are in the same process.

I

/I Usage: egl

I

#include <iostream.h>

#include "echo.hh"

#include "echo_i.cc"
#include "greeting.cc"

int
main(int argc, char **argv)
{
CORBA::ORB_ptr orb
CORBA::BOA ptr boa

= CORBA:ORB_init(argc,argv,"omniORB2");
= orb->BOA_init(argc,argv,"omniORB2_BOA");
Echo_i *myobj = new Echo_i();

/Il Note: all implementation objects must be instantiated on the

/I heap using the new operator.

myobj->_obj_is_ready(boa);
/I Tell the BOA the object is ready to serve.
/I This call is omniORB2 specific.

I

/I This call is equivalent to the following call sequence:
1 Echo_ptr myobjRef = myobj->_this();

/1 boa->obj_is_ready(myobjRef);

/1 CORBA::release(myobjRef);

boa->impl_is_ready(0,1);

/I Tell the BOA we are ready and to return immediately once it has
/I done its stuff. It is omniORB2 specific to call impl_is_ready()

/I with the extra 2nd argument- CORBA::Boolean NonBlocking,

/Il which is set to TRUE (1) in this case.

Echo_ptr myobjRef = myobj->_this();

/I Obtain an object reference.

/I Note: always use _this() to obtain an object reference from the
/1 object implementation.

hello(myobjRef);

CORBA::release(myobjRef);
/I Dispose of the object reference.

myobj->_dispose();
/I Dispose of the object implementation.

22

CHAPTER 2.

/I This call is omniORB2 specific.
/I Note: *never* call the delete operator or the dtor of the object

/1 directly because the BOA needs to be informed.
1

/I This call is equivalent to the following call sequence:

1 Echo_ptr myobjRef = myobj->_this();

1 boa->dispose(myobjRef);

/1 CORBA::release(myobjRef);

return O;

THE BASICS

2.10. SOURCE LISTING

2.10.4 eg2_.impl.cc

/I eg2_impl.cc - This is the source code of example 2 used in Chapter 2

1
1
1
1
1
1
1
1
1
1

"The Basics" of the omniORB2 user guide.
This is the object implementation.
Usage: eg2_impl

On startup, the object reference is printed to cerr as a

stringified IOR. This string should be used as the argument to

eg2_clt.

#include <iostream.h>
#include "omnithread.h"
#include "echo.hh"

#include "echo_i.cc"

int

main(int argc, char **argv)

{

CORBA::ORB_ptr orb
CORBA::BOA ptr boa

= CORBA::ORB init(argc,argv,"omniORB2");
= orb->BOA_init(argc,argv,"omniORB2_BOA");
Echo_i *myobj = new Echo_i();

myobj->_obj_is_ready(boa);

{
Echo_var myobjRef = myobj->_this();
CORBA::String_var p = orb->object_to_string(myobjRef);
cerr << " << (char®)p << "™ << endl;

}

boa->impl_is_ready();

/I Tell the BOA we are ready. The BOA’s default behaviour is to
/I on this call indefinitely.

return O;

block

23

24 CHAPTER 2. THE BASICS

2.10.5 eg2.clt.cc

/I eg2_clt.cc - This is the source code of example 2 used in Chapter 2

1 "The Basics" of the omniORB2 user guide.

I

/1 This is the client. The object reference is given as a
1 stringified IOR on the command line.

I

/I Usage: eg2_clt <object reference>

I

#include <iostream.h>
#include "echo.hh"

#include "greeting.cc"
extern void hello(CORBA::Object ptr obj);

int
main (int argc, char **argv)
{
CORBA::ORB_ptr orb
CORBA::BOA_ptr boa

= CORBA::ORB init(argc,argv,"omniORB2");
= orb->BOA init(argc,argv,"omniORB2_BOA");
if (argc < 2) {

cerr << "usage: eg2_clt <object reference>" << endl;

return 1,

}

try {
CORBA::Object_var obj = orb->string_to_object(argv[1]);
hello(obj);

catch(CORBA::COMM_FAILURE& ex) {
cerr << "Caught system exception COMM_FAILURE, unable to contact the "
<< "object." << endl;
}
catch(omniORB::fatalException& ex) {
cerr << "Caught omniORB2 fatalException. This indicates a bug is caught "
<< "within omniORB2.\nPlease send a bug report.\n"
<< "The exception was thrown in file: " << ex.file() << "\n"
<< " line: " << exline() << "\n"
<< "The error message is: " << ex.errmsg() << endl;
}
catch(...) {
cerr << "Caught a system exception." << endl;
}

return O;

2.10. SOURCE LISTING 25

2.10.6 eg3.impl.cc

/I eg3_impl.cc - This is the source code of example 3 used in Chapter 2

1 "The Basics" of the omniORB2 user guide.

I

/1 This is the object implementation.

I

/I Usage: eg3_impl

I

1 On startup, the object reference is registered with the
/1 COS naming service. The client uses the naming service to
/1 locate this obiject.

I

1 The name which the object is bound to is as follows:
1 root [context]

I |

/1 text [context] kind [my_context]

I |

/1 Echo [object] kind [Object]

I

#include <iostream.h>
#include "omnithread.h"
#include "echo.hh"

#include "echo_i.cc"
static CORBA::Boolean bindObjectToName(CORBA::ORB_ptr, CORBA::Object_ptr);

int

main(int argc, char **argv)

{
CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA ptr boa = orb->BOA _init(argc,argv,"omniORB2_BOA");

Echo_i *myobj = new Echo_i();
myobj->_obj_is_ready(boa);

{
Echo_var myobjRef = myobj->_this();
if ('bindObjectToName(orb,myobjRef)) {
return 1;
}
}

boa->impl_is_ready();
/I Tell the BOA we are ready. The BOA’s default behaviour is to block
/I on this call indefinitely.

return O;

26 CHAPTER 2.

static

CORBA::Boolean

bindObjectToName(CORBA::ORB_ptr orb,CORBA::Object_ptr obj)
{

CosNaming::NamingContext_var rootContext;

try {
/l Obtain a reference to the root context of the Name service:
CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

/I Narrow the object returned by resolve_initial_references()
/l to a CosNaming::NamingContext object:
rootContext = CosNaming::NamingContext::_narrow(initServ);
if (CORBA::is_nil(rootContext))
{
cerr << "Failed to narrow naming context." << endl;
return O;
}
}
catch(CORBA::ORB::InvalidName& ex) {
cerr << "Service required is invalid [does not exist]." << endl;
return O;

}

try {
/I Bind a context called "test" to the root context:

CosNaming::Name contextName;

contextName.length(2);

contextName[0].id = (const char*) "test"; /I string copied
contextName[0].kind = (const char*) "my_context"; // string copied
/l Note on kind: The kind field is used to indicate the type

/I of the object. This is to avoid conventions such as that used
/I by files (name.type -- e.g. test.ps = postscript etc.)

CosNaming::NamingContext_var testContext;
try {
/I Bind the context to root, and assign testContext to it:
testContext = rootContext->bind_new_context(contextName);
}
catch(CosNaming::NamingContext::AlreadyBound& ex) {
/I If the context already exists, this exception will be raised.
/I In this case, just resolve the name and assign testContext
/I to the object returned:
CORBA::Object_var tmpobj;
tmpobj = rootContext->resolve(contextName);
testContext = CosNaming::NamingContext::_narrow(tmpobj);
if (CORBA::is_nil(testContext)) {
cerr << "Failed to narrow naming context." << endl;
return O;

}

THE BASICS

2.10. SOURCE LISTING 27

}

}

/I Bind the object (obj) to testContext, naming it Echo:
CosNaming::Name objectName;

objectName.length(1);

objectName[0].id = (const char*) "Echo"; /I string copied
objectName[0].kind = (const char*) "Object"; // string copied

/I Bind obj with name Echo to the testContext:

try {
testContext->bind(objectName,obj);

}

catch(CosNaming::NamingContext::AlreadyBound& ex) {
testContext->rebind(objectName,obj);

}

/I Note: Using rebind() will overwrite any Object previously bound

I to /test/Echo with obj.

I Alternatively, bind() can be used, which will raise a
I CosNaming::NamingContext::AlreadyBound exception if the name
I supplied is already bound to an object.

/I Amendment: When using OrbixNames, it is necessary to first try bind

/l and then rebind, as rebind on it's own will throw a NotFoundexception if
/l the Name has not already been bound. [This is incorrect behaviour -
/it should just bind].

catch (CORBA::COMM_FAILURE& ex) {

}

cerr << "Caught system exception COMM_FAILURE, unable to contact the "
<< "naming service." << endl;
return O;

catch (omniORB::fatalException& ex) {

}

throw;

catch (...) {

}

cerr << "Caught a system exception while using the naming service."<< endl;
return O;

return 1;

28 CHAPTER 2. THE BASICS

2.10.7 eg3.clt.cc

/I eg3_clt.cc - This is the source code of example 3 used in Chapter 2

1 "The Basics" of the omniORB2 user guide.

I

/1 This is the client. It uses the COSS naming service
/1 to obtain the object reference.

I

/I Usage: eg3 clt

I

I

/1 On startup, the client lookup the object reference from the
/1 COS naming service.

I

1 The name which the object is bound to is as follows:

1 root [context]

I |

/1 text [context] kind [my_context]

I |

1 Echo [object] kind [Object]

I

#include <iostream.h>
#include "echo.hh"

#include "greeting.cc"

extern void hello(CORBA::Object ptr obj);

static CORBA::Object_ptr getObjectReference(CORBA::ORB_ptr orb);
int

main (int argc, char **argv)

{
CORBA::ORB_ptr orb

CORBA::BOA ptr boa

CORBA::ORB _init(argc,argv,"omniORB2");
orb->BOA_init(argc,argv,"omniORB2_BOA");

try {
CORBA::Object_var obj = getObjectReference(orb);

hello(obj);
}
catch(CORBA::COMM_FAILURE& ex) {
cerr << "Caught system exception COMM_FAILURE, unable to contact the "
<< "object." << endl;
}

catch(omniORB::fatalException& ex) {
cerr << "Caught omniORB2 fatalException. This indicates a bug is caught "
<< "within omniORB2.\nPlease send a bug report.\n"
<< "The exception was thrown in file: " << ex.file() << "\n"
<< " line: " << ex.line() << "\n"
<< "The error message is: " << ex.errmsg() << endl;

}
catch(...) {

2.10. SOURCE LISTING 29

cerr << "Caught a system exception." << endl;

}

return O;

}

static

CORBA::Object_ptr
getObjectReference(CORBA::ORB_ptr orb)
{

CosNaming::NamingContext_var rootContext;

try {
/I Obtain a reference to the root context of the Name service:

CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

/I Narrow the object returned by resolve_initial_references()
/l to a CosNaming::NamingContext object:
rootContext = CosNaming::NamingContext::_narrow(initServ);
if (CORBA::is_nil(rootContext))
{
cerr << "Failed to narrow naming context." << endl,
return CORBA::Object::_nil();
}
}
catch(CORBA::ORB::InvalidName& ex) {
cerr << "Service required is invalid [does not exist]." << endl;
return CORBA::Object::_nil();
}

/I Create a name object, containing the name test/context:
CosNaming::Name name;
name.length(2);

name[0].id = (const char*) "test"; /I string copied
name[0].kind = (const char*) "my_context"; // string copied
name[l].id = (const char*) "Echo";

name[1].kind = (const char*) "Object";

/I Note on kind: The kind field is used to indicate the type

/I of the object. This is to avoid conventions such as that used
/I by files (name.type -- e.g. test.ps = postscript etc.)

CORBA::Object_ptr obj;

try {
/I Resolve the name to an object reference, and assign the reference
/I returned to a CORBA::Object:
obj = rootContext->resolve(name);

}

catch(CosNaming::NamingContext::NotFound& ex)

{

30 CHAPTER 2. THE BASICS

/I This exception is thrown if any of the components of the
/I path [contexts or the object] aren’t found:
cerr << "Context not found." << endl;
return CORBA::Object::_nil();
}
catch (CORBA::COMM_FAILURE& ex) {
cerr << "Caught system exception COMM_FAILURE, unable to contact the
<< "naming service." << endl;
return CORBA::Object::_nil();

}

catch(omniORB::fatalException& ex) {
throw;

}

catch (...) {
cerr << "Caught a system exception while using the naming service."<< endl;
return CORBA::Object::_nil();

}

return obj;

Chapter 3

The omniIORB2 API

In this chapter, we introduce the omniORB2 API. The purpose of this APl is to provide
access points to omniORB2 specific functionalities that are not covered by the CORBA
specification. Obviously, if you use this API in your application, that part of your
code is not going to be portable to run unchanged on other vendors’ ORBs. To make
it easier to identify omniORB2 dependent code, this API is defined under the name
space “omniORB™.

3.1 ORB and BOA initialization options

CORBA::ORBIinit accepts the following command-line arguments:

-ORBid “omniORB2” The identifier supplied must be “omniORB2”.
-ORBtraceLevel <level> This option is described in section 3.2.

-ORBstrictllOP <1 or 0> This option when set instructs the runtime to treat any in-
coming IIOP message as an error if it has a header message size that is larger
than the actual body size. By default, this option is not set to allow omniORB2
to interoperate with some ill-behaved I1OP implementations.

BOAInit accepts the following command-line arguments:

-BOAIid “omniORB2_BOA” The identifier supplied must be “omniORB2_BOA”.

-BOAiiop_port <port number> This option tells the BOA which TCP/IP port to use
to accept IIOP calls. If this option is not specified, the BOA will use an arbitrary
port assigned by the operating system.

As defined in the CORBA specification, any command-line arguments understood
by the ORB/BOA will be removed from argv when the initialisation functions return.
Therefore, an application is not required to handle any command-line arguments it
does not understand.

1omniORB is a class name if the C++ compiler does not support the namespace keyword.

31

32 CHAPTER 3. THE OMNIORB2 API

3.2 Run-time Tracing and Diagnostic Messages

OmniORB2 uses the C++ iostream cerr to output any tracing and diagnostic mes-
sages. Some or all of these messages can be turned-on/off by setting the variable
omniORB::traceLevel . The type definition of the variable is:

CORBA::ULong omniORB::traceLevel = 1; // The default value is 1
At the moment, the following trace levels are defined:

level 0 turn off all tracing and informational messages
level 1 informational messages only
level 2 the above plus configuration information

level 5 the above plus notifications when server threads are created or communica-
tion endpoints are shutdown

level 10 the above plus execution traces

The variable can be changed by assignment inside your applications. It can also be
changed by specifying the command-line option: -ORBtracelLevel <level >.For
instance:

$ eg2_impl -ORBtraceLevel 5

3.3 Object Keys

OmniORB2 uses a data type omniORB::objectKey to uniquely identify each object
implementation. This is an opaque data type and can only be manipulated by the
following functions:

void omniORB::generateNewKey(omniORB::objectkey &kK);

omniORB::generateNewKey returns a new objectKey . The return value is
guaranteed to be unique among the keys generated during this program run. On
the platforms that have a realtime clock and unique process identifiers, a stronger
assertion can be made, i.e. the keys are guaranteed to be unique among all keys ever
generated on the same machine.

const unsigned int omniORB::hash_table_size;
int omniORB::hash(omniORB::objectKey& k);

omniORB::hash returns the hash value of an objectkKey . The value returned by
this function is always between 0 and omniORB:hash _table _size - 1 inclusively.

omniORB::objectkey omniORB::nullkey();

omniORB::nullkey always returns the same objectKey value. This key is
guaranteed to hash to 0.

3.4. TRAPPING OMNIORB2 INTERNAL ERRORS 33

int operator==(const omniORB::objectkey &k1,const omniORB::objectkey &k2);
int operator!=(const omniORB::0objectKey &k1,const omniORB::objectKey &k?2);

ObjectKeys can be tested for equality using the overloaded operator== and
operator!=

omniORB::seqOctets*
omniORB::keyToOctetSequence(const omniORB::objectKey &k1);

omniORB::objectKey
omniORB::octetSequenceToKey(const omniORB::seqOctets& seq);

omniORB::keyToOctetSequence takes an objectKey and returns its exter-
nalised representation in the form of a sequence of octets. The same sequence can be
converted back to an objectKey using omniORB::.octetSequenceToKey . If the
supplied sequence is not an objectKey , omniORB::octetSequenceToKey raises
a CORBA::MARSHAIlexception.

3.4 Trapping omniORB2 Internal Errors

class fatalException {
public:
const char *file() const;
int line() const;
const char *errmsg() const;

When omniORB2 detects an internal inconsistency that is most likely to be caused
by a bug in the runtime, it raises the exception omniORB::fatalException . When
this exception is raised, it is not sensible to proceed with any operation that involves
the ORB’s runtime. It is best to exit the program immediately. The exception structure
carries by omniORB::fatalException contains the exact location (the file name
and the line number) where the exception is raised. You are strongly encourage to file
a bug report and point out the location.

34

CHAPTER 3. THE OMNIORB2 API

Bibliography

[OMG96a] The Common Object Request Broker: Architecture and Specification, Revision
2.0, OMG, Updated July 1996.

[OMG96b] CORBAservices: Common Object Services Specification, OMG, Updated July
1996.

[Richardson96a] The OMNI Thread Abstraction, Tristan Richardson, ORL, 22 October
1996.

[Richardson96b] The OMNI Development Environment Version 4.0, Tristan Richardson,
ORL, 5 November 1996.

35

